特許第6982221号(P6982221)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ノキア テクノロジーズ オサケユイチアの特許一覧

特許6982221無線ネットワークおよび時空間センサからのデータの関連付けと格納
<>
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000002
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000003
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000004
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000005
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000006
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000007
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000008
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000009
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000010
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000011
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000012
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000013
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000014
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000015
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000016
  • 特許6982221-無線ネットワークおよび時空間センサからのデータの関連付けと格納 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6982221
(24)【登録日】2021年11月22日
(45)【発行日】2021年12月17日
(54)【発明の名称】無線ネットワークおよび時空間センサからのデータの関連付けと格納
(51)【国際特許分類】
   H04W 24/02 20090101AFI20211206BHJP
   H04W 4/38 20180101ALI20211206BHJP
【FI】
   H04W24/02
   H04W4/38
【請求項の数】20
【全頁数】33
(21)【出願番号】特願2021-517427(P2021-517427)
(86)(22)【出願日】2018年9月28日
(65)【公表番号】特表2021-530934(P2021-530934A)
(43)【公表日】2021年11月11日
(86)【国際出願番号】EP2018076436
(87)【国際公開番号】WO2020064121
(87)【国際公開日】20200402
【審査請求日】2021年5月26日
【早期審査対象出願】
(73)【特許権者】
【識別番号】515076873
【氏名又は名称】ノキア テクノロジーズ オサケユイチア
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100092624
【弁理士】
【氏名又は名称】鶴田 準一
(74)【代理人】
【識別番号】100141162
【弁理士】
【氏名又は名称】森 啓
(72)【発明者】
【氏名】テーム ミカエル ベイヤライネン
(72)【発明者】
【氏名】ラウリ イラリ クル
(72)【発明者】
【氏名】ヤニ マッティ ヨハンネス モイラネン
(72)【発明者】
【氏名】レオ ミッコ ヨハンネス カルッカイネン
【審査官】 永田 義仁
(56)【参考文献】
【文献】 特表2015−530779(JP,A)
【文献】 米国特許出願公開第2016/0197800(US,A1)
【文献】 特表2017−533603(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B7/24−7/26
H04W4/00−99/00
3GPP TSG RAN WG1−4
SA WG1−4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
第1データス・トリームを介して、1つ以上のセンサからセンサ・データサンプルを受信するステップと、
第2データス・トリームを介して、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信するステップと、
1つ以上の受信されたセンサ・データサンプルを、時間ウィンドウに基づいて前記受信された無線ネットワーク情報データサンプルの1つ以上との関連付けるステップと、
前記無線ネットワークの性能における変化に関連する前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
前記選択の理由を示すために、前記選択された1つ以上の関連センサおよび無線ネットワーク情報データサンプルにラベル付けするステップと、
その後の使用のために、前記選択されレベル付けされた関連センサおよび無線ネットワーク情報データサンプルを転送するステップと、を含む方法。
【請求項2】
前記転送は、少なくとも、前記選択された関連センサおよび無線ネットワーク情報データサンプルを格納するステップと、
前記選択された関連センサおよび無線ネットワーク情報データサンプルを、処理のために転送するステップと、
のうちの1つを含む、請求項1に記載の方法。
【請求項3】
前記関連センサおよび無線ネットワーク情報データサンプルは、どのイベントが前記関連づけをトリガしたかを示すためにラベル付けされ、
前記方法は、前記イベントにつながる情報を格納するステップと、
ライブデータフィードに基づいて前記イベントを予測するモデルを訓練するために、前記イベントにつながる情報を使用するステップと、
少なくとも1つの無線ネットワーク・パラメータを予測的に最適化するステップと、
を含む、請求項1に記載の方法。
【請求項4】
前記時間ウィンドウは、前記無線ネットワーク情報データサンプルの1つ以上の閾値時間ウィンドウ内にある1つ以上のセンサ・データサンプル、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルの時間に基づいている、請求項1に記載の方法。
【請求項5】
1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを関連付ける前記ステップは、第1のセンサが、少なくとも第1の通信要素と対になっているか、または関連付けられていることを決定するステップを含み、
前記第1のセンサからの1つ以上のセンサ・データサンプルの時間に基づく前記時間ウィンドウは、少なくとも前記第1の通信要素に関連する1つ以上の前記無線ネットワーク情報データサンプルの時間ウィンドウ内に存在する、請求項1に記載の方法。
【請求項6】
前記無線ネットワークの性能に関連する、前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルのうちの少なくとも一部を選択する前記ステップは、


前記無線ネットワークの性能の変化の前に発生するか、またはサンプリングされる前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
前記無線ネットワークの性能の変化の間に発生するか、またはサンプリングされる前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
前記無線ネットワークの性能の変化の後に発生するかまたはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
のうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項7】
前記無線ネットワークの性能に関連する、前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルのうちの少なくとも一部を選択する前記ステップは、
前記無線ネットワークの性能の低下の前に発生するかまたはサンプリングされる前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
前記無線ネットワークの性能の低下の間に発生する、またはサンプリングされる前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
前記無線ネットワークの性能の低下後に発生する、またはサンプリングされる前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、
のうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項8】
少なくとも1つのプロセッサと、コンピュータ命令を含む少なくとも1つのメモリと、を備える装置であって、
該コンピュータ命令は、前記少なくとも1つのプロセッサにより実行されたとき、前記装置に、
第1データス・トリームを介して、センサ・データサンプルを1つ以上のセンサから受信させ、
第2データス・トリームを介して、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信させ、
1つ以上の受信されたセンサ・データサンプルを、時間ウィンドウに基づいて前記受信された無線ネットワーク情報データサンプルの1つ以上と関連付け、
無線ネットワークの性能における変化に関連する前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させ、
前記選択された1つ以上の関連センサおよび無線ネットワーク情報データサンプルに、前記選択の理由を標示するためにラベル付けさせ、
その後の使用のために、前記選択されラベル付けされた関連センサおよび無線ネットワーク情報データサンプルを転送させる、
装置。
【請求項9】
前記装置に転送させることは、
前記選択された関連センサおよび無線ネットワーク情報データサンプルを格納することと、
処理のために前記選択された関連センサおよび無線ネットワーク情報データサンプルを転送ことと、
のうちの少なくとも1つを実行させることを含む、
請求項8に記載の装置。
【請求項10】
前記関連センサおよび無線ネットワーク情報データサンプルは、どのイベントが前記関連づけをトリガしたかを示すためにラベル付けされており、
前記コンピュータ命令は、さらに、前記装置に、
前記イベントにつながる情報を格納させ、
ライブデータフィードに基づいて前記イベントを予測するモデルを訓練するために、前記イベントにつながる情報を使用させ、
少なくとも1つの無線ネットワーク・パラメータを予測的に最適化させる、
請求項8に記載の装置。
【請求項11】
前記装置に少なくとも1つのアクションを実行させることは、前記装置に、
1つ以上の無線ネットワーク動作、
1つ以上の自動無線ネットワーク動作、
ネットワーク自己最適化アルゴリズムによってトリガされる1つ以上の自動無線ネットワーク動作、
前記無線ネットワークのパフォーマンスを向上させるために、オブジェクトまたは物理環境の態様が変更される1つ以上の非無線ネットワーク動作、
の少なくとも1つを実行させることを含む、請求項10に記載の装置。
【請求項12】
物理環境のオブジェクトまたは部分の状況または状態を検出するセンサに関連するセンサ・データサンプルを前記装置に受信させることは、前記装置に、前記物理環境のオブジェクトまたは部分の検出、測位、方位、または位置の決定を実行するレーダーまたはLiDARから前記センサ・データサンプルを受信させることを含む、請求項8に記載の装置。
【請求項13】
前記装置に無線ネットワークに関連する無線ネットワーク情報を受信させるステップは、前記装置に、
前記無線ネットワークのための無線ネットワーク鍵性能指標と、
無線ネットワーク動作に関連する情報と、
無線ネットワーク構成パラメータと、
のうちの少なくとも1つを受信させることを含む、請求項8に記載の装置。
【請求項14】
前記無線ネットワークのための前記無線ネットワーク構成パラメータは、基地局またはユーザデバイスの識別子、構成、または座標のうちの少なくとも1つを含む、請求項13に記載の装置。
【請求項15】
無線ネットワーク動作に関連する前記情報が、ターゲット基地局へのユーザデバイスのハンドオーバ、2つ以上の基地局間のトラフィックまたはデータのロードバランシング、基地局とユーザデバイスとの間の無線リンクのためのリンク適応、ユーザデバイスによって実行されるセル選択またはセル再選択、スケジューリング、資源配分、送信電力制御、および、タイミングアドバンス調整のうちのの少なくとも1つに関連する情報を含む、請求項13に記載の装置。
【請求項16】
前記装置に、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定させることは、前記装置に、前記無線ネットワーク情報データサンプルの1つ以上の時間ウィンドウ内にある1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定させることを含む、請求項8のいずれか1項に記載の装置。
【請求項17】
前記装置に、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定させることは、前記装置に、第1のセンサが、少なくとも第1の通信要素と、対になっているか、または関連付けられていることを決定させることを含
前記時間ウィンドウは、少なくとも前記第1の通信要素に関連付けられた1つ以上の前記無線ネットワーク情報データサンプルの閾値時間ウィンドウ内にある第1のセンサからの1つ以上のセンサ・データサンプルの時間に基づいている、請求項8に記載の装置。
【請求項18】
前記装置に、前記無線ネットワークの性能に関連する前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることは、
前記装置に、前記無線ネットワークの性能の変化の前に発生するか、またはサンプリングされる前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルのうちの少なくとも一部を選択させることと、
前記無線ネットワークの性能の変化の間に発生するか、またはサンプリングされる前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルのうちの少なくとも一部を選択させることと、
前記無線ネットワークの性能の変化の後に発生するか、またはサンプリングされる前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルのうちの少なくとも一部を選択させることと、
のうちの少なくとも1つを実行させることを含む、請求項8に記載の装置。
【請求項19】
前記装置に、前記無線ネットワークの性能に関連する前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルのうちのの少なくとも一部を選択させることは、前記装置に、
前記無線ネットワークの性能の低下の前に発生するか、またはサンプリングされる前記1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、
前記無線ネットワークの性能の低下中に発生するか、またはサンプリングされる前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、
前記無線ネットワークの性能の低下後に発生するか、またはサンプリングされる前記1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、
のうちの少なくとも1つを実行させることを含む、
請求項8に記載の装置。
【請求項20】
前記ラベル付けは、前記無線ネットワークの性能における低下に関連する前記選択された関連センサおよび無線ネットワーク情報データサンプルの選択理由を含む請求項8に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
この記述は無線通信に関する。
【背景技術】
【0002】
通信システムは、固定通信装置または移動通信装置のような、2つ以上のノードまたは装置間の通信を可能にする設備であってもよい。信号は有線または無線のキャリアで伝送できる。
【0003】
セルラ通信方式の実例として、3GPP(第3世代パートナーシッププロジェクト)で標準化されているアーキテクチャがある。この分野における最近の発展は、UMTS(Universal Mobile Telecommunications System:ユニバーサル移動通信システム)無線アクセス技術のLTE(long−term evolution:長期進化)と呼ばれることが多い。E‐UTRA(evolved UMTS Terrestrial Radio Access)は、モバイルネットワークのための3GPPのLTE(長期進化)アップグレードパスのエアインタフェースである。LTE では、拡張ノードAP(eNB)と呼ばれるベースステーションまたはアクセスポイント(AP)は、カバレッジエリアまたはセル内でワイヤレスアクセスを提供する。LTEでは、移動装置または移動局はユーザデバイス(UE)と呼ばれる。LTEには、多くの改良や開発が含まれている。
【0004】
5G NR(New Radio)開発は、3Gおよび4Gワイヤレスネットワークの以前の進化と同様に、5Gの要件を満たすための継続的なモバイルブロードバンド進化プロセスの一部である。さらに、5Gはモバイルブロードバンドに加えて、新たに出現するユースケースにもターゲットを絞っている。5Gの目標は、新しいレベルのデータレート、レイテンシ、信頼性、セキュリティを含むワイヤレス性能の大幅な改善を提供することである。5G NRはまた、膨大なモノのインターネット(IoT)を効率的に接続するために拡張され、新しいタイプのミッションクリティカルなサービスを提供する可能性がある。たとえば、URLLC(Ultra−Reliable and Low−Latency Communications)装置は、高い信頼性と非常に低いレイテンシを必要とする場合がある。
【発明の概要】
【0005】
一実施形態によれば、本願方法は、1つ以上のセンサからセンサ・データサンプルを受信するステップと、無線ネットワークに関連付けられた無線ネットワーク情報データサンプルを受信するステップと、受信した1つ以上のセンサ・データサンプルと受信した無線ネットワーク情報データサンプルの1つ以上の関連付けに基づいて、1つ以上の関連付けられたセンサおよび無線ネットワーク情報データサンプルを決定するステップと、無線ネットワークのパフォーマンスに関連する1つ以上の関連付けられたセンサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、選択された関連付けられたセンサおよび無線ネットワーク情報データサンプルを後続の使用のために転送するステップとを含む。
【0006】
一実施形態によれば、本願装置は、少なくとも1つのプロセッサと、コンピュータ命令を含む少なくとも1つのメモリとを含み、少なくとも1つのプロセッサによって実行されると、この装置は、1つ以上のセンサからセンサ・データサンプルを受信するようにし、無線ネットワークに関連付けられた無線ネットワーク情報データサンプルを受信し、受信した1つ以上のセンサ・データサンプルと受信した無線ネットワーク情報データサンプルの1つ以上の関連付けに基づいて、1つ以上の関連付けられたセンサおよび無線ネットワーク情報データサンプルを決定し、無線ネットワークのパフォーマンスに関連する1つ以上の関連付けられたセンサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択し、その後の使用のために、選択された関連付けられたセンサおよび無線ネットワーク情報データサンプルを転送するようにさせる。
【0007】
一実施形態によれば、非一時的コンピュータ読み取り可能な格納媒体は、少なくとも1つのプロセッサによって実行されるとき、コンピューティング・システムに、1つ以上のセンサ、センサ・データサンプルを受信し、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信し、1つ以上の受信センサ・データサンプルと1つ以上の受信無線ネットワーク情報データサンプルとの関連付けに基づいて、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定し、無線ネットワークのパフォーマンスに関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択し、その後の使用のために、選択された関連センサおよび無線ネットワーク情報データサンプルを転送する、方法を実行させるように構成される、その上に格納された命令を含む。
【0008】
実施形態の1つ以上の例の詳細は、添付の図面および以下の説明で説明される。他の特徴は、明細書および図面、並びにクレームから明らかである。
【図面の簡単な説明】
【0009】
図1図1は、実施例に係る無線ネットワークのブロック図である。
図2図2は、例の実施形態にしたがう、ロボット上に設けられたユーザデバイス/UEの位置と、ブロッキングオブジェクトによるそのユーザデバイス/UEに対する受信電力の変化と、の間の決定的な挙動を示す図である。
図3図3は、一実施形態による工場内でサイクルを繰り返すロボットを示す図である。
図4図4は、実施例に係るネットワークの動作を示す図である。
図5図5は、実施例に係るセンサ・データサンプルと無線ネットワーク情報データサンプルとを関連付ける図である。
図6図6は、実施例に係るデータフィルタリング・アンド・関連(DFA)を示す図である。
図7図7は、実施例に係るデータ管理エンティティの図である。
図8図8は、ユーザ機器(UE)と、UEのための無線ネットワーク性能に影響を与える動的または移動ブロックオブジェクト812とを有するロボット810を示す図である。
図9図9は、エラーの前、エラーの間、およびエラーの後の期間の無線ネットワーク情報(RI)を示す図である。
図10図10は、プレ・エラー、エラーおよびポスト・エラー位置内のダイナミックブロッキングオブジェクトのビデオのビデオフレームを示す。
図11図11は、異なるビデオフレームに関連する、エラー前、エラーおよびエラー後時間のために転送または受信されるデータを示す図である。
図12図12は、DFAアルゴリズムがマルチアクセスエッジクラウド(MEC:Multi−Access Edge Cloud)サーバ内にある配置オプションを示す図である。
図13図13は、図12と同様の配置を示す図であり、センサデータがSDFアグリゲーション機能に集約される点が異なる。
図14図14は、センサおよびDFA−アルゴリズムインスタンス520が無線ネットワーク(RN)412の内部にある展開オプションを示す図である。
図15図15は、実施例に係るシステムの動作を示すフローチャートである。
図16図16は、実施例に係る無線ステーション(例えば、AP、BSまたはユーザデバイス、または他のネットワークノード)のブロック図である。
【発明を実施するための形態】
【0010】
図1は、実施例に係る無線ネットワーク130のブロック図である。図1の無線ネットワーク130において、移動局(MS)またはユーザ装置(UE)とも呼ばれるユーザデバイス131、132、133および135は、アクセスポイント(AP)、拡張ノードB(eNB)またはネットワークノードとも呼ばれる基地局(BS)134と接続(および通信)されてもよい。アクセスポイント(AP)、基地局(BS)またはeノードB(eNB)の機能の少なくとも一部は、リモート無線ヘッドなどのトランシーバに動作可能に接続されていてもよい任意のノード、サーバ、またはホストによって実行されてもよい。BS134は、ユーザデバイス131、132、133および135を含むセル136内に無線カバレッジを提供する。BS134に接続または付属されているものとして示されているユーザデバイスは4つだけであるが、任意の数のユーザデバイスが提供されてもよい。BS134はまた、S1インタフェース151を介してコアネットワーク150に接続される。これは、単なる無線ネットワークの1つの単純な例であり、他のものが使用される可能性がある。
【0011】
ユーザデバイス(ユーザ端末、ユーザデバイス(UE))は、加入者識別モジュール(SIM)と共に、または加入者識別モジュールなしで動作する無線移動通信装置を含む携帯計算装置を指すことができ、これには、例として、移動局(MS)、携帯電話、携帯電話、スマートフォン、携帯情報端末(PDA)、ハンドセット、無線モデム(アラームまたは測定装置など)を使用する装置、ラップトップおよび/またはタッチスクリーンコンピュータ、タブレット、ファブレット、ゲームコンソール、ノートブック、およびマルチメディア装置、または他の任意の無線装置が含まれるが、これらに限定されない。ユーザデバイスは、ほぼ排他的なアップリンクのみのデバイスであってもよく、その例は、ネットワークに画像またはビデオフィードをロードするカメラまたはビデオカメラであることが理解されるべきである。
【0012】
LTE(一例として)では、コアネットワーク150は、BS間のユーザデバイスの移動性/ハンドオーバを処理または支援することができる移動性管理エンティティ、BSとパケットデータネットワークまたはインターネット間でデータおよび制御信号を転送することができる1つ以上のゲートウェイ、および、他の制御機能またはブロックを含むことができる、進化パケットコア(EPC)と呼ばれることがある。
【0013】
加えて、例示的な例として、本明細書に記載する各種実施形態または技法は、各種タイプのユーザデバイスまたはデータサービスタイプに適用することができ、または、異なるデータサービスタイプであってもよい複数のアプリケーションをその上で実行することができるユーザデバイスに適用することができる。NR(5G)開発は、例えば、装置タイプ通信(MTC)、拡張装置タイプ通信(eMTC)、モノのインターネット(IoT)、および/または、ナローバンドIoTユーザデバイス、拡張モバイルブロードバンド(eMBB)、および超高信頼および低レイテンシ通信(URLLC)など、多数の異なるアプリケーションまたは多数の異なるデータサービスタイプをサポートする可能性がある。
【0014】
IoTは、インターネットまたはネットワーク接続性を持つ可能性があるオブジェクトの増加し続けるグループを指し、これらのオブジェクトが他のネットワークデバイスと情報を送受信する可能性がある。例えば、多くのセンサタイプのアプリケーションまたは装置は、物理的状況または状態を監視し、例えば、事象が発生したときに、サーバまたは他のネットワーク装置にレポートを送信することができる。マシンタイプ通信(MTC、またはマシン対マシン通信)は、例えば、人間の介入の有無にかかわらず、知的マシン間の完全自動データ生成、交換、処理、および作動を特徴とすることができる。拡張モバイルブロードバンド(eMBB)は、現在LTEで利用可能なものよりもはるかに高いデータレートをサポートする可能性がある。
【0015】
URLLC(Ultra−reliable and low−latency communications)は、新しいデータサービスタイプであり、NR(5G)システムでサポートされる可能性がある。これにより、産業オートメーション、自律運転、車両安全、e−ヘルスサービスなど、新しいアプリケーションとサービスが可能になる。3GPPは、10−5のブロック・エラーレート(BLER)と最大1msのU−Plane(ユーザ/データプレーン)レイテンシに対応する信頼性を提供するためのターゲットである。したがって、例えば、URLLCユーザデバイス/UEは、他のタイプのユーザデバイス/UEよりもかなり低いブロック・エラー率、ならびに低レイテンシ(同時高信頼性の要求の有無に関わらず)を必要とすることがある。したがって、たとえば、URLLC UE(またはUE上のURLLCアプリケーション)は、eMBB UE(またはUE上で実行されているeMBBアプリケーション)と比較して、はるかに短いレイテンシを必要とする場合がある。
【0016】
様々な実施例の実施例は、LTE、LTE−A、5G、cmWave、および/またはmmWaveバンドネットワーク、IoT、MTC、eMTC、eMBB、URLLC等、または他の任意の無線ネットワークまたは無線技術のような、多種多様な無線技術または無線ネットワークに適用することができる。これらのネットワーク、技術またはデータサービスタイプの例は、例示的な例としてのみ提供されている。
【0017】
前述のように、5Gテクノロジーは、データレート(または帯域幅)を大幅に増加させ、レイテンシを減少させることが期待されている。URLLCなどの5Gテクノロジーの多くは、保証された低レイテンシなど、非常に厳しい性能を必要とする場合がある。ただし、物理環境の動的な性質により、無線ネットワークのパフォーマンスが頻繁または継続的に変化する場合がある。環境の変化によって、無線ネットワークのパフォーマンスが、前述のように、BLERやレイテンシの要件など、一部の5Gアプリケーション(URLLCアプリケーションなど)で必要な5Gパフォーマンス要件を満たさないレベルに低下することがある。UEまたはBSは、信号対干渉プラス雑音比の変化、受信信号強度、ブロック・エラー率(BLER)、または他のKPIまたは測定のような、KPI(key performance indicator:主要性能指標)の変化、例えば、劣化する無線ネットワーク性能を示す変化を測定することができる。しかしながら、非常に厳しい5Gネットワーク性能要件(例えば、待ち時間および/またはBLERまたは他の要件)のため、多くの場合、UEまたはBSが劣化した無線ネットワーク性能、例えば、UEとBSとの間の無線/無線チャネルを検出するのに十分な時間がないことがあり、その後、無線ネットワークまたは無線チャネルの性能が5Gアプリケーションの許容レベルを下回る前に、無線ネットワーク性能を改善する処置を講じる。例示的な例によれば、UEまたはBSは、例えば、UEとBSとの間の無線チャネルのSINRまたは受信信号強度の低下を検出し、その後、接続ロバスト性の増大(例えば、よりロバストな変調および符号化スキームを使用し、および/または追加の多重接続性リンクをアクティブにすることによって)を要求または実行し、または、例えば、切断を回避するため、またはUEのための無線ネットワーク性能を改善しようとするために、別のBSへのハンドオーバを実行することができる。したがって、例えば、無線ネットワークの性能変化を検出する(例えば、SINRの減少または受信信号強度または他のKPIの変化の減少を検出する)というこのようなリアクティブなアプローチは、その後、無線ネットワークに対して何らかの措置を実行することによって、このような検出された変化に反応することは、5G無線ネットワークの厳しい待ち時間およびBLER要件にとって適切ではない可能性がある。例えば、接続の堅牢性および/またはハンドオーバをリアクティブに実行することにより、この例では、無線ネットワークの性能が、5Gの要件を下回るレベルに低下する結果となる可能性がある(例えば、BLERおよび/またはレイテンシが許容できないほど高くなったり、接続障害が発生したりする可能性がある)。この問題は、無線ネットワークの測定または測定されたKPIの測定された変化に対応する際に、無線ネットワークの測定または測定されたKPIの変化が検出された時間によって、ネットワーク・パフォーマンスのさらなる低下を回避するために1つ以上のアクションを実行するのに十分な時間がないことが原因で発生する可能性がある。
【0018】
したがって、実施例によれば、より予測的またはよりプリエンプティブなアプローチを使用して、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルに基づいて、無線ネットワーク性能における期待または予測される変化に対処することができる。このようなアプローチの主要な利点または技術的利点は、ネットワーク性能がURLLCのような重要なアプリケーションの許容レベルを下回る前に先制的な訂正アクションの実行または実行を可能にすることである。これは、関連付けられたセンサと無線ネットワークデータが最適化方法の新たな情報をもたらすため、従来のアプローチでは予測できない(または予測が困難である)イベントを予測できるため、無線ネットワークデータのみを利用するためである。例えば、物理環境の決定的な性質は、例えば無線ネットワーク性能を改善するために、1つ以上のプリエンプティブ訂正無線ネットワーク動作および/またはプリエンプティブ訂正非無線ネットワーク動作のような、1つ以上のプリエンプティブ訂正動作を実行するために使用されてもよい。関連するセンサおよび無線ネットワーク情報データサンプルのうち、無線ネットワークの性能に関連するもの(例えば、無線ネットワークの性能が低下する可能性が高い、または期待されることを示す可能性があるもの)を選択することができる。例えば、過去の関連センサ・データサンプルおよび無線ネットワーク情報データサンプルに基づいて、オブジェクトの挙動または移動における特定のパターン、または物理環境における変化は、無線ネットワーク性能における現在および/または将来(例えば、予期または予測)の変化に関連することがある。選択された関連センサおよび無線ネットワーク情報データサンプルは、後続の使用のために転送されてもよい(例えば、処理のためにデータベースに格納されてもよいし、無線ネットワーク性能を改善するアクションを実行するために使用されてもよい)。したがって、物理環境に関連する時空間センサデータは、特定の無線ネットワーク情報と相関する可能性があるため、関連するセンサおよび無線ネットワーク情報(ASRI)データサンプルは、将来の無線ネットワーク性能を予測するために使用される可能性がある。特に、将来の無線ネットワーク性能の予測は、無線ネットワーク情報のみを使用するのと比較して、(無線ネットワーク情報に関連する)時空間センサデータの使用によって強化される可能性がある。例えば、1つ以上の動作は、関連するセンサおよび無線ネットワーク情報(ASRI)データサンプルに基づいて実行されてもよく、例えば、送信電力の増加、UEに対する変調および符号化スキームのよりロバストまたはより低いMCSへの変更、異なるBSへのUEのハンドオーバの実行、または他の無線ネットワーク動作などである。
【0019】
一実施形態によれば、本願方法は、1つ以上のセンサからセンサ・データサンプルを受信することと、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信することと、1つ以上の受信したセンサ・データサンプルの1つ以上の受信した無線ネットワーク情報データサンプルとの関連付けに基づいて、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定することと、無線ネットワークのパフォーマンスに関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、選択した関連センサおよび無線ネットワーク情報データサンプルを後続の使用のために転送することと、を含むことができる。
【0020】
ほとんどのURLLC環境の決定的な性質は、ネットワークがそのパラメータを予測的に最適化するための高い利得ポテンシャルを提供する。一実施形態によれば、無線ネットワーク測定(例えば、UE測定)は、物理環境の状態にマッピングされるか、またはそれに関連することができる。これらのマッピングまたは関連情報は、ネットワーク性能を改善するために、ネットワーク自己最適化のモデルまたは予測アルゴリズム(人工知能モデルまたはQ学習による強化学習などの方法、または他のモデル)によって使用されてもよい。このようにして、より良いパフォーマンスまたはエラーにつながる状態およびアクションを検出することができ、無線ネットワークのパフォーマンスを改善すると予測または期待されるアクション(例えば、無線ネットワークアクション、または物理環境の可能な変化)を実行することができる(たとえば、SINRを増やし、接続障害や切断を回避し、レイテンシを減らす。
【0021】
図2は、実施例に実施形態ブロッキングオブジェクトによる、ロボット上に設けられたユーザデバイス/UEの場所(または位置)と、ユーザデバイス/UEに対する受信電力の変化との間の決定的な挙動を示す図である。図2に示す例では、ロボット210がBTS1に関してブロッキングオブジェクト218の後ろを通過するときに、UE(決定的な経路を繰り返すロボット)と基地局BTS1との間で220における信号ブロッケージが発生し、その結果、例えばロボット/UEが150m〜350m(220)の間のx座標に位置するとき、BTS1からの信号レベル214がエラー閾値212を下回る結果となる。
【0022】
一実施形態によると、この種の状況に対する1つの解決策は、ロボット210上のUEのBTS1からBTS2へのハンドオーバ(BTS2からの受信電力信号216によって示されるように、受信電力の低下を被らない)を含んでもよい。しかしながら、BTS1からBTS2へのこのようなUEのハンドオーバを実行するためのレイテンシ222は、非常に重要であり、UEとBTS1との間の接続(またはドロップされた接続)における損失を防ぐのに十分な短さではない可能性がある。前述のように、この問題を解決する1つの解決策は、UEのBTS2へのハンドオーバである。しかしながら、従来のハンドオーバ方法は反応的であり、信号レベルが非常に速く低下するので、BTS2にスイッチする(またはハンドオーバする)レイテンシ222は、例として、URLLC要件によって許容されないエラーを引き起こす。信号遮断前の無線信号変化量は、必ずしもUEによる受信電力の来るべき低下を示すものではないので、受信電力の低下(またはネットワーク性能の他の検出された低下)に反応する伝統的な方法は、ネットワーク性能のさらなる劣化または無線ネットワークのためのエラー状態を効果的に防止できないかもしれない。例えば、上記のように、レイテンシ、BLER、ハンドオーバレイテンシ、データレート、信頼性などの点で非常に厳しい要件を持つ可能性がある5Gネットワーク(例えばURLLCや他のアプリケーション)については、無線ネットワーク性能の低下を防ぐための反応的なアプローチ(例えば、UEやBSによって無線ネットワーク性能の低下が測定または検出された後にのみアクションを実行すること)は、通常、無線ネットワーク性能のさらなる低下を防ぐことも、特定のエラー状態を回避することもできない。言い換えると、URLLCのような一部の5Gアプリケーションの厳しい性能要件により、ネットワーク性能の低下を検出した後(例えば、SINRの低下または受信信号強度の低下を検出した後)、無線ネットワーク動作を実行して、無線ネットワーク性能のさらなる許容できない低下を防ぐために、十分な時間がないかもしれない。
【0023】
したがって、一実施例によれば、無線ネットワーク性能(または無線ネットワークに関連するデータサンプル)と物理環境の状態(例えば、ロボットの位置)を示すセンサ・データサンプルとの相関または関連を、将来の無線ネットワーク性能を予測するために、および/またはネットワーク性能を改善する可能性がある無線ネットワーク動作を実行するために使用することができる。例えば、ロボット位置/位置と受信電力との間の関連付けまたは相関に基づいて、ロボット210の位置が130mから140mに移動するとき(例えば、位置は、無線ネットワーク性能、例えば、受信電力、の低下が通常最初に検出される150mのx座標の前である)、UEのハンドオーバを先行して(例えば、受信電力の有意な低下が検出される前に)実行することができる。この例では、BTS1からBTS2へのハンドオーバは、ロボットが140mのx座標に達したときに実行されてもよく、これは、例えば、無線ネットワークの性能を改善するために、222以上の十分な時間を提供するためである(例えば、この場合、受信電力の低下が閾値212を下回ること、および/またはUEとBTS1との間の接続の損失を回避するため)。
【0024】
したがって、無線チャネルまたは無線ネットワークの決定的な挙動に影響を与える(別の決定的な周期を導入する)物理環境の動的変化を考慮する方法には、課題が存在する可能性がある。この問題は、図3において、ロボット310が工場でサイクルを繰り返すところで実証されている。工場の積み込みポートドア312が閉じられると、ロボット310が経験する屋外基地局314からの干渉は、決定的なサイクル−Aに従う。ドアが開くと、より多くの干渉が屋内を伝搬し、新しい決定的なサイクルが導入される(周期‐B)。たとえば、物理環境の状態は、環境内の物理オブジェクトの状態、場所、位置、方向(またはその他の物理的特性)を示す場合がある。例えば、ロボットの位置、ロボットアームの向きなどである。したがって、この場合、ローディングポートドア312の状態は、現在または将来の無線ネットワーク性能と関連付けられてもよい。これにより、図3に示すように、ローディングポートドア312が開いている場合には室外BS314からの干渉が大きくなる。したがって、この例では、物理環境の状態を使用して、無線ネットワークの将来の状態(または、無線ネットワーク性能の将来の状態、および/または、異なる動作(例えば、異なる無線ネットワーク動作および/または物理環境動作)を試みて、無線ネットワーク性能の最良の改善を提供する動作を決定することができる。例えば、ロボット310のUEへの送信電力の増大、またはローディングポートドア312が開く直前のUE/ロボット310への送信のためのより強固な変調およびコーディングスキームの使用、または無線ネットワーク性能に影響を与える異なる時間に開くためのローディングポートドアの変更など、1つ以上の動作が実行されてもよく(または、実行されてから測定されて、どの動作が最高の性能向上をもたらすかを決定することさえ可能である)。
【0025】
一実施形態によれば、この方法は、1つ以上のセンサからセンサ・データサンプルを受信することと、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信することと、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを受信した1つ以上のセンサ・データサンプルと、受信した無線ネットワーク情報データサンプルの1つ以上との関連付けに基づいて、決定することと、無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、選択された関連センサおよび無線ネットワーク情報データサンプルを後続の使用のために転送することと、を含むことができる。一実施形態によれば、センサ・データサンプルは、物理環境に関連する時空間センサ・データサンプルを含む。例えば、時空間データサンプルは、特定の時間またはサンプリング時間におけるオブジェクトの状態または物理環境の状態を示すデータサンプルを含むことができる。また、一実施形態によれば、転送は、例えば、選択された関連センサおよび無線ネットワーク情報データサンプルを格納すること、および/または、処理のために選択された関連センサおよび無線ネットワーク情報データサンプルを転送することを含む。この方法は、選択された関連センサおよび無線ネットワーク情報データサンプルに基づいて、少なくとも1つの動作を実行することをさらに含み得る。例えば、この動作には、例えば、無線ネットワークパラメータまたは構成を調整するような無線ネットワーク動作を実行すること、および/または、オブジェクトの状態を移動または変更するような物理環境に対して動作を実行すること)を含み、無線ネットワークのパフォーマンスを向上させることができる。例えば、動作を実行することは、1つ以上の無線ネットワーク動作、1つ以上の自動無線ネットワーク動作、ネットワーク自己最適化アルゴリズムによってトリガされる1つ以上の自動無線ネットワーク動作、および/または、無線ネットワークの性能を改善するために物理環境のオブジェクトまたは態様が変更される1つ以上の非無線ネットワーク動作(例えば、物理環境に関連する動作)の1つ以上のものを含むことができる。また、例えば、1つ以上のセンサから、センサ・データサンプルを受信することは、物理環境のオブジェクトまたは部分を制御するボタン、スイッチ、またはコントローラ、オブジェクトの位置、向き、または動きを制御するボタン、スイッチ、またはコントローラ、オブジェクトの状況または状態を制御するボタン、スイッチ、またはコントローラ、オブジェクトまたは物理環境の一部のオブジェクトまたは部分の画像またはビデオフィードをキャプチャするカメラ、およびオブジェクトまたは部分の状態を検出するセンサのうちの1つ以上に関連するセンサ・データサンプルを受信することを含み得る。さらなる例では、物理環境のオブジェクトまたは一部のステータスまたは状態を検出するセンサに関連する受信センサデータは、例えば、物理環境の検出、測距、方位または位置決定を行うレーダまたはLiDARからのセンサデータの受信を含んでもよい。
【0026】
また、例えば、無線ネットワークに関連する受信側無線ネットワーク情報は、例示的な例として、無線ネットワークのための無線ネットワーク鍵性能指標と、無線ネットワーク動作に関連する情報と、無線ネットワーク構成パラメータとのうちの少なくとも1つを受信することを含み得る。また、例として、無線ネットワークキーパフォーマンスインジケータには、受信信号強度、総受信性能、受信干渉性能、および、信号対干渉プラスノイズ比(SINR)、経路損失、基準信号受信性能、基準信号受信品質、受信信号強度インジケータ、信頼性、ブロック・エラーレート、レイテンシ、ジッタ、カバレッジ、キャパシティ、データ転送レート、ランクインジケータ、変調および符号化方式インジケータ、チャネル状態情報、およびタイミングアドバンスのうちの1つ以上を含めることができる。
【0027】
また、一実施形態によれば、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定することは、一例として、無線ネットワーク情報データサンプルの1つ以上の時間ウィンドウ内にある1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定することを含むことができる。また、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定することは、第1のセンサが少なくとも第1の通信要素と対になっているか、または関連することを決定することと、少なくとも第1の通信要素に関連する1つ以上の無線ネットワーク情報データサンプルの時間ウィンドウ内にある第1のセンサからの1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定することとを含むことができる。例えば、通信要素は、基地局(BS)、ユーザデバイス(またはUE)、コアネットワーク要素、または他の無線ネットワーク要素の少なくとも1つを含む、例えば、コンピュータまたはサーバ、または無線ネットワークに関連する無線ネットワーク要素を含むことができる。また、無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することは、例えば、無線ネットワークの性能の変化の前に発生するか、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、無線ネットワークの性能の変化の後に発生するか、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、無線ネットワークの性能の変化の後に発生するか、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルを選択することと、のうちの1つ以上を含むことができる。また、例えば、無線ネットワークの性能に関連する、1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することは、無線ネットワークの性能低下の前に発生またはサンプリングされる、1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、無線ネットワークの性能低下の間に発生またはサンプリングされる、1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、無線ネットワークの性能低下の後に発生またはサンプリングされる、1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することと、のうちの1つ以上を含み得る。また、この方法は、無線ネットワークの性能に関連する、選択された関連センサおよび無線ネットワーク情報データサンプルの選択の理由をラベリングすることをさらに含み得る。
【0028】
図4は、実施例に係るネットワークの動作を示す図である。図4のネットワークは、物理環境の状態、例えば、オブジェクトの位置、位置、方位または他の状態などに関連するセンサ・データサンプルを生成することができる1つ以上のセンサ410を含むことができる。ネットワークはまた、例えば、コアネットワーク、1つ以上のBS、および/または1つ以上のUE等の無線ネットワーク412を含んでもよい。無線ネットワーク412は、無線ネットワークの状態および/または無線ネットワーク性能の状態を示す無線ネットワーク情報データサンプル、例えば、無線ネットワークの1つ以上の主要性能指標の値を示すなどを提供することができる。システムは、簡単な概要として、
1) 環境から時空間データを捕捉するセンサ、
2) RN(Radio−Network)キャプチャRN 情報(RI)
3) RIはセンサデータフィード(SDF)に関連付けられていること、
4) ネットワーク・パフォーマンスに関連すると考えられる関連データサンプルには、データ・ストリームからラベルを付けて選択すること、
5) 関連するデータサンプルは、データベースに格納されるか、またはさらなる処理のために直接転送されること、
6) 関連データは、ネットワーク管理および最適化エンティティに対して入力されること、
を含むか、または実行することができる。
【0029】
なお、詳細例として、以下に説明する。
【0030】
1) この文脈での センサ は、環境の時空間的変化を感知できる任意のデバイスを指す。センサは、固定式または移動式であってもよく、1つ以上のものが、より大きなシステム(例えば、ドローン、(自己駆動)車、またはロボットに配置された様々なセンサ)の一部として共位置決めされてもよい。このようなセンサのいくつかの、しかし限定的ではない例は、A) 環境を制御するボタンやスイッチ(ドアを開くボタンなど)、B) 環境の画像またはビデオフィードをキャプチャするカメラ(例:無線設置に設置されたカメラ、またはすでに存在する監視カメラ設置)、C) ライダー、レーダ、または検出、測位、方位、または位置情報を提供するその他のセンサ、を含む。ライダーは、パルスレーザー光でターゲットを照射し、反射パルスをセンサで測定することによって、ターゲットまでの距離を測定する測量方法である。レーダは、オブジェクトから反射された高周波数電磁波のパルスをソースに送り返すことによって、航空機、船舶、および/またはその他のオブジェクトの存在、方向、距離、および/または速度を検出するシステムを含むことができる。
【0031】
2) RN情報は、例えば、無線ネットワークのための無線ネットワーク主要性能指標(KPI)、無線ネットワーク動作に関連する情報、および/または無線ネットワーク構成パラメータを含み得る。RN KPIは、スループット、レイテンシ、ジッタ、信頼性およびRN測定(例えば、受信信号強度、全受信電力、受信干渉電力)のようなKPIを含み得る。RNパラメータは、基地局およびUEの識別子、構成、または配位を含むことができる。また、RNアクションは、ハンドオーバ、ロードバランシング、リンク適応、セル再選択、MCSの変化、伝送電力の変化、または任意の他のネットワーク関連パラメータの変化または更新に関連する情報など、無線ネットワークアクションに関連する情報を含むことができる。
【0032】
3) RIとSDFの関連は、例えば、時間領域における2つのデータ・ストリームをアソシエートすることを参照し得る。時間t1におけるセンサkに対するセンサ・フィードサンプルSDF(k、t1)は、時間t2における基地局jからのRN情報RI(j、t2)に関連付けられる。ここで、時間差|t1−t2|は、時間データフィードしきい値の範囲内である。例えば、時間t1において捕捉されたカメラkからの画像は、時間t2における基地局jの信号強度測定に関連付けられる。さらなる実施形態では、関連づけは、事前に構成されたデバイスのペアに対してのみ行われる(例えば、基地局は、基地局のカバレッジ領域またはその最も強い干渉のカバレッジ領域と重なる領域からの画像またはビデオフィードを捕捉するカメラと対になっている)。
【0033】
4) ネットワーク性能に関連すると考えられる関連データサンプルは、データのストリームから選択することができる。一実施形態では、関連データサンプルは、無線ネットワーク性能の低下に関連するなど、無線ネットワーク性能の変化に影響を与える、または関連するサンプルを含むことができる。例えば、無線信号の伝搬に影響を与える時空間変化、例えば、信号の最も強い経路を遮断することによって無線リンク品質に影響を与える移動オブジェクト、または(干渉または自身の信号に対して)新しい強い無線経路を導入することは、関連性があると考えられる。データサンプルの関連性は、あらかじめ決められたルールによって判定される。たとえば、RN性能の急激な変化の前後の特定の時間データフィード侘データ(信号強度が、あらかじめ定義された短い時間間隔内に低下したり、>xdB増加したりした場合など)。無関係なデータは、ネットワークの負荷(データ、搬送負荷などを使用する後処理アプリケーションの計算負荷)を低減するためにフィルタリングされる。サンプリングは、選択の理由を示すためにラベル付けされてもよい。例えば、エラーの前(または、無線ネットワーク性能の低下の前)にデータを意味するエラー前のラベルを示すために各データサンプルをラベル付けする、エラーの後(または、無線ネットワーク性能の低下の後)にデータを意味するエラー後のラベルを示すために、サンプリングはまたラベル付けするのいずれかを示すために各データサンプルをラベル付けすることができる。
【0034】
5) 関連するデータサンプルは、後で使用するためにデータを取り出すことができるデータベースに格納されるか、または(例えば、ネットワーク性能を最適化するために)何らかのさらなる処理のために連続的に転送される。
【0035】
6) ネットワーク管理および最適化エンティティは、関連するデータ(または関連するセンサおよび無線ネットワーク情報(ASRI))を入力として受信および/または取得することができる。関連データ(またはASRI)に基づいて、RNパフォーマンスを向上させるためのアクションが実行される。アクションには、RNアクションや、無線ネットワークのパフォーマンスに影響を与えるその他のアクションなどがある。例えば、
A) ネットワークの自己最適化アルゴリズムによってトリガされる自動RNアクション(ネットワークのパラメータを自己調整したり、修正アクションをトリガしたりするなど)、
B) ヒューマンインタフェースを介してトリガされる手動RNアクション(ネットワークパラメータがネットワーク管理システムのユーザインタフェースを介して調整される、ネットワークの導入または設定が手動で調整されるなど)、
C) 物理環境(または物理環境の状態)が変更され、RN性能が向上する非RNアクション(例えば、無線信号品質が低下しているオブジェクトが、何らかの方法でシフト、移動、変更されたり、環境から完全に削除されたりする)
である。
【0036】
さらなる実施形態および実施例の詳細が、ここで説明される。
【0037】
図5は、実施例に係るセンサ・データサンプルと無線ネットワーク情報データサンプルとを関連付ける図である。センサ10は、物理環境に関連する1つ以上のパラメータを感知または測定することができる。一実施形態によれば、DFA(Data Filtering and Association)(またはDFAアルゴリズム)は、RI(radio network information:無線ネットワーク情報)518およびSDF(sensor data feed:センサデータフィード)516を関連付ける論理エンティティである。関連するデータは、ASRI(Associated Sensor and Radio−Network Information)522と呼ばれる。ASRIデータ522サンプルが保存されるストレージは、データ管理(DM)と呼ばれる。SDF(sensor data feed:センサデータフィード)516は、センサ410からDFA520に出力される。前述したように、無線ネットワーク412は、BS、UE、および/またはコアネットワークエンティティ、あるいは他の無線ネットワークノードまたはエンティティを含むことができる。無線ネットワーク情報(RI)518は、RN412からDFA520に出力される。
【0038】
図5は、DFAおよびDMの一実施例を示す図である。センサ410、および無線ネットワーク412、DFA 520、およびデータ管理エンティティ524が図5に示されている。測定:SDF(Sensor Data Feed)516 & RI (Radio−Network Information) 518は、DFA520にフィード(または入力)される。両方のデータフィードに独自のインタフェースが指定されている場合がある。DFA520(またはDFA−アルゴリズム520)は、データ管理(DM)524へのデータ・ストリームを制御する。DFA520は、ネットワーク性能に関連すると考えられるデータのストリーム(SDF516およびRI518)からの関連データを関連付けてフィルタリングすることができ、関連性の理由をデータにラベル付けすることもできる。DFA520の1つ以上のインスタンスが存在する可能性があり、これは、異なる物理的または論理的な場所において、異なるデータソースがDFA520(DFA−アルゴリズム)の異なるインスタンスによって処理される可能性があることを意味する。DFAインスタンスは、例えば、RN基地局、Mobile Edge Computing(MEC)サーバまたは他の任意のサーバまたはコンピュータに配置することができる。DFA520(DFA−アルゴリズムAの実装は実装固有である。これには、データ関連をトリガするための事前にプログラムされたルールが含まれる。
【0039】
MEC(Mobile Edge Computing)は、たとえば、モバイルサブスクライバの近くにあるクラウドおよびITサービスやアプリケーションの提供を可能にする、5G時代の新技術である。この技術を使用すると、例として、BSの近くにあるクラウドやアプリケーション・サーバ(BS内またはその一部としてのMECサーバ、BS機器が配置されている筐体や建物内にあるMECサーバ)を利用できる。ここで、例として、BS機器が設置されている場所や、BSに非常に近い場所にあるMECサーバなどが挙げられる。たとえば、MECサーバ(MECアプリケーションと呼ばれる場合がある)にアプリケーションを提供することで、モバイルユーザが認識するエンドツーエンドのレイテンシがMECプラットフォームで削減される。MECサーバには、他の利点もある。
【0040】
図5を参照すると、一実施形態によれば、データ管理524は、関連データ522が送られる論理エンティティである。DM524は、一例として、データストレージ、入ってくるデータの即時転送、格納されたデータの転送(例えば、ASRIデータ)の1つ以上の機能を有することができる。ASRIデータ522は、ASRIデータ522を送信するために使用されるプロトコルを理解することができる任意のエンティティに直接転送することができるという意味で、このエンティティはオプションである。DFA 520と同様に、アーキテクチャは、分散または中央にすることができ、つまり、DFA (DFA−Algorithm)520インスタンスからのデータ(例えば、ASRIデータ)ストリームを、異なる物理的または論理的な場所にあるDM524の1つ以上のインスタンスに接続することができる。
【0041】
[DFA]
このサブセクションでは、DFA520の概要を説明する。DFA(Data−Filtering−and−Association)520は、無線ネットワークとセンサからのデータを関連付け、ネットワーク・パフォーマンスに関連すると考えられるデータ・ストリームからの関連データをフィルタリングしてラベル付けする。DFA520には、論理的または物理的に異なる場所にある複数のインスタンスがある。たとえば、一部のセンサがRN基地局内部のDFAインスタンスに接続され、残りのセンサがMECサーバ内部の異なるDFA−インスタンスに接続されていることを意味する。このタイプの実装を可能にするには、いくつかのインタフェースプロトコルを定義する必要がある。これにより、マルチベンダネットワークでの実装も可能になる。
【0042】
図6は、実施例に係るデータフィルタリング・アンド・関連(DFA)を示す図である。SDF(センサデータフィード):インタフェース612は、センサデータを転送するプロトコルを定義する。プロトコルは、例えば、データのタイプ、各データサンプルの時間スタンプなどを示すことができ、RI−インタフェース614は、無線ネットワーク情報(RI)の転送プロトコルを定義する。プロトコルは、例えば、データのタイプ、各データサンプルの時間スタンプなどを示すことができ、DS−インタフェース616は、ASRI情報をDM524に転送するためのプロトコルを定義する。構成−インタフェース618は、例えばDFAアルゴリズム構成データに基づいて、DFA520の動作またはアルゴリズムを構成するためのプロトコルを定義する。このインタフェース618を介して、カスタムデータ関連アルゴリズムまたはルールを各DFA520インスタンスに実装することができる。制御インタフェース620は、センサ410および/または412に制御またはフィードバックを提供するために、事前定義された一連の指示から指示を送信するプロトコルを定義する。例えば、RIがネットワーク内のエラーを示しているとき(例えば、場合によっては、無線ネットワーク性能が低下している可能性がある)、SDFを連続的に送信する代わりに、インタフェース620を使用して、前の10秒および次の10秒のSDFを送信するようセンサに命令することができる。センサは必要なときにのみデータをストリーミングするため、これにより送信帯域幅が節約される。さらに、インタフェース620は、無線ネットワークからのデータ・ストリームを制御するために使用されてもよい。
【0043】
一実施形態によれば、DFA(またはDFAアルゴリズム)520は、3つの機能または構成要素の例を含むことができ、これらの例には、以下を含む。
1)関連機能622が、SDFおよびRIデータの関連づけを実行することができる。単純な実施形態では、DFA520(例えば、関連づけ622)は、特定の時間ウィンドウ内に到着するデータサンプル(センサ・データサンプルおよび無線ネットワーク情報データサンプルを関連づける)を関連づけることができる。したがって、データ関連は、センサ・データサンプルとRIサンプルの時間関係に基づいてDFA520によって実行されてもよく、例えば、時間閾値内に到着するか、またはタイムスタンプを有する。このような実装は、データの送達が過度のレイテンシを持たないことが保証できる限り、十分である。SDFとRIの関連間でより正確な同期(ミリ秒レベルなど)を実現するには、別の解決策が必要になる場合がある。単純な例は、SDFとRIインタフェースプロトコルにGPSタイムスタンプを追加することである。GPSがない場合、同期イーサネット(登録商標)のように、何らかの外部同期方式を利用することができる。
2)DFA520のメモリ624は、ASRIデータサンプルを格納することができる。したがって、DFAメモリ624は、N個の最新のASRIサンプルを格納するためのメモリを含んでもよい。サンプリングの履歴は、データ関連をトリガしたイベントの前に情報を得るために、DFA520によって使用されてもよい。
3)DFA520のルール&プログラム626は、自分のDFAインスタンス520の内部で関連付けをトリガするための、または制御インタフェース620を介して別のDFAインスタンスで関連付けをトリガするための、一連のルール、またはプログラムを含んでもよい。ルールおよびプログラム626は、メモリに格納されるASRIサンプルと、どのサンプルがDM524に送信されるかを指定することもできる。ルールは、構成インタフェース618を介して、構成または別個のプログラムをダウンロードすることができる。ルールには、関連付けられたデータを受信するさまざまな宛先の個別のルールを含めることができる。たとえば、1つの宛先は1つのルールで指定されたフィルタリングされたデータを受信し、もう1つの宛先はフィルタリングされずに生データを受信する。明らかに、これは個別のDFAインスタンスでも実現できる。
【0044】
[データ管理]
図7は、実施例に係るデータ管理エンティティの図である。DM(Data Management)の役割には、たとえば、ASRIの受信、ASRIのメモリ、受信したASRIの転送などがある。ASRIをメモリから取得し、オンデマンドで指定された宛先に送信する。DMインタフェース716は、DM524との間でASRIデータを転送するためのインタフェースプロトコルを定義する。データストレージ712は、ASRIを、例えばデータベース内に格納する論理エンティティである。プログラム部714は、構成インタフェースによって指定され、どのASRIサンプルが格納され、どのASRIサンプルが転送されるかを決定する(例えば、ソースAからのデータは、ソースBからのデータが事前定義された宛先に転送される間に、データを最初に格納することの有無に関わらず、格納されるように構成することができる)。データ転送718は、どのデータサンプルが転送されるかを決定することができる。構成インタフェース720は、DM524を構成するためのプロトコルを定義する。構成は、例えば、特定のソースのためのデータ転送規則を含むことができる。制御インタフェース722は、データまたは情報をメモリから取り出すためのプロトコルを定義する。
【0045】
図8は、ユーザ機器(UE)を備えたロボット810と、UEに対する無線ネットワーク性能に影響を与える動的または動的ブロックオブジェクト812とを示す図であり、図9は、エラーの前、エラーの間、および、エラーの後の期間の無線ネットワーク情報(RI)を示す図である。図8に示すように、工場内の動的オブジェクト812は、ロボット−UE 810とBTS1 412との間の信号をランダムにブロックする。オブジェクト812が無線信号を遮断しているとき、SINRは閾値を下回り、これはエラーとみなされ得る(図9)。DFAインスタンス520は、ブロッケージによって引き起こされたエラー・イベント(例えば、SINRが閾値914、図9を下回るときを含むモニタSINR)をモニタするように構成される。センサデータフィード516は、BTS1に取り付けられたカメラによって提供されるビデオ画像である。RI(無線ネットワーク情報)(例えば、SINR)がエラーを示すとき(例えば、SINRが閾値914、図9を下回るとき)、データ関連はビデオ画像(SDF)とSINR(RI)との間でトリガされる。エラー/事象(920)の前のデータ(ASRI)はDFAメモリからフェッチされ、(922)エラー中のデータ(ASRIサンプル)と、エラー事象後のデータ(ASRIサンプル)(924)で転送される。ASRIサンプルを送信する前に、サンプリングには、どのイベントが関連をトリガしたか、およびエラーの状態(プレ・エラー/ポスト・エラー)を示すラベルが付けられる。データ関連は、事前に設定されたルールに従って終了する。この場合、エラーが終了してから何らかの時間間隔が経過したことになる。このデータは、検出された3つのエラーからのデータのバーストとして図9で視覚化されるDM524のために転送される。図9に示すように、データサンプルは、エラー(920)の前、エラー(922)の間、およびエラー(924)の後の期間について示されている。また、図9に示すように、ASRI(関連するSINRデータおよびビデオフレーム)は、次のようにフィルタリングされ、事前(プレ)エラーASRI、エラー中のASRI、およびASRI事後(ポスト)エラーとして提供される。この例におけるエラーという用語は、信号(例えば、SINR)が特定の閾値を超えたことを示し、例えば、SINRが閾値914を下回ったことを示すことに注意されたい。
【0046】
データ関連およびラベル表示については、さらに図9および図10を用いて実証する。図11は、異なるビデオフレームに関連する、エラー前、エラーおよびエラー後時間のために転送または受信されるデータを示す図である。図9に示すように、SINRが閾値914を下回るとエラー・イベントが発生する。注記したように、これは、動的ブロックオブジェクト812が特定の位置または位置の範囲内にある場合に発生する可能性がある。図10は、プレ・エラー位置1010内の動的ブロックオブジェクト812のビデオのビデオフレーム(例えば、エラー状態の前のオブジェクト812のビデオフレーム)、エラー1012中の、ビデオフレーム(例えば、UEのSINRが閾値914未満のとき、またはエラー状態の間のオブジェクト812のビデオフレーム)、および、エラー状態1014の後のビデオフレーム(エラー状態の後のオブジェクト812のビデオフレーム)を示す。したがって、1010のビデオフレームは、エラー状態の前に動的オブジェクト812が近づいていることを示し、1012のビデオフレームは、エラーの間に動的オブジェクト812がUEの前にあることを示し、1014のビデオフレームは、エラーの後にオブジェクト812が遠ざかっていることを示す。この例では、ブロックされたことによって引き起こされるエラー・イベントは、SINRおよびビデオフレームと同様の挙動を示す。これは、エラーの前後の典型的なビデオフレームと、ビデオ画像に基づいて整列されたSINR曲線を示す図11で示されている。この図は、このタイプのデータを格納すると、信号の遮断によって発生したエラーの根本原因に関連する可能性がある情報が格納されることを示している。
【0047】
デプロイメントにはいくつかの異なるオプションがある。オプションは、センサ、DFA−アルゴリズムインスタンス、DMインスタンスの物理的または論理的な場所によって記述できる。上記の各々は、RNの不可分および/または外部部分とすることができる。つまり、デプロイメント・オプションの数は非常に大きく、例として、ここではデプロイメントの例をいくつか示している。
【0048】
図12は、DFA−アルゴリズム520がMEC(Multi−Access Edge Cloud)サーバ内にある配置オプションを示す図である。RIとSDFはDFAインスタンスに対して継続的にフィードされる。図13は、DFAインスタンス520によって要求されたときに、SDFを転送するSDFアグリゲーション機能1310にセンサデータが集約されるという差を除いて、図12と同様の配置を示す図である。このアプローチは、図12の例と比較して、少なくとも2つの利点を示す。センサは、SDFインタフェースを実装する必要はなく、SDFアグリゲーション機能1310は、SDFインタフェース1312を介してSDFを転送することができる。制御インタフェース1314は、送信帯域幅を節約するためにSDFからのデータ量を減らすために使用することができる。これは、データが関連のために必要とされるとき、DFA−アルゴリズム520によって制御メッセージを送ることによって行うことができる。
【0049】
図14は、センサおよびDFA−アルゴリズムインスタンス520が無線ネットワーク(RN)412の内部にある展開オプションを示す図である。センサデータフィード516およびRIデータサンプル518が示されている。例えば、カメラ(例えば、センサ)は、基地局(BS、RN 412内)に統合することができ、各基地局は、RN外のDM524にASRIデータ522を転送するDFA−アルゴリズム・ンスタンス520を有することができる。このアプローチの利点は、センサデータと無線ネットワーク情報との関連付けにおける厳密な同期の可能性、および基地局またはRN内の機密情報へのアクセスを含み得る。
【0050】
利点の例:1つ以上の実施例の多数の利点、または、例えば、1つ以上の実施例によって実施される技術が存在する。
【0051】
例えば、関連するRIおよびSDFを提供することは、RNパフォーマンスを向上させるために実行される可能性のある1つ以上のアクション(またはエラーを防止するために使用される可能性のあるアクション)、またはRNパフォーマンスを向上させるためにトリガされる可能性のあるアクションを決定するために使用できる。これらのアクションは、RNアクション(例えば、送信電力の増加、UEのハンドオーバの実行、UEのよりロバストなMCSへのスイッチング、...)、または物理環境に関連するアクション、例えば、ブロックするオブジェクトの移動または移動のタイミングの変更、ブロックするオブジェクトの位置または向きの変更、または物理環境の他のステータスの変化を含むことができる。例えば、図2に関して、前に受信したASRIデータに基づいて、ブロックオブジェクト218が150mの座標に達し、左から右に移動するとき、これは、ブロックオブジェクトが約350mの位置に達するまで最後になるエラー状態と相関することが観測された。したがって、後続のASRIに基づいて、システムは、ブロックオブジェクトが140mに達したときにBTS1からBTS2へのUEのハンドオーバを実行するか、またはブロックオブジェクトが150mに達したときに送信電力を増加するなどのRN対応を実行することができる。
【0052】
RIとセンサデータの関連付けは、ネットワーク・パフォーマンスに影響を与える環境内の事象に関する追加情報をキャプチャする。さらに、イベントの前後にデータにラベルを付けて保存することによって、これらのイベントに導く情報が保存され、ライブデータフィードに基づいてこれらのイベントを予測できるモデルをトレーニングするために使用できる。
【0053】
例えば、関連するビデオストリームは、突然の無線リンク劣化の理由が、(図2に図示されるように)無線信号をブロックするオブジェクトであることを明らかにするか、または、ボタンの関連する押下が、ドアを開くことが、(図3に図示されるように)屋外基地局からの建物のある区域内に著しい干渉を導入することを明らかにする。
【0054】
一実施形態では、屋内から屋外への分離は、信頼性レベルに重大な影響を与える可能性がある。例えば、場合によっては、工場出荷時のドアを開けることは、10〜20デシベルの単離縮小(isolation redection)と等価であり得る。
【0055】
しかしながら、実施例および技術は与えられた実施例に限定されないことに留意することが重要である。実施例と技術は、時空間的な変化が無線ネットワークのパフォーマンスに影響を与えるようなユースケースに適用できる。例えば、以下のようなものがある。物流オートメーション:センサは、物流センターや港内のコンテナの移動を追跡し、無線接続に大きな影響を与える可能性がある。コネクテッド・ホスピタル:MRIや外科にドアを開けると、干渉が発生する可能性がある(これらのタイプの部屋は通常、無線電波から隔離される)。無線接続性を持つエレベータ:センサは、接続性の品質に関連するエレベータシャフトのエレベータの状態を追跡する可能性がある。自動車/列車内の接続カー/列車またはeMBBユーザ:センサデータは、車両/列車が5Gネットワークカバレッジ領域に近づいていることを示す可能性がある。
【0056】
これにより、次のような以前のソリューションよりも、次のような、いくつかの利点がある。
【0057】
[パフォーマンスの向上]
付加情報(関連センサデータまたはASRI)は、改良された新しいタイプの無線ネットワーク性能最適化を可能にし、例えば、新しいURLLCユースケースの支持を可能にする無線リンクのより高い信頼性をもたらす。
【0058】
[ネットワーク管理・最適化コスト(OPEX)の低減]
本明細書に記載する実施例の技術は、望ましくない無線ネットワーク挙動の根本原因、例えば、エラーの原因の検出(例えば、閾値に対して測定されるような無線ネットワーク性能の低下)を自動的に検出することを可能にすることができる。また、各種実施形態または技術は、無線ネットワークの性能に影響を与える物理環境の変化の継続的な検出を可能にし、そうでなければ経済的に実現可能ではない連続的な最適化を実行することができる。
【0059】
[配備コストの低減(CAPEX)]
本明細書に記載する実施例の技術は、同等の性能のために要求されないBTS/BSに変換する低いエラーマージン(例えば、低い干渉およびフェージングマージン)の使用を可能にし、従って、低いCAPEXを可能にすることができる。
【0060】
ここで、いくつかの実施例を説明する。
【0061】
例1.図15は、実施例に係るシステムの動作を示すフローチャートである。動作1510は、1つ以上のセンサから、センサ・データサンプルを受信することを含む。動作1520は、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信することを含む。動作1530は、受信された1つ以上のセンサ・データサンプルと受信された無線ネットワーク情報データサンプルの1つ以上のとの関連に基づいて、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定することを含む。動作1540は、無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択することを含む。動作1550は、その後の使用のために、選択された関連センサおよび無線ネットワーク情報データサンプルを転送することを含む。
【0062】
例2.実施例1の方法の実施例によれば、センサ・データサンプルは、物理環境に関連する時空間センサ・データサンプルを含む。
【0063】
例3.実施例1〜2のいずれかの方法の実施例によれば、転送は、選択された関連センサおよび無線ネットワーク情報データサンプルを格納することと、処理のために選択された関連センサおよび無線ネットワーク情報データサンプルを転送することと、のうちの少なくとも1つを含む。
【0064】
例4.実施例1〜3のいずれかに記載の方法の実施例によれば、さらに、選択された関連するセンサおよび無線ネットワーク情報データサンプルに基づいて、無線ネットワークの性能を改善するための少なくとも1つの動作を実行するステップを含む。
【0065】
例5.実施例1〜4のいずれかの実施例によれば、前記少なくとも1つの動作を実行することは、1つ以上の無線ネットワーク動作、1つ以上の自動無線ネットワーク動作、ネットワーク自己最適化アルゴリズムによってトリガされる1つ以上の自動無線ネットワーク動作、および、無線ネットワークの性能を改善するために物理環境のオブジェクトまたは態様が変更される1つ以上の非無線ネットワーク動作、のうちの少なくとも1つを実行することを含む。
【0066】
例6.実施例1〜5のいずれかの実施例によれば、1つ以上のセンサから、センサ・データサンプルを受信するステップは、物理環境のオブジェクトまたは部分を制御するボタン、スイッチ、またはコントローラと、オブジェクトの位置、位置、向き、または動きを制御するボタン、スイッチ、またはコントローラと、オブジェクトの状況または状態を制御するボタン、スイッチ、またはコントローラと、物理環境のオブジェクトまたは部分の画像またはビデオフィードをキャプチャするカメラと、物理環境のオブジェクトまたは部分の状況または状態を検出するセンサと、のうちの1つ以上に関連するセンサ・データサンプルを受信するステップを含む。
【0067】
例7.実施例1〜6のいずれかの方法の実施例によれば、物理環境のオブジェクトまたは部分の状況または状態を検出するセンサに関連するセンサ・データサンプルを受信するステップは、物理環境のオブジェクトまたは部分の検出、レンジング、方位または位置決定を実行するレーダまたはLiDARからセンサ・データサンプルを受信するステップを含む。
【0068】
例8.実施例1〜7のいずれかの実施例に係る方法の実施例によれば、無線ネットワークに関連する無線ネットワーク情報を受信するステップは、無線ネットワークのための無線ネットワークキー性能指標と、無線ネットワーク動作に関連する情報と、無線ネットワーク構成パラメータとのうちの少なくとも1つを受信するステップを含む。
【0069】
例9.実施例1〜8のいずれかの実施例によれば、無線ネットワークキーパフォーマンスインジケータは、受信信号強度、総受信電力、受信干渉電力、および干渉信号とノイズ比(SINR)、経路損失、基準信号受信電力、基準信号受信品質、受信信号強度インジケータ、信頼性、ブロック・エラーレート、レイテンシ、ジッタ、カバレッジ、キャパシティ、データ転送レート、ランクインジケータ、変調および符号化スキームインジケータ、チャネル状態情報、およびタイミングアドバンスのうちの少なくとも1つを含む。
【0070】
例10.実施例1〜9のいずれかの方法の実施例によれば、無線ネットワークのための無線ネットワーク構成パラメータは、基地局またはユーザデバイスの識別子、構成、または座標の少なくとも1つを含む。
【0071】
例11.実施例1〜10のいずれかの実施例によれば、無線ネットワーク動作に関連する情報は、ターゲット基地局へのユーザデバイスのハンドオーバ、2つ以上の基地局間のトラフィックまたはデータのロードバランシング、基地局とユーザデバイスとの間の無線リンクのためのリンク適応、ユーザデバイスによって実行されるセル選択またはセル再選択、スケジューリング、リソース割り当て、送信電力制御、およびタイミングアドバンス調整のうちの少なくとも1つに関連する情報を含む。
【0072】
例12.実施例1〜11のいずれかの実施形態の一例に従って、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定するステップは、1つ以上の無線ネットワーク情報データサンプルの時間ウィンドウ内にある1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定するステップを含む。
【0073】
例13.実施例1〜12のいずれかの実施形態の一例によれば、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定するステップは、第1センサが、少なくとも第1の通信要素と対になっているか、または関連することを決定するステップと、少なくとも第1の通信要素に関連する1つ以上の無線ネットワーク情報データサンプルの時間ウィンドウ内にある第1センサからの1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定するステップと、を含む。
【0074】
例14.実施例1〜13のいずれかの方法の実施例によれば、第1の通信要素は、コンピュータまたはサーバと、基地局、ユーザデバイス、コアネットワーク要素、または他の無線ネットワーク要素のうちの少なくとも1つを含む、無線ネットワークに関連付けられた無線ネットワーク要素とのうちの少なくとも1つを含む。
【0075】
例15.実施例1〜14のいずれかの実施例によれば、無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップは、無線ネットワークの性能の変化の前に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、無線ネットワークの性能の変化の間に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、無線ネットワークの性能の変化の後に出現または試行される1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、のうちの少なくとも1つ以上を含む。
【0076】
例16.実施例1〜15のいずれかの実施例の実施例によれば、無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップは、無線ネットワークの性能の低下の前に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、無線ネットワークの性能の低下の間に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、無線ネットワークの性能の低下の後に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、のうちの少なくとも一部を含む。
【0077】
例17.実施例1〜16のいずれかの方法の実施例に従って、無線ネットワークの性能に関連する、選択された関連センサおよび無線ネットワーク情報データサンプルの選択理由をラベリングするステップをさらに含む。
【0078】
例18.実施例1〜17のいずれかの方法を実行する手段を含む装置。
【0079】
例19.少なくとも1つのプロセッサによって実行されるとき、実施例1〜17のいずれかの方法をコンピュータシステムに実行させるように構成される格納された命令を含む、非一時的コンピュータ読み取り可能格納媒体。
【0080】
例20.少なくとも1つのプロセッサと、コンピュータ命令を含む少なくとも1つのメモリとを備えた装置であって、前記少なくとも1つのプロセッサによって実行されるとき、前記装置に実施例1〜17のいずれかの方法を実行させる、装置。
【0081】
例21.少なくとも1つのプロセッサと、コンピュータ命令を含む少なくとも1つのメモリとを備え、少なくとも1つのプロセッサによって実行されると、装置は、1つ以上のセンサ、センサ・データサンプルを受信するステップと、無線ネットワークに関連する無線ネットワーク情報データサンプルを受信するステップと、1つ以上の受信センサ・データサンプルと、受信した無線ネットワーク情報データサンプルの1つ以上の関連付けに基づいて、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定するステップと、無線ネットワークのパフォーマンスに関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択するステップと、後続の使用のために、選択された関連センサおよび無線ネットワーク情報データサンプルを転送するステップと、を含む装置。
【0082】
例22.前記センサ・データサンプルは、物理環境に関連する時空間センサ・データサンプルを含む、実施例21に記載の装置。
【0083】
例23.前記装置に転送させるステップは、前記選択された関連付けられたセンサおよび無線ネットワーク情報データサンプルを格納させるステップと、前記選択された関連付けられたセンサおよび無線ネットワーク情報データサンプルを処理のために転送するステップと、のうちの少なくとも1つを含む、例21〜22のいずれかに記載の装置。
【0084】
例24.実施例21〜23のいずれかの装置であって、さらに、選択された関連センサおよび無線ネットワーク情報データサンプルに基づいて、無線ネットワークの性能を改善するための少なくとも1つの動作を装置に実行させる装置。
【0085】
例25.前記装置に少なくとも1つのアクションを実行させることは、前記装置に、1つ以上の無線ネットワークアクション、1つ以上の自動無線ネットワークアクション、ネットワーク自己最適化アルゴリズムによってトリガされる1つ以上の自動無線ネットワークアクション、無線ネットワークのパフォーマンスを向上させるためにオブジェクトまたは物理環境の態様が変更される1つ以上の非無線ネットワークアクションのうちの少なくとも1つを実行させることを含む、例24に記載の装置。
【0086】
例26.前記装置に、1つ以上のセンサからセンサ・データサンプルを受信させるステップは、前記装置に、前記物理環境のオブジェクトまたは部分を制御するボタン、スイッチ、またはコントローラと、オブジェクトの位置、位置、方向、または移動を制御するボタン、スイッチ、またはコントローラと、オブジェクトのステータスまたは状態を制御するボタン、スイッチ、またはコントローラと、物理環境のオブジェクトまたは部分の画像またはビデオフィードをキャプチャするカメラと、物理環境のオブジェクトまたは部分のステータスまたは状態を検出するセンサと、のうちの1つ以上に関連するセンサ・データサンプルを受信させるステップを含む、実施例21〜25のいずれかに記載の装置。
【0087】
例27.前記装置に、オブジェクトまたは物理環境の一部の状態または状態を検出するセンサに関連付けられたセンサ・データサンプルを受信させるステップは、前記装置に、前記オブジェクトまたは前記物理環境の一部の検出、測距、方位または位置決定を行うレーダまたはLiDARから前記センサ・データサンプルを受信させるステップを含む、例26に記載の装置。
【0088】
例28.前記装置に無線ネットワークに関連する無線ネットワーク情報を受信させることは、前記装置に、前記無線ネットワークの無線ネットワークキーパフォーマンスインジケータ、無線ネットワーク動作に関連する情報、および無線ネットワーク構成パラメータのうちの少なくとも1つを受信させることを含む、実施例21〜27のいずれかに記載の装置。
【0089】
例29.前記無線ネットワークキー性能インジケータは、受信信号強度、総受信電力、受信干渉電力、および干渉対ノイズ比(SINR)、経路損失、基準信号受信電力、基準信号受信品質、受信信号強度インジケータ、信頼性、ブロック・エラー率、レイテンシ、ジッタ、カバレッジ、キャパシティ、データ転送速度、ランクインジケータ、変調および符号化方式インジケータ、チャネル状態情報、およびタイミングアドバンスのうちの少なくとも1つを含む、例28に記載の装置。
【0090】
例30.前記無線ネットワークのための前記無線ネットワーク構成パラメータは、基地局またはユーザデバイスの識別子、構成、または座標のうちのの少なくとも1つを含む、実施例28〜29のいずれかに記載の装置。
【0091】
例31.無線ネットワーク対応に関連する情報は、ターゲット基地局へのユーザデバイスのハンドオーバ、2つ以上の基地局間のトラフィックまたはデータのロードバランシング、基地局とユーザデバイスとの間の無線リンクのためのリンク適応、ユーザデバイスによって実行されるセル選択またはセル再選択、スケジューリング、リソース割り当て、送信電力制御、およびタイミングアドバンス調整のうちの少なくとも1つに関連する情報を含む、実施例28から30のいずれかの装置。
【0092】
例32.前記装置に1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルを決定させるステップは、前記装置に、1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の無線ネットワーク情報データサンプル、1つ以上の関連するセンサおよび無線ネットワーク情報データサンプルの時間データフィード内にあることを決定させることを含む、実施例21ないし31のいずれかに記載の装置。
【0093】
例33.前記装置に、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定させることは、前記装置に、第1のセンサが、少なくとも第1の通信要素とペアリングされているか、または関連付けられていることを判断させることと、少なくとも第1の通信要素に関連する1つ以上の無線ネットワーク情報データサンプルの時間ウィンドウ内にある第1のセンサからの1つ以上のセンサ・データサンプルの時間に基づいて、1つ以上の関連センサおよび無線ネットワーク情報データサンプルを決定させることとを含む、実施例21〜32のいずれかに記載の装置。
【0094】
例34.前記第1の通信要素は、コンピュータまたはサーバと、基地局、ユーザデバイス、コアネットワーク要素、または他の無線ネットワーク要素のうちの少なくとも1つを含む、前記無線ネットワークに関連する無線ネットワークと、のうちの少なくとも1つを含む、実施例33に記載の装置。
【0095】
例35.前記装置に、前記無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることは、前記装置に、前記無線ネットワークの性能の変化の前に発生するか、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることと、前記無線ネットワークの性能の変化の間に発生するか、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることと、前記無線ネットワークの性能の変化の後に発生するか、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることと、のうちの少なくとも一部を選択させることを含む、実施例21〜34のいずれかの装置。
【0096】
例36.前記装置に、前記無線ネットワークの性能に関連する1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることは、前記装置に、前記無線ネットワークの性能の低下の前に発生する、またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることと、前記無線ネットワークの性能の低下の間に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることと、前記無線ネットワークの性能の低下の後に発生またはサンプリングされる1つ以上の関連センサおよび無線ネットワーク情報データサンプルの少なくとも一部を選択させることと、のうちの少なくとも1つを実行させることを含む、実施例21〜35のいずれかの装置。
【0097】
例37.さらに、装置に、無線ネットワークの性能に関連する、選択された関連センサおよび無線ネットワーク情報データサンプルの選択理由をラベル付けさせる、実施例21〜36のいずれか1例に記載の方法。
【0098】
図16は、実施例に係る無線ステーション(例えば、AP、BSまたはユーザデバイス、または他のネットワークノード)1600のブロック図である。無線局1600は、例えば、1つまたは2つのRF(無線周波数)または無線トランシーバ1602A、1602Bを含むことができ、ここで、各無線トランシーバは、信号を送信するための送信機と、信号を受信するための受信機とを含む。また、無線局は、命令またはソフトウェアを実行し、信号の送受信を制御するプロセッサまたは制御ユニット/エンティティ(コントローラ)1604と、データおよび/または命令を格納するメモリ1606とを含む。
【0099】
プロセッサ1604はまた、判定または判定を行い、フレームを生成し、伝達のためのパケットまたはメッセージを生成し、さらなる処理のために受信フレームまたはメッセージを復号し、本明細書に記載する他のタスクまたは機能を実行することができる。例えば、ベースバンドプロセッサ1604は、ワイヤレス・トランシーバ1602(1602Aまたは1602B)を介して伝達するためのメッセージ、パッケット、フレーム、または、その他の信号を生成することができる。プロセッサ1604は、無線ネットワークを介した信号またはメッセージの伝達を制御することができ、無線ネットワークを介して(例えば、無線トランシーバ1602によってダウンコンバートされた後に)信号またはメッセージなどの受信を制御することができる。プロセッサ1604は、プログラム可能であり、メモリまたは他のコンピュータ媒体に格納されたソフトウェアまたは他の命令を実行して、上述のタスクまたは方法の1つ以上のような、上述の様々なタスクおよび機能を実行することができる。プロセッサ1604は、例えば、ハードウェア、プログラム可能なロジック、ソフトウェアまたはファームウェアを実行するプログラム可能なプロセッサ、および/またはこれらの任意の併用であってもよい(またはそれらを含んでもよい)。他の用語を使用して、プロセッサ1604とトランシーバ1602を共に、例えば、無線送受信システムと見なすことができる。
【0100】
さらに、図16を参照すると、コントローラ(またはプロセッサ)1608は、ソフトウェアおよび命令を実行してもよく、ステーション1600のための全体的な制御を提供してもよく、図16に示されていない他のシステム、たとえば、入出力デバイス(たとえば、ディスプレイ、キーパッド)を制御するような制御を提供してもよく、および/または、たとえば、電子メールプログラム、オーディオ/ビデオアプリケーション、ワードプロセッサ、Voice over IPアプリケーション、または他のアプリケーションまたはソフトウェアなど、無線ステーション1600上に提供されてもよい1つ以上のアプリケーションのためのソフトウェアを実行することができる。
【0101】
加えて、コントローラまたはプロセッサによって実行されるときに、プロセッサ1604、または他のコントローラまたはプロセッサにより、上述の1つ以上の機能またはタスクを実行する、格納された命令を含む格納媒体が提供されてもよい。
【0102】
別の実施形態によれば、RFまたは無線トランシーバ(s)1602A/1602Bは、信号またはデータを受信し、および/または信号またはデータを送受信することができる。プロセッサ1604(および場合によってはトランシーバ1602A/1602B)は、RFまたはワイヤレス・トランシーバ1602Aまたは1602Bを制御して、信号またはデータを受信、放送または送信することができる。
【0103】
しかしながら、実施形態は、一例として与えられるシステムに限定されるものではないが、当業者は、その解決策を他の通信システムに適用することができる。適切な通信システムのもう1つの例は、5Gコンセプトである。5Gにおけるネットワークアーキテクチャは、LTE‐アドバンストのものとかなり類似すると想定される。5Gは、多入力−多出力(MIMO)アンテナ、LTE(いわゆる小セルコンセプト)よりも多くの基地局またはノードを使用する可能性が高い。これには、より小規模な局と協力して運用しているマクロサイト、おそらくはより良いカバレッジと強化されたデータレートのために多様な無線技術も採用している、などが含まれる。
【0104】
将来のネットワークは、おそらくネットワーク機能仮想化(NFV)を利用するであろうことが理解されるべきである。ネットワーク機能仮想化(NFV)は、ネットワークノード機能を「構築ブロック」に仮想化することを提案するネットワークアーキテクチャ概念であるか、あるいは、サービスを提供するために運用的に接続されているか、または互いにリンクされているかもしれないエンティティである。仮想化ネットワーク機能(VNF)は、カスタマイズされたハードウェアの代わりに、標準または汎用タイプのサーバを使用してコンピュータ・プログラムコードを実行する1つ以上の仮想マシンを含むことができる。無線通信では、これは、少なくとも部分的に、遠隔無線ヘッドに動作的に結合されたサーバ、ホスト、またはノードにおいて、ノード操作が実行されることを意味することができる。ノード操作は、複数のサーバ、ノード、またはホストの間で分散されることも可能である。また、コアネットワーク動作と基地局動作の間の労働分散は、LTEのものとは異なるか、あるいは存在しない可能性さえあることが理解されるべきである。
【0105】
本明細書に記載する様々な技術の実施形態は、デジタル電子回路、またはコンピュータハードウェア、ファームウェア、ソフトウェア、またはそれらの併用で実現することができる。実施形態は、コンピュータ・プログラム製品、すなわち、情報キャリア、例えば、機械読み取り可能なメモリ内、または伝搬された信号内に実体的に具体化されるコンピュータ・プログラムとして、データ処理装置、例えば、プログラマブル・プロセッサ、コンピュータ、または複数のコンピュータの実行のために、またはその動作を制御するために実装されてもよい。実施形態は、非一時的媒体であってもよい、コンピュータ可読媒体またはコンピュータ可読格納媒体上に提供されてもよい。種々の技術の実施形態は、インターネットまたは他のネットワーク、有線ネットワークおよび/または無線ネットワークを介してダウンロード可能な、一時的な信号または媒体、および/またはプログラムおよび/またはソフトウェアの実施形態を介して提供される実施形態を含むこともできる。さらに、実施形態は、マシンタイプ通信(MTC)を介して、およびモノのインターネット(IOT)を介して提供されてもよい。
【0106】
コンピュータ・プログラムは、ソースコード形式、オブジェクトコード形式、または何らかの中間形式であってもよく、プログラムを運ぶことができる任意の実体または装置であってもよい、何らかの種類のキャリア、配布媒体、またはコンピュータ可読媒体に格納されてもよい。このようなキャリアには、例えば、記録媒体、コンピュータメモリ、読み取り専用メモリ、光電気および/または電気キャリア信号、電気通信信号、およびソフトウェア配布パッケージが含まれる。必要とされる処理キャパシティに応じて、コンピュータ・プログラムは、単一の電子デジタル・コンピュータで実行されてもよく、または多数のコンピュータに分散されてもよい。
【0107】
さらに、本明細書に記載する様々な技術の実施形態は、サイバー物理システム(CPS)(物理的エンティティを制御する協調計算要素のシステム)を使用することができる。CPSは、異なる場所にある物理的なオブジェクトに埋め込まれた大量の相互接続されたICT装置(センサ、作動器、プロセッサマイクロコントローラ、...)の実施形態および利用を可能にすることができる。対象の物理システムが本質的な移動性を持つ移動サイバー物理システムは、サイバー物理システムのサブカテゴリである。移動体物理システムの例としては、移動ロボットや、ヒトまたは動物によって輸送される電子機器が挙げられる。スマートフォンの人気の高まりは、モバイルサイバー物理システムの分野への関心が高まっている。したがって、本明細書に記載する技術の様々な実施形態を、これらの技術の1つ以上を介して提供することができる。
【0108】
上述のコンピュータ・プログラムなどのコンピュータ・プログラムは、コンパイルまたは解釈された言語を含む任意の形態のプログラミング言語で記述することができ、スタンドアロンプログラムとして、またはモジュール、コンポーネント、サブルーチン、またはコンピューティング環境での使用に適したその一部として、任意の形態で展開することができる。コンピュータ・プログラムは、1つのコンピュータ上、または1つのサイトの複数のコンピュータ上で実行されるように配備することも、複数のサイトに分散させて通信ネットワークによって相互接続することもできる。
【0109】
方法ステップは、入力データ上で動作し、出力を生成することによって機能を実行するために、コンピュータ・プログラムまたはコンピュータ・プログラム部分を実行する1つ以上のプログラマブル・プロセッサによって実行することができる。方法ステップはまた、FPGA(field programmable gate array)またはASIC(application−specific integrated circuit)などの特殊目的論理回路によって実行され、装置として実装されてもよい。
【0110】
コンピュータ・プログラムの実行に適したプロセッサには、一例として、一般および特殊目的マイクロプロセッサの両方、および任意の種類のデジタル・コンピュータ、チップまたはチップセットの任意の1つ以上のプロセッサが含まれる。一般に、プロセッサは、読み出し専用メモリまたはランダム・アクセス・メモリ、あるいはその両方から命令およびデータを受信する。コンピュータの要素は、命令を実行するための少なくとも1つのプロセッサと、命令およびデータを格納するための1つ以上のメモリとを含み得る。一般に、コンピュータはまた、データを格納するための1つ以上の大容量メモリ、例えば、磁気、光磁気ディスク、または光ディスクから、またはこれらにデータを受信または転送するために、動作可能に結合されてもよい。コンピュータ・プログラム命令およびデータを具体化するのに適した情報キャリアは、例えば、半導体メモリデバイス、例えば、EPROM、EEPROM、およびフラッシュメモリデバイス、磁気ディスク、例えば、内部ハードディスクまたはリムーバブルディスク、磁気光学ディスク、およびCD−ROMおよびDVD−ROMディスクを含む、すべての形態の不揮発性メモリを含む。プロセッサおよびメモリは、特殊目的論理回路によって補完されてもよく、または組み込まれてもよい。
【0111】
ユーザとの対話を提供するために、実施形態は、ユーザに情報を表示するための表示装置、例えば、カソード線管(CRT)または液晶ディスプレイ(LCD)モニタリング、およびユーザがコンピュータに入力を提供することができるキーボードおよびポインティングデバイス、例えば、マウスまたはトラックボールなどのユーザインタフェースを有するコンピュータ上で実施することができる。他の種類の装置を使用して、同様にユーザとの対話を提供することができる。例えば、ユーザに提供されるフィードバックは、視覚フィードバック、聴覚フィードバック、または触覚フィードバックなどの任意の形式の感覚フィードバックとすることができ、ユーザからの入力は、音響入力、音声入力、または触覚入力を含む任意の形式で受信することができる。
【0112】
実施形態は、バックエンドコンポーネント、例えばデータ・サーバ、またはミドルウェアコンポーネント、例えばアプリケーション・サーバ、またはフロントエンド・コンポーネント、例えばグラフィカルユーザインタフェースを有するクライアント・コンピュータ、またはユーザが実施形態と対話することができるWebブラウザ、あるいはそのようなバックエンド、ミドルウェア、またはフロントエンド・コンポーネントの任意の併用を含むコンピューティング・システムで実現することができる。構成要素は、デジタルデータ通信の任意の形態または媒体、例えば、通信ネットワークによって相互接続されてもよい。通信ネットワークの例には、ローカルエリアネットワーク(LAN)およびワイドエリアネットワーク(WAN)、例えばインターネットが含まれる。
【0113】
ここに記載されている実施形態の特定の特徴が図示されているが、当業者には多くの修正、置換、変化、均等物が生じる。したがって、添付の請求項は、様々な態様の真の趣旨の範囲内に収まるように、そのような修正および変更のすべてをカバーすることが意図されていることが理解されるべきである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16