【実施例1】
【0018】
図1は、実施例1に係る眼底撮影装置のブロック図である。
図1を参照して、眼底撮影装置100は、投影部10、制御部30、光検出器40、及び表示部50を備える。投影部10は、光源11、調整機構12、走査部13、光学系14、及び駆動回路15を備える。制御部30は、駆動制御部31、信号処理部32、及び画像生成部33を備える。
【0019】
駆動制御部31は、被検者の網膜に照射する光線を制御するための制御信号を生成する。駆動回路15は、駆動制御部31の制御信号に基づき、光源11及び走査部13を駆動する。
【0020】
光源11は、例えば785nm〜1.4μm程度の波長の赤外レーザ光の不可視光線を出射する。光源11は、例えば赤色レーザ光(波長:610nm〜660nm程度)、緑色レーザ光(波長:515nm〜540nm程度)、及び/又は青色レーザ光(波長:440nm〜480nm程度)の可視光線を出射する場合でもよい。
【0021】
調整機構12は、コリメートレンズ、トーリックレンズ、及び/又はアパーチャ等を有していて、光源11が出射した光線60を成型する。光線60は、例えば赤外レーザ光、赤色レーザ光、緑色レーザ光、又は青色レーザ光である。
【0022】
走査部13は、ミラーが2軸揺動駆動することで光線60を二次元走査するスキャナである。光線60は、走査部13によって水平方向(主走査方向)と垂直方向(副走査方向)とに走査される。走査部13は、例えばMEMS(Micro Electro Mechanical System)である。
【0023】
光学系14は、走査部13のミラーで反射されることで走査された光線60を被検者の眼70に照射する。
【0024】
光検出器40は、例えばアバランシェフォトダイオード等のフォトディテクターであり、被検者の眼70の網膜で反射し、光学系14、走査部13、及び調整機構12を経由した反射光61を検出する。光検出器40は、駆動回路15からの同期信号に基づき光源11が光線60を出射するタイミングで検出を開始する。
【0025】
信号処理部32は、駆動制御部31からの制御信号に基づき、光検出器40の出力信号を処理する。信号処理部32は、駆動回路15からの同期信号に基づき光源11が光線60を出射するタイミングで処理を開始する。
【0026】
画像生成部33は、信号処理部32が処理した信号に基づき眼底画像を生成する。表示部50は、例えば液晶ディスプレイであり、画像生成部33が生成した眼底画像を表示する。
【0027】
駆動制御部31、信号処理部32、及び画像生成部33は、例えばCPU(Central Processing Unit)等のプロセッサがプログラムと協働して処理を行ってもよい。駆動制御部31、信号処理部32、及び画像生成部33は、専用に設計された回路でもよい。駆動制御部31、信号処理部32、及び画像生成部33は、1つの回路でもよいし、異なる回路でもよい。
【0028】
図2は、実施例1に係る眼底撮影装置の光学系を示す図である。
図2を参照して、光源11が出射する光線60は、コリメートレンズ20で拡散光から略平行光に変換された後、ハーフミラー21、視度調整レンズ22、及び視度調整レンズ23を透過して反射ミラー24に入射する。光線60は反射ミラー24には収束光となって入射する。光線60は、反射ミラー24で反射して走査部13に入射し、走査部13で反射することで二次元走査される。
【0029】
走査部13で反射されることで二次元走査された光線60は、投影用レンズ25を透過して被検者の眼70に入射する。走査部13で走査された光線60の光軸は互いに拡散し且つ各光線60は焦点62まで収束光である。各光線60は拡散光で投影用レンズ25に入射する。投影用レンズ25は、走査部13によって異なる方向に反射されて光軸が互いに拡散する光線60を光軸が互いに収束する光線60に変換し且つ各光線60を拡散光から略平行光に変換して被検者の眼70に入射させる。光線60は、瞳孔71を通って水晶体72内又は水晶体72近傍で収束し、硝子体73を通過して、ほぼ網膜74において合焦する。すなわち、光線60は、マクスウェル視を利用して、被検者の網膜74に照射される。略平行とは、光線60が網膜74においてほぼ合焦できる程度に略平行であればよい(以下において同じ)。投影用レンズ25は、凸レンズであり、光学倍率が0.8倍以上1.2倍以下となっているが、このことについては後述する。光学倍率とは、投影用レンズ25と被検者の水晶体72又は水晶体72近傍の光線60の収束位置との間の距離に対する投影用レンズ25と走査部13のミラーとの間の距離の比等で表される値である。
【0030】
光線60は被検者の網膜74で反射する。網膜74で反射した反射光61は、投影用レンズ25、走査部13、反射ミラー24、視度調整レンズ23、視度調整レンズ22の順に、光線60が網膜74に向かって進んできた光路を戻り、ハーフミラー21で反射されて集光レンズ26を通過して光検出器40に入射する。光検出器40は、網膜74で反射した反射光61を検出する。光検出器40による反射光61の輝度変化等の検出結果を信号処理部32が処理した信号に基づき、画像生成部33が眼底画像を生成する。
【0031】
コリメートレンズ20、視度調整レンズ22、及び視度調整レンズ23は、
図1における調整機構12に相当する。投影用レンズ25は、
図1における光学系14に相当する。
【0032】
図3は、光線の走査を説明する図である。
図3を参照して、走査部13は、光線60を矢印65のように左上から右下までラスタースキャンする。ラスタースキャンにおいて、水平方向は主走査方向であり、垂直方向は副走査方向である。例えば走査線数は640本である。走査部13のミラーが2軸揺動駆動しても光源11が光線60を出射しないと、光線60は網膜74に照射されない。例えば、
図3の点線の矢印65では光線60は出射されない。駆動回路15は、光源11からの光線60の出射と走査部13の2軸揺動駆動とを同期させる。これにより、光源11は実線の矢印65において光線60を出射する。
【0033】
図4(a)は、走査部の斜視図、
図4(b)は、走査部のミラー近傍を拡大した斜視図である。
図4(a)及び
図4(b)を参照して、走査部13は、例えばMEMSであり、外側フレーム80、サスペンション81、内側フレーム82、圧電部83、及びミラー84を備える。内側フレーム82はサスペンション81を介して外側フレーム80に固定されている。圧電部83は、例えばPZT膜等の圧電膜が上下電極に挟まれた構造をしていて、90度間隔で配置された4つの第1トーションバー85によって内側フレーム82に固定されている。ミラー84は180度間隔で配置された2つの第2トーションバー86によって圧電部83に固定されている。
【0034】
走査部13は、圧電部83に電圧を印加することにより生じる反りの動作が第2トーションバー86を通じてミラー84に伝達することでミラー84が2軸揺動駆動する。これにより、ミラー84に光線60が入射することで、光線60は二次元方向に走査される。なお、
図4(a)及び
図4(b)では、圧電式のMEMSを例に示したが、走査部13は、静電容量式のMEMSの場合でもよいし、その他の場合でもよい。
【0035】
ミラー84の外周領域は製造上の理由から湾曲(ダレ)が発生する。このため、ミラー84の外周領域を含む全領域で光線60を反射させると、光線60を所望の方向のみに反射させることが難しい。したがって、光線60を良好に反射させるために、光線60をミラー84の湾曲が生じる外周領域よりも内側の領域で反射させるようにする。すなわち、ミラー84のうちの湾曲が発生する外周領域を除いた領域が、光線60を良好に反射させることができる有効領域となる。したがって、ミラー84の有効領域の長さである有効径は、ミラー84の長さから湾曲が発生する外周領域の長さを差し引いた大きさとなる。例えば、ミラー84が円形でありミラー84の端から0.1mmの範囲で湾曲が発生する場合、ミラー84の有効径は、ミラー84の外径である直径から0.2mmを差し引いた大きさとなる。また、ミラー84が楕円形である場合では、ミラー84の有効径は外径である短径から湾曲が発生する外周領域の長さを差し引いた大きさとなる。ミラー84の外径が1.7mm以上2.0mm以下であって、有効径が1.5mm以上1.8mm以下の大きさとなっているが、このことについては後述する。
【0036】
図5は、比較例に係る眼底撮影装置の光学系を示す図である。
図5を参照して、比較例の眼底撮影装置500では、ポリゴンミラー513aとガルバノミラー513bの組み合わせを用いて、光線60を二次元走査している。ポリゴンミラー513aは例えば光線60を水平方向(主走査方向)に走査し、ガルバノミラー513bは例えば光線60を垂直方向(副走査方向)に走査する。眼底撮影装置500では、投影用レンズ525の光学倍率が2.5倍となっている。光学倍率とは、投影用レンズ525と被検者の水晶体72又は水晶体72近傍の光線60の収束位置との間の距離に対する投影用レンズ525とポリゴンミラー513aとガルバノミラー513bの間の距離の比等で表される値である。その他の構成は、実施例1の眼底撮影装置100と同じであるため説明を省略する。
【0037】
比較例の眼底撮影装置500において、投影用レンズ525の光学倍率が2.5倍となっているのは以下の理由によるものである。光線60を網膜74に照射して眼底画像を取得する場合、周辺疾患部の発見のために、全角で60度以上の視野角となることが求められている。すなわち、光線60が眼70内の収束点で収束する角度θは60度以上であることが求められている。しかしながら、ポリゴンミラー513aとガルバノミラー513bを用いた場合、特にガルバノミラー513bは広い角度で光線60を走査することが難しい。このため、ポリゴンミラー513aとガルバノミラー513bを用いた比較例の眼底撮影装置500では、投影用レンズ525の光学倍率を2.5倍として、眼底画像取得時の視野角が60度程度となるようにしている。
【0038】
ポリゴンミラー513aとガルバノミラー513bを用いた眼底撮影装置500は、大型で高価なものとなってしまう。そこで、ポリゴンミラー513aとガルバノミラー513bの代わりに、2軸揺動駆動して光線60を二次元走査する走査部13を用いることが考えられるが、ポリゴンミラー513a及びガルバノミラー513bの位置にそのまま走査部13を配置しただけでは高画質の眼底画像を得ることが難しいことを発明者は見出した。このことについて以下に説明する。
【0039】
眼底撮影装置では、網膜上の分解能及び眼底画像のSN比を確保するために、視野角45度(全角)に相当する網膜上の全幅約11mmの間に450本程度の光線60を干渉することなく照射させることが求められている。すなわち、網膜74上の光線60のスポット径(直径)を25μm以下にすることが求められている。
図6は、角膜入射時の光線の直径と網膜上の光線の直径との関係を示す図である。
図6を参照して、角膜入射時の光線60の直径が大きくなるほど、網膜74上の光線60の直径は小さくなる。角膜入射時の光線60の直径を1.25mm以上にすることで、網膜74上の光線60の直径(スポット径)を25μm以下にできることが分かる。角膜入射時の光線60の直径が大きくなるほど、網膜74上の光線60の直径が小さくなるのは、角膜の網膜側には水晶体72があり、この角膜と水晶体72は凸レンズとして、正の集光パワーがある光学特性を有している。そこに入射される光線60の直径が大きいと、集光パワーが大きくなって網膜74上のスポット径が小さくなり、逆に入射される光線60の直径が小さいと、集光パワーが小さくて集光され難くなり、網膜74上のスポット径が小さくなりきらないためである。
【0040】
比較例の眼底撮影装置500では、投影用レンズ525の光学倍率が2.5倍であることから、ポリゴンミラー513a及びガルバノミラー513bの位置にそのまま走査部13を配置した場合、角膜入射時の光線60の直径を1.25mm以上とするためには、走査部13のミラー84の有効径を3.2mm以上にする必要がある。しかしながら、走査部13のミラー84の有効径を3.2mm以上にすることは現実的ではない。これは以下の理由のためである。
【0041】
図7は、走査部のミラーの外径と走査部の水平共振周波数との関係を示す図である。
図7を参照して、走査部13のミラー84の外径が大きくなるほど、走査部13の水平共振周波数は低くなる。これは、走査部13のミラー84の外径が大きくなるほど、イナーシャが大きくなり、ミラー84の変形が大きくなるため、水平共振周波数を高くできないためである。ミラー84の外径と有効径との差異が0.2mmである場合、ミラー84の外径が1.6mmのときでは水平共振周波数を12kHz程度にでき、1.7mmのときでは10kHz程度にでき、1.8mmのときでは9kHz程度にでき、2.0mmのときでは6kHz程度にできる。走査部13が円形のMEMSであるとして、ここではミラー84の外径と有効径の差異の値を0.2mmとしたが、MEMSの特性などによりこの値は異なる場合がある。
【0042】
光線60をラスタースキャンによって網膜74に照射して眼底画像を取得する場合、高画質の眼底画像を得るために、走査線数を640本以上とし、フレームレートを15fps以上にすることが求められている。走査線数640本のラスタースキャンでフレームレートを15fpsとするには、走査部13の水平共振周波数を6kHz以上とする必要がある。
図7から、走査部13の水平共振周波数を6kHz以上にするには、走査部13のミラー84の外径は2.0mm以下(ミラー84の有効径としては1.8mm以下)にする必要がある。このようなことから、眼底撮影装置で求められる共振周波数を得るためには、走査部13のミラー84の有効径を3.2mm以上にすることは現実的ではない。
【0043】
走査部13のミラー84の外径が1.6mm、機械的振れ角が半角で14.6度、水平共振周波数が12kHzの場合での、走査部13のミラー84の変形についてシミュレーションをした。
図8(a)から
図8(d)は、走査部のミラーの変形についてのシミュレーション結果を示す図である。
図8(a)は、ミラー84を上面から見た場合の図、
図8(b)は、ミラー84を正面から見た場合の図、
図8(c)は、ミラー84を斜めから見た場合の図である。
図8(d)は、
図8(a)のA−A間の変形を示すグラフである。
図8(a)から
図8(c)では、変形量が小さい箇所を粗いハッチングで示し、プラス方向及びマイナス方向への変形量が大きい箇所を密なハッチングで示している。
【0044】
図8(a)から
図8(d)のように、ミラー84の外径が1.6mm、機械的振れ角が14.6度、水平共振周波数が12kHzの場合、ミラー84に高次の変形モードが生じ、最大変形量は±100nm程度であった。このような高次の変形モードは、ミラー84の外径が大きくなるほど大きくなると考えられる。したがって、ミラー84の有効径を3.2mm以上にすると、ミラー84に生じる高次の変形モードによって光学性能に支障を来たすことが考えられ、ミラー84の有効径を3.2mm以上にすることは現実的ではない。また、ミラー84の有効径を3.2mm以上とすると、空気抵抗が増大するために大きな振れ角が得られなくなることが考えられるため、この点においても、ミラー84の有効径を3.2mm以上にすることは現実的ではない。
【0045】
実施例1の眼底撮影装置100のように、2軸揺動駆動して光線60を二次元走査する走査部13を用いた場合、ポリゴンミラー513aとガルバノミラー513bを用いた場合に比べて、光線60の走査角度θ1(
図2参照)を大きくできる。この場合、投影用レンズ25の光学倍率を0.8倍以上1.2倍以下にした場合でも、光線60の眼70内の収束点での収束角度θ2(
図2参照)が大きくなり、眼底画像取得時の視野角が60度程度になることを実現できる。この場合に、走査部13のミラー84の有効径を1.5mm以上(外径を1.7mm以上)にすることで、網膜74上の光線60のスポット径を25μm以下にできる。
【0046】
実施例1によれば、走査部13のミラー84の外径が1.7mm以上2.0mm以下である。ミラー84の外径が1.7mm以上(有効径が例えば1.5mm以上)であることで、網膜74上の光線60のスポット径を25μm以下にでき、網膜74上の分解能及び眼底画像のSN比を確保することができる。ミラー84の外径を2.0mm以下(有効径が例えば1.8mm以下)にすることで、走査線数が640本以上でフレームレートが15fps以上のラスタースキャンが可能となる。これらのことから、高画質の眼底画像を得ることができる。また、角膜入射時の光線60の直径が2.5mm以下になるため、ヒトの瞳孔径は一般的には概略2mmから8mm程度であるので、無散瞳であっても虹彩で遮られることがほぼなくなり、眼底画像を得ることができる。ミラー84の外径は1.8mm以上2.0mm以下の場合でもよいし、1.7mm以上1.9mm以下の場合でもよいし、1.8mm以上1.9mm以下の場合でもよい。すなわち、ミラー84の有効径は1.6mm以上1.8mm以下の場合でもよいし、1.5mm以上1.7mm以下の場合でもよいし、1.6mm以上1.7mm以下の場合でもよい。
【0047】
走査部13は走査角度θ1を大きくできるため、投影用レンズ25(光学系)の光学倍率を0.8倍以上1.2倍以下としても、眼底画像取得時の視野角を60度程度になることを実現できる。この場合に、走査部13のミラー84の外径を1.7mm以上(有効径を例えば1.5mm以上)にすることで、網膜74上の光線60のスポット径を25μm以下にできる。投影用レンズ25(光学系)の光学倍率は0.8倍以上1.1倍以下の場合でもよいし、0.9倍以上1.2倍以下の場合でもよいし、0.9倍以上1.1倍以下の場合でもよいし、1.0倍の場合でもよい。
【0048】
走査部13によって二次元走査された光線60を網膜74に照射して眼底画像を取得する場合、高画質の眼底画像を得るために、走査部13のミラー84の水平方向の共振周波数(主走査方向の共振周波数)は6kHz以上が好ましく、7kHz以上がより好ましく、8kHz以上が更に好ましい。ミラー84に生じる高次の変形モードが大きくなって光学性能に支障を来さないために、走査部13のミラー84の水平方向の共振周波数は12kHz以下が好ましく、10kHz以下がより好ましく、9kHz以下が更に好ましい。
【0049】
眼底画像取得時の視野角60度程度を実現するために、走査部13のミラー84の水平方向及び垂直方向の少なくとも一方、好ましくは両方の機械的振れ角は半角で13度以上が好ましく、13.5度以上がより好ましく、14度以上が更に好ましい。空気抵抗及びミラー84の変形等を考慮すると、走査部13のミラー84の水平方向及び垂直方向の少なくとも一方、好ましくは両方の機械的振れ角は半角で16度以下が好ましく、15.5度以下がより好ましく、15度以下が更に好ましい。
【0050】
投影用レンズ25(光学部品)は、走査部13によって異なる方向に反射されて光軸が互いに拡散する光線60を光軸が互いに収束する光線60に変換し且つ各光線60を拡散光から略平行光に変換する。光線60は、走査部13と投影用レンズ25との間で集光した後に拡散光となって投影用レンズ25に入射し、投影用レンズ25によって略平行光に変換されて被検者の眼70に入射する。光学系14がこのような投影用レンズ25からなる場合、眼底撮影装置100を小型化することができる。