(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6982476
(24)【登録日】2021年11月24日
(45)【発行日】2021年12月17日
(54)【発明の名称】フローインジェクション分析方法及び装置
(51)【国際特許分類】
G01N 33/18 20060101AFI20211206BHJP
C02F 1/00 20060101ALN20211206BHJP
【FI】
G01N33/18 106A
!C02F1/00 V
【請求項の数】9
【全頁数】12
(21)【出願番号】特願2017-227725(P2017-227725)
(22)【出願日】2017年11月28日
(65)【公開番号】特開2019-95410(P2019-95410A)
(43)【公開日】2019年6月20日
【審査請求日】2020年7月27日
(73)【特許権者】
【識別番号】000004400
【氏名又は名称】オルガノ株式会社
(73)【特許権者】
【識別番号】517415849
【氏名又は名称】株式会社アクア・ラボ
(74)【代理人】
【識別番号】100123788
【弁理士】
【氏名又は名称】宮崎 昭夫
(74)【代理人】
【識別番号】100127454
【弁理士】
【氏名又は名称】緒方 雅昭
(72)【発明者】
【氏名】高橋 一重
(72)【発明者】
【氏名】菅原 広
(72)【発明者】
【氏名】島田 勝久
【審査官】
草川 貴史
(56)【参考文献】
【文献】
特開2010−008113(JP,A)
【文献】
特開昭58−060259(JP,A)
【文献】
特開平10−170500(JP,A)
【文献】
特開2008−107245(JP,A)
【文献】
特開2000−338099(JP,A)
【文献】
特表2005−524075(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/18
G01N 1/00−1/44
C02F 1/00
JSTPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
連続した液体の流れを反応コイル内に形成し、前記反応コイルにおける試薬との反応に基づいて試料液中の目的物質を連続的に定量するフローインジェクション分析方法であって、
キャリア液が流れる前記反応コイルに対してサンプリング弁を用いて前記試料液を導入することを繰り返すことによって前記目的物質の定量を繰り返し実行し、
前記繰り返し実行における、前記サンプリング弁によって前記試料液を前記キャリア液に導入していない期間に対応して、前記試薬の前記反応コイルへの供給を中断し、
前記試薬の前記反応コイルへの供給を中断している期間において、前記試薬の供給に用いるポンプ及び配管を介して、前記試薬に代えて前記試薬以外の液を供給する、フローインジェクション分析方法。
【請求項2】
前記試薬を前記反応コイルに供給している期間を第1の期間とし前記試薬の前記反応コイルへの供給を中断している期間を第2の期間として、前記試料液の導入から前記試薬との反応が完結して定量が終わるまでに要する時間と、前記第2の期間から前記第1の期間への切り替えに伴って系が安定するために要する時間との和が、前記繰り返し実行における前記試料液の導入の間隔よりも短いときに、前記試薬の前記反応コイルへの供給を中断する、請求項1に記載のフローインジェクション分析方法。
【請求項3】
前記試料液は水処理システムからのオンライン接続で得られる水である、請求項1または2に記載のフローインジェクション分析方法。
【請求項4】
前記試薬を調製後、前記試薬の少なくとも1つを冷蔵する、請求項1乃至3のいずれか1項に記載のフローインジェクション分析方法。
【請求項5】
連続した液体の流れを反応コイル内に形成し、前記反応コイルにおける試薬との反応に基づいて試料液中の目的物質を連続的に定量するフローインジェクション分析装置であって、
前記反応コイルに向けて流れるキャリア液に対して一定量の前記試料液を注入するサンプリング弁と、
前記サンプリング弁と前記反応コイルの間の位置において、前記試料液が注入されたキャリア液に試薬を添加する添加手段と、
前記試料液の前記キャリア液への注入を繰り返すように前記サンプリング弁を制御し、前記サンプリング弁によって前記試料液が前記キャリア液に注入されていない期間に対応して前記試薬の添加を中断するように前記添加手段を制御する制御手段と、
を有するフローインジェクション分析装置。
【請求項6】
前記添加手段は、前記試薬を貯える貯槽と、前記貯槽と前記試薬以外の液の供給源との一方を選択する弁と、前記弁で選択された液を送液するポンプとを備え、前記弁は前記制御手段によって制御される、請求項5に記載のフローインジェクション分析装置。
【請求項7】
前記制御手段は、前記試薬を添加する期間を第1の期間とし前記試薬の添加を中断している期間を第2の期間として、前記試料液の注入から前記試薬との反応が完結して定量が終わるまでに要する時間と、前記第2の期間から前記第1の期間への切り替えに伴って系が安定するために要する時間との和が、前記試料液の繰り返しての注入の間隔よりも短いときに、前記試薬の前記反応コイルへの供給を中断する、請求項5または6に記載のフローインジェクション分析装置。
【請求項8】
水処理システムにオンライン接続され、前記水処理システムから得られる水を前記試料液として前記目的物質の定量を行う、請求項5乃至7のいずれか1項に記載のフローインジェクション分析装置。
【請求項9】
前記試薬を冷却する冷却手段をさらに備える、請求項5乃至8のいずれか1項に記載のフローインジェクション分析装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フローインジェクション分析(FIA;flow injection analysis)方法及び装置に関する。
【背景技術】
【0002】
液体の連続した流れを細い管の中に形成し、そこに試料液を注入して試薬との反応を生じさせ、管の二次側において反応生成物濃度などを測定するフローインジェクション分析は、試料液中の目的物質の定量分析などに広く用いられている。反応が起きる場である細い管は、一般に反応コイルと呼ばれる。一般的なフローインジェクション装置では、連続的なキャリア液の流れの一部を試料液で置き換えるようにキャリア液に試料液を注入し、これとは別に用意された試薬液を連続的にキャリア液に混合して反応コイル内に導き、反応コイル内で試薬と目的物質とを反応させる構成となっている。例えば特許文献1は、試料水中の微量の尿素濃度の連続的にモニタリングするために、ジアセチルモノオキシムによる比色法による分析をフローインジェクション分析により実施することを開示している。
【0003】
ジアセチルモノオキシムを用いた比色法による定量は、尿素の定量法としてはよく知られたものであり、例えば衛生試験法(非特許文献1)において記載されている。ジアセチルモノオキシムを用いる比色法では、反応を促進するなどの目的で他の試薬(例えば、アンチピリン+硫酸溶液、塩酸セミカルバジド水溶液、塩化マンガン+硝酸カリウムの水溶液、リン酸二水素ナトリウム+硫酸溶液など)を併用することができる。アンチピリンを併用する場合には、ジアセチルモノオキシムを酢酸溶液に溶解させてジアセチルモノオキシム酢酸溶液を調製し、アンチピリン(1,5−ジメチル−2−フェニル−3−ピラゾロン)を例えば硫酸に溶解させてアンチピリン含有試薬液を調製し、試料水に対してジアセチルモノオキシム酢酸溶液とアンリピリン含有試薬液とを順次混合し、波長460nm付近での吸光度を測定し、標準液との対照によって定量を行う。ジアセチルモノオキシムを用いた比色法による尿素の定量方法は、元来は例えばプール水や公衆浴場水における尿素の定量を目指して意図されたものであるが、この方法に特許文献1に記載されるようにフローインジェクション分析を適用して吸光度を測定することにより、ppb以下から数ppmの濃度範囲で連続的に尿素を定量することができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000−338099号公報
【非特許文献】
【0005】
【非特許文献1】日本薬学会編、衛生試験法・注解1990.4.1.2.3(13)1(1990年版第4刷付追補(1995)、p1028)、1995年
【発明の概要】
【発明が解決しようとする課題】
【0006】
フローインジェクション分析を用いて目的物質をオンラインで連続的に定量する場合を考える。この場合、一定の時間間隔で試料液中の目的物質の定量を行うことになる。フローインジェクション法の特徴として、試薬量が少なくて済むということが挙げられるが、長期間、例えば数週間あるいは数ヶ月にわたって連続的に定量を行う場合には、期間全体を通して消費される試薬の量は膨大なものとなる。フローインジェクション分析により連続的に定量を行う場合に消費される試薬量を低減することが求められている。試薬液の流量が仮に0.5mL/分であったとしても1日に消費される試薬液は720mLであり、1ヶ月であれば20Lを超えるものとなる。
【0007】
本発明の目的は、目的物質を連続的に定量するときに消費される試薬量を低減することができるフローインジェクション分析方法及び装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明のフローインジェクション分析方法は、連続した液体の流れを反応コイル内に形成し、反応コイルにおける試薬との反応に基づいて試料液中の目的物質を連続的に定量するフローインジェクション分析方法であって、キャリア液が流れる反応コイルに対する試料液の導入を繰り返すことによって目的物質の定量を繰り返し実行し、繰り返し実行における目的物質の定量を行っていない期間に対応して、試薬の反応コイルへの供給を中断する。
【0009】
本発明のフローインジェクション分析装置は、連続した液体の流れを反応コイル内に形成し、反応コイルにおける試薬との反応に基づいて試料液中の目的物質を連続的に定量するフローインジェクション分析装置であって、反応コイルに向けて流れるキャリア液に対して一定量の試料液を注入するサンプリング弁と、サンプリング弁と反応コイルの間の位置において、試料液が注入されたキャリア液に試薬を添加する添加手段と、試料液のキャリア水への注入を繰り返すようにサンプリング弁を制御し、サンプリング弁によって試料液がキャリア水に注入されていない期間に対応して試薬の添加を中断するように添加手段を制御する制御手段と、を有する。
【発明の効果】
【0010】
本発明によれば、フローインジェクション分析において、キャリア液に対する試料液の注入を繰り返すことによって目的物質の定量を繰り返し実行し、試料液中の目的物質の連続的な定量を行う際に、目的物質の定量を行っていない期間に対応して試薬の供給を中断することにより、試薬を連続して供給する場合と比べ、定量精度などを低下させることなく全体としての試薬の消費量を低減することができる。
【図面の簡単な説明】
【0011】
【
図1】本発明の実施の一形態のフローインジェクション分析装置の構成を示す図である。
【
図3】実施例1における通水日数とピーク強度との関係を示すグラフである。
【発明を実施するための形態】
【0012】
次に、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明の実施の一形態のフローインジェクション分析(FIA)装置の構成を示している。ここでは、純水製造に用いる原水、あるいは純水を試料液とし、この試料液(ここでは水であるので試料水ともいえる)に含まれる微量の尿素を目的物質としてオンラインで連続的に定量する場合を例に挙げて、使用する試薬量を削減できる本発明を説明する。もちろん、本発明が定量対象とする目的物質は尿素に限られるものではなく、目的物質を含む試料液も水に限られるものではない。例えば本実施形態のFIA装置は、何らかの水処理システム(純水製造装置も水処理システムの一種であるといえる)に接続して水処理システムからの水を測定対象とすることができる。
【0013】
図1に示されるように、純水製造に用いる原水のライン20が設けられており、このライン20では、原水がポンプP0によって送水される。原水のライン20から分岐する試料水配管21が設けられている。試料水配管21は、原水から分岐した試料水の配管であり、試料水配管21の先端は、サンプリング弁10(インジェクター、インジェクション弁ともいう)に接続している。サンプリング弁10の詳細は後述する。サンプリング弁10を含めてサンプリング弁10から下流の部分は、フローインジェクション分析(FIA)装置としての構成を有して実際に尿素の定量に関わる部分となる。後述するようにサンプリング弁10にはポンプP4が接続しているが、尿素を連続的に定量するために、開閉弁22は常時開とされ、ポンプP4は常時駆動される。これにより試料水配管21には試料水が常時流れることになる。
【0014】
次に、サンプリング弁10について説明する。サンプリング弁10は、FIA法において一般的に用いられる構成のものであり、六方弁11とサンプルループ12とを備えている。六方弁11は、図示丸付き数字で示される6個のポートを備えている。試料水配管21はポート2に接続している。また、キャリア液(ここではキャリア水)が供給される配管23がポート6に接続し、ポンプP4を介して試料水を排水するための配管25がポート3に接続している。ポート1とポート4との間には、所定容量の試料水を採取するためのサンプルループ12が接続している。ポート5には、サンプリング弁11の出口となる配管24の一端が接続している。キャリア水は、尿素を実質含まない水であり、例えば純水である。キャリア水は、配管19を介してポンプP1に供給され、ポンプP1から配管23を介してポート6に向けて送液されている。
【0015】
六方弁11においてポートXとポートYとが連通することを(X−Y)と表すこととすると、六方弁11は、(1−2)、(3−4)、(5−6)である第1の状態と、(2−3)、(4−5)、(6−1)である第2の状態とを切り替えられるようになっている。
図1において、第1の状態でのポート間の接続関係は実線で示され、第2の状態でのポート間の接続は点線で示されている。第1の状態においてキャリア水は、配管23→ポート6→ポート5→配管24と流れてサンプリング弁10から下流側に流出する。試料水は、試料水配管21→ポート2→ポート1→サンプルループ12→ポート4→ポート3と流れて配管25から排出される。この第1の状態から第2の状態に切り替わると、試料水は、試料水配管21→ポート2→ポート3と流れて配管25から排出され、また、キャリア水は、配管23→ポート6→ポート1→サンプルループ12→ポート4→ポート5→配管24と流れ、下流側へ流出する。このとき、第1の状態であったときに既に流入してサンプルループ12内を満たしている試料水は、キャリア水に先立ってポート5から配管24へと流れ込み、サンプリング弁10の下流側へと流れる。配管24に流れる試料水の体積は、サンプルループ12によって規定される。したがって、第1の状態と第2の状態とを繰り返し切り替えることによって(例えば六方弁11を図示矢印方向に回転することによって)、所定容量の試料水を繰り返して配管24に送り込むことができる。第1の状態と第2の状態との切り替えは、後述する反応に必要な滞留時間、検出器32で尿素が検出されるまでの時間を考慮して、所定の時間ごとに行うことができる。また、検出器32に導入した試料水が検出器32から排出されたことを検知して切り替えを行うこともできる。このように、第1の状態と第2の状態との切り替えを自動的に行うようにすることで、尿素を連続的に定量することができる。
【0016】
この装置では、ジアセチルモノオキシムを用いる比色法による尿素の定量に対してFIA法を適用する。そのため、尿素の定量に用いる反応試薬として、ジアセチルモノオキシム酢酸溶液(以下、試薬Aともいう)とアンチピリン含有試薬液(以下、試薬Bともいう)を使用する。ここではジアセチルモノオキシムと併用される試薬としてアンチピリン含有試薬液を用いる場合を説明するが、ジアセチルモノオキシムと併用される試薬はアンチピリン含有試薬液に限定されるものではない。試薬A及び試薬Bは、それぞれ、貯槽41,42に貯えられる。
【0017】
本発明者らは、これらの試薬を調製後、尿素の連続定量のために長期間(例えば数日間以上)にわたって室温に保持した場合に吸光度測定でのピーク強度が低下すること、及び、このピーク強度の低下は試薬(特に試薬B)を冷蔵することにより防ぐことができることを見出している。安定した定量を行うためには吸光度測定でのピーク強度が低下しないことが好ましいので、本実施形態のFIA装置では、貯槽41,42を冷蔵部40内に設けている。試薬Aはジアセチルモノオキシムを酢酸溶液に溶解させて調製されるが、冷蔵部40を設ける場合には、調製自体を貯槽41で行う、あるいは、試薬Aをその調製後、貯槽41に貯えるようにする。同様に、試薬Bは、アンチピリンを例えば硫酸に溶解させて調製されるが、調製自体を貯槽42で行う、あるいは、試薬Bをその調製後、貯槽42に貯えるようにする。冷蔵部40は、貯槽41,42を遮光するとともに、貯槽41,42を冷却し、これによって、貯槽41,42内の試薬A、試薬Bの温度を20℃以下、好ましくは3℃以上20℃以下、より好ましくは5℃以上15℃以下に維持する。なお、試薬Aを貯える貯槽41については、遮光保管できるものであれば、必ずしも冷蔵部40内に配置する必要はない。試薬の冷蔵温度は、5℃未満であっても、試薬において結晶の析出が生じなければ差し支えない。衛生試験法(非特許文献1)には、アンチピリンを硫酸に溶解させたアンチピリン硫酸溶液について、褐色瓶に保管すれば2〜3箇月は使用できることと、結晶が析出し室温に戻しても再溶解しないため冷蔵保管は適さないこととが記載されているが、本発明者らは、衛生試験法にしたがって調整されたアンチピリン硫酸溶液は3℃でも結晶化しないことを実験により確認した。
【0018】
配管24には、貯槽41に貯えられた試薬Aが供給されて配管24内を流れる液体に試薬Aを混合する混合部43と、貯槽42に貯えられた試薬Bが供給されて配管24内を流れる液体に試薬Bを混合する混合部44とが設けられている。混合部それぞれ、試薬A、試薬Bを配管24内の液体の流れに対して均一に混合する機能を有する。配管24の他端は、反応恒温槽30内に設けられた反応コイル31の入口に接続している。反応コイル31は、その内部においてアンチピリンの存在下での尿素とジアセチルモノオキシムとによる発色反応を起こさせるものであり、その長さと反応コイル31の内部での流速とは、反応に必要な滞留時間に応じて適宜に選択される。反応恒温槽30は、反応コイル31を反応に適した温度まで昇温するものであって、例えば、50℃以上150℃以下、好ましくは90℃以上120℃以下の温度に反応コイル31を加熱する。
【0019】
反応コイル31の末端すなわち出口には、反応コイル31から流れ出る液を対象として、発色反応によって液中に生じた発色の吸光度を測定するための検出器32が設けられている。検出器32によって、例えば、波長460nm付近での吸光度のピーク強度あるいはピーク面積を求める。キャリア水が流れているときの吸光度をベースラインとし、尿素濃度が既知の標準液に対する吸光度から検量線を求めることにより、試料水に対する吸光度から試料水での尿素の濃度を求めることができる。検出器32の出口には、ポンプP1からサンプリング弁10、配管24及び反応コイル31を経て検出器32に至る管路に対して背圧を与える背圧コイル33が設けられている。検出器32の出口と背圧コイル33の入口との間の位置に対し、圧力計PIが接続している。背圧コイル33の出口から、このFIA装置の排液が流出する。
【0020】
このFIA装置では、サンプリング弁10によってキャリア液に対して試料水を反復して注入することにより、連続した液体の流れ(キャリア水または試料水の流れ)が反応コイル31内に形成されるとともに、試料水が反応コイル31に繰り返し導入されることになる。反応コイル31では尿素と試薬A及び試薬Bとの反応が生じており、この反応生成物による吸光度の変化を測定することで、試料水中の尿素を連続的に定量することができる。
【0021】
従来のFIA装置であれば、貯槽41,42にそれぞれ貯えられている試薬A及び試薬Bは、試薬液として、常時、一定の流量で、連続して配管24内のキャリア水の流れに供給される。試薬液としての設定流量が0.5mL/分であっても、1日当たりに換算すれば720mLが消費されることになる。ところで、オンラインでの目的物質(ここでは尿素)の連続定量では、一般に、一定の測定間隔時間(例えば、60分)ごとにサンプリング弁10によって一定体積の試料水を取り込み、定量操作を行っている。したがって、測定間隔時間の1周期の中には、試料水がサンプリング弁10よりもFIA装置としての下流側の部分には存在しない期間がある。この期間は、定量操作を行っていないので、試薬の供給を停止しても構わない期間であるといえる。
【0022】
そこで本実施形態のFIA装置では、尿素の定量を繰り返し実行しているときに、この繰り返しにおいて尿素の定量を行っていない期間に対応して、試薬A及び試薬Bの供給を中断する。これにより、長期間にわたって連続的に試料水中の尿素の定量を行う場合において、試薬A及び試薬Bの消費量を削減する。試薬A及び試薬Bの消費量が削減するということは、調製されて貯槽41,42に貯えられる試薬量が従来の装置と同じであれば、従来の装置に比べて貯槽41,42での試薬A及び試薬Bが貯えられる期間が長くなることを意味する。このように長期間にわたって各試薬を貯槽41,42に保管しなければならないから、試薬の劣化を防ぐために、上述したように冷蔵部40の内部に貯槽41,42を配置することが特に好ましい。以下の説明において、各試薬を反応コイル31に供給している期間、より具体的には混合部43,44を介して各試薬を供給する期間を第1の期間とし、各試薬の反応コイル31への供給を中断している期間、より具体的には混合部43,44を介した各試薬の供給を停止している期間を第2の期間とする。
【0023】
次に、試薬A及び試薬Bの供給を中断するための構成の一例について説明する。試薬A及び試薬Bの供給を中断した場合、配管24を流れる液体に対して混合部43,44でこれらの試薬が合流しないとすると、その分、反応コイル31に流れ込む液体の流量が減少し、反応コイル31での流れの状態が変化して、装置全体の安定度が損なわれたり、定量精度に悪影響を与えたりする恐れがある。また、単純にポンプP2,P3を停止して試薬A及び試薬Bの供給を停止しただけでは、これらの試薬がポンプP2,P3や配管26,27の中に溜まり続けることとなる。これらの溜まり続けた試薬は、試薬A及び試薬Bの供給を再開したときの定量精度に悪影響を及ぼす恐れがある。そこで本実施形態では、試薬の供給を中断している第2の期間において、反応コイル31での流量が変化しないように、またポンプP2,P3や配管26,27の中に試薬が滞留しないように、供給を中断していなかったならば配管24に供給されたであろう試薬の流量(言い換えれば第1の期間における試薬の流量)と同じ流量のキャリア水を、各試薬の代わりに、混合部43,44を介して配管24に供給する。そのため
図1に示す装置では、試薬Aとキャリア水とを切り替えるための三方弁55と、試薬Bとキャリア水とを切り替えるための三方弁56が設けられている。三方弁55,56の各々は、1つの共通ポートと2つの供給ポートとを備えており、2つの供給ポートのいずれかを選択して選択された供給ポートに供給された液体を共通ポートから排出できるようにしたものである。貯槽41,42、三方弁55,56、ポンプP2,P3によって添加手段が構成されている。定量精度や装置の安定度への影響が少ないのであれば、第2の期間において配管26,27を介して混合部43,44に流れるキャリア水の流量は、第1の期間での流量と異なっていてもよい。
【0024】
キャリア水をポンプP1に供給する配管19から分岐して配管51が設けられており、配管51の先端には開閉弁52が設けられている。開閉弁52の出口には配管53が接続し、配管53から配管54が分岐している。配管53,54は、それぞれ、三方弁55,56に対してキャリア水を供給するためのものである。三方弁55の2つの供給ポートのうち、一方の供給ポートは配管53に接続し、他方の供給ポートは配管45を介して試薬Aの貯槽41に接続している。三方弁55の共通ポートは、配管26を介して混合部43に接続し、配管26には、試薬Aについて規定された流量で常時稼動するポンプP2が設けられている。同様に、三方弁56の2つの供給ポートのうち、一方の供給ポートは配管54に接続し、他方の供給ポートは配管46を介して試薬Bの貯槽42に接続している。三方弁56の共通ポートは、配管27を介して混合部44に接続し、配管27には、試薬Bについて規定された流量で常時稼動するポンプP3が設けられている。
【0025】
さらにこのFIA装置には、サンプリング弁10、開閉弁52及び三方弁55,56を制御する制御部50が設けられている。制御部50は、制御手段に対応するものであって、各試薬の供給を行う第1の期間において、開閉弁52を閉じるとともに、三方弁55,56がそれぞれ試薬A及び試薬Bの供給ポートを選択するように制御を行う。また制御部50は、各試薬の供給を中断する第2の期間において、開閉弁52を開けるとともに、三方弁55,56がいずれもキャリア水の供給ポートを選択するように制御を行う。その結果、試薬Aは、第1の期間において、三方弁55及びポンプP2を介して所定の流量で混合部43に給送され、混合部43においてキャリア水に混合される。第2の期間においては、三方弁55からポンプP2を経て混合部43にキャリア水が給送されるが、ポンプP2は規定の流量で常時稼動しているので、第1の期間中に混合部43に供給されていた試薬Aと同じ流量でキャリア水が混合部43に送られることになり、このキャリア水が、配管24内の液体すなわちキャリア水に対して追加供給されることになる。同様に、試薬Bは、第1の期間において、三方弁56及びポンプP3を介して所定の流量で混合部44に給送されてキャリア水に混合される。第2の期間においては、第1の期間中に混合部44に供給されていた試薬Bと同じ流量で三方弁56からポンプP3を経て混合部44にキャリア水が給送され、このキャリア水が、配管24内のキャリア水に対して追加供給される。このようにして本実施形態のFIA装置では、各試薬の供給を行う第1の期間と試薬の供給を行わない第2の期間との間で反応コイル31を流れる液体の流量が変化しないこととなる。本実施形態では三方弁55,56にキャリア水が供給されているが、キャリア水とは別のラインでキャリア水と同等の水質の液を貯える貯槽を設置し、この貯槽内の液を三方弁55,56に対し試薬の代わりに追加供給してもよい。要は、第2の期間において、試薬以外の液がポンプP2,P3及び配管26,27を介して混合部43,44に供給されるようになっていればよい。
【0026】
ここでどのようなタイミングで試薬A及び試薬Bの供給を中断するかを説明する。FIA法により繰り返して定量を行う場合、サンプリング弁10を上述した第1の状態から第2の状態に切り替えることにより、サンプリング弁10のサンプルループ12内に既にあった試料水が配管24に流れ始めてから、試料水や反応生成物が検出器32から完全に排出されるまでの期間は、目的物質の定量のために必要な期間であり、この1サイクルを1サイクル測定時間と呼ぶ。1サイクル測定時間は、測定間隔時間とは独立して、装置の構成や寸法、目的物質と試薬との組み合わせ、流量設定値などによって自ずと定まる値である。試薬の供給を中断しない場合であっても、原則として、1サイクル測定時間よりも測定間隔時間を短くすることはできない。1サイクル測定時間の期間中は、試薬A及び試薬Bを供給し続ける必要がある。また、各試薬の供給を中断していた状態から各試薬の供給を再開したとき、直ちに試料水の定量を行うことはできず、FIA装置内の状態が安定するまで待つ必要がある。各試薬の供給を再開してから装置内の状態が安定して試料水の定量が可能になるまでの時間を安定時間と呼ぶ。
【0027】
試薬の供給を中断する場合には、中断の後に安定時間が経過してから試料水の定量を行う必要がある。試料水の定量には、上述した1サイクル測定時間が必要である。したがって、本実施形態で説明するように試薬の供給を中断するためには、1サイクル測定時間と安定時間との和が測定間隔時間よりも短いことが必要である。
図2は、このような各時間の関係を示している。測定間隔時間から1サイクル測定時間と安定時間との和を差し引いた残りの時間が試薬の供給を中断できる試薬削減時間すなわち第2の期間である。1サイクル測定時間と安定時間では各試薬の供給を続ける必要があるから、これらは第1の期間に相当する。初期状態において装置内の状態が安定しているとして、各測定間隔時間は、1サイクル測定時間で開始し、これに引き続いて試薬削減時間と安定時間とがこの順で配置したものとなる。本実施形態によれば、従来のように連続して試薬を供給し続ける場合に比べ、試薬削減時間(すなわち第2の期間)を測定間隔時間で除算して得られる値の分だけ全体としての試薬消費量を削減することができる。
【0028】
制御部50は、連続定量を行うために定量を行う間隔すなわち測定間隔時間が設定されると、1サイクル測定時間と安定時間との和が測定間隔時間よりも短いかどうかを判断し、短い場合には、1サイクル測定時間の開始時点においてサンプリング弁10の第1の状態から第2の状態への切り替えを行うとともに、第1の期間において各試薬の供給を行い第2の期間においては各試薬の供給を中断するように、開閉弁52及び三方弁55,56の制御を行う。一方、1サイクル測定時間と安定時間との和が設定された測定間隔時間よりも短くない場合には、制御部50は、1サイクル測定時間の開始時点においてサンプリング弁10を第1の状態から第2の状態へ切り替えるとともに、各試薬を常時供給するように、開閉弁52を閉じたままとし、試薬を常時選択するように三方弁55,56を制御する。この場合、1サイクル測定時間の終了後、1つの測定間隔時間が終了するまでの間は、試薬が供給され続けるアイドル時間となる。
【0029】
試薬の供給の中断の有無にかかわらずサンプルループ12内に既にあった試料水がすべて配管24に流出した後であれば、1サイクル測定時間内であってもサンプリング弁10を元の状態すなわち第1の状態に戻すことができるが、サンプリング弁10の操作に伴ってキャリア水の流れの瞬断が発生し、それが反応や吸光度測定に悪影響を及ぼす恐れがあるので、サンプリング弁10を元の状態に戻すのは、1サイクル測定時間の終了後としてもよい。
【0030】
本実施形態の装置では、FIA法を利用し、ジアセチルモノオキシムを用いる比色法によって試料水中の尿素をオンラインで連続的に測定することができる。このとき、測定に影響を与えない範囲で試薬の供給を中断する期間を設定することにより、長期にわたる連続定量を行うときの各試薬の消費量を削減することができる。さらに、反応に用いる試薬A(ジアセチルモノオキシム酢酸溶液)及び試薬B(アンチピリン含有試薬液)として、特に試薬Bについて、それらの試薬の調製後、20℃以下に維持されたものを使用することにより、長期にわたって安定して尿素の連続的な定量を行うことが可能になる。以上の説明では、第2の期間において試薬A及び試薬Bの両方の供給を中断しているが、いずれか片方の供給を中断するようにしてもよい。2つの試薬を用いる場合を説明しているが、分析に用いられる試薬の数は2に限定されるものではなく、また、ジアセチルモノオキシムを用いる尿素の比色分析で使用されるものに限定されるものでもない。
【実施例】
【0031】
次に、実施例により、本発明をさらに詳しく説明する。ここでは、試薬Aや試薬Bを冷蔵することの効果を示す実験結果について説明する。
【0032】
(実施例1)
図1に示すFIA装置を組み立てた。ただし、ライン20から流量計FIに至る部分は設けず、サンプリング弁10に対して試料水が直接供給される構成とした。また、配管51,53,54、開閉弁52及び三方弁55,56を設けず、貯槽41内の試薬AがポンプP2を介して混合部43に直接供給され、貯槽42内の試薬BがポンプP3を介して混合部44に直接供給されるようにした。したがって、試薬A及び試薬Bは、常時、連続的に配管24に対して供給されていることになる。
【0033】
尿素濃度を60ppbに調製した標準液を試料水としてサンプリング弁10に連続供給できるようにした。そしてこの標準液に関して尿素濃度の連続モニタリングを行った。ここでは、標準液について連続的に測定を行ったときに、検出器32における吸光度の検出ピークの測定値として得られる尿素濃度がどのように変化するかを調べた。この実施例1では、ジアセチルモノオキシム2gを10%酢酸100mLに溶解させて試薬A(ジアセチルモノオキシム酢酸溶液)を調製し、アンチピリン0.2gをとり、9mol/Lの硫酸に溶かし、全量を100mLとして試薬B(アンチピリン含有試薬液)を調製し、調製後直ちにそれらの試薬をそれぞれ貯槽41,42に貯え、貯槽41,42から各試薬を配管24に向けて連続的に供給するようにした。連続測定の最初に各試薬を貯槽41,42に注入した後は、連続測定中には試薬を補充しないようにした。また、試薬Aの貯槽41については常温に維持した。試薬Bについては、その調製後の保管温度を10℃とした場合と25℃とした場合の2通りについて実験を行った。尿素濃度の変化は、波長460nmでの吸光度のピーク強度で確認した。結果を
図3に示す。
図3では、試薬A及び試薬Bを調製してそれぞれ貯槽41,42に貯えた直後に60ppbの尿素標準液を測定した際のピーク強度を100%として、同じ標準液を測定したときの測定値が日時の経過とともにどのように変化したかを示している。
【0034】
図3に示すように、アンチピリン含有試薬液(試薬B)を25℃に維持した場合には、徐々にピーク強度が低下し、連続測定のための10日間の運転の間にピーク強度が72%まで低下した。すなわち、尿素の定量を安定して行えなくなっていた。これに対しアンチピリン含有試薬液を冷蔵保管して10℃に維持した場合には、10日間の連続運転の後にもピーク強度が低下せず、長期にわたって安定して尿素の連続定量を行えることが分かった。
【0035】
(実施例2)
実施例1と同様に試薬B(アンチピリン含有試薬液)を調製後、5℃、10℃、15℃、20℃及び25℃でそれぞれ10日間保管した。そして、この保管の後に試薬Bを実施例1の装置に供給した。試薬Bを装置に供給したのち直ちにこの装置を用いて尿素濃度60ppbの標準液を測定し、そのピーク強度を求めた。その際、試薬Bの調製直後に標準液を測定したときのピーク強度を100%とした。試薬A(ジアセチルモノオキシム酢酸溶液)については実施例1と同様に調製したのち、常温で保管したものを使用した。結果を表1に示す。
【0036】
【表1】
【0037】
表1に示されるように、保管温度が5℃の場合と10℃の場合にはピーク強度の低下はほとんど見られず、15℃で保管した場合には、約1割程度のピーク強度の低下が見られた。20℃で保管した場合には約2割のピーク強度の低下であったが、25℃では3割近くピーク強度が低下した。これらから、微量の尿素濃度を連続的に測定するためには、反応に用いる試薬(ジアセチルモノオキシム酢酸溶液及びアンチピリン含有試薬液)のうち少なくともアンチピリン含有試薬液を冷蔵保存すべきであること、その場合、アンチピリン含有試薬液の温度を20℃以下に維持することが好ましく、3℃以上20℃以下に維持することがさらに好ましく、5℃以上15℃以下に維持することがより好ましいことが分かった。
【0038】
(実施例3)
実施例2の試薬A(ジアセチルモノオキシム酢酸溶液)を実施例2の試薬B(アンチピリン含有試薬液)と同様の保管温度にて保管したことを除いて、実施例2と同様の試験を行った。
【0039】
試薬Aと試薬Bの両方を冷蔵して測定を行った場合、試薬Bのみを冷蔵して測定を行った結果(表1)と同様の結果が得られた。
【符号の説明】
【0040】
10 サンプリング弁
12 サンプルループ
22,52 開閉弁
31 反応コイル
32 検出器
40 冷蔵部
41,42 貯槽
43,44 混合部
50 制御部
55,56 三方弁