(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0029】
以下、本開示の実施形態に係るキャパシタ内蔵部品の構成及びその製造方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。また、本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基板」や「基材」は、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
【0030】
キャパシタ内蔵部品
以下、本開示の実施の形態について説明する。まず、本実施の形態に係るキャパシタ内蔵部品10の構成について説明する。
図1は、キャパシタ内蔵部品10を示す断面図である。
【0031】
キャパシタ内蔵部品10は、基板12、キャパシタ15及びインダクタ16を備える。キャパシタ15は、基板12の第1面13側に設けられた第1配線構造部30の一部によって構成されている。インダクタ16は、第1配線構造部30の一部と、基板12の貫通孔20に設けられた貫通電極22と、基板12の第2面14側に設けられた第2配線構造部40の一部とによって構成されている。以下、キャパシタ内蔵部品10の各構成要素について説明する。
【0032】
(基板)
基板12は、第1面13、及び、第1面13の反対側に位置する第2面14を含む。また、基板12には、第1面13から第2面14に至る複数の貫通孔20が設けられている。
【0033】
基板12は、一定の絶縁性を有する無機材料を含んでいる。例えば、基板12は、ガラス基板、石英基板、サファイア基板、樹脂基板、シリコン基板、炭化シリコン基板、アルミナ(Al
2O
3)基板、窒化アルミ(AlN)基板、酸化ジリコニア(ZrO
2)基板など、又は、これらの基板が積層されたものである。基板12は、アルミニウム基板、ステンレス基板など、導電性を有する材料から構成された基板を部分的に含んでいてもよい。
【0034】
基板12で用いるガラスの例としては、無アルカリガラスなどを挙げることができる。無アルカリガラスとは、ナトリウムやカリウムなどのアルカリ成分を含まないガラスである。無アルカリガラスは、例えば、アルカリ成分の代わりにホウ酸を含む。また、無アルカリガラスは、例えば、酸化カルシウムや酸化バリウムなどのアルカリ土類金属酸化物を含む。無アルカリガラスの例としては、旭硝子製のEN−A1や、コーニング製のイーグルXGなどを挙げることができる。基板12がガラスを含む場合、基板12の厚みTは、例えば0.25mm以上且つ0.45mm以下である。基板12がガラスを含むことにより、基板12がシリコンからなる場合に比べて、基板12の絶縁性を高めることができ、これにより、基板12上に位置するキャパシタ15の耐電圧特性を改善することができる。
【0035】
図1において、符号S1は、貫通孔20が第1面13と接続される位置における貫通孔20の幅を表す。幅S1は、例えば40μm以上且つ150μm以下である。また、貫通孔20の幅S1に対する貫通孔20の長さの比、すなわち貫通孔20のアスペクト比は、例えば4以上且つ10以下である。
【0036】
基板12に形成された貫通孔20は、少なくとも部分的に、基板12の第1面13から第2面14に向かうにつれて幅が小さくなる形状を有していてもよい。
図1に示す例において、貫通孔20は、基板12の第1面13及び第2面14から基板12の厚み方向における中央部分に向かうにつれて幅が小さくなる形状を有している。この結果、貫通孔20の幅は、
図1において符号S2で示すように、基板12の厚み方向における中央部分で最小になる。なお「中央部分」とは、基板12の厚み方向における中間位置、並びに、中間位置から第1面13側へ0.1×Tまでの範囲、及び中間位置から第2面14側へ0.1×Tまでの範囲を含む。符号Tは、上述のように基板12の厚みを表す。
【0037】
(貫通電極)
図2は、貫通孔20に設けられた貫通電極22を拡大して示す断面図である。貫通電極22は、貫通孔20の内部に少なくとも部分的に位置し、且つ導電性を有する部材である。本実施の形態において、貫通電極22の厚みは、貫通孔20の幅よりも小さく、このため、貫通孔20の内部には、貫通電極22が存在しない空間がある。すなわち、貫通電極22は、いわゆるコンフォーマルビアである。貫通電極22の厚みは、例えば5μm以上且つ22μm以下である。
【0038】
貫通電極22が導電性を有する限りにおいて、貫通電極22の形成方法は特には限定されない。例えば、貫通電極22は、蒸着法やスパッタリング法などの物理成膜法で形成されていてもよく、化学成膜法やめっき法で形成されていてもよい。また、貫通電極22は、導電性を有する単一の層から構成されていてもよく、若しくは、導電性を有する複数の層を含んでいてもよい。ここでは、
図2に示すように、貫通電極22が第1層221及び第2層222含む例について説明する。
【0039】
第1層221は、貫通孔20の側壁21上に少なくとも部分的に位置し、導電性を有する層である。第1層221は、スパッタリング法や蒸着法などの物理成膜法や、ゾルゲル法などによって側壁21上に形成される。好ましくは、第1層221は、スパッタリング法によって側壁21上に形成される。これによって、側壁21に対して第1層221を強固に密着させることができる。第1層221の厚みは、例えば0.05μm以上且つ1.0μm以下である。なお、第1層221と貫通孔20の側壁21との間に、その他の層が設けられていてもよい。
【0040】
物理成膜法によって第1層221を形成する場合、第1層221を構成する材料としては、チタン、クロム、ニッケル、銅などの金属又はこれらを用いた合金など、あるいはこれらを積層したものを使用することができる。また、ゾルゲル法によって第1層221を形成する場合、第1層221を構成する材料としては、酸化亜鉛などを用いることができる。なお、第1層221は、ゾルゲル法によって形成されたゾルゲル層に加えて、無電解めっき法によってゾルゲル層上に形成された銅などの金属を含む無電解めっき層を更に有していてもよい。
【0041】
第2層222は、第1層221上に位置し、導電性を有する層である。第2層222は、例えば主成分としての銅を含み、より具体的には80質量%以上の銅を含む。また、第2層222は、金、銀、白金、ロジウム、スズ、アルミニウム、ニッケル、クロムなどの金属又はこれらを用いた合金を含んでいてもよい。第2層222は、電解めっき法によって第1層221上に形成される。第2層222の組成を分析する方法としては、例えばTEM(透過型電子顕微鏡)またはEDS(エネルギー分散型X線分光器)を採用することができる。第2層222の厚みは、例えば5μm以上且つ20μm以下である。なお、第1層221と第2層222との間に、その他の導電層が設けられていてもよい。
【0042】
(第1配線構造部)
次に、第1配線構造部30について説明する。第1配線構造部30は、基板12の第1面13側に電気的な回路を構成するよう第1面13側に設けられた導電層や絶縁層などの層を有する。後述するように、第1配線構造部30の一部によって、キャパシタ15が構成されている。また、第1配線構造部30の一部によって、インダクタ16の一部が構成されている。本実施の形態において、第1配線構造部30は、第1面第1導電層31、第1面第1無機層32、第1面第2導電層33、第1面第1有機層34、第1面第3導電層35及び第1面第2有機層36を有する。
【0043】
〔第1面第1導電層〕
第1面第1導電層31は、基板12の第1面13上に位置する、導電性を有する層である。第1面第1導電層31は、貫通電極22に電気的に接続されていてもよい。また、第1面第1導電層31は、導電性を有する単一の層から構成されていてもよく、若しくは、導電性を有する複数の層を含んでいてもよい。例えば、第1面第1導電層31は、貫通電極22と同様に、基板12の第1面13上に順に積層された第1層221及び第2層222を含んでいてもよい。また、第1面第1導電層31は、第1層221及び第2層222のうちの一部の導電層のみを含んでいてもよい。第1面第1導電層31を構成する材料は、貫通電極22を構成する材料と同様である。第1面第1導電層31の厚みは、例えば100nm以上且つ20μm以下であり、5μm以上且つ20μm以下であってもよい。
【0044】
図3は、キャパシタ内蔵部品10の貫通電極22及び第1面第1導電層31を第1面13側から見た場合を示す平面図である。第1面第1導電層31は、キャパシタ15及びインダクタ16の一部などを構成するように基板12の第1面13側に設けられている。なお、
図3においては、第1面第1導電層31上に積層される第1面第1無機層32などの層が省略されている。また、
図1は、
図3や後述する
図4に示すキャパシタ内蔵部品10を線A−Aに沿って切断した場合の断面図に相当する。
【0045】
〔第1面第1無機層〕
第1面第1無機層32は、少なくとも部分的に第1面第1導電層31上及び基板12の第1面13上に位置し、無機材料を含み、且つ絶縁性を有する層である。第1面第1無機層32の無機材料は、好ましくは6MV/cm以上、より好ましくは8MV/cm以上の絶縁破壊電界を有する。第1面第1無機層32の無機材料としては、SiNなどの珪素窒化物を用いることができる。その他にも、第1面第1無機層32の無機材料の例として、酸化シリコン、酸化アルミ、五酸化タンタルなどを挙げることができる。第1面第1無機層32の無機材料の比誘電率は、例えば3以上且つ50以下である。また、第1面第1無機層32の厚みは、例えば50nm以上且つ400nm以下である。第1面第1無機層32は、単一の層から構成されていてもよく、複数の層を含んでいてもよい。
【0046】
好ましくは、第1面第1無機層32の無機材料における漏れ電流は、1×10
−8A以下であり、より好ましくは1×10
−9A以下であり、更に好ましくは1×10
−10A以下であり、とりわけ好ましくは1×10
−11A以下である。これにより、第1面第1無機層32を含むキャパシタ15の電気特性を更に改善することができる
【0047】
第1面第1無機層32は、第1面第1導電層31の端部31e及び側面312を少なくとも部分的に覆っていてもよい。言い換えると、第1面第1無機層32は、第1面第1導電層31の上面311だけでなく側面312にも位置していてもよい。これによって、第1面第2導電層33、第1面第1有機層34などを形成する工程において用いる薬液によって第1面第1導電層31が損傷してしまうことを抑制することができる。なお「覆う」とは、
図1に示すように、基板12の第1面13の法線方向に沿ってキャパシタ内蔵部品10を見た場合に、第1面第1導電層31の端部31eと第1面第1無機層32とが重なっていることを意味する。また、「上面」とは、基板12に積層される層の面のうち、基板12から遠い側に位置する面を意味する。また、「下面」とは、基板12に積層される層の面のうち、基板12に近い側に位置する面を意味する。また、「側面」とは、下面から上面に至るよう広がる面を意味する。
【0048】
〔第1面第2導電層〕
第1面第2導電層33は、第1面第1無機層32上に位置する、導電性を有する層である。
図1に示すように、第1面第2導電層33の端部33eは、第1面第1無機層32上に位置する。上述の第1面第1導電層31と、第1面第1導電層31上に位置する上述の第1面第1無機層32と、第1面第1無機層32上に位置する第1面第2導電層33とによって、キャパシタ15が構成されている。このように、本実施の形態においては、キャパシタ15の誘電体が第1面第1無機層32によって構成され、誘電体に基板12側から対向する下側導電層が第1面第1導電層31によって構成され、誘電体に基板12とは反対側から対向する上側導電層が第1面第2導電層33によって構成される。
【0049】
第1面第2導電層33は、貫通電極22や第1面第1導電層31と同様に、第1面第1無機層32上に順に積層された第1層221及び第2層222などの複数の導電層を含んでいてもよい。第1面第2導電層33を構成する材料は、貫通電極22や第1面第1導電層31を構成する材料と同様である。第1面第2導電層33の厚みは、例えば100nm以上且つ20μm以下である。
【0050】
図4は、キャパシタ内蔵部品10の第1面第1導電層31、第1面第1無機層32及び第1面第2導電層33を第1面13側から見た場合を示す平面図である。
図4においては、第1面第2導電層33上に積層される後述する第1面第1有機層34,第1面第3導電層35などの層が省略されている。また、
図4においては、第1面第1無機層32によって覆われている構成要素が点線で表されている。
【0051】
図4に示すように、第1面第1無機層32は、基板12の第1面13及び第1面第1導電層31を広域にわたって覆っていてもよい。例えば、第1面第1無機層32は、キャパシタ15を構成する第1面第1導電層31の少なくとも端部31eを覆っていてもよい。
【0052】
図5に示すように、第1面第1無機層32には開口部32aが形成されている。開口部32aは、貫通孔20の位置及び第1面第1導電層31と第1面第3導電層35の接続位置などに形成されている。
【0053】
〔第1面第1有機層〕
第1面第1有機層34は、第1面第1無機層32上及び第1面第2導電層33に位置し、有機材料を含み、且つ絶縁性を有する層である。第1面第1有機層34の有機材料としては、ポリイミド、エポキシなどを用いることができる。第1面第1有機層34の有機材料は、好ましくは0.003以下、より好ましくは0.002以下、更に好ましくは0.001以下の誘電正接を有する。誘電正接の小さい有機材料を用いて第1面第1有機層34を構成することにより、キャパシタ15やインダクタ16を通るべき電気信号が第1面第1有機層34を通ってしまうことを抑制することができる。これにより、キャパシタ15やインダクタ16を備えるキャパシタ内蔵部品10の帯域を高周波側に広げることができる。
【0054】
図1に示すように、キャパシタ15の第1面第2導電層33上に位置する第1面第1有機層34には、第1面第2導電層33に重なる開口部34aが形成されている。
【0055】
〔第1面第3導電層〕
第1面第3導電層35は、第1面第1導電層31上、又は第1面第2導電層33上に位置する、導電性を有する層である。
図1に示す例において、第1面第3導電層35は、キャパシタ15の下側導電層を構成する第1面第1導電層31に電気的に接続されるように第1面第1有機層34の開口部34aに位置する部分を含む。また、第1面第3導電層35は、キャパシタ15の上側導電層を構成する第1面第2導電層33に電気的に接続されるように第1面第1有機層34の開口部34aに位置する部分を含む。
【0056】
第1面第3導電層35は、貫通電極22や第1面第1導電層31と同様に、順に積層された第1層221及び第2層222などの複数の導電層を含んでいてもよい。第1面第3導電層35を構成する材料は、貫通電極22や第1面第1導電層31を構成する材料と同様である。
【0057】
〔第1面第2有機層〕
第1面第2有機層36は、第1面第1有機層34上及び第1面第3導電層35上に位置し、有機材料を含み、且つ絶縁性を有する層である。第1面第2有機層36は、第1面第1有機層34と同様に、好ましくは0.003以下、より好ましくは0.002以下、更に好ましくは0.001以下の誘電正接を有する有機材料を含む。第1面第2有機層36の有機材料としては、第1面第1有機層34と同様に、ポリイミド、エポキシなどを用いることができる。
【0058】
(第2配線構造部)
次に、第2配線構造部40について説明する。第2配線構造部40は、基板12の第2面14側に電気的な回路を構成するよう第2面14側に設けられた導電層や絶縁層などの層を有する。第2配線構造部40の一部、上述の第1配線構造部30の一部及び貫通電極22によって、インダクタ16が構成されている。本実施の形態において、第2配線構造部40は、第2面第1導電層41及び第2面第1有機層43を有する。
【0059】
〔第2面第1導電層〕
第2面第1導電層41は、基板12の第2面14上に位置する、導電性を有する層である。第2面第1導電層41は、貫通電極22に電気的に接続されていてもよい。
【0060】
第2面第1導電層41は、貫通電極22や第1面第1導電層31と同様に、基板12の第2面14上に順に積層された第1層221及び第2層222などの複数の導電層を含んでいてもよい。第2面第1導電層41を構成する材料は、貫通電極22を構成する材料と同様である。第2面第1導電層41の厚みは、例えば100nm以上且つ20μm以下である。
【0061】
〔第2面第1有機層〕
第2面第1有機層43は、第2面第1導電層41上及び基板12の第2面14上に位置し、有機材料を含み、且つ絶縁性を有する層である。第2面第1有機層43は、第1面第1有機層34や第1面第2有機層36と同様に、好ましくは0.003以下、より好ましくは0.002以下、更に好ましくは0.001以下の誘電正接を有する有機材料を含む。第2面第1有機層43の有機材料としては、第1面第1有機層34や第1面第2有機層36と同様に、ポリイミド、エポキシなどを用いることができる。
【0062】
(キャパシタ)
次に、
図5及び
図6を参照して、キャパシタ15について詳細に説明する。
図5は、キャパシタ15を拡大して示す平面図である。また、
図6は、キャパシタ15を
図5の線B−Bに沿って切断した場合の断面図である。なお、
図5及び
図6においては、上述の第1面第1有機層34、第1面第3導電層35及び第1面第2有機層36が省略されている。
【0063】
図6に示すように、キャパシタ15の第1面第1導電層31の上面311は、凹凸形状を有していてもよい。これにより、上面311が平坦である場合に比べて、第1面第2導電層33に対向する上面311の面積を増加させることができ、キャパシタ15の容量を増加させることができる。また、第1面第1導電層31に対する第1面第1無機層32の密着性を高めることができる。第1面第1導電層31の上面311の平均表面粗さは、例えば0.1μm以上且つ0.4μm以下である。平均表面粗さは、例えば、JIS B 0601:2001に規定される算術平均表面粗さである。平均表面粗さは、
図5及び
図6に示すように、一辺の長さがL1の正方形の領域内で測定される。長さL1は、例えば150μmである。
【0064】
図6に示すように、キャパシタ15の第1面第1導電層31の側面312も、上面311と同様に凹凸形状を有していてもよい。第1面第1導電層31の側面312は、基板12の第1面13の法線方向に沿って第1面第1導電層31を見た場合の第1面第1導電層31の端部31eを画定する部分である。側面312が凹凸形状を有することにより、第1面第1導電層31に対する第1面第1無機層32の密着性を、例えばアンカー効果によって高めることができる。なぜなら、側面312に接している第1面第1無機層32の、基板12の第1面13の法線方向における変位を、側面312の凹凸形状が第1面第1無機層32を係止することによって抑制できるからである。第1面第1導電層31の側面312の平均表面粗さは、側面312の平均表面粗さと同等であり、例えば0.1μm以上且つ0.4μm以下である。
【0065】
第1面第1導電層31の上面311及び側面312における上述の凹凸形状は、後述するように、第1面第1導電層31の第1層221の不要部分をエッチングにより除去する工程において、上面311及び側面312がエッチング液に晒されて削られることによって生じる。
【0066】
図5に示すように、基板12の第1面13の法線方向に沿ってキャパシタ15の第1面第2導電層33を見た場合、キャパシタ15の第1面第2導電層33の端部33eが、第1面第1導電層31の端部31eよりも内側に位置している。例えば、
図5に示すように、キャパシタ15の第1面第2導電層33が、4つの隅部31fを含む略矩形状の形状を有する場合、4つの辺を構成する端部33eがいずれも、第1面第1導電層31の端部31eよりも内側に位置している。言い換えると、基板12の第1面13の法線方向に沿ってキャパシタ15の第1面第2導電層33を見た場合、第1面第2導電層33が第1面第1導電層31の側面312と重なっていない。以下、このように第1面第2導電層33を構成することの利点について説明する。なお、「内側」とは、平面視におけるキャパシタ15の中心側を意味する。
【0067】
第1面第1無機層32の形成工程において、第1面第1導電層31の側面312には、上面311に比べて第1面第1無機層32が形成されにくい。このため、側面312上の第1面第1無機層32の厚みは、上面311上の第1面第1無機層32の厚みよりも小さい。また、側面312の一部分上には第1面第1無機層32が形成されておらず、このため第1面第1導電層31が露出している場合も考えられる。従って、第1面第2導電層33が第1面第1導電層31の側面312と重なる位置にまで広がっている場合、言い換えると、第1面第2導電層33が側面312上の第1面第1無機層32を覆う場合、露出している第1面第1導電層31に第1面第2導電層33が接触してしまう危険性が高くなる。
【0068】
これに対して、本実施の形態においては、キャパシタ15の第1面第2導電層33の端部33eが、第1面第1導電層31の端部31eよりも内側に位置している。このため、第1面第1導電層31の側面312に第1面第2導電層33が接触して電気的なショートが生じてしまう危険性を低減することができる。
【0069】
(貫通孔の変形例)
図7は、貫通孔20の一変形例を示す断面図である。
図7に示すように、キャパシタ内蔵部品10は、貫通電極22よりも貫通孔20の中心側に位置する有機層26を備えていてもよい。なお、「中心側」とは、貫通孔20の内部において、有機層26と側壁21との間の距離が貫通電極22と側壁21との間の距離よりも大きいことを意味する。有機層26は、好ましくは0.003以下、より好ましくは0.002以下、更に好ましくは0.001以下の誘電正接を有する有機材料を含む。有機層26の有機材料としては、ポリイミド、エポキシなどを用いることができる。誘電正接の小さい有機材料を用いて有機層26を構成することにより、キャパシタ15やインダクタ16を通るべき電気信号の一部が有機層26を通ってしまうことを抑制することができる。これにより、キャパシタ15やインダクタ16を備えるキャパシタ内蔵部品10の帯域を高周波側に広げることができる。
【0070】
また、図示はしないが、貫通電極22は、貫通孔20に充填されたフィルドビアであってもよい。この場合、貫通電極22は、第1面13の面方向において少なくとも部分的に貫通孔20の中心点にまで広がっている。
【0071】
キャパシタ内蔵部品の製造方法
以下、キャパシタ内蔵部品10の製造方法の一例について、
図8乃至
図15を参照して説明する。
【0072】
(貫通孔形成工程)
まず、基板12を準備する。次に、第1面13又は第2面14の少なくともいずれかにレジスト層を設ける。その後、レジスト層のうち貫通孔20に対応する位置に開口を設ける。次に、レジスト層の開口において基板12を加工することにより、
図8に示すように、基板12に貫通孔20を形成することができる。基板12を加工する方法としては、反応性イオンエッチング法、深掘り反応性イオンエッチング法などのドライエッチング法や、ウェットエッチング法などを用いることができる。
【0073】
なお、基板12にレーザを照射することによって基板12に貫通孔20を形成してもよい。この場合、レジスト層は設けられていなくてもよい。レーザ加工のためのレーザとしては、エキシマレーザ、Nd:YAGレーザ、フェムト秒レーザ等を用いることができる。Nd:YAGレーザを採用する場合、波長が1064nmの基本波、波長が532nmの第2高調波、波長が355nmの第3高調波等を用いることができる。
【0074】
また、レーザ照射とウェットエッチングを適宜組み合わせることもできる。具体的には、まず、レーザ照射によって基板12のうち貫通孔20が形成されるべき領域に変質層を形成する。続いて、基板12をフッ化水素などに浸漬して、変質層をエッチングする。これによって、基板12に貫通孔20を形成することができる。その他にも、基板12に研磨材を吹き付けるブラスト処理によって基板12に貫通孔20を形成してもよい。
【0075】
第1面13側及び第2面14側の両方から基板12を加工することにより、
図8に示す、基板12の厚み方向の中央部分に向かうにつれて幅が小さくなる形状を有する貫通孔20を形成することができる。
【0076】
(貫通電極形成工程)
次に、貫通孔20の側壁21に貫通電極22を形成する。本実施の形態においては、貫通電極22と同時に、基板12の第1面13の一部分上に第1面第1導電層31を形成し、基板12の第2面14の一部分上に第2面第1導電層41を形成する例について説明する。
【0077】
まず、
図9に示すように、基板12の第1面13、第2面14及び側壁21に、物理成膜法、ゾルゲル法、無電解めっき法などによって第1層221を形成する。好ましくは物理成膜法によって、特に好ましくはスパッタリング法によって、第1層221を形成する。これによって、基板12の第1面13、第2面14及び側壁21に第1層221を強固に密着させることができる。スパッタリング法や蒸着法などの物理成膜法は、好ましくは、第1面13側及び第2面14側の両方から実施される。この場合、貫通孔20の側壁21には、第1面13側から飛来する導電性物質、及び第2面14側から飛来する導電性物質が付着する。
【0078】
続いて、
図10に示すように、第1層221上に部分的にレジスト層37を形成する。レジスト層37の材料としては、アクリル樹脂を含むドライフィルムレジストなど、感光性を有する材料が用いられ得る。
【0079】
続いて、
図11に示すように、レジスト層37によって覆われていない第1層221上に、電解めっき法によって第2層222を形成する。例えば、銅を含む電解めっき液の中に基板12を浸漬させる。また、第1層221に電流を流す。これによって、第1層221上に第2層222を析出させることができる。
【0080】
(レジスト及び導電層除去工程)
その後、
図12に示すように、レジスト層37を除去する。続いて、
図13に示すように、第1層221のうちレジスト層37によって覆われていた部分を、言い換えると第1層221のうち第2層222から露出している部分を、例えばウェットエッチングにより除去する。このようにして、第1層221及び第2層222を含む貫通電極22、第1面第1導電層31及び第2面第1導電層41を形成することができる。これにより、第2面第1導電層41と、第2面第1導電層41に電気的に接続された貫通電極22と、貫通電極22に電気的に接続された第1面第1導電層31とを備えるインダクタ16を構成することができる。なお、第2層222などの導電層をアニールする工程を実施してもよい。
【0081】
ところで、第1層221のうちレジスト層37によって覆われていた部分をウェットエッチングにより除去する工程においては、第2層222もエッチング液に晒されるので、第2層222の表面も部分的に削られる。この結果、上述のように、第1面第1導電層31の上面311及び側面312に凹凸形状が形成され、上面311及び側面312の平均表面粗さが大きくなる。
【0082】
第2層222がエッチング液に晒される時間が長くなるほど、上面311及び側面312の平均表面粗さが大きくなる。ところで、本実施の形態においては、インダクタ16の一部を構成する貫通電極22と一体的に第1面第1導電層31が形成される。インダクタ16の高周波特性などの電気特性を高める上では、インダクタ16を構成する第1層221及び第2層222の厚みを大きくして、インダクタ16の電気抵抗を小さくすることが好ましい。第1層221の厚みが大きくなると、第1層221をエッチングによって除去することに要する時間が長くなり、第2層222がエッチング液に晒される時間も長くなる。この結果、第1面第1導電層31の上面311及び側面312の平均表面粗さも大きくなる。第1面第1導電層31の上面311及び側面312の平均表面粗さをある程度大きくすることにより、第1面第2導電層33に対向する上面311の面積を増加させて、キャパシタ15の容量を増加させることができる。
【0083】
第1層221がクロムを含み、第2層222が銅を含む場合、第1層221を除去するためのエッチング液として、例えば過マンガン酸カリウムの水溶液を用いることができる。また、第1層221がチタンを含み、第2層222が銅を含む場合、エッチング液として、例えば、チタンエッチング液 メルテックス製Ti3991を用いることができる。
【0084】
なお、第1面第1導電層31の上面311の平均表面粗さが大きくなり過ぎると、上面311に形成される第1面第1無機層32の厚みのばらつきが大きくなり、この結果、第1面第1導電層31が第1面第1無機層32から露出する部分が生じる恐れがある。また、第1面第1無機層32を備えるキャパシタ15の漏れ電流が大きくなってしまう恐れもあるこの点を考慮して、上述のように、第1面第1導電層31の上面311の平均表面粗さを0.4μm以下とすることが好ましい。
【0085】
(第1面第1無機層及び第1面第2導電層の形成工程)
次に、
図14に示すように、第1面第1導電層31の第2層222上及び基板12の第1面13上に第1面第1無機層32を形成する。第1面第1無機層32を形成する方法としては、例えば、プラズマCVD、スパッタリング、原子層堆積法などを採用することができる。また、
図14に示すように、第1面第1無機層32の一部分上に第1面第2導電層33を形成する。これにより、第1面第1導電層31と、第1面第1導電層31上の第1面第1無機層32と、第1面第1無機層32上の第1面第2導電層33と、を備えるキャパシタ15を構成することができる。第1面第2導電層33を形成する工程は、第1面第1導電層31を形成する工程と同様であるので、説明を省略する。
【0086】
なお、第1面第1無機層32が
図14に示す形状となるように第1面第1無機層32をパターニングするタイミングは任意である。例えば、第1面第1無機層32上に第1面第2導電層33を形成する前に第1面第1無機層32をパターニングしてもよく、第1面第2導電層33を形成した後に第1面第1無機層32をパターニングしてもよい。また、図示はしないが、第1面第2導電層33上に後述する
図14に示す第1面第1有機層34を形成した後、第1面第1有機層34をマスクとして第1面第1無機層32をパターニングしてもよい。
【0087】
(第1面第1有機層の形成工程)
次に、
図15に示すように、第1面第2導電層33の一部分上及び第1面第1無機層32の一部分上に第1面第1有機層34を形成する。例えば、まず、有機材料を含む感光層と、基材とを有する、図示しない第1面側フィルムを、基板12の第1面13側に貼り付ける。続いて、第1面側フィルムに露光処理及び現像処理を施す。これによって、第1面側フィルムの感光層からなり、第1面第2導電層33又は第1面第1導電層31に重なる開口部34aが形成された第1面第1有機層34を、基板12の第1面13側に形成することができる。この際、第1面第1有機層34の場合と同様にして、
図15に示すように、基板12の第2面14の一部分上及び第2面第1導電層41の一部分上に第2面第1有機層43を形成してもよい。
【0088】
第1面第1有機層34の開口部34aは、第1面第3導電層35と第1面第1導電層31とが接続される位置、第1面第3導電層35と第1面第2導電層33とが接続される位置などに形成される。
【0089】
なお、第1面第1有機層34や第2面第1有機層43の形成方法が、フィルムを用いる方法に限られることはない。例えば、まず、ポリイミドなどの有機材料を含む液を、スピンコート法などによって塗布し、乾燥させることによって有機層を形成する。続いて、有機層に露光処理及び現像処理を施すことにより、第1面第1有機層34や第2面第1有機層43を形成することもできる。
【0090】
また、第1面第1有機層34の一部や第2面第1有機層43の一部を貫通孔20の内部にまで到達させることにより、
図15に示すように、貫通孔20の内部に有機層26を形成してもよい。なお、第1面第1有機層34や第2面第1有機層43とは別の工程で貫通孔20の内部に有機層26を形成してもよい。
【0091】
その後、図示はしないが、第1面第1有機層34上に第1面第3導電層35を形成する。第1面第3導電層35は、第1面第1有機層34の開口部34aにも形成され、これにより、開口部34aを介して第1面第3導電層35を第1面第1導電層31又は第1面第2導電層33に接続することができる。また、第1面第1有機層34の一部分上及び第1面第3導電層35の一部分上に上述の第1面第2有機層36を形成する。このようにして、
図1に示すキャパシタ内蔵部品10を得ることができる。
【0092】
以下、本実施の形態によってもたらされる作用について説明する。
【0093】
本実施の形態においては、キャパシタ15の第1面第1導電層31の上面311が凹凸形状を有している。これにより、上面311が平坦である場合に比べて、第1面第2導電層33に対向する上面311の面積を増加させることができ、キャパシタ15の容量を増加させることができる。このことにより、小型で大容量のキャパシタ15を備えるキャパシタ内蔵部品10を提供することができる。また、キャパシタ15の第1面第1導電層31に対する第1面第1無機層32の密着性を高めることができる。これにより、第1面第1無機層32が第1面第1導電層31から剥離することを抑制し、キャパシタ15の信頼性を高めることができる。
【0094】
また、キャパシタ15の第1面第1導電層31の側面312も、上面311と同様に凹凸形状を有していている。このため、第1面第1導電層31に対する第1面第1無機層32の密着性をアンカー効果によって高めることができる。これにより、キャパシタ15の信頼性を更に高めることができる。
【0095】
なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述の実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述の実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
【0096】
(キャパシタの第1の変形例)
上述の実施の形態においては、
図5に示すように、基板12の第1面13の法線方向に沿ってキャパシタ15の第1面第2導電層33を見た場合、キャパシタ15の第1面第2導電層33の端部33eが、第1面第1導電層31の端部31eよりも内側に位置する例を示した。しかしながら、第1面第1導電層31と第1面第2導電層33との位置関係が、
図5に示す例に限られることはない。
【0097】
図16は、本変形例に係るキャパシタ内蔵部品10のキャパシタ15を示す平面図である。また、
図17は、キャパシタ15を
図16の線C−Cに沿って切断した場合の断面図である。なお、
図16及び
図17においては、第1面第1有機層34、第1面第3導電層35及び第1面第2有機層36が省略されている。
【0098】
本変形例においては、
図16に示すように、基板12の第1面13の法線方向に沿ってキャパシタ15の第1面第2導電層33を見た場合、第1面第2導電層33が、少なくとも部分的に、第1面第1導電層31の端部31eと重なっている。言い換えると、基板12の第1面13の法線方向に沿ってキャパシタ15の第1面第2導電層33を見た場合、第1面第2導電層33が第1面第1導電層31の側面312と重なっている。以下、このように第1面第2導電層33を構成することの利点について説明する。
【0099】
第1面第1無機層32の一部分上に第1面第2導電層33を形成する方法としては、以下のような方法が用いられ得る。まず、第1面第1無機層32上に広域にわたって第1面第2導電層33を設け、続いて、第1面第2導電層33上にレジスト層を設ける。その後、フォトリソグラフィー法によりレジスト層をパターニングして、第1面第2導電層33上に部分的にレジスト層を残す。続いて、第1面第2導電層33のうちレジスト層によって覆われていない部分をエッチングにより除去する。
【0100】
ところで、フォトリソグラフィー法の分解能には限界がある。このため、矩形状のレジスト層を形成しようとしても、角が理想的に尖った形状のレジスト層を得ることは困難である。この結果、
図16に示すように、レジスト層に対応した形状を有する第1面第2導電層33の隅部33fも湾曲した形状を有するようになる。隅部33fにおける湾曲の程度は、エッチング時間などに応じて変動する。このため第1面第2導電層33の隅部33fが第1面第1導電層31と重なっている場合、第1面第2導電層33のうち第1面第1導電層31と対向している部分の面積にばらつきが生じやすくなる。この結果、キャパシタ15の静電容量にもばらつきが生じやすくなる。
【0101】
これに対して、本変形例においては、第1面第2導電層33が、少なくとも部分的に、第1面第1導電層31の端部31eと重なっている。例えば、第1面第2導電層33が平面視において略矩形状を有する場合、第1面第2導電層33の端部33eのうち対向する一対の辺を構成する端部33eが、第1面第1導電層31の端部31eよりも外側に位置している。これにより、第1面第2導電層33の湾曲した隅部33fが第1面第1導電層31と重なることを抑制することができる。このことにより、第1面第2導電層33のうち第1面第1導電層31と対向している部分の面積がばらつくことを抑制して、キャパシタ15の静電容量のばらつきを抑制することができる。なお、「外側」とは、平面視においてキャパシタ15の中心から遠ざかる側を意味する。平面視における第1面第1導電層31の端部31eと第1面第2導電層33の端部33eとの間の距離dは、例えば20μm以上且つ500μm以下である。
【0102】
(キャパシタの第2の変形例)
図18は、本変形例に係るキャパシタ内蔵部品10のキャパシタ15を示す平面図である。また、
図19は、キャパシタ15を
図18の線D−Dに沿って切断した場合の断面図である。本変形例においては、キャパシタ15の誘電体である第1面第1無機層32に基板12とは反対側から対向する上側導電層が、第1面第3導電層35によって構成されている。なお、
図18及び
図19においては、第1面第2有機層36が省略されている。
【0103】
本変形例に係るキャパシタ15の製造方法について説明する。本変形例においては、第1面第1無機層32を形成した後、第1面第1有機層34を形成する工程を実施する。具体的には、キャパシタ15の第1面第1無機層32に重なる開口部34aを有する第1面第1有機層34を、少なくとも部分的に、キャパシタ15の第1面第1無機層32上に形成する。この際、第1面第1有機層34の開口部34aは、
図18及び
図19に示すように、第1面第1導電層31のよりも内側に形成される。
【0104】
その後、第1面第1有機層34上及び開口部34aに第1面第3導電層35を形成する。これにより、開口部34aの内部において第1面第1無機層32上に第1面第3導電層35を積層することができる。開口部34aの内部において第1面第1無機層32上に形成された第1面第3導電層35が、キャパシタ15の上側導電層として機能する。
【0105】
第1面第3導電層35が平面視において略矩形状を有する場合、第1面第3導電層35は、好ましくは、
図18に示すように、第1面第3導電層35の端部35eのうち対向する一対の辺を構成する端部35eが、開口部34aの内部ではなく第1面第1有機層34上に位置するよう、形成される。これにより、第1面第3導電層35の湾曲した隅部35fが第1面第1導電層31と重なることを抑制することができる。このことにより、第1面第3導電層35のうち第1面第1無機層32を介して第1面第1導電層31と対向している部分の面積がばらつくことを抑制して、キャパシタ15の静電容量のばらつきを抑制することができる。好ましくは、
図18に示すように、第1面第3導電層35の端部35eのうち対向する一対の辺を構成する端部35eが、第1面第1導電層31の端部31eよりも外側に位置している。
【0106】
(貫通孔の変形例)
上述の実施の形態においては、基板12の面方向における貫通孔20の幅が、基板12の第1面13及び第2面14から基板12の厚み方向における中央部分に向かうにつれて小さくなる例を示した。しかしながら、これに限られることはなく、
図20に示すように、貫通孔20の幅が、第1面13側から第2面14側に向かうにつれて小さくなっていてもよい。
【0107】
(平均表面粗さの変形例)
上述の実施の形態においては、第1面第1導電層31の上面311及び側面312の平均表面粗さとして、JIS B 0601:2001に規定される算術平均表面粗さを採用する例を示した。また、平均表面粗さの測定範囲の例として、一辺の長さが150μmの正方形の領域を示した。すなわち、測定の際に測定器によって走査される領域の寸法が150μmである例を示した。また、JIS B 0601:2001に基づいて150μmの領域を走査することによって算出される、第1面第1導電層31の上面311及び側面312の平均表面粗さが、好ましくは0.1μm以上且つ0.4μm以下である例を示した。しかしながら、平均表面粗さの測定方法及び好ましい範囲が、上述の例に限られることはない。以下、上述の方法とは異なる方法によって第1面第1導電層31の上面311及び側面312の平均表面粗さを測定する例について説明する。このような別個の測定方法は、上述の測定方法に替えて採用されてもよく、若しくは、上述の測定方法に加えて採用されてもよい。また、以下の説明において、表面粗さの測定の際に測定器によって走査される領域の寸法のことを、評価長さとも称する。
【0108】
まず、本変形例において想定している、第1面第1導電層31の上面311及び側面312の状態について説明する。
図21は、第1面第1導電層31の上面311の一例を拡大して示す断面図である。
図21に示すように、第1面第1導電層31の上面311には、第1周期P1を有する凹凸形状と、第1周期P1よりも小さい第2周期を有する凹凸形状とが存在する。第1周期P1は、例えば、第1面第1導電層31を構成する層のうちめっき法によって形成されためっき層の厚みのばらつきに起因する凹凸形状の周期である。第1周期P1は、例えば0.4μm以上且つ1.0μm以下である。第2周期P2は、例えば、第1面第1導電層31の表面がエッチング液に晒されて削られることによって形成される凹凸形状の周期である。第2周期P2は、例えば0.05μm以上且つ0.4μm以下である。
【0109】
本件発明者が研究を重ねたところ、第1周期P1の凹凸形状に起因する平均表面粗さよりも、第2周期P2の凹凸形状に起因する平均表面粗さの方が、第1面第1導電層31に対する第1面第1無機層32の密着性及びキャパシタ15の容量との相関が高いことを見出した。また、第2周期P2の凹凸形状に起因する平均表面粗さを測定するためには、評価長さを、上述の本実施の形態の場合の150μmよりも小さくすることが好ましいことを見出した。これらの知見に基づき、本変形例においては、平均表面粗さとして、JIS R 1683:2007に規定される算術平均表面粗さを採用し、且つ、評価長さを2.5μmとすることを提案する。これにより、第1面第1導電層31に対する第1面第1無機層32の密着性及びキャパシタ15の容量とのより高い相関を有する平均表面粗さを算出することができる。
【0110】
JIS R 1683:2007に基づいて、評価長さ2.5μmで測定を行う場合に算出される、第1面第1導電層31の上面311及び側面312の平均表面粗さは、好ましくは0.22μm以下であり、より好ましくは0.2μm以下である。これにより、第1面第1導電層31に対する第1面第1無機層32の密着性を高めることができる。また、キャパシタ15の容量を増加させることができる。また、JIS R 1683:2007に基づいて、評価長さ2.5μmで測定を行う場合に算出される、第1面第1導電層31の上面311及び側面312の平均表面粗さは、好ましくは0.075μm以上であり、より好ましくは0.80μm以上である。
【0111】
JIS R 1683:2007に規定される算術平均表面粗さを算出するための測定器としては、原子間力顕微鏡を用いることができる。例えば、株式会社日立ハイテクノロジーズ製のAFM5000に搭載された、JISR1683に準拠した粗さ計測機能を用いることができる。
【0112】
第1面第1導電層31の上面311及び側面312の平均表面粗さとして、複数の、例えば10個の第1面第1導電層31の上面311及び側面312の算術平均表面粗さを上述の測定器を用いて測定し、それらの平均値を採用してもよい。
【0113】
実装基板
図22は、キャパシタ内蔵部品10と、キャパシタ内蔵部品10に搭載された素子50と、を備える実装基板60の一例を示す断面図である。素子50は、ロジックICやメモリICなどのLSIチップである。また、素子50は、MEMS(Micro Electro Mechanical Systems)チップであってもよい。MEMSチップとは、機械要素部品、センサ、アクチュエータ、電子回路などが1つの基板上に集積化された電子デバイスである。
図22に示すように、素子50は、キャパシタ内蔵部品10の第1面第3導電層35などの導電層に電気的に接続された端子51を有する。
【0114】
通電極基板が搭載される製品の例
図23は、本開示の実施形態に係るキャパシタ内蔵部品10が搭載されることができる製品の例を示す図である。本開示の実施形態に係るキャパシタ内蔵部品10は、様々な製品において利用され得る。例えば、ノート型パーソナルコンピュータ110、タブレット端末120、携帯電話130、スマートフォン140、デジタルビデオカメラ150、デジタルカメラ160、デジタル時計170、サーバ180等に搭載される。
【実施例】
【0115】
次に、本開示の形態を実施例により更に具体的に説明するが、本開示の形態はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
【0116】
(第1の測定)
上述の基板12側から順に積層された第1面第1導電層31、第1面第1無機層32及び第1面第2導電層33を有するキャパシタ15を備えるサンプル1〜15をそれぞれ作製した。第1面第1導電層31としては、シード層として機能する第1層221と、電解めっき法によって第1層221上に形成される銅の第2層222と、を含むものを用いた。第1面第1無機層32としては、プラズマCVDによって形成された窒化珪素(SiN)の層を用いた。また、第1面第1導電層31上に第1面第1無機層32を形成する前に、第1面第1導電層31の平均表面粗さを測定した。平均表面粗さの測定は、一辺の長さL1が150μmの正方形の領域内で、JIS B 0601:2001に準拠して行った。第1面第1導電層31の平均表面粗さには、不要な第1層221をエッチングによって除去する際に荒らされた第1層221の表面の粗さが反映されている。各サンプルにおける第1面第1無機層32の厚み、及び第1面第1導電層31の平均表面粗さの測定結果を
図24に示す。
【0117】
続いて、各サンプルのキャパシタ15の漏れ電流を測定した。測定結果を
図24に併せて示す。
【0118】
また、第1面第1導電層31に対する第1面第1無機層32の密着性を、碁盤目剥離試験に基づいて評価した。評価結果を
図24に併せて示す。
【0119】
図24に示すように、サンプル5、10及び15においては、漏れ電流が1×10
−8Aを超えており、従って判定を「bad」とした。サンプル5、10及び15においては、第1面第1導電層31の平均表面粗さが0.4μmを超えており、このため漏れ電流が大きくなったと考えられる。
【0120】
図24に示すように、サンプル4、9及び14においては、第1面第1導電層31からの第1面第1無機層32の剥離が生じており、従って判定を「bad」とした。サンプル4、9及び14においては、第1面第1導電層31の平均表面粗さが0.1μmを下回っており、このため第1面第1導電層31に対する第1面第1無機層32の密着性が低かったと考えられる。
【0121】
図24に示すように、サンプル1〜3、6〜8及び11〜13においては、漏れ電流が1×10
−8A以下であり、且つ第1面第1導電層31からの第1面第1無機層32の剥離が生じなかった。従って、判定を「good」とした。サンプル1〜3、6〜8及び11〜13においては、第1面第1導電層31の平均表面粗さが0.1μm以上且つ0.4μm以下であることにより、漏れ電流を抑制しながら密着性を高めることができたと考えられる。
【0122】
(第2の測定)
平均表面粗さの測定を、JIS R 1683:2007に準拠して2.5μmの評価長さで行ったこと以外は、上述の第1の測定の場合と同様にして、各サンプルの第1面第1導電層31の平均表面粗さを測定した。また、上述の第1の測定の場合と同様にして、各サンプルの漏れ電流及び密着性を評価した。結果を
図24に併せて示す。
【0123】
図24に示すように、漏れ電流が1×10
−8Aを超えたサンプル5、10及び15においては、評価長さを2.5μmとした場合に算出された第1面第1導電層31の平均表面粗さが0.24μmを超えていた。一方、評価長さを2.5μmとした場合に算出された第1面第1導電層31の平均表面粗さが0.22μm以下の場合には、漏れ電流が1×10
−8A以下であり、より具体的には1×10
−9A以下であった。
【0124】
図24に示すように、第1面第1導電層31からの第1面第1無機層32の剥離が生じたサンプル4、9及び14においては、評価長さを2.5μmとした場合に算出された第1面第1導電層31の平均表面粗さが0.70μ以下であった。一方、評価長さを2.5μmとした場合に算出された第1面第1導電層31の平均表面粗さが0.75μm以上の場合には、第1面第1導電層31からの第1面第1無機層32の剥離が生じなかった。