(58)【調査した分野】(Int.Cl.,DB名)
リアクトル(13)と、駆動スイッチ(Q1〜Q12)とを有し、入力端子(IN1,IN2)を通じて供給される直流電力を交流電力に変換し、変換した交流電力を出力端子(OUT1,OUT2)に接続された交流電源(200)に供給するDC・AC変換器(10)に適用される制御装置(30)であって、
前記リアクトルに流れるリアクトル電流を取得する電流取得部と、
前記交流電源の電源電圧に基づいて生成される正弦波状の指令値に、電流補正値を重畳する補正部と、
前記リアクトル電流を前記指令値に制御すべく、ピーク電流モード制御により前記駆動スイッチを操作する制御部と、を備え、
前記補正部は、前記電源電圧の周波数成分に対する高調波成分であって、前記電源電圧がゼロとなるゼロクロス点において極小値となる高調波成分を含む前記電流補正値を設定するDC・AC変換器の制御装置。
前記補正部は、前記電源電圧のゼロクロス点から次のゼロクロス点までの間に極大値を持つように前記高調波成分を設定する請求項1に記載のDC・AC変換器の制御装置。
前記補正部は、前記高調波成分が所定の上限値よりも小さい場合には、前記高調波成分を前記電流補正値に設定し、前記高調波成分が前記上限値以上の場合には、前記上限値を前記電流補正値に設定する請求項1又は2に記載のDC・AC変換器の制御装置。
前記補正部は、前記指令値の振幅に基づいて補正係数を設定し、設定した前記補正係数を前記高調波成分に乗算することで、前記高調波成分を変更する請求項1〜4のいずれか一項に記載のDC・AC変換器の制御装置。
【発明を実施するための形態】
【0010】
以下、各実施形態を図面に基づいて説明する。
【0011】
<第1実施形態>
本実施形態に係るDC・AC変換器を備える電力変換装置について説明する。電力変換装置は、交流電源に接続されており、入力端子を通じて供給される直流電力を交流電力へ変換して交流電源に供給する。
【0012】
図1は、本実施形態に係る電力変換装置100の回路図である。電力変換装置100は、DC・AC変換器10と、制御装置30とを備えている。DC・AC変換器10の第1入力端子IN1と第2入力端子IN2とには、不図示の直流電源が接続されており、第1出力端子OUT1と第2出力端子OUT2とには、交流電源200が接続されている。交流電源200は、例えば、商用電源であり、直流電源は、バッテリである。
【0013】
DC・AC変換器10は、コンデンサ16と、ハーフブリッジ回路15と、リアクトル13と、フルブリッジ回路12と、第1〜第6配線LP1〜LP6とを備えている。
【0014】
DC・AC変換器10を構成する配線のうち、第1入力端子IN1に接続されている配線を第1配線LP1と称し、第2入力端子IN2に接続されている配線を第2配線LP2と称する。DC・AC変換器10において、ハーフブリッジ回路15とフルブリッジ回路12とを接続する配線のうち、高圧側の電圧が印加される配線を第3配線LP3と称し、低圧側の電圧が印加される配線を第4配線LP4と称する。DC・AC変換器10を構成する配線のうち、第1出力端子OUT1に接続されている配線を第5配線LP5と称し、第2出力端子OUT2に接続されている配線を第6配線LP6と称する。
【0015】
第1配線LP1には、コンデンサ16の第1端が接続され、第2配線LP2には、コンデンサ16の第2端が接続されている。
【0016】
ハーフブリッジ回路15は、第1スイッチQ1と、第2スイッチQ2とを備えている。第1,第2スイッチQ1,Q2は、電圧駆動型のスイッチであり、本実施形態では、NチャネルMOSFETである。第1スイッチQ1のソースと、第2スイッチQ2のドレインとが接続されている。第1スイッチQ1のドレインが第1配線LP1に接続され、第2スイッチQ2のソースが第2配線LP2に接続されている。第1,第2スイッチQ1,Q2それぞれは、逆並列接続された寄生ダイオードを備えている。本実施形態では、第1スイッチQ1が駆動スイッチに相当する。
【0017】
第1,第2スイッチQ1,Q2の第1接続点K1は、第3配線LP3の第1端に接続されている。第3配線LP3の一部には、リアクトル13が設けられている。また、ハーフブリッジ回路15を構成する第2スイッチQ2のソースは、第4配線LP4の第1端に接続されている。第3,4配線LP3,LP4それぞれの第2端は、フルブリッジ回路12に接続されている。
【0018】
フルブリッジ回路12は、第3〜第6スイッチQ3〜Q6を備えている。第3〜第6スイッチQ3〜Q6は、電圧駆動型のスイッチであり、本実施形態では、NチャネルMOSFETである。第3スイッチQ3のソースと、第4スイッチQ4のドレインとが接続されている。第5スイッチQ5のソースと、第6スイッチQ6のドレインとが接続されている。第3,第5スイッチQ3,Q5のドレインが第3配線LP3に接続され、第4,第6スイッチQ4,Q6のソースが第4配線LP4に接続されている。
【0019】
第3スイッチQ3と第4スイッチQ4との第2接続点K2は、第6配線LP6の第1端に接続されており、第6配線LP6の第2端は第2出力端子OUT2に接続されている。第5スイッチQ5と第6スイッチQ6との第3接続点K3は、第5配線LP5の第1端に接続されており、第5配線LP5の第2端は第1出力端子OUT1に接続されている。
【0020】
電力変換装置100は、第1電圧センサ31と、電流センサ32と、第2電圧センサ33とを備えている。本実施形態では、第1電圧センサ31が電圧検出部に相当する。
【0021】
第1電圧センサ31は、第1,第2配線LP1,LP2において、コンデンサ16の両接続点よりも、第1,第2入力端子IN1,IN2側で、第1,第2配線LP1,LP2を接続している。これにより、第1,第2入力端子IN1,IN2を通じて入力される直流電圧を入力電圧Vdcとして検出する。
【0022】
電流センサ32は、第4配線LP4に設けられている。これにより、リアクトル13に流れる電流をリアクトル電流ILrとして検出する。
【0023】
第2電圧センサ33は、第1,第2出力端子OUT1,OUT2と、フルブリッジ回路12との間で、当該第5,第6配線LP5,LP6を接続している。これにより、交流電源200の電圧を電源電圧Vacとして検出する。
【0024】
制御装置30は、DC・AC変換器10が備える第1〜第6スイッチQ1〜Q6の開閉状態を制御する。なお、制御装置30が提供する各機能は、例えば、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ハードウェア、又はそれらの組み合わせによって提供することができる。
【0025】
図2は、制御装置30の機能を説明する機能ブロック図である。制御装置30は、周知のピーク電流モード制御により、第1,第2スイッチQ1,Q2を開状態又は閉状態に操作する。制御装置30は、波形生成部34、乗算器35、絶対値算出部36、加算器37、電流補正部40、電流制御部50、及び極性切替部55を備えている。
【0026】
波形生成部34は、交流電源200の変化を示す基準波形|sinωt|を生成する。基準波形は、交流電源200の半周期(T/2)における電圧変化を示す値である。例えば、波形生成部34は、第2電圧センサ33により検出された電源電圧Vacが0となる点を、ゼロクロス点として検出し、電源電圧Vacが、ゼロクロス点から次のゼロクロス点まで変化する期間を、交流電源200の半周期(T/2)として設定する。そして、波形生成部34は、周期Tから交流電源200の角速度ω(=2π×(1/T))を算出する。波形生成部34は、振幅が1の正弦波信号の角速度を、算出した角速度に設定することで、電源電圧Vacと同位相となる基準波形|sinωt|を算出する。
【0027】
乗算器35は、リアクトル電流ILrの振幅指令値Ia*と波形生成部34により生成された基準波形|sinωt|とを乗算する。振幅指令値Ia*は、リアクトル電流ILrの振幅を定める指令値であり、例えば、出力電圧の指令値に基づいて定められる。絶対値算出部36は、乗算器35からの出力値の絶対値を、補正前指令電流IL*として設定する。本実施形態では、補正前指令電流IL*がリアクトル電流の指令値に相当する。
【0028】
電流補正部40は、補正前指令電流IL*を補正する電流補正値Icを設定する。電流補正値Icは、出力電流Iacの歪みを抑制するための補正値である。本実施形態では、電流補正部40は、電源電圧Vac及び補正前指令電流IL*に基づいて電流補正値Icを設定する。加算器37は、補正前指令電流IL*の絶対値に電流補正値Icを加算し、加算後の値を補正後指令電流ILa*として設定する。
【0029】
電流制御部50は、電流センサ32により検出されたリアクトル電流ILrと、補正後指令電流ILa*とに基づいて、第1スイッチQ1を操作する第1ゲート信号GS1と、第2スイッチQ2を操作する第2ゲート信号GS2とを生成する。本実施形態では、電流制御部50は、周知のピーク電流モード制御により、第1,第2ゲート信号GS1,GS2を生成する。
【0030】
電流制御部50は、DA変換器351と、コンパレータ352と、加算器353と、RSフリップフロップ357とを備えている。補正後指令電流ILa*は、DA変換器351に入力される。DA変換器351は、入力された補正後指令電流ILa*をデジタル値からアナログ値に変換する。アナログ値に変換された補正後指令電流ILa*は、コンパレータ352の反転入力端子に入力される。加算器353は、リアクトル電流ILrとスロープ補償信号Slopeとを加算し、補償後リアクトル電流ILcrとして出力する。加算器353からの出力は、コンパレータ352の非反転入力端子に入力される。なお、スロープ補償信号Slopeは、リアクトル13に流れる電流の変動に伴う発振を抑制するものである。
【0031】
コンパレータ352は、補正後指令電流ILa*と補償後リアクトル電流ILcrとを比較し、補償後リアクトル電流ILcrが補正後指令電流ILa*より小さい期間において、ロー状態の信号をRSフリップフロップ357のR端子に入力する。また、コンパレータ352は、補償後リアクトル電流ILcrが補正後指令電流ILa*より大きい期間において、ハイ状態の信号をRSフリップフロップ357のR端子に入力する。更に、RSフリップフロップ357のS端子には、クロック信号が入力される。
【0032】
RSフリップフロップ357のQ端子は、第1スイッチQ1のゲートに接続されている。Q端子から第1スイッチQ1のゲートに出力される信号が、第1ゲート信号GS1となる。また、RSフリップフロップ357の出力端子は、反転器358を介して第2スイッチQ2のゲートに接続されている。Q端子から反転器358を介して第2スイッチQ2のゲートに出力される信号が、第2ゲート信号GS2となる。第2ゲート信号GS2は、第1ゲート信号GS1を反転させた値となる。
【0033】
極性切替部55は、電源電圧Vacの極性に応じて、出力信号を反転させる。極性切替部55は、電源電圧Vacの極性を正の極性と判定した場合に、出力端子からの出力信号をロー状態とする。一方、極性切替部55は、電源電圧Vacの極性を負の極性と判定した場合に、出力端子からの出力信号をハイ状態とする。
【0034】
極性切替部55の出力端子は、第3,第6スイッチQ3,Q6の各ゲートに接続されている。極性切替部55の出力端子から第3,第6スイッチQ3,Q6の各ゲートに出力される信号が、第3,第6ゲート信号GS3,GS6となる。また、極性切替部55の出力端子は、反転器359を介して、第4,第5スイッチQ4,Q5の各ゲートに接続されている。極性切替部55の出力端子から反転器359を介して第4,第5スイッチQ4,Q5の各ゲートに出力される信号が、第4,第5ゲート信号GS4,GS5となる。第4,第5ゲート信号GS4,GS5は、第3,第6ゲート信号GS3,GS6を反転させた値となる。
【0035】
次に、DC・AC変換器10の動作を説明する。
図3は、DC・AC変換器10のタイミングチャートである。
図3(a)は、電源電圧Vac及び入力電圧Vdcの推移を示している。
図3(b)は、第4,第5ゲート信号GS4,GS5の推移を示し、
図3(c)は、第3,第6ゲート信号GS3,GS6の推移を示す。
図3(d)は、第1ゲート信号GS1の推移を示し、
図3(e)は、第2ゲート信号GS2の推移を示す。
図3(f)は、補正後指令電流ILa*の推移を示し、
図3(g)は、リアクトル電流ILrの推移を示す。
【0036】
電源電圧Vacが正となる第1期間P1では、第4,第5ゲート信号GS4,GS5がハイ状態となることで、第4,第5スイッチQ4,Q5が閉状態となる。また、第3,第6ゲート信号GS3,GS6がロー状態となることで、第3,第6スイッチQ3,Q6が開状態となる。この第1期間P1において、第1ゲート信号GS1がハイ状態となり、第2ゲート信号GS2がロー状態となることで、リアクトル13、第1スイッチQ1、第4スイッチQ4及び第5スイッチQ5を含む閉回路が形成される。この閉回路内において、第1出力端子OUT1から第2出力端子OUT2の向きに出力電流Iacが流れる。このとき、リアクトル13には、ハーフブリッジ回路15側から印加される電圧と電源電圧Vacとの電圧差に応じたリアクトル電流ILrが流れる。ハーフブリッジ回路15側からリアクトル13に印加される電圧は、第1スイッチQ1のオン期間Tonを1スイッチング周期Tswで割った時比率(Ton/Tsw)に、入力電圧Vdcを乗算した値となる。
【0037】
電源電圧Vacが負となる第2期間P2では、第4,第5ゲート信号GS4,GS5がロー状態となることで、第4,第5スイッチQ4,Q5が開状態となる。また、第3,第6ゲート信号GS3,GS6がハイ状態となることで、第3,第6スイッチQ3,Q6が閉状態となる。この第2期間P2において、第1スイッチQ1が閉状態となり、第2スイッチQ2が開状態となることで、リアクトル13、第1スイッチQ1、第3スイッチQ3及び第6スイッチQ6を含む閉回路が形成される。この閉回路内において、第2出力端子OUT2から第1出力端子OUT1の向きに出力電流Iacが流れる。
【0038】
制御装置30は、電源電圧Vacの基準波形(=|sinωt|)に振幅指令値Ia*を乗算した値を補正前指令電流IL*として設定している。
図3(f)に示すように、補正前指令電流IL*は、正弦波の正の半波が周期T/2で繰り返される形状となっている。そのため、補正前指令電流IL*は、電源電圧Vacのピーク点からゼロクロス点に推移するに従い電流が減少するように正弦波状に変化する。また、
図3(g)に示すように、リアクトル電流ILrの平均値Iaveは、補正前指令電流IL*と同様、ゼロクロス点において極小値を取るように正弦波状に推移する。そのため、補正前指令電流IL*から、リアクトル電流の平均値Iaveまでの差を示す乖離幅は、ゼロクロス点付近において、最も小さな値となる。
【0039】
電流補正値Icを乖離幅に応じた値に設定できないと、ピーク電流モード制御において、補正後指令電流ILa*により第1スイッチQ1のオン期間が適正値よりも増加又は減少し、ゼロクロス点付近での電流歪みを大きくするおそれがある。そこで、本実施形態では、制御装置30は、電流補正部40により設定する電流補正値Icを、電源電圧Vacのゼロクロス点において極小値を取るように設定している。
【0040】
次に、本実施形態に係る電流補正部40の構成について説明する。
図4は、電流補正部40の構成を説明する図である。電流補正部40は、実効値算出部41と、上限値設定部42と、高調波成分生成部43と、最小値選択部44と、を備えている。
【0041】
実効値算出部41は、電源電圧Vacに基づいて、交流電源200の実効値Vrmsを算出する。
【0042】
上限値設定部42は、実効値Vrmsと、振幅指令値Ia*とに基づいて上限値Idc設定する。振幅指令値Ia*が大きいほど、リアクトル電流ILrの増加分が大きくなるため、上限値設定部42は、振幅指令値Ia*が大きいほど、上限値Idcを大きな値に設定する。また、実効値Vrmsが大きいほど、第6スイッチQ6の時比率Dが大きくなり、後述の乖離幅が増加するため、上限値Idcを大きな値に設定する。
【0043】
本実施形態では、上限値設定部42は、実効値Vrms毎に、振幅指令値Ia*と、上限値Idcとの関係を示す直流成分マップを備えている。例えば、各実効値Vrmsは、各国の商用電源の実効値Vrmsに対応している。そのため、上限値設定部42は、実効値Vrms毎の直流成分マップを参照することで、振幅指令値Ia*に応じた上限値Idcを設定することができる。
【0044】
高調波成分生成部43は、実効値Vrmsに基づいて、高調波成分Ihを設定する。本実施形態では、高調波成分生成部43により設定される高調波成分Ihは、電源電圧Vacのゼロクロス点又はその付近において極小値を取り、ピーク値において極大値を取る。具体的には、高調波成分Ihは、時間の推移とともに、その値が変化する。また、本実施形態では、高調波成分Ihは、ゼロクロス点において0に定められているが、これに限定されず、ゼロクロス点において0より大きい値に定められていても良い。
【0045】
高調波成分生成部43は、実効値Vrms毎に、高調波成分Ihを記録した高調波成分マップを備えている。各高調波マップは、交流電源200の実効値Vrmsが大きいほど、高調波成分Ihが大きな値となるようにその値が定められている。
【0046】
最小値選択部44は、上限値設定部42により設定された上限値Idcと、高調波成分生成部43により設定された高調波成分Ihとのうち、小さい方の値を電流補正値Icに設定する。そのため、高調波成分Ihが上限値Idcより小さい値であれば、高調波成分Ihが電流補正値Icとして設定され、高調波成分Ihが上限値Idc以上の値であれば、上限値Idcが電流補正値Icとして設定される。
【0047】
次に、電流補正部40により設定される電流補正値Icについて説明する。
【0048】
本実施形態では、
図5に示すように、t0からt1及びt2からT/2の期間において、高調波成分Ihが、上限値Idcより小さな値となる場合の電流補正値Icを示している。なお、t1はt0よりも大きく、T/2よりも小さい値であり、t2は、t1よりも大きく、T/2よりも小さい値である。電流補正値Icは、t0からt1まで、及び、t2からT/2までの期間において高調波成分Ihを含んでいるため、ゼロクロス点(t0,T/2)において、極小値となっている。また、電流補正値Icは、t1からt2までの期間において上限値Idcを含んでいる。
【0049】
図6は、
図5に示す電流補正値Icにより、補正前指令電流IL*を補正した場合における補正後指令電流ILa*の推移を示す。
図6では、補正前指令電流IL*を破線で示している。
図6で示す補正後指令電流ILa*は、t0からt1まで、及び、t2からt/2までは、補正前指令電流IL*に高調波成分Ihを加算した値となる。一方、t1からt2までは、補正前指令電流IL*に上限値Idcを加算した値となる。
【0050】
次に、高調波成分マップの作成方法について
図7を用いて説明する。
【0051】
図7は、乖離幅Δiを説明する図である。本実施形態では、乖離幅Δiを、補正前指令電流IL*からリアクトル電流ILrの平均値Iaveを引いた値としている。
【0052】
また、
図7より、乖離幅Δiは、オン期間(=D×Tsw)でのスロープ補償信号Slopeの最大増加分Δslopeに、リアクトル電流ILrの最大増加分ΔILの半分の値(ΔIL/2)を加えたものとみなすことができる。そのため、乖離幅Δiは、下記数式(1)により算出される。
【0053】
Δi=IL*−Iave=Δslope+ΔIL/2 … (1)
また、リアクトル電流ILrの最大増加分ΔILは、リアクトル13の両端に生じる電圧と、リアクトル13のインダクタンスLとを用いて、下記式(2)により算出することができる。
【0054】
ΔIL=(Vdc−|Vac|)/L×D×Tsw … (2)
ここで、Dは、第1スイッチQ1のオン期間の時比率である。
【0055】
また、スロープ補償信号Slopeの最大増加分Δslopeは、下記式(3)により算出することができる。
【0056】
Δslope = m×D×Tsw … (3)
なお、m(A/s)は、スロープ補償信号Slopeの増加速度である。
【0057】
オン期間の時比率Dは、電源電圧Vacの最大値を用いて、下記式(4)により算出することができる。
【0058】
【数1】
そして、上記式(1)〜(4)により乖離幅Δiは下記式(5)として算出される。
【0059】
【数2】
上記式(6)は、m,Vdc,ω、Tsw,Lを定数とすることで、1スイッチング周期Tswにおける時間tと、実効値Vrmsとを変数とする乖離幅Δiの高次関数となる。また、式(6)において、ゼロクロス点(sinωt=0)では、Δiが最小値(=0)となり、ピーク点(sinωt=1)では、Δiが最大値となる。
【0060】
本実施形態では、上記式(5)で示される乖離幅Δiを用いて、1スイッチング周期Tsw内の高調波成分Ihを算出する。例えば、乖離幅Δiに算出係数αを乗算した値を、高調波成分Ihとして用いることができる。なお、算出係数αは、0より大きく、1以下の値とすることができる。そして、算出した各高調波成分Ihを、実効値Vrms毎に記録することで、高調波マップを作成することができる。
【0061】
次に、本実施形態に係るDC・AC変換器10の制御を、
図8を用いて説明する。
図8に示す処理は、制御装置30により所定周期で繰り返し実施される。
【0062】
ステップS10では、リアクトル電流ILrを取得する。ステップS10が電流取得部に相当する。ステップS11では、振幅指令値Ia*に電源電圧Vacの基準波形(|sinωt|)を乗算することで補正前指令電流IL*を算出する。ステップS12では、電源電圧Vacに基づいて、交流電源200の実効値Vrmsを算出する。ステップS12が、実効値算出部に相当する。
【0063】
ステップS13では、振幅指令値Ia*に基づいて、上限値Idcを設定する。
【0064】
ステップS14では、ステップS12で算出した実効値Vrmsに基づいて、高調波成分Ihを設定する。具体的には、ステップS12で算出した実効値Vrmsに対応する高調波マップを参照し、参照した高調波マップから、電源電圧Vacの1周期Tのうち現在の時間tに対応する高調波成分Ihを設定する。
【0065】
ステップS15では、ステップS13で設定した上限値Idcと、ステップS14で設定した高調波成分Ihとの大小を比較する。高調波成分Ihが上限値Idcよりも小さいと判定すると、ステップS16に進み、高調波成分Ihを電流補正値Icに設定する。一方、高調波成分Ihが上限値Idc以上であると判定すると、ステップS17に進み、上限値Idcを電流補正値Icに設定する。
【0066】
ステップS18では、ステップS16又はステップS17で設定した電流補正値Icにより補正前指令電流IL*を補正することで、補正後指令電流ILa*を設定する。
【0067】
ステップS19では、ステップS18で設定した補正後指令電流ILa*を用いて、ピーク電流モード制御を実施する。ステップS19で実施されるピーク電流モード制御により、出力電流Iacの歪みを解消するように第1,第2ゲート信号GS1,GS2が設定される。
【0068】
ステップS20では、第3〜第6ゲート信号GS3〜GS6を設定する。ステップS20の処理が終了すると、
図8の処理を一旦終了する。
【0069】
次に、本実施形態の作用効果を説明する。
【0070】
図9は、本実施形態に係る電流補正値Icを用いて補正前指令電流IL*を補正した場合の出力電流Iacの推移を示す図である。
図10は、比較例としての補正前指令電流IL*を補正しない場合の出力電流Iacの推移を示す図である。
【0071】
図10では,電源電圧Vacがゼロとなるゼロクロス点付近において、出力電流Iacの歪みが生じている。例えば、補正前指令電流IL*を補正しない場合の出力電流Iacの総合歪率THDは9.8%であった。これに対して、補正前指令電流IL*を電流補正値Icで補正することで、
図9に示すように、ゼロクロス点付近での出力電流Iacの歪みが低減されている。例えば、補正前指令電流IL*を電流補正値Icで補正した場合の出力電流Iacの総合歪率THDは、0.96%であった。
【0072】
以上説明した本実施形態では、以下の効果を奏する。
【0073】
・制御装置30は、電源電圧Vacの周波数成分に対する高調波成分であって、ゼロクロス点において極小値となる高調波成分Ihを含む電流補正値Icを設定する。そして、設定した電流補正値Icを、補正前指令電流IL*に加算する補正を行うこととした。この場合、DC・AC変換器10において、乖離幅Δiが最も小さな値となるゼロクロス点付近での補正後指令電流ILa*が乖離幅Δiに応じた値に設定され、出力電流Iacの歪みが低減される。また、出力電流Iacの歪みが低減されることで、DC・AC変換器10の出力電力における力率の低下を抑制することができる。
【0074】
・制御装置30は、電源電圧Vacのゼロクロス点から次のゼロクロス点までの間に極大値を持つように高調波成分Ihを設定する。この場合、補正後指令電流ILa*の推移に応じて変化する電流補正値Icを設定することができ、乖離幅Δiのばらつきを抑制することができる。その結果、出力電流Iacの電流歪みをいっそう抑制することができる。
【0075】
・制御装置30は、高調波成分Ihが上限値Idcよりも小さい場合には、高調波成分Ihを電流補正値Icに設定し、高調波成分Ihが上限値Idc以上の場合には、上限値Idcを電流補正値Icに設定する。この場合、電流補正値Icが不要に大きくなることで、出力電流Iacが過剰に流れ、かえって出力電流Iacの歪みが大きくなるのを防止することができる。
【0076】
・制御装置30は、振幅指令値Ia*に基づいて、上限値Idcを設定することとした。この場合、リアクトル13に過剰な電流が流れるのを防止することができる。
【0077】
・制御装置30は、交流電源200の実効値Vrmsを算出し、算出した交流電源200の実効値Vrmsに基づいて、電流補正値Icを変更することとした。この場合、電力変換装置100が使用される地域毎に実効値Vrmsが異なる場合でも、電力変換装置100をそのまま各地域で使用することができる。
【0078】
<第1実施形態の変形例>
・リアクトル電流ILrを検出する電流センサ32を、第1スイッチQ1と第2スイッチQ2との第1接続点K1よりも第1スイッチQ1のソース側に設けても良い。この場合、制御装置30は、第1スイッチQ1に流れる電流をリアクトル電流ILrとして取得する。
【0079】
・第2スイッチQ2は、同期整流を行うことに代えて、常時、開状態に操作されていてもよい。この場合、第2ゲート信号GS2を常に、ロー状態に設定しておけばよい。
【0080】
<第2実施形態>
第2実施形態では、第1実施形態と異なる構成を主に説明する。なお、第1実施形態と同一の符号を付した構成は同一の構成を示し、その説明は繰り返さない。
【0081】
例えば、電源電圧Vacの振幅が小さい値となる場合、リアクトル13に流れるリアクトル電流ILrが断続的となる不連続モードとなる場合がある。不連続モードでは、連続モードと比べて振幅指令値Ia*が小さい値となる。振幅指令値Ia*が小さい値である場合に、電流補正部40により設定される電流補正値Icが不要に大きな値であると、不要に大きな値の出力電流Iacが交流電源200に流れるおそれがある。そこで、本実施形態では、第1実施形態と異なり、電流補正部40は、振幅指令値Ia*に基づいて、電流補正値Icを変更している。
【0082】
図11は、第2実施形態に係る電流補正部40を説明する図である。本実施形態に係る電流補正部40は、実効値算出部41と、高調波成分生成部43と、係数設定部45と、乗算器46と、を備えている。
【0083】
係数設定部45は、振幅指令値Ia*に基づいて、高調波成分Ihに乗算する補正係数βを設定する。本実施形態では、補正係数βを、0より大きく、1以下の値に定めている。係数設定部45は、振幅指令値Ia*が閾値TH1より小さい場合、振幅指令値Ia*が大きいほど補正係数βを大きな値に設定し、閾値TH1以上の場合、補正係数βを1に設定する。
【0084】
乗算器46は、高調波成分生成部43により設定された高調波成分Ihに、係数設定部45により設定された補正係数βを乗算した値を電流補正値Icに設定する。そのため、閾値TH1よりも小さい範囲において、振幅指令値Ia*が大きな値であるほど電流補正値Icが大きな値に設定され、振幅指令値Ia*が小さな値であるほど電流補正値Icが小さな値に設定される。
【0085】
次に、第2実施形態に係るDC・AC変換器10の制御を、
図12を用いて説明する。
図12に示す処理は、制御装置30により所定周期で繰り返し実施される。
【0086】
ステップS14において、電源電圧Vacの実効値Vrmsに基づいて、高調波成分Ihを設定すると、ステップS31に進む。ステップS31では、振幅指令値Ia*に基づいて、補正係数βを設定する。
【0087】
ステップS32では、高調波成分Ihに補正係数βを乗算した値を電流補正値Icに設定する。続くステップS18では、ステップS32で設定した電流補正値Icを用いて補正前指令電流IL*を補正する。
【0088】
以上説明した本実施形態では、以下の効果を奏する。
【0089】
制御装置30は、振幅指令値Ia*に基づいて補正係数βを設定し、設定した補正係数βを高調波成分Ihに乗算することで、高調波成分Ihを変更することとした。この場合、振幅指令値Ia*が小さい領域では、振幅指令値Ia*の値に応じて電流補正値Icを連続的に変更することができる。その結果、交流電源200に流れる出力電流Iacが不要に大きな値となることを抑制することができる。
【0090】
<第3実施形態>
第3実施形態では、第1実施形態と異なる構成を主に説明する。なお、第1実施形態と同一の符号を付した構成は同一の構成を示し、その説明は繰り返さない。
【0091】
例えば、DC・AC変換器10の第1,第2入力端子IN1,IN2に、電圧の出力値を変更する機能を備えた直流電源が接続されている場合、入力電圧Vdcの値が変化する場合がある。例えば、入力電圧Vdcが低下する場合、リアクトル13に印加される電圧の変化に応じて、リアクトル電流ILrが変化する。その結果、リアクトル電流ILrの平均値Iaveと補正前指令電流IL*との差である乖離幅Δiが変化する場合ある。そこで、本実施形態では、第1実施形態と異なり、制御装置30は、入力電圧Vdcに応じて電流補正値Icを変更する構成を備える。
【0092】
高調波成分生成部43は、実効値Vrmsと、入力電圧Vdcとに基づいて、高調波成分Ihを設定する。本実施形態においても、高調波成分Ihは、電源電圧Vacのゼロクロス点付近において極小値を取り、ピーク値において極大値を取る正弦波である。
図13は、所定の実効値Vrmsに対応する高調波マップを示している。入力電圧Vdcが小さな値であるほど、乖離幅Δiも大きくなる。そのため、本実施形態では、各実効値Vrmsに対応する高調波成分マップには、入力電圧Vdcが小さい値であるほど、高調波成分Ihのピーク値における高さを示す振幅が大きな値になるように、高調波成分Ihが定められている。
【0093】
以上説明した本実施形態では、以下の効果を奏する。
【0094】
制御装置30は、DC・AC変換器10に供給される入力電圧Vdcに応じて、高調波成分Ihを変更することとした。この場合、入力電圧Vdcの変化に応じて乖離幅Δiが変化する場合でも、変化後の乖離幅Δiに応じた出力電流Iacを交流電源200に流すことができる。そのため、交流電源200に不要に大きな出力電流Iacや不要に小さな出力電流Iacが流れるのを防止することができる。
【0095】
<第4実施形態>
第4実施形態では、第1実施形態と異なる構成を主に説明する。なお、第1実施形態と同一の符号を付した構成は同一の構成を示し、その説明は繰り返さない。
【0096】
本実施形態では、第1実施形態に示すDC・AC変換器10と比べて、回路トポロジーが異なる。具体的には、本実施形態に係るDC・AC変換器10は、第1実施形態と異なり、ハーフブリッジ回路を備えていない。
【0097】
図14は、第4実施形態に係る電力変換装置100を示す図である。第1入力端子IN1とフルブリッジ回路70とは、第1配線LP1を介して接続されている。第2入力端子IN2とフルブリッジ回路70とは、第2配線LP2を介して接続されている。
【0098】
フルブリッジ回路70は、第7〜第10スイッチQ7〜Q10を備えている。第7〜第10スイッチQ7〜Q10は、電圧駆動型のスイッチであり、本実施形態では、NチャネルMOSFETである。第7スイッチQ7のソースと、第8スイッチQ8のドレインとが接続されている。第9スイッチQ9のソースと、第10スイッチQ10のドレインとが接続されている。第7,第9スイッチQ7,Q9のドレインが第1配線LP1に接続され、第8,第10スイッチQ8,Q10のソースが第2配線LP2に接続されている。第7〜第10スイッチQ7〜Q10それぞれは、逆並列接続された寄生ダイオードを備えている。
【0099】
第7スイッチQ7と第8スイッチQ8との第4接続点K4は、第6配線LP6の第1端に接続されており、第6配線LP6の第2端は第2出力端子OUT2に接続されている。第9スイッチQ9と第10スイッチQ10との第5接続点K5は、第5配線LP5の第1端に接続されており、第5配線LP5の第2端は第1出力端子OUT1に接続されている。第6配線LP6の一部には、リアクトル13が設けられている。
【0100】
第7スイッチQ7と第8スイッチQ8とを接続する配線において、第4接続点K4よりも第8スイッチQ8のドレイン側には、第1リアクトル電流IL1rを検出する第1電流センサ61が設けられている。また、第9スイッチQ9と第10スイッチQ10とを接続する配線において、第5接続点K5よりも第10スイッチQ10のドレイン側には、第2リアクトル電流IL2rを検出する第2電流センサ62が設けられている。
【0101】
図15は、第4実施形態に係る制御装置30の機能を示す機能ブロック図である。本実施形態においても、制御装置30は、ピーク電流モード制御により、DC・AC変換器10を制御する。
【0102】
制御装置30は、第1電流制御部51と、第2電流制御部52とを備えている。第1電流制御部51は、第1リアクトル電流IL1rを補正後指令電流ILa*に制御すべく、ピーク電流モード制御を実施する。第2電流制御部52は、第2リアクトル電流IL2rを補正後指令電流ILa*に制御すべく、ピーク電流モード制御を実施する。第1,第2電流制御部51,52の構成は、電流制御部50の構成と同様であるため、その説明を省略する。
【0103】
第1電流制御部51の出力は、第1AND回路382の一方の入力端子に接続されており、第2電流制御部52の出力は、第2AND回路383の一方の入力端子に接続されている。極性切替部55の出力端子は、第2AND回路383の他方の入力端子と、反転器360の入力端子とに接続されている。反転器360の出力端子は、第1AND回路382の他方の入力端子に接続されている。
【0104】
第1AND回路382には、第1電流制御部51のRSフリップフロップ357の出力信号と、極性切替部55からの出力信号とが入力される。第1AND回路382の出力端子は、第8スイッチQ8のゲートに接続されている。第1AND回路382から第8スイッチQ8のゲートに出力される信号が、第8スイッチQ8の開閉を操作する第8ゲート信号GS8となる。また、第1AND回路382の出力端子は、反転器361を介して第7スイッチQ7のゲートに接続されている。第1AND回路382から反転器361を介して第7スイッチQ7のゲートに出力される信号が、第7スイッチQ7の開閉を操作する第7ゲート信号GS7となる。第7ゲート信号GS7は、第8ゲート信号GS8を反転させたものとなる。
【0105】
第2AND回路383には、第2電流制御部52のRSフリップフロップ357の出力信号と、極性切替部55からの出力信号とが入力される。第2AND回路383の出力側は、第10スイッチQ10のゲートに接続されている。第2AND回路383から第10スイッチQ10のゲートに出力される信号が、第10スイッチQ10の開閉を操作する第10ゲート信号GS10となる。また、第2AND回路383の出力端子は、反転器362を介して第9スイッチQ9のゲートに接続されている。第2AND回路383から反転器362を介して第9スイッチQ9のゲートに出力される信号が、第9スイッチQ9の開閉を操作する第9ゲート信号GS9となる。第9ゲート信号GS9は、第10ゲート信号GS10を反転させたものとなる。
【0106】
第1AND回路382に、ハイ状態の極性切替部55の出力信号とハイ状態のRSフリップフロップ357の出力信号とが入力されることで、第1AND回路382は、ハイ状態の第8ゲート信号GS8を出力し、ロー状態の第7ゲート信号GS7を出力する。また、第2AND回路383に、ハイ状態の極性切替部55の出力信号とハイ状態のRSフリップフロップ357の出力信号とが入力されることで、第2AND回路383は、ハイ状態の第10ゲート信号GS10と、ロー状態の第9ゲート信号GS9を出力する。
【0107】
図16は、第4実施形態に係るDC・AC変換器10のタイミングチャートである。
図16(a)は、入力電圧Vdc及び電源電圧Vacの推移を示す。
図16(b)は、第9ゲート信号GS9の推移を示し、
図16(c)は、第10ゲート信号GS10の推移を示す。
図16(d)は、第7ゲート信号GS7の推移を示し、
図16(e)は、第8ゲート信号GS8の推移を示す。
図16(f)は、補正後指令電流ILa*の推移を示す。
【0108】
電源電圧Vacが正となる第1期間P1では、第9ゲート信号GS9がハイ状態となることで第9スイッチQ9が閉状態となり、第10ゲート信号GS10がロー状態となることで第10スイッチQ10が開状態となる。第1期間P1では、第1リアクトル電流IL1rを補正後指令電流ILa*に制御すべく、第1電流制御部51が実施するピーク電流モード制御により、第7,8ゲート信号GS7,GS8がハイ状態又はロー状態に変更される。第8スイッチQ8が閉状態となり、第7スイッチQ7が開状態となることで、第8,9スイッチQ8,Q9、リアクトル13を含む閉回路が形成され、第1出力端子OUT1から第2出力端子OUT2の向きに出力電流Iacが流れる。
【0109】
電源電圧Vacが負となる第2期間P2では、フルブリッジ回路12では、第7ゲート信号GS7がハイ状態となることで第7スイッチQ7が閉状態となり、第8ゲート信号GS8がロー状態となることで第8スイッチQ8が開状態となる。第2期間P2では、第2リアクトル電流IL2rを補正後指令電流ILa*に制御すべく、第2電流制御部52が実施するピーク電流モード制御により、第9,10ゲート信号GS9,GS10がハイ状態又はロー状態に変更される。第10スイッチQ10が閉状態となり、第9スイッチQ9が開状態となることで、第7,第10スイッチQ7,Q10、リアクトル13を含む閉回路が形成され、第2出力端子OUT2から第1出力端子OUT1の向きに出力電流Iacが流れる。
【0110】
以上説明した本実施形態では、第1実施形態と同様の効果を奏する。
【0111】
<第4実施形態の変形例1>
第1電流センサ61が、第7スイッチQ7のドレイン側に設けられていてもよい。第2電流センサ62が、第9スイッチQ9のドレイン側に設けられていてもよい。
【0112】
<第4実施形態の変形例2>
図17は、第4実施形態の変形例2に係る電力変換装置100の構成図である。本変形例では、第1電流センサ61が、第9,第10スイッチQ9,Q10間のソースとドレインとを接続する配線において、第5接続点K5よりも第10スイッチ側に設けられている。また、第2電流センサ62が、第9スイッチQ9のドレイン側に設けられている。
【0113】
図18は、第4実施形態の変形例2に係る制御装置30の機能ブロック図である。本変形例においても、制御装置30は、ピーク電流モード制御により、DC・AC変換器10を制御する。
【0114】
極性切替部55の出力端子は、第2AND回路383の入力端子と、第8スイッチQ8のゲートと、反転器360の入力端子とに接続されている。反転器360の出力端子側は、第1AND回路382の入力端子と第7スイッチQ7のゲートとに接続されている。
【0115】
第1AND回路382には、第1電流制御部51のRSフリップフロップ357の出力信号と、極性切替部55からの出力信号とが入力される。第1AND回路382の出力端子は、第10スイッチQ10のゲートに接続されている。
【0116】
第2AND回路383には、第2電流制御部52のRSフリップフロップ357の出力信号と、極性切替部55からの出力信号とが入力される。第2AND回路383の出力側は、第9スイッチQ9のゲートに接続されている。
【0117】
第1AND回路382から第10スイッチQ10のゲートに出力される信号が第10ゲート信号GS10となる。第2AND回路383から第9スイッチQ9のゲートに出力される信号が第9ゲート信号GS9となる。極性切替部55から反転器360を介して第7スイッチQ7のゲートに出力される信号が第7ゲート信号GS7となる。極性切替部55から第8スイッチQ8のゲートに出力される信号が第8ゲート信号GS8となる。
【0118】
電源電圧Vacが正となる第1期間P1では、極性切替部55からの出力信号がハイ状態となることで、第8ゲート信号GS8がハイ状態となり、第7ゲート信号GS7がロー状態となる。また、第1期間P1では、第2電流制御部52は、第2リアクトル電流IL2rを補正後指令電流ILa*に制御すべく、第9ゲート信号GS9をハイ状態又はロー状態に変化させる。
【0119】
電源電圧Vacが負となる第2期間P2では、極性切替部55からの出力信号がロー状態となることで、第8ゲート信号GS8がロー状態となり、第7ゲート信号GS7がハイ状態となる。また、第2期間P2では、第1電流制御部51は、第1リアクトル電流IL1rを補正後指令電流ILa*に制御すべく、第10ゲート信号GS10をハイ状態又はロー状態に変化させる。
【0120】
本変形例においても、出力電流Iacの歪みを低減すべく、電流補正部40は、補正前指令電流IL*に電流補正値Icが重畳することで、補正後指令電流ILa*を算出する。
【0121】
<第4実施形態の変形例3>
第4実施形態において、第1期間P1で、第7スイッチQ7が常時開状態とされ、第2期間P2で、第9スイッチQ9が常時開状態に維持されてもよい。この場合、
図16で示したタイミングチャートにおいて、第1期間P1での第7ゲート信号GS7をロー状態に維持し、第2期間P2での第9ゲート信号GS9をロー状態に維持すればよい。
【0122】
<第5実施形態>
第5実施形態では、第4実施形態と異なる構成を中心に説明する。なお、同一の符号を付した箇所は同一の部位を示しその説明は繰り返さない。
【0123】
図19は、第5実施形態に係るDC・AC変換器10の回路図である。本実施形態に係るDC・AC変換器10では、第1,第2出力端子OUT1,OUT2と、フルブリッジ回路70との間に、第11スイッチQ11と、第12スイッチQ12とが接続されている。具体的には、第11スイッチQ11のソースに、第12スイッチQ12のドレインが接続されている。また、第11スイッチQ11のドレインが第5配線LP5のうち、リアクトル13とフルブリッジ回路70との間に接続され、第12スイッチQ12のドレインが第6配線LP6に接続されている。
【0124】
第11,第12スイッチQ11,Q12それぞれは、逆並列接続された寄生ダイオードを備えている。
【0125】
図20は、第5実施形態に係る制御装置30の機能を示す機能ブロック図である。本実施形態においても、制御装置30は、ピーク電流モード制御により、DC・AC変換器10を制御する。
【0126】
極性切替部55の出力端子は、第2AND回路383の入力端子と、第12スイッチQ12のゲートと、反転器360の入力端子とに接続されている。反転器360の出力端子側は、第1AND回路382の入力端子と第11スイッチQ11のゲートとに接続されている。
【0127】
第1AND回路382の出力端子は、第8,第9スイッチQ8,Q9のゲートに接続されている。第2AND回路383の出力側は、第7,第10スイッチQ7,Q10のゲートに接続されている。
【0128】
第1AND回路382から第8スイッチQ8のゲートに出力される信号が第8ゲート信号GS8となり、第9スイッチQ9のゲートに出力される信号が第9ゲート信号GS9となる。第2AND回路383から第7スイッチQ7のゲートに出力される信号が第7ゲート信号GS7となり、第10スイッチQ10のゲートに出力される信号が第10ゲート信号GS10となる。極性切替部55から反転器360を介して第11スイッチQ11のゲートに出力される信号が第11ゲート信号GS11となる。極性切替部55から第12スイッチQ12のゲートに出力される信号が第12ゲート信号GS12となる。
【0129】
図21は、第5実施形態に係るDC・AC変換器10のタイミングチャートである。
図21(a)は、入力電圧Vdc及び電源電圧Vacの推移を示す。
図21(b)は、第8,第9ゲート信号GS8,GS9の推移を示し、
図21(c)は、第7,第10ゲート信号GS7,GS10の推移を示す。
図21(d)は、第11ゲート信号GS11の推移を示し、
図21(e)は、第12ゲート信号GS12の推移を示す。
図21(f)は、補正後指令電流ILa*の推移を示す。
【0130】
電源電圧Vacが正となる第1期間P1では、第12ゲート信号GS12がハイ状態となることで第12スイッチQ12が閉状態となり、第11ゲート信号GS11がロー状態となることで第11スイッチQ11が開状態となる。第1期間P1では、第1電流制御部51は、第1リアクトル電流IL1rを補正後指令電流ILa*に制御すべく、ピーク電流モード制御により、第8,9ゲート信号GS8,GS9をハイ状態又はロー状態に変化させる。
【0131】
電源電圧Vacが負となる第2期間P2では、第12ゲート信号GS12がロー状態となることで第12スイッチQ12が開状態となり、第11ゲート信号GS11がハイ状態となることで第11スイッチQ11が閉状態となる。第2期間P2では、第2電流制御部52は、第2リアクトル電流IL2rを補正後指令電流ILa*に制御すべく、ピーク電流モード制御により、第7,10ゲート信号GS7,GS10をハイ状態又はロー状態に変化させる。
【0132】
本実施形態においても、出力電流Iacの歪みを低減すべく、電流補正部40は、補正前指令電流IL*に電流補正値Icが重畳することで、補正後指令電流ILa*を算出する。
【0133】
以上説明した本実施形態では、第1実施形態と同様の効果を奏する。
【0134】
<その他の実施形態>
・フルブリッジ回路12を、4つのIGBTを用いた回路により構成してもよい。また第2スイッチQ2をIGBTまたはダイオードにより、構成してもよい。