特許第6983162号(P6983162)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エンド ダーマ カンパニー リミテッドの特許一覧

特許6983162経皮吸収用マイクロ構造体及びその製造方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6983162
(24)【登録日】2021年11月25日
(45)【発行日】2021年12月17日
(54)【発明の名称】経皮吸収用マイクロ構造体及びその製造方法
(51)【国際特許分類】
   A61M 37/00 20060101AFI20211206BHJP
【FI】
   A61M37/00 510
   A61M37/00 505
【請求項の数】6
【全頁数】19
(21)【出願番号】特願2018-533134(P2018-533134)
(86)(22)【出願日】2016年12月22日
(65)【公表番号】特表2019-505279(P2019-505279A)
(43)【公表日】2019年2月28日
(86)【国際出願番号】KR2016015137
(87)【国際公開番号】WO2017116076
(87)【国際公開日】20170706
【審査請求日】2018年6月22日
【審判番号】不服2020-4011(P2020-4011/J1)
【審判請求日】2020年3月25日
(31)【優先権主張番号】10-2015-0187700
(32)【優先日】2015年12月28日
(33)【優先権主張国】KR
(73)【特許権者】
【識別番号】517281956
【氏名又は名称】エンドダーマ カンパニー リミテッド
【氏名又は名称原語表記】ENDODERMA CO.,LTD.
(74)【代理人】
【識別番号】100107515
【弁理士】
【氏名又は名称】廣田 浩一
(74)【代理人】
【識別番号】100107733
【弁理士】
【氏名又は名称】流 良広
(74)【代理人】
【識別番号】100115347
【弁理士】
【氏名又は名称】松田 奈緒子
(72)【発明者】
【氏名】ジェス・キム
(72)【発明者】
【氏名】スンチャン・クォン
(72)【発明者】
【氏名】サンジン・パク
【合議体】
【審判長】 千壽 哲郎
【審判官】 莊司 英史
【審判官】 平瀬 知明
(56)【参考文献】
【文献】 特開2010−82401(JP,A)
【文献】 再公表特許第2014/077242(JP,A1)
【文献】 米国特許出願公開第2014/0180201(US,A1)
【文献】 特開2013−74924(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M37/00
(57)【特許請求の範囲】
【請求項1】
マイクロ構造体の製造方法であって、
(a)生体適合性高分子または粘着剤をマイクロモールドに供給するステップと、
(b)前記生体適合性高分子または粘着剤を前記マイクロモールドの孔に注入するステップと、
(c)前記生体適合性高分子または粘着剤を乾燥させるステップと、
(d)前記マイクロモールドと乾燥された前記生体適合性高分子または粘着剤を分離し、前記マイクロ構造体を形成するステップとを含み、
前記マイクロ構造体は、iii)前記マイクロ構造体の先端から底部まで、円錐と円錐台の順に段差なく接続された2重構造であり、前記円錐の底面と前記円錐台の斜面との間の角度(β2)が鈍角である2重構造、又はiv)前記マイクロ構造体の先端から底部まで、円錐、上側の円錐台、下側の円錐台の順に段差なく接続された3重構造であり、前記円錐の底面と上側の前記円錐台の斜面とのなす角(β3)と、上側の前記円錐台の底面と下側の前記円錐台の斜面とのなす角(β4)が鈍角であり、β3がβ4よりも大きい3重構造を有し、
複数個のマイクロ構造体は、六角形に配列され、
前記生体適合性高分子または粘着剤は、分子量が240−490kDaであるヒアルロン酸であり、
前記注入が、前記マイクロモールドの内部に、500以上760mmHg未満の圧力を印加することにより行われる、製造方法。
【請求項2】
前記ステップ(c)は(i)常温で36−60時間の間実施するか、(ii)40−60℃で5−16時間の間実施するか、または(iii)60−80℃で2−4時間の間実施することを特徴とする、請求項1に記載の製造方法。
【請求項3】
前記生体適合性高分子が、カルボキシメチルセルロース(Carboxymethyl cellulose:CMC)、カラギーナン、コンドロイチンサルフェート、デキストランサルフェート、キトサン、ポリリシン(polylysine)、コラーゲン、ゼラチン、カルボキシメチルキチン(carboxymethyl chitin)、フィブリン、アガロース、プルランポリラクタイド、ポリグルコライド(PGA)、ポリラクタイド−グリコライド共重合体(PLGA)、プルランポリアンハイドライド(polyanhydride)、ポリオルトエステル(polyorthoester)、ポリエーテルエステル(polyetherester)、ポリカプロラクトン(polycaprolactones)、ポリエステルアミド(polyesteramide)、ポリブチリック酸、ポリバレリック酸、ポリウレタン、ポリアクリレート、エチレン−ビニルアセテート重合体、アクリル置換セルロースアセテート、非−分解性ポリウレタン、ポリスチレン、ポリビニルクロライド、ポリビニルフルオライド、ポリビニルイミダゾール、クロロスルホネートポリオレフィン(chlorosulphonate polyolefin)、ポリエチレンオキサイド、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、ポリメタクリレート、ヒドロキシプロピルメチルセルロース(HPMC)、エチルセルロース(EC)、ヒドロキシプロピルセルロース(HPC)、サイクロデキストリン、及びこのような高分子を形成する単量体の共重合体及びセルロースで構成された群から選択された1以上の高分子を追加的に含むことを特徴とする、請求項1に記載の製造方法。
【請求項4】
前記ステップ(a)で生体適合性高分子の固形分含有量(solid content)は全体マイクロ構造体の組成に対して1−30%(w/v)であることを特徴とする、請求項1に記載の製造方法。
【請求項5】
前記粘着剤が、シリコーン、ポリウレタン、物理的接着剤、ポリアクリル、エチルセルロース、ヒドロキシメチルセルロース、エチレンビニルアセテート、及びポリイソブチレンで構成された群から選択された1以上の物質を追加的に含むことを特徴とする、請求項1に記載の製造方法。
【請求項6】
前記複数個のマイクロ構造体は、250−1500μmの間隔(p)で配列されることを特徴とする、請求項1に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、経皮吸収用マイクロ構造体及びその製造方法に関し、より詳しくは、生体適合性高分子または粘着剤を含む生分解性マイクロ構造体及びその製造方法に関する。
【背景技術】
【0002】
薬物伝達システム(Drug Delivery System、DDS)は、薬物の吸収及び放出を制御することによって、細胞、組織などの標的部位に薬物を伝達する一連の技術であって、一般的な経口摂取以外に、薬物を局部的に適用することができる経皮透過型伝達システムなどがあり、薬物のような薬剤学的物質を効率的で、かつ安全に投与するための研究が持続的になされてきた。そのうち、注射療法の場合、投与方法が面倒で、患者によって痛みを伴うことがあり、薬物を一時的に注入する方法の他に、薬物放出速度の制御に限界がある問題点がある。このような注射療法の短所を改善するために、注射器の針より遥かに小さく、痛みの少ないマイクロ構造体(マイクロニードル)に関する研究が進行されており、薬物伝達、血液採取、バイオセンサー、及び皮膚の美容など、いろいろな分野で研究が進められている。
【0003】
従来のマイクロニードルの製造方法には、特許文献1に記載の“MICRO NEEDLE DEVICES AND METHODS OF MANUFACTURE AND USE THEREOF”と特許文献2に記載の“生分解性ソリッドマイクロニードル及びその製造方法”がある。
【0004】
前記特許は、硬化性ポリマーを用いて製作されたマイクロモールドに生分解性粘性物質を注入し、乾燥した後、モールドから分離してマイクロニードルを製造するか(モールディング技法)、生分解性ソリッドマイクロニードルを形成するための生分解性粘性物質をコーティングし、柱(フィラー)にパターニングされたフレームでコーティングされた生分解性粘性物質をドローイングしながら乾燥させた後、ドローイングされた生分解性粘性物質を切断するステップを通じてマイクロニードルを製造する(ドローイング技法)。しかしながら、このような従来の製造方法により製造された生分解性ポリマーマイクロ構造体は、相対的に低い機械的強度によって皮膚透過時、曲がったり潰されたりする問題点を有している。特に、高い弾性を有する高分子誘導体を原料に用いる場合、モールディン技法またはドローイング技法を用いてマイクロ構造体を製造時、所望の構造体の模様が均質に生成されない限界があり、皮膚透過に必要なマイクロ構造体の機械的強度を満たすことが困難である短所がある。
【0005】
本発明で使われるヒアルロン酸は生分解性高分子であって、ヒアルロン酸で製造された構造体の場合、平均分子量が小さいほど構造体形成が容易であり、粘性が低いし、分子量が大きくなるほど機械的強度は高まるが、粘性が強くなる。このような特性のため、一般的にマイクロ構造体の原料には低分子のヒアルロン酸を用いるが、低分子のヒアルロン酸を用いたマイクロ構造体の場合、皮膚透過時、折れたり曲がったりする問題が発生しやすい。一方、カルボキシメチルセルロース(carboxymethyl cellulose、CMC)はセルロース誘導体であって、薬剤学で主に増粘剤(thickening agent)として使われ、多様な分子量を有する生分解性高分子である。
【0006】
一方、従来のマイクロ構造体はチップ(tip)部分の角度があまり大きくて皮膚透過に適合しないか、チップの角度が皮膚透過に容易な範囲を有する場合でもチップから底辺まで持続的に直径が大きくなる構造となっているので、皮膚自体の抵抗性によって全体構造体の高さのうち、非常に制約的な比率まで透過される短所がある。低い縦横比(w:h、h/w)を有する構造体の場合、皮膚透過自体が難しく、高い縦横比を有する構造体の場合には皮膚透過は容易であるが、相対的に低い機械的強度によって、皮膚透過時、折れたり曲がったりする問題がある。また、従来のマイクロ構造体は皮膚透過時、皮膚自体の弾性及び復原力を克服し難い構造で、構造体の皮膚透過の以後にもまた抜け出しやすいという短所がある。
【0007】
本発明では、前述した問題点を解決し、低分子のヒアルロン酸及びCMCを使用しながらも皮膚透過に適した機械的強度を有し、皮膚内で容易に溶解または膨潤されて薬物伝達や皮膚美容に適したマイクロ構造体を製造するために生体適合性高分子及びこれを主材料にしたマイクロ構造体製造方法を開発した。
【0008】
本明細書の全体に亘って多数の論文及び特許文献が参照され、その引用が表示されている。引用された論文及び特許文献の開示内容は、その全体として本明細書に参照として挿入されて本発明が属する技術分野の水準及び本発明の内容がより明確に説明される。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許第6334856号公報
【特許文献2】大韓民国登録特許第10−0793615号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明者らは前述した従来技術の問題点を解決するために例の研究努力した。その結果、本発明者らは生体適合性高分子で形成されたハイドロジェルを用いてマイクロ構造体を製作し、特にマイクロ構造体のチップ(tip)角度及び直径範囲を多様に製作して皮膚透過に容易なマイクロ構造体を開発した。本発明者らはマイクロ構造体の底面の直径(w)及び高さ(h)がなす縦横比率(w:h)を最適化して、皮膚透過のための最適チップ角度を確保した。また、マイクロ構造体に2重または3重構造を適用して(本発明のB、C、及びDタイプのマイクロ構造体)機械的強度を極大化し、マイクロ構造体の配列を六角形パターンを適用して皮膚付着時、マイクロ構造体の全体的に均等な圧力が伝達されるようにし、窮極的に生体内にマイクロ構造体に搭載された有用成分を安定的に伝達することができることを確認することによって本発明を完成した。
【0011】
したがって、本発明の目的は生体適合性高分子または粘着剤を含むマイクロ構造体(microstructure)を提供することにある。
【0012】
本発明の他の目的は、生体適合性高分子または粘着剤を含むマイクロ構造体の製造方法を提供することにある。
【0013】
本発明の他の目的及び利点は、下記の発明の詳細な説明、請求範囲、及び図面により一層明確になる。
【課題を解決するための手段】
【0014】
本発明の一態様によれば、本発明は生体適合性高分子または粘着剤を含み、底面の直径(w)及び高さ(h)がなす縦横比率(w:h)が1:5乃至1:1.5であり、末端チップ(distal tip)の角度(α)が10゜乃至40゜であるマイクロ構造体(microstructure)を提供する。
【0015】
本発明者らは、前述した従来技術の問題点を解決するために例の研究努力した結果、生体適合性高分子を用いてマイクロ構造体を製作し、特にマイクロ構造体のチップ(tip)角度及び直径範囲を多様に製作して皮膚透過に容易なマイクロ構造体を開発した。本発明者らは、マイクロ構造体の底面の直径(w)及び高さ(h)がなす縦横比率(w:h)を最適化して、皮膚透過のための最適チップ角度を確保した。また、マイクロ構造体に2重または3重構造を適用して(本発明のB、C、及びDタイプのマイクロ構造体)機械的強度を極大化し、マイクロ構造体の配列を六角形パターンを適用して皮膚付着時、マイクロ構造体の全体的に均等な圧力が伝達されるようにし、窮極的に生体内にマイクロ構造体に搭載された有用成分を安定的に伝達することができることを確認した。
【0016】
本明細書の用語“生体適合性高分子”は、ヒアルロン酸(Hyaluronic acid:HA)、カルボキシメチルセルロース(Carboxymethyl cellulose:CMC)、アルギニック酸(alginic acid)、ペクチン、カラギーナン、コンドロイチン(サルフェート)、デキストラン(サルフェート)、キトサン、ポリリシン(polylysine)、コラゲン、ゼラチン、カルボキシメチルキチン(carboxymethyl chitin)、フィブリン、アガロース、プルランポリラクタイド、ポリグルコライド(PGA)、ポリラクタイド−グリコライド共重合体(PLGA)、プルランポリアンハイドライド(polyanhydride)、ポリオルトエステル(polyorthoester)、ポリエーテルエステル(polyetherester)、ポリカプロラクトン(polycaprolactone)、ポリエステルアミド(polyesteramide)、ポリ(ブチリック酸)、ポリ(バレリック酸)、ポリウレタン、ポリアクリレート、エチレン−ビニルアセテート重合体、アクリル置換セルロースアセテート、非−分解性ポリウレタン、ポリスチレン、ポリビニルクロライド、ポリビニルフルオライド、ポリ(ビニルイミダゾール)、クロロスルホネートポリオレフィン(chlorosulphonate polyolefins)、ポリエチレンオキサイド、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、ポリメタクリレート、ヒドロキシプロピルメチルセルロース(HPMC)、エチルセルロース(EC)、ヒドロキシプロピルセルロース(HPC)、サイクロデキストリン、及びこのような高分子を形成する単量体の共重合体及びセルロースで構成された群から選択された1以上の高分子である。
【0017】
本明細書の用語“粘着剤”は、シリコン、ポリウレタン、ヒアルロン酸、物理的接着剤(gecko)、ポリアクリル、エチルセルロース、ヒドロキシメチルセルロース、エチレンビニルアセテート、及びポリイソブチレンで構成された群から選択された1以上の粘着剤である。
【0018】
本明細書の用語“ヒアルロン酸”は、ヒアルロン酸だけでなく、ヒアルロン酸塩(例えば、ヒアルロン酸ナトリウム、ヒアルロン酸カリウム、ヒアルロン酸マグネシウム、及びヒアルロン酸カルシウム)、及びこれらの混合物を全て含む意味として使われる。本発明の一具現例によれば、本発明のヒアルロン酸は分子量が100−5000kDaである。本発明のいかなる具現例によれば、本発明のヒアルロン酸は分子量が100−4500、150−3500、200−2500kDa、220−1500kDa、240−1000kDa、または240−490kDaである。
【0019】
本明細書で使われる“カルボキシメチルセルロース(Carboxymethyl cellulose:CMC)”は、公知された多様な分子量のCMCを使用することができる。例えば、本発明で使われるCMCの平均分子量は90,000kDa、250,000kDa、または700,000kDaである。
【0020】
本発明は多様なマイクロ構造体を提供することができ、例えばマイクロニードル、マイクロブレード、マイクロナイフ、マイクロファイバー、マイクロスパイク、マイクロプローブ、マイクロバーブ(microbarb)、マイクロアレイ、またはマイクロ電極を提供することができる。本発明の一具現例によれば、本発明のマイクロ構造体はマイクロニードルである。
【0021】
本発明の一具現例によれば、本発明の生体適合性高分子または粘着剤は、1−5%(w/v)で含まれる。本発明の特定具現例によれば、本発明のヒアルロン酸またはCMCの濃度は3%(w/v)で含まれる。
【0022】
本発明のマイクロ構造体の最も大きい特徴の1つは、従来のものとは異なり、2重または3重構造が適用されて機械的強度が極大化されたということである。このために、マイクロ構造体の底面の直径(w)及び高さ(h)がなす縦横比率(w:h);マイクロ構造体の末端チップ(distal tip)角度(α);及びチップの直径範囲(t)などを最適化して皮膚透過が容易であるように製作した。
【0023】
前述した条件によって製作された本発明のマイクロ構造体は、図1a乃至図1dのAタイプ乃至Dタイプの形状に表れる。Aタイプのマイクロ構造体は一般的な円錐形状であり;Bタイプは円柱と円錐の2重構造であり;Cタイプは変形された円柱(円錐台)と円錐の2重構造であり;Dタイプは2つの変形された円柱(円錐台)と円錐の3重構造である。
【0024】
本発明の一具現例によれば、本発明のマイクロ構造体の底面の直径(w)及び高さ(h)がなす縦横比率(w:h)は1:5乃至1:1.5であり、末端チップ(distal tip)の角度(α)が10゜乃至40゜である。本発明の他の具現例によれば、前記縦横比率は1:5乃至1:2である(図1a−1d参照)。
【0025】
図1aで、Aタイプは円錐形状のマイクロ構造体であって、底面の直径(w)、高さ(h)、及びチップの角度(α)で示すことができる。本発明の一具現例によれば、Aタイプの縦横比率(w:h)は1:5乃至1:1.5である。
【0026】
図1bで、Bタイプは円柱と円錐の2重構造で構成されたマイクロ構造体であって、円錐の底面の直径(w)、高さ(h)、及びチップの角度(α);及び円柱の底面の直径(w)及び高さ(h)で示すことができる。本発明の一具現例によれば、Bタイプのw:h縦横比率は1:5乃至1:1.5であり、w:h縦横比率は1:5乃至1:1.0であり、w:h縦横比率は1:5乃至1:2である。本発明の特定具現例によれば、w:h縦横比率は1:1.4であり、h:h比率は1.1:1である。一方、本発明のBタイプのマイクロ構造体で最適のw:h縦横比率は1:3であり、最適の構造体間の間隔範囲は1/2h−2hである。
【0027】
図1cで、Cタイプは円錐台と円錐の2重構造で構成されたマイクロ構造体であって、円錐の底面の直径(w)、高さ(h)、及びチップの角度(α);及び円錐台の底面の直径(w)及び高さ(h)で示すことができる。本発明の一具現例によれば、Cタイプのw:h縦横比率は1:5乃至1:1.5であり、w:h縦横比率は1:5乃至1:1.0であり、w:h縦横比率は1:5乃至1:2である。本発明の特定具現例によれば、w:h縦横比率は1:1.25であり、h:h比率は1.3:1である。一方、本発明のCタイプのマイクロ構造体で最適のw:h縦横比率は1:3であり、最適の構造体間の間隔範囲は1/2h−2hである。
【0028】
図1dで、Dタイプは2つの円錐台と円錐の3重構造で構成されたマイクロ構造体であって、円錐の底面の直径(w)、高さ(h)、及びチップの角度(α);上部円錐台の底面の直径(w)、高さ(h);下部円錐台の底面の直径(w)及び高さ(h)で示すことができる。本発明の一具現例によれば、Dタイプのw:h縦横比率は1:5乃至1:1.5であり、w:h及びw:hの縦横比率は1:5乃至1:1.0であり、w:h縦横比率は1:5乃至1:2である。
【0029】
本発明の特定具現例によれば、w:h縦横比率は1:1.5、w:h縦横比率は1:1であり、h:h:h比率は1.5:1.5:1である。一方、本発明のDタイプのマイクロ構造体で最適のw:h縦横比率は1:3.5乃至1:4であり、最適の構造体間の間隔範囲は1/2h−2hである。
【0030】
本発明のマイクロ構造体の高さは80μm乃至1500μmに製作できる。本発明の特定具現例によれば、前記マイクロ構造体の高さは100μm乃至1300μmである。
【0031】
本発明の一具現例によれば、末端チップの直径(t)は2−20μmである。前記直径(t)は顕微鏡または電子顕微鏡で40倍乃至250倍拡大して観察されるマイクロ構造体の末端チップの断面部分の直径を意味する。
【0032】
本発明の一具現例によれば、本発明のマイクロ構造体は80以上の機械的強度(透過率、%)を有する。本発明の他の具現例によれば、前記機械的強度は80−100である。本発明の更に他の具現例によれば、前記機械的強度は90−100である。本発明の更に他の具現例によれば、前記機械的強度は95−100である。
【0033】
本発明の一具現例によれば、本発明のマイクロ構造体のうち、2重及び3重構造を有するB−Dタイプの皮膚透過度がAタイプの皮膚透過度より高く表れた。
【0034】
本発明の一具現例によれば、本発明のマイクロ構造体は生体適合性高分子及び粘着剤の他に有用成分を追加的に含む。例えば、前記有用成分は薬物、美容成分(美白、シワ改善などの化粧料成分)、またはその組合せである。本発明のマイクロ構造体は有用成分を含むことによって、皮膚内に有用成分を有効に伝達することができる。
【0035】
本発明の一具現例によれば、本発明のマイクロ構造体は、金属、高分子ポリマー、または粘着剤を追加的に含むことができる。
【0036】
本発明の他の態様によれば、本発明は、(a)生体適合性高分子または粘着剤をマイクロモールドに供給するステップ;(b)前記生体適合性高分子または粘着剤をマイクロモールドの孔に注入するステップ;(c)前記生体適合性高分子または粘着剤を乾燥させるステップ;及び(d)前記マイクロモールドと乾燥された生体適合性高分子または粘着剤を分離してマイクロ構造体を形成させるステップ;含むマイクロ構造体の製造方法を提供する。
【0037】
本発明の方法を各々のステップ別に詳細に説明すると、次の通りである:
【0038】
ステップ(a):生体適合性高分子または粘着剤をマイクロモールドに供給するステップ
【0039】
本発明によれば、まず生体適合性高分子または粘着剤をマイクロモールドに供給する。
【0040】
本発明のマイクロモールドは当業界のいかなるマイクロモールド製作技法を用いても製作可能である。例えば、MEMS(Micro−Electro Mechanical System)製作技法、フォトリソグラフィ(photolithography, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery, Journal of Controlled Release 104, 51−66, 2005)製作技法、及びソフトリソグラフィ(soft lithography)製作技法などが本発明のマイクロモールド製作に利用できるが、これに制限されるものではない。そのうち、ソフトリソグラフィ(soft lithography)製作技法を用いる場合、PDMS(polydimethylsiloxane)またはPMMA(Poly(methyl methacrylate))のような弾性体モールドを製造して、これをマイクロ構造体の製造に用いることができる。PDMSモールドを製造する技術は一種のプラスティック加工技術であって、キャスティング(casting)、インジェクション(injection)、ホット−エンボシング(hot−embossing)などの多様な方法により所望のモールディング構造を得ることができる。例えば、シリコンウエハ、ガラスなどの基板上に感光物質をコーティングし、フォトマスクを用いてパターニングすれば、結果的にマスター(master)が作られる。これを鋳型にPDMSをキャスティングし焼結させれば、スタンプ機能をするPDMSモールドを完成することができる。
【0041】
本発明の一具現例によれば、前記ヒアルロン酸は分子量が240−490kDaであり、本発明の特定具現例によれば、ヒアルロン酸衣平均分子量は360kDaである。
【0042】
本発明によれば、ステップ(a)で生体適合性高分子の固形分含有量(solid content)は全体マイクロ構造体の組成に対して1−30%(w/v)で含まれることができる。
【0043】
本発明の一具現例によれば、ステップ(a)で生体適合性高分子は全体マイクロ構造体の組成に対して濃度が1−5%(w/v)であり、本発明の特定具現例によれば、3%(w/v)の濃度で含まれることができる。
【0044】
ステップ(b):生体適合性高分子または粘着剤をマイクロモールドの孔に注入
【0045】
次に、前記生体適合性高分子または粘着剤をマイクロモールドの孔に注入する。
【0046】
本発明の一具現例によれば、本発明の注入はマイクロモールドに生体適合性高分子を供給した後、(i)前記マイクロモールドに800−1000gの遠心力を加えて実施するか、または(ii)500−860mmHg圧力下で実施することができる。
【0047】
例えば、マイクロモールドに800−1000gの遠心力を加えて実施する場合、800−1000gで10−20分間遠心分離するか、または900gで15分間遠心分離を実施することができる。また、真空圧力で実施する場合、500−860mmHg圧力下で5−20分間注入するか、または600−760mmHg圧力下で10−30分間注入することができる。
【0048】
本発明の特定具現例によれば、前記生体適合性高分子は、ヒアルロン酸、カルボキシメチルセルロース(Carboxymethyl cellulose:CMC)、アルギニック酸(alginic acid)、ペクチン、カラギーナン、コンドロイチン(サルフェート)、デキストラン(サルフェート)、キトサン、ポリリシン(polylysine)、コラゲン、ゼラチン、カルボキシメチルキチン(carboxymethyl chitin)、フィブリン、アガロース、プルランポリラクタイド、ポリグルコライド(PGA)、ポリラクタイド−グリコライド共重合体(PLGA)、プルランポリアンハイドライド(polyanhydride)、ポリオルトエステル(polyorthoester)、ポリエーテルエステル(polyetherester)、ポリカプロラクトン(polycaprolactone)、ポリエステルアミド(polyesteramide)、ポリ(ブチリック酸)、ポリ(バレリック酸)、ポリウレタン、ポリアクリレート、エチレン−ビニルアセテート重合体、アクリル置換セルロースアセテート、非−分解性ポリウレタン、ポリスチレン、ポリビニルクロライド、ポリビニルフルオライド、ポリ(ビニルイミダゾール)、クロロスルホネートポリオレフィン(chlorosulphonate polyolefins)、ポリエチレンオキサイド、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、ポリメタクリレート、ヒドロキシプロピルメチルセルロース(HPMC)、エチルセルロース(EC)、ヒドロキシプロピルセルロース(HPC)、サイクロデキストリン、及びこのような高分子を形成する単量体の共重合体及びセルロースで構成された群から選択された1以上の高分子である。本発明の特定具現例によれば、前記粘着剤はシリコン、ポリウレタン、ヒアルロン酸、物理的接着剤(gecko)、ポリアクリル、エチルセルロース、ヒドロキシメチルセルロース、エチレンビニルアセテート、及びポリイソブチレンで構成された群から選択された1以上の物質を含む。
【0049】
ステップ(c):生体適合性高分子または粘着剤の乾燥
【0050】
ステップ(b)の実施の以後、前記生体適合性高分子または粘着剤を乾燥させる。
【0051】
本発明の一具現例によれば、前記ステップ(c)は、(i)常温で36−60時間の間実施するか、(ii)40−60℃で5−16時間の間実施するか、または(iii)60−80℃で2−4時間の間実施することができる。本発明の他の具現例によれば、前記ステップ(c)は、(i)20−30℃で42−54時間の間実施するか、(ii)45−55℃で5−7時間の間実施するか、または(iii)65−75℃で2−4時間の間実施することができる。本発明の特定具現例によれば、前記ステップ(c)は、(i)25℃で48時間の間実施するか、(ii)50℃で6時間の間実施するか、または(iii)70℃で3時間の間実施することができる。このような乾燥過程はマイクロ構造体の機械的強度を高めてくれる。
【0052】
ステップ(d):マイクロモールドと架橋されたヒアルロン酸ハイドロジェルを分離
【0053】
ステップ(c)の実施の以後、本発明のマイクロモールドと乾燥された生体適合性高分子または粘着剤を分離してマイクロ構造体を形成させる。
【0054】
本発明のマイクロ構造体の製造方法は、複数個のマイクロ構造体が四角形または六角形に配列されるように形成することができる。六角形配列方式を適用して製造された複数のマイクロ構造体は、皮膚付着時、マイクロ構造体の全体的に均等な圧力が伝達できる。
【0055】
本発明の一具現例によれば、前記複数個のマイクロ構造体は250−1500μmの間隔(p)で配列できる。この場合、1cm面積当たり約25−1300個の構造体を配列することができる(<表1>参照)。
【0056】
本発明のマイクロ構造体の製造方法は、前述したマイクロ構造体を共通とするため、前記マイクロ構造体との関係で共通された内容は本明細書の過度な複雑性を避けるために、その記載を省略する。
【0057】
本発明の更に他の態様によれば、本発明は図1a乃至図1dのA乃至Dタイプの形状のうち、いずれか1つの形状であることを特徴とするマイクロ構造体を提供する。A乃至Dタイプ形状のマイクロ構造体の特徴は、前述した通りであり、本明細書の過度な複雑性を避けるために、その記載を省略する。
【発明の効果】
【0058】
本発明の特徴及び利点を要約すれば、次の通りである:
【0059】
(a)本発明は生体適合性高分子または粘着剤を含むマイクロ構造体及びその製造方法を提供する。
【0060】
(b)本発明者らは各マイクロ構造体の形態別に縦横比を最適化して皮膚透過のための最適チップ(tip)角度及び直径範囲を確保した。
【0061】
(c)特に、本発明のBタイプ及びCタイプのマイクロ構造体は、皮膚付着時、皮膚弾性による侵入抵抗性を最小化させることによって、構造体の侵入率(60%以上)及び有用成分の皮膚内の吸収率を高めることができる。また、本発明のDタイプのマイクロ構造体は、3重構造を適用して構造体の機械的強度を極大化することによって皮膚透過が容易である。
【0062】
(d)本発明で、複数個のマイクロ構造体を六角形(Hexagonal)配列方式を適用する場合、皮膚付着時、マイクロ構造体の全体的に均等な圧力が伝達できる。
【図面の簡単な説明】
【0063】
図1a】本発明の方法により製造されたマイクロ構造体を示す。底面の直径(w)、高さ(h)、末端チップ(distal tip)の角度(α)、末端チップの直径(t)、マイクロ構造体間の間隔(p)、構造体柱角度範囲(β、85−90゜;β−β、90−180゜)
図1b】本発明の方法により製造されたマイクロ構造体を示す。底面の直径(w)、高さ(h)、末端チップ(distal tip)の角度(α)、末端チップの直径(t)、マイクロ構造体間の間隔(p)、構造体柱角度範囲(β、85−90゜;β−β、90−180゜)
図1c】本発明の方法により製造されたマイクロ構造体を示す。底面の直径(w)、高さ(h)、末端チップ(distal tip)の角度(α)、末端チップの直径(t)、マイクロ構造体間の間隔(p)、構造体柱角度範囲(β、85−90゜;β−β、90−180゜)
図1d】本発明の方法により製造されたマイクロ構造体を示す。底面の直径(w)、高さ(h)、末端チップ(distal tip)の角度(α)、末端チップの直径(t)、マイクロ構造体間の間隔(p)、構造体柱角度範囲(β、85−90゜;β−β、90−180゜)
図1e】本発明の方法により製造されたマイクロ構造体を示す。底面の直径(w)、高さ(h)、末端チップ(distal tip)の角度(α)、末端チップの直径(t)、マイクロ構造体間の間隔(p)、構造体柱角度範囲(β、85−90゜;β−β、90−180゜)
図1f】本発明の方法により製造されたマイクロ構造体を示す。底面の直径(w)、高さ(h)、末端チップ(distal tip)の角度(α)、末端チップの直径(t)、マイクロ構造体間の間隔(p)、構造体柱角度範囲(β、85−90゜;β−β、90−180゜)
図2a】本発明の方法に使われたマイクロモールドの電子顕微鏡(SEM)写真を示す。2a:Aタイプ、2b:Bタイプ、2c:Cタイプ、2d:Dタイプ
図2b】本発明の方法に使われたマイクロモールドの電子顕微鏡(SEM)写真を示す。2a:Aタイプ、2b:Bタイプ、2c:Cタイプ、2d:Dタイプ
図2c】本発明の方法に使われたマイクロモールドの電子顕微鏡(SEM)写真を示す。2a:Aタイプ、2b:Bタイプ、2c:Cタイプ、2d:Dタイプ
図2d】本発明の方法に使われたマイクロモールドの電子顕微鏡(SEM)写真を示す。2a:Aタイプ、2b:Bタイプ、2c:Cタイプ、2d:Dタイプ
図3a】各々本発明の方法により製造されたマイクロ構造体であるAタイプの顕微鏡写真を示す(Sunny SZMN、40−70倍)。3a:Aタイプ、3b:Bタイプ、3c:Cタイプ、3d:Dタイプ
図3b】各々本発明の方法により製造されたマイクロ構造体であるBタイプの顕微鏡写真を示す(Sunny SZMN、40−70倍)。3a:Aタイプ、3b:Bタイプ、3c:Cタイプ、3d:Dタイプ
図3c】各々本発明の方法により製造されたマイクロ構造体であるCタイプの顕微鏡写真を示す(Sunny SZMN、40−70倍)。3a:Aタイプ、3b:Bタイプ、3c:Cタイプ、3d:Dタイプ
図3d】各々本発明の方法により製造されたマイクロ構造体であるDタイプの顕微鏡写真を示す(Sunny SZMN、40−70倍)。3a:Aタイプ、3b:Bタイプ、3c:Cタイプ、3d:Dタイプ
図4a】各々本発明の方法により製造されたマイクロ構造体であるAタイプの電子顕微鏡(SEM、JEOL JSM−7500F)写真を示す。4a:Aタイプ、4b:Bタイプ、4c:Cタイプ、4d:Dタイプ
図4b】各々本発明の方法により製造されたマイクロ構造体であるBタイプの電子顕微鏡(SEM、JEOL JSM−7500F)写真を示す。4a:Aタイプ、4b:Bタイプ、4c:Cタイプ、4d:Dタイプ
図4c】各々本発明の方法により製造されたマイクロ構造体であるCタイプの電子顕微鏡(SEM、JEOL JSM−7500F)写真を示す。4a:Aタイプ、4b:Bタイプ、4c:Cタイプ、4d:Dタイプ
図4d】各々本発明の方法により製造されたマイクロ構造体であるDタイプの電子顕微鏡(SEM、JEOL JSM−7500F)写真を示す。図4Dの矢印はw、w、及びwを測定する地点である。4a:Aタイプ、4b:Bタイプ、4c:Cタイプ、4d:Dタイプ
図5a】本発明の方法により製造されたAタイプのマイクロ構造体(5a)の機械的強度実験結果を示す。
図5b】本発明の方法により製造されたBタイプのマイクロ構造体(5b)の機械的強度実験結果を示す。
図5c】本発明の方法により製造されたCタイプのマイクロ構造体(5c)の機械的強度実験結果を示す。
図5d】本発明の方法により製造されたDタイプのマイクロ構造体(5d)の機械的強度実験結果を示す。
図5e】ピラミッド形状比較群(5e)の機械的強度実験結果を示す。
図6a】本発明の方法により製造されたマイクロ構造体の皮膚透過度(深さ)実験結果を示す(皮膚透過後、変形されたマイクロ構造体の電子顕微鏡写真)。6a:Aタイプ、6b:Bタイプ、6c:Cタイプ、6d:Dタイプ
図6b】本発明の方法により製造されたマイクロ構造体の皮膚透過度(深さ)実験結果を示す(皮膚透過後、変形されたマイクロ構造体の電子顕微鏡写真)。6a:Aタイプ、6b:Bタイプ、6c:Cタイプ、6d:Dタイプ
図6c】本発明の方法により製造されたマイクロ構造体の皮膚透過度(深さ)実験結果を示す(皮膚透過後、変形されたマイクロ構造体の電子顕微鏡写真)。6a:Aタイプ、6b:Bタイプ、6c:Cタイプ、6d:Dタイプ
図6d】本発明の方法により製造されたマイクロ構造体の皮膚透過度(深さ)実験結果を示す(皮膚透過後、変形されたマイクロ構造体の電子顕微鏡写真)。6a:Aタイプ、6b:Bタイプ、6c:Cタイプ、6d:Dタイプ
【発明を実施するための形態】
【0064】
以下、実施形態を通じて本発明をより詳細に説明しようとする。これら実施形態は専ら本発明をより具体的に説明するためのものであって、本発明の要旨によって本発明の範囲がこれら実施形態により制限されないということは当業界で通常の知識を有する者に当たって自明である。
【0065】
実施形態
実施形態1:マイクロ構造体の製造
1.Aタイプのマイクロ構造体の製造過程
シリコンウエハにフォトリソグラフィ(photolithography)製作技法を用いて陽または陰マスターモールド(positive or negative master mold)を製造した後、前記マスターモールドから硬化性シリコン(PDMS、polydimethylsilozane)を用いて最終の陰モールド(negative mold)を製造した。
【0066】
生体適合性高分子には、ヒアルロン酸(hyaluronic acid)を用いた。平均分子量360kDa(分子量範囲240−490kDa)のヒアルロン酸(Bloomage Freda Biotechnology Co., Ltd,、中国)を3%(w/v)濃度で精製水に完全に溶かした後、使用した。
【0067】
PDMSマイクロモールドに前記ヒアルロン酸を供給した後、常温(25℃)で48時間、50℃で6時間または70℃で3時間の間注入及び乾燥させた後(遠心分離と真空過程は実施しない)モールドを除去してヒアルロン酸マイクロ構造体を製造した。
【0068】
2.Bタイプのマイクロ構造体の製造過程
シリコンウエハにフォトリソグラフィ(photolithography)製作技法を用いて陽または陰マスターモールド(positive or negative master mold)を製造した後、前記マスターモールドから硬化性シリコン(PDMS、polydimethylsilozane)を用いて最終の陰モールド(negative mold)を製造した。
【0069】
生体適合性高分子には、ヒアルロン酸を用いた。平均分子量360kDa(分子量範囲240−490kDa)のヒアルロン酸を3%(w/v)濃度で精製水に完全に溶かした後、使用した。
【0070】
PDMSマイクロモールドに前記ヒアルロン酸を供給した後、900gで15分間遠心分離(centrifuge)を用いてマイクロモールドに形成された孔に注入した。常温(25℃)で48時間、50℃で6時間、または70℃で3時間の間乾燥し注入させた後、モールドを除去してヒアルロン酸マイクロ構造体を製造した。
【0071】
3.Cタイプのマイクロ構造体の製造過程
シリコンウエハにフォトリソグラフィ(photolithography)製作技法を用いて陽または陰マスターモールド(positive or negative master mold)を製造した後、前記マスターモールドから硬化性シリコン(PDMS、polydimethylsilozane)を用いて最終の陰モールド(negative mold)を製造した。
【0072】
生体適合性高分子には、ヒアルロン酸を用いた。平均分子量360kDa(分子量範囲240−490kDa)のヒアルロン酸を3%(w/v)濃度で精製水に完全に溶かした後、使用した。
【0073】
PDMSマイクロモールドに前記ヒアルロン酸を供給した後、真空(600−760mmHg)環境下で10−30分間マイクロモールドに形成された孔に注入した。常温(25℃)で48時間、50℃で6時間、または70℃で3時間の間乾燥し注入させた後、モールドを除去してヒアルロン酸マイクロ構造体を製造した。
【0074】
4.Dタイプのマイクロ構造体の製造過程
シリコンウエハにフォトリソグラフィ(photolithography)製作技法を用いて陽マスターモールド(positive master mold)を製造した後、前記陽マスターモールドから硬化性シリコン(PDMS、polydimethylsilozane)を用いて陰モールド(negative mold)を製造した。
【0075】
生体適合性高分子には、CMC(carboxymethyl cellulose)を用いた。CMCを3%(w/v)濃度で精製水に完全に溶かした後、使用した。
【0076】
PDMSマイクロモールドに前記CMCを供給した後、真空(600−760mmHg)環境下で10−30分間マイクロモールドに形成された孔に注入した。常温(25℃)で48時間、50℃で6時間、または70℃で3時間の間乾燥し注入させた後、モールドを除去してCMCマイクロ構造体を製造した。
【0077】
5.マイクロ構造体の規格範囲(図1a乃至図1f)
【0078】
【表1】
【0079】
*マイクロ構造体柱の角度範囲:β、85゜−90゜/β〜β、90度超過(90゜−180゜)
【0080】
実施形態2.マイクロ構造体の機械的強度実験
本発明で製造されたマイクロ構造体の機械的強度は、豚の皮膚を用いたものであり、マイクロ構造体を一定の力で豚の皮膚に透過させた時、皮膚の表皮に発生する孔の個数を確認して比較した(図5a乃至図5e)。
【0081】
各タイプ別のマイクロ構造体サンプルは0.7cm×0.7cm(100個以上の構造体)に切った後に使用したものであり、豚の皮膚に3−5kgの力で10秒間垂直に力を加えて透過させた。皮膚透過後、マイクロ構造体を除去し、トリパンブルー(trypane blue、Sigma)20mlを透過した皮膚表面に塗布した後、10分間染色した後、綿棒と生理食塩水(PBS)を用いて拭き取った。表皮層に染色された孔の個数を測定して成功的な皮膚透過が可能なマイクロ構造体の機械的強度を観察した。
【0082】
ピラミッド形態のマイクロ構造体を同一な方法により実験して機械的強度を比較した。
【0083】
本発明のマイクロ構造体別の機械的強度実験結果は、次の表の通りである。
【0084】
【表2】
【0085】
前記実験に使用したマイクロ構造体の細部規格は、次の通りである。
【0086】
【表3】
【0087】
実施形態3.マイクロ構造体の皮膚透過度(深さ)実験
本発明で製造されたマイクロ構造体の皮膚透過度は豚の皮膚に構造体を一定の力で透過した後、透過前後の構造体変形程度を確認して比較した(図6a乃至図6d)。
【0088】
各タイプ別のマイクロ構造体サンプルは0.7cm×0.7cmに切った後に使用したものであり、豚の皮膚に3−5kgの力で10秒−30分間垂直に力を加えて透過させた。光学顕微鏡(Optical Microscope)で挿入部位を観察し、皮膚挿入前後のマイクロ構造体の電子顕微鏡(SEM)観察を通じて変形程度を確認することによって透過可能な深さを測定した。
【0089】
本発明のマイクロ構造体別の皮膚透過度の実験結果は、次の表の通りである。
【0090】
【表4】
【0091】
以上で本発明の特定の部分を詳細に記述したところ、当業界の通常の知識を有する者に当たって、このような具体的な技術は単に好ましい具現例であり、これに本発明の範囲が制限されるものでないことは明白である。したがって、本発明の実質的な範囲は添付した請求項とその等価物により定義されるということができる。
【0092】
本特許出願は2015年12月28日付けで大韓民国特許庁に提出された大韓民国特許出願第10−2015−0187700号に対して優先権を主張し、前記特許出願の開示事項は本明細書に参照として挿入される。
図1a
図1b
図1c
図1d
図1e
図1f
図2a
図2b
図2c
図2d
図3a
図3b
図3c
図3d
図4a
図4b
図4c
図4d
図5a
図5b
図5c
図5d
図5e
図6a
図6b
図6c
図6d