(58)【調査した分野】(Int.Cl.,DB名)
前記グローバル3Dポイントクラウド及び前記テーブル(2)の境界情報のうちの少なくとも1つに対して座標変換を実行することにより、両者を同一座標系に変換することを更に含むことを特徴とする請求項1に記載の方法(200)。
前記環境3Dポイントクラウドが、前記医用イメージングシステムに予め記憶されているか、または前記対象(22)を前記テーブル(2)に載置する前に深度カメラ(3)を利用して前記周囲環境を撮像して得られる、請求項1に記載の方法(200)。
前記走査すべき領域の境界の、前記テーブル(2)の前進後退ルート上における位置、前記走査装置の走査範囲に基づき、前記テーブル(2)が前記走査装置に進入するときの最大深さを確定することを更に含み、
前記テーブル(2)の移動経路を計画するステップが、確定された前記目標高さ及び前記最大深さに基づき前記テーブル(2)の移動経路を計画するものである、請求項13に記載の方法(700)。
前記走査すべき領域の境界の前記前進後退ルート上における位置及び前記走査装置(1)の走査範囲に基づき、前記テーブル(2)の前記移動過程における前記前進後退方向の移動範囲を確定することを更に含む、請求項16に記載の方法(800)。
予測結果が、前記対象(22)が前記移動過程において前記周囲環境と衝突しないという結果である場合は、衝突しないことを表す安全表示を提供し、更に、前記テーブル(2)が前記走査計画に基づき前記走査装置(1)に自動的に移動することを許可して走査を実行すること、
予測結果が、前記対象(22)が前記移動過程において前記周囲環境と衝突するという結果である場合は、衝突が発生する恐れがあることを表す衝突警報及び衝突の発生する恐れがあると予測された部位を示す衝突部位予測表示を提供することと、を更に含む請求項16に記載の方法(800)。
予測結果が、前記対象(22)が前記移動過程において前記周囲環境と衝突するという結果である場合は、前記テーブル(2)の自動的な移動を禁止する、請求項21に記載の方法(800)。
予測結果が、前記対象(22)が前記移動過程において前記周囲環境と衝突するという結果である場合は、前記テーブル(2)の移動を手動制御することが許可される、請求項21に記載の方法(800)。
ヒューマン−コンピュータ・インタラクション・インターフェイスに、前記対象構造モデル、前記安全表示及び前記衝突警報を提示する、請求項21に記載の方法(800)。
前記衝突部位予測表示が、前記ヒューマン−コンピュータ・インタラクション・インターフェイスにおいて前記対象3Dポイントクラウド中の衝突の発生が予測される部分に提示される、請求項24に記載の方法(800)。
予測結果が、前記対象(22)が前記移動過程において前記周囲環境と衝突するという結果である場合は、更に、前記対象3Dポイントクラウドの前記移動過程における前記環境3Dポイントクラウドとの重なりの程度に基づいて、前記衝突の程度を確定する、請求項24に記載の方法(800)。
前記衝突の程度に対応した方式で、前記ヒューマン−コンピュータ・インタラクション・インターフェイスに前記衝突の発生が予測される部分を提示する、請求項26に記載の方法(800)。
前記ヒューマン−コンピュータ・インタラクション・インターフェイスの表示は、前記予測結果に基づいてリアルタイムで変化する、請求項24に記載の方法(800)。
複数の命令が記憶され、プロセッサ(41、1220)が前記命令を実行すると、前記プロセッサ(41、1220)に請求項1〜28のいずれか一項に記載された方法を実行させる、非一時的コンピュータ読み取り可能な媒体。
【発明を実施するための形態】
【0009】
添付図面は、一般的に例示する方式で、限定することなく、本明細書で議論されている各実施形態を図示している。添付図面において(これらの添付図面は必ずしも同一の縮尺で作成されているとは限らない)、同一の数字は異なる図における類似した要素を表すことがある。
【0010】
以下では、多数の特定の細部について説明する。しかし、それらの特定の細部を有していない場合にも本開示の実施形態を実践できることを理解すべきである。その他の実施形態では、その実施形態の説明の理解が曖昧にならないように、公知の回路、構造及び技術について詳細には説明していない。
【0011】
明細書において「一実施形態」、「実施形態」、「例示的な実施形態」などを引用することは、説明される実施形態が特定の特徴、構造または特性を含むことは有り得るが、各実施形態が当該特定の特徴、構造または特性を含むとは限らないことを表している。また、このような語句が同一の実施形態を指し示しているとは限らない。実施形態に関する特定の特徴、構造または特性を説明する場合、明示的に記載されているか否かにかかわらず、他の実施形態に関する特徴、構造または特性への影響は当業者の知識の範囲内であると考えられる。
【0012】
本開示の実施形態は、深度画像データを利用して、計算により対象3Dポイントクラウドを取得しており、人体に応用することができるばかりではなく、任意のその他の対象、例えば、人類以外の生命体、非生命体などにも応用することができるため、本明細書ではそれを「対象」と称している。また、本開示の実施形態では、更に、対象3Dポイントクラウドを利用してテーブルの移動経路を計画するとともに、対象がテーブルとともに移動する過程において周囲環境(例えば、走査装置)と衝突を生じるか否かを予測している。
【0013】
本明細書で説明している深度画像データは、深度カメラで撮像して得ることができる。深度カメラは、構造化光に基づくカメラ、立体カメラまたはTOFカメラとすることができる。深度カメラから得られる画像データは、通常、RGB−D(RGB+深度)データと呼ばれ、それは通常RGB画像(RGB画像の各画素はRGB値を有している)及び深度画像(深度画像の各画素の値は、深度、または画素のカメラからの距離に対応している)を含んでいる。本開示では主に深度画像を利用する。
【0014】
例示的なCTシステム
図1は実施形態に基づく例示的な医用イメージングシステム、例えば、CTシステム100の概略図であり、当該CTシステム100は、走査装置1及びテーブル2を含む。走査装置1は、システム軸10を備える走査空間12と、走査空間12の両側に対向して配置されるX線源14及びX線検出器16とを含み、X線検出器16はX線源14が照射したX線を検出することができる。テーブル2は対象22を配置するために用いられる、つまり、テーブル2は対象22を支持する。テーブル2はシステム軸10に沿って前後に移動することにより、走査装置1の走査空間12に進入することができる。テーブル2は、走査され検査される対象がテーブル2の乗り降りに便利なように、高さ方向、即ち、床面に垂直な方向で、上昇及び下降することができる。X線画像を撮像する(以下においては、「走査」と称する)場合、テーブル2は対象22を載置して走査空間12に進入する。X線検出器16及びX線源14はシステム軸10の周りを回転しても、静止状態であってもよく、X線検出器16は、X線源14が発射して走査空間12内に位置する対象22を貫通したX線を受け取って結像する。
【0015】
いくつかの実施形態において、CTシステムは、少なくとも1つの深度カメラ3を含み、その深度カメラは非接触で対象22の表面の少なくとも一部を撮像するとともに、深度画像データを出力するように設計される。いくつかの実施形態において、深度カメラ3は、視野(FOV)の死角を低減するように、室内(走査室)の最も高い所に取り付けられる。いくつかの実施形態において、深度カメラ3は、対象22の上方の中央部に位置決めするかまたはテーブル2の上方の中央部に位置決めすることができる。このようにして、対象22に関する深度情報の品質及び深度情報により生成される対象22の3Dポイントクラウドの品質を可能な限り均一にすることができる。いくつかの実施形態において、深度カメラ3は走査装置1内またはその外面に取り付けるまたは組み込むことができる。いくつかの実施形態において、深度カメラ3は走査装置1の回転可能な部分に組み込むことができ、したがって、X線源14及びX線検出器16とともに回転することができ、これにより、異なる角度で対象22を撮像することが可能となる。いくつかの実施形態において、深度カメラ3は、例えば三脚などの位置決めデバイスに取り付けることができる。
【0016】
いくつかの実施形態において、CTシステムは、コンピュータ装置4を含む。コンピュータ装置4はプロセッサ41を含んでおり、当該プロセッサ41は、本開示の実施形態で記述されている方法を実行するように構成される。いくつかの実施形態において、コンピュータ装置4は、コンピュータプログラムをその内部のメモリにロードするように設計される。コンピュータプログラムは、コンピュータ装置4により読み取り可能な命令を含み、コンピュータプログラム製品の本体部分である。コンピュータプログラム製品は、例えば、コンピュータ読み取り可能な媒体に記憶することができる。コンピュータプログラムのコンピュータ装置4が読み取り可能な命令は、コンピュータ装置4のプロセッサ41により命令が実行されると、本開示に基づく方法が実行されるように設計される。
【0017】
コンピュータ読み取り可能な媒体は、機器または装置によって製造または形成された物品の非一時的な有形物を含み、例えば、ハードディスク、その他の類型のディスク(ソフトディスク、光ディスク、リードオンリー光ディスクメモリ(CD−ROM)、読み書き可能な光ディスクメモリ(CD−RW)及び磁気光ディスク)、半導体デバイス(例えばリードオンリーメモリ(ROM)、ダイナミックランダムアクセスメモリ(DRAM)及びスタティックランダムアクセスメモリ(SRAM)の類のランダムアクセスメモリ(RAM)、消去型プログラマブルリードオンリーメモリ(EPROM)、フラッシュメモリ、電気的消去型プログラマブルリードオンリーメモリ(EEPROM))、相変化メモリ(PCM)、磁気カードまたは光カード、または電子命令の記憶に適した何らかのその他の類型の媒体を含むが、これらの媒体に限定されることはない。
【0018】
コンピュータ装置4は、例えば各種情報を表示するための出力ユニット5に接続される。出力ユニット5は、例えば(複数の)LCD、プラズマディスプレイまたはOLEDディスプレイである。いくつかの実施形態において、出力ユニット5は走査装置1に取り付けるまたは組み込むことができる。また、コンピュータ装置4は、入力ユニット6に接続される。入力ユニット6は、例えばユーザインタラクションを通じて制御命令、走査計画のなどの情報を入力するために用いられる。入力ユニット6は、例えばキーボード、マウス、タッチスクリーンまたは音声入力用のマイクロフォンなどである。いくつかの実施形態において、当該走査装置1は、制御パネルを含み、当該制御パネルは、出力ユニット5としてのフラットディスプレイ及び入力ユニット6としてのキーボードを含むことができ、当該制御パネルは、タッチスクリーンを有するフラットディスプレイとすることもできる。
【0019】
コンピュータ装置4は、深度カメラ3及び走査装置1に接続され、深度カメラ3が取得した対象22の深度画像データ、走査装置1の走査データ及びCTシステム100のリアルタイム位置情報をコンピュータ装置4に伝送することができる。CTシステム100のリアルタイム位置情報には、システム各部分の現在の位置情報、例えばテーブル2の現在の高さ、テーブル2の境界情報が含まれる。また、コンピュータ装置4は、テーブル2の移動及び走査装置1の走査を制御するように走査装置1及びテーブル2に命令を送ることができる。
【0020】
以上ではCTシステムの例示について記述しているが、本開示の方法は、その他の医用イメージングシステム、例えば、XR(X線撮像)システム、PET(陽電子放出型コンピュータ断層画像)システムまたはMR(核磁気共鳴イメージング)システムにも適用されると、理解すべきである。
【0021】
例示的な対象3Dポイントクラウドの生成方法
図2は実施形態に基づいて対象3Dポイントクラウドを生成するための方法200のフローチャートである。
【0022】
本実施形態の方法では、概略的には、対象22及びその周囲環境の3Dポイントクラウドを含むグローバル3Dポイントクラウドからテーブル2が存在する有効領域の有効3Dポイントクラウドを抽出し、その後、有効3Dポイントクラウド中から周囲環境の環境3Dポイントクラウドを除去して対象3Dポイントクラウドを取得する。従って、対象22及びその周囲環境を含むグローバル3Dポイントクラウドから対象3Dポイントクラウドを生成することが可能である。
【0023】
具体的に述べると、本実施形態の方法は、ステップ202から開始する。ステップ202では、テーブル2の現在の高さ及びテーブル2の境界情報に基づいて、グローバル3Dポイントクラウドからテーブル2が存在する有効領域内における有効3Dポイントクラウドを抽出する。グローバル3Dポイントクラウドは対象22及びその周囲環境の3Dポイントクラウドを含み、対象3Dポイントクラウドは当該有効3Dポイントクラウドに含まれる。
【0024】
テーブル2の現在の高さは、CTシステム100のリアルタイムの位置情報から取得することができる。テーブル2の境界情報は、テーブル2のおおよその輪郭を確定するために用いられる。いくつかの実施形態において、テーブル2の境界情報は、テーブル2の4つの角部の位置情報(例えば、座標)とすることができる。尚、ここでは、テーブル2が厳格な矩形であることは要求しておらず、角部はテーブル2の外接四角形の角部であってもよいことに留意すべきである。
【0025】
いくつかの実施形態において、グローバル3Dポイントクラウドは、以下の方式により取得することができる。すなわち、深度カメラ3を利用して撮像した、対象22及びその周囲環境を含む深度画像データを変換して、対象22及びその周囲環境を含むグローバル3Dポイントクラウドを得る。上述されているように、深度カメラ3は、RGB画像データ及び深度画像データを出力することができるが、ここでは当該深度画像データを使用する。その他の実施形態においては、深度画像データを独立した撮像システムによって取得し、有線または無線方式でコンピュータ装置4に伝送することができる。
【0026】
深度画像データは、公知の方法によりポイントクラウド情報、即ちグローバル3Dポイントクラウドに変換することができる。いくつかの実施形態においてはグローバル3Dポイントクラウドをクラウド自体の座標系(例えば、カメラ座標系)からCTシステム100の座標系に変換することができる。テーブル2の境界情報をCTシステム100のリアルタイム位置情報から取得しているため、CTシステム100の座標系が基準として使用される。従って、同一座標系でグローバル3Dポイントクラウド及びテーブル2の境界情報を処理して有効3Dポイントクラウドを抽出することができる。その他の実施形態においては、テーブル2の境界情報をCTシステム100の座標系からグローバル3Dポイントクラウドの座標系、例えば、カメラの座標系に変換し、その後、同一座標系においてグローバル3Dポイントクラウド及びテーブル2の境界情報を処理して有効3Dポイントクラウドを抽出することができる。当然、テーブル2の境界情報及びグローバル3Dポイントクラウドをその他の座標系に変換して処理することもでき、両者の基準座標系が同一でさえあればよい。
【0027】
本明細書で記載されている有効領域は、テーブル2の少なくとも一部及びそれが載置する対象22を含む三次元領域とすることができる。いくつかの実施形態において、有効領域は、テーブル2の載置面を底面とする三次元領域とすることができる。有効領域の高さ寸法は、対象22全体がその中に含まれるように、対象22の厚みを下回らない任意の高さ寸法とすることができる。いくつかの実施形態においては、テーブル2の載置面上方の全領域を有効領域とすることができる。いくつかの実施形態においては、有効領域を直方体とすることができる。
【0028】
有効領域の(テーブル2の長手方向の)長さ及び(テーブル2の幅方向の)幅は、テーブル2またはその外接四角形の長さ及び幅に基づき確定することができる。いくつかの実施形態において、有効領域の長さ及び幅は、それぞれテーブル2またはその外接四角形の長さ及び幅と略等しくすることができる。いくつかの実施形態において、有効領域の長さ及び幅は、それぞれテーブル2またはその外接四角形の長さ及び幅よりも大きくすることができる。
【0029】
図3には実施形態に基づく例示的なグローバル3Dポイントクラウド及び例示的な有効領域が示されている。
図3に示されている通り、深度画像データから変換して得られたグローバル3Dポイントクラウドには、深度カメラ3の視野範囲内における全情報、つまり、対象22及びその周囲環境の3Dポイントクラウドが含まれている。
図3に示されている通り、周囲環境には、例えば、走査装置1、テーブル2、床面及び/またはその他の機器の少なくとも一部が含まれている。ステップ202を実行することにより、グローバル3Dポイントクラウドから、例えば
図3に破線で示した有効領域の有効3Dポイントクラウドを抽出することができる。ここで、
図3の有効領域は1つの例示に過ぎず、本開示の範囲内において任意に変更することができることを理解すべきである。
【0030】
ステップ202を実行して抽出された有効3Dポイントクラウドは、大部分の環境3Dポイントクラウド(例えば、床面の3Dポイントクラウド、走査装置1及びその他の装置の大部分の3Dポイントクラウド)が除去されているが、依然として一部の環境3Dポイントクラウド、例えば、テーブル2の3Dポイントクラウド、走査装置1の一部の3Dポイントクラウドなどを含んでいる。
【0031】
そのため、ステップ204において、有効3Dポイントクラウドから更にそれらの環境3Dポイントクラウドを除去して対象3Dポイントクラウドを取得する。
【0032】
周囲環境の情報(例えば、形状、位置、状態)は既知であるため、周囲環境の3Dポイントクラウドも既知である。いくつかの実施形態においては、環境3Dポイントクラウドをコンピュータ装置4に予め記憶しておくことができる。いくつかの実施形態においては、深度カメラ3を利用して、同一の位置且つ同じ向きで、対象22が載置されていない周囲環境を撮像して、それら周囲環境の環境3Dポイントクラウドを取得することができる。ここで、当該周囲環境を撮像するステップは、対象3Dポイントクラウドを生成するたびに実行するようには要求されておらず、例えば、CTシステム100及び深度カメラ3の設置が完了した後に1回実行し、取得した環境3Dポイントクラウドを保存し、その後、対象3Dポイントクラウドを生成する度に当該環境3Dポイントクラウドを呼び出すことができることを理解すべきである。また、環境に変化があるたびに(例えば、装置の位置が移動した、その他の装置が増えた)、当該撮像を実行することもできる。いくつかの実施形態において、環境3DポイントクラウドはCTシステム100のリアルタイム位置情報に基づいて計算及びサンプリングにより生成することもできる。
【0033】
図4にはステップ204により生成された対象3Dポイントクラウドの例が示されており、
図5には当該対象3Dポイントクラウドと走査装置(X線源14及びX線検出器16)を利用して撮像したDICOM(Digital Imaging and Communications in Medicine:医療におけるデジタル画像と通信)画像との対比が示されている。
図4に示されている通り、対象3Dポイントクラウドには環境3Dポイントクラウドがほとんど含まれておらず、対象22の構造の特徴を明確に反映することができる。
図5において、点状パターンが示しているのは本明細書で記述している対象3Dポイントクラウドであり、白色の実線が示しているのは上記のDICOM画像である。
図5から、本実施形態の方法を利用して生成された対象3Dポイントクラウドが、実際に撮像して得られた対象のDICOM画像と十分に一致する場合、当該対象3Dポイントクラウドは対象22の構造情報を反映していることがわかる。本実施形態の方法200では対象のモデルを生成する必要なく、予め設定されたモデルとマッチングを行うため、人体には限られない各種の対象に応用することができる。
【0034】
これらの状況下において、例えば、対象22のテーブル2に対する位置、姿勢などの原因により、対象22のある一部(複数部分)がテーブル2の境界を超える恐れがある。完全な対象3Dポイントクラウドを保存するため、有効領域(
図3の破線で示されている部分)の長さ及び幅を更に拡大して、当該部分が除去されることを防止することができる。いくつかの実施形態においては、有効領域の幅をテーブル2(またはその外接四角形)の幅から走査空間12の最大幅まで拡大することができる。また、ある状況では、テーブル2に付加構造を取り付け、更に対象22の少なくとも一部を当該付加構造に載置することができる。テーブル2の長さで有効領域を設定している場合、当該付加構造上の対象3Dポイントクラウドは除去される。そのため、いくつかの実施形態においては、有効領域の長さを、テーブル2の長さを基礎として更に延長することができる。
【0035】
いくつかの実施形態においては、対象3Dポイントクラウドに対してノイズ低減処理を実施することができる。ノイズ低減処理にはフィルタリング及びクラスタリングのアルゴリズムを含むことができる。フィルタリングは、例えば、ガウシアンフィルタまたは移動平均フィルタとすることができ、対象3Dポイントクラウドの平滑化に用いられる。クラスタリングは、例えば、PCL(Point Cloud Library:ポイントクラウドライブラリ)の関数を使用して実現することができる。全ての点が幾つかの種類にクラスタリングされ、その後、ノイズに分類された(例えば、走査装置1、テーブル2)点を削除する。
【0036】
いくつかの実施形態においては、対象3Dポイントクラウドに対してダウンサンプリング・ボクセル化を実施してより良好な計算機能を獲得することができる。
【0037】
いくつかの実施形態においては、更に、対象3Dポイントクラウドに基づき対象の構造モデル(例えば、メッシュ(mesh)モデル)を生成してシステムに予め設定されたモデルとマッチングさせることができる。
【0038】
図6は別の実施形態に基づいて対象3Dポイントクラウドを生成するための方法600のフローチャートである。本実施形態の方法600と
図2に示されている方法200との違いは、まず、対象22を含まない環境3Dポイントクラウドを取得し、その後、グローバル3Dポイントクラウドから環境3Dポイントクラウドを除去するが、有効3Dポイントクラウドを抽出しない点にある。
【0039】
具体的に述べると、本実施形態の方法はステップ601から開始し、テーブル2に対象22を載置する前に、まず、コンピュータ装置4により対象22を含まない周囲環境の深度画像データを受信する。深度画像データは上述している通りに取得することができる、例えば、深度カメラ3で撮像して得ることができる。次いで、ステップ602において、ステップ601において受け取った深度画像データを環境3Dポイントクラウドに変換する。
【0040】
次いで、ステップ603において、対象22をテーブル2に載置した後、深度カメラ3により、ステップ601において周囲環境の深度画像を撮像した際と同一の位置及び向きで、対象22及びその周囲環境を含む深度画像を撮像し、その後、深度画像データをコンピュータ装置4に伝送する。次いで、ステップ604において、ステップ603において受け取った深度画像データをグローバル3Dポイントクラウドに変換する。
【0041】
ステップ601及びステップ603において深度画像を撮像するカメラの位置及び向きが同一であるため、グローバル3Dポイントクラウド中に含まれている環境3Dポイントクラウドとステップ601において取得された環境3Dポイントクラウドとは同一であると見なすことができる。
【0042】
従って、ステップ605においては、グローバル3Dポイントクラウド中からステップ602により取得した環境3Dポイントクラウドを直接除去して、対象3Dポイントクラウドを生成することができる。
【0043】
本開示の実施形態に記述されている方法200及び600により生成される対象3Dポイントクラウドによって、オペレータは対象22の輪郭情報を直観的かつ正確に把握することができ、更に当該対象3Dポイントクラウドを利用して、その後に実行される走査の補助を行うことができる。
【0044】
例示的なテーブル移動経路の計画方法
図7は、実施形態に基づいて、本明細書に記載されている医用イメージングシステムにおけるテーブルの移動経路を計画するための方法700のフローチャートである。
【0045】
テーブル2の移動には、ベッドの昇降とベッドの移送の2つが主に含まれる。ベッドの昇降とは、テーブルを最初の位置からある高さまで調整することを指しており、ベッドの移送とは、テーブルをシステム軸10に沿ってある位置まで前進または後退させることを指している。本明細書に記載のテーブル移動経路の計画とは、走査を実行するためにテーブルが位置決めされるべき目標高さを確定し、それに基づきテーブルの移動経路を計画することを指している。
【0046】
具体的に述べると、本実施形態の方法はステップ702から開始し、走査計画に基づいて対象3D中の走査すべき領域を確定する。
【0047】
対象3Dポイントクラウドは、本開示の実施形態で記載されている方法を利用して生成することができ、その他の方式、例えば、レーザ光走査を利用して取得した対象の輪郭モデルを対象3Dポイントクラウドに変換することにより取得することもできる。
【0048】
走査すべき領域は、対象のすべてとすることができ、一部とすることもでき、例えば、人の胸腔、頭部、または位置情報を利用して示されるその他の部分とすることができる。いくつかの実施形態において、走査計画はオペレータによってコンピュータ装置4に入力することができ、例えば、対象に対する走査すべき部分の位置情報と、走査の実行に必要な正確なフローのための撮像パラメータとを含む。いくつかの実施形態において、位置情報は、対象に対する走査すべき領域の位置を表す。別の実施形態において、位置情報は、走査すべき領域の境界を表す境界マークである。対象が生命を持つ生命体である場合、境界マークは、当該対象の解剖マーク、例えば、関節マークとすることができ、左目及び右目、左膝及び右膝、左腰及び右腰、鼠径部、左腕及び右腕、左肘及び右肘、左肩及び右肩、胸部の中心、頭の底部及び頭頂部などを含む。
【0049】
ステップ704においては、走査すべき領域の重心及び当該重心の高さを確定する。
【0050】
次いで、ステップ706においては、走査すべき領域の重心高さ及び走査装置1の走査空間12の中心高さに基づいて、テーブルが位置決めされる目標高さを確定する。目標高さは、テーブル2が当該目標高さに位置決めされると、走査すべき領域の重心高さを走査空間12の中心高さに等しくするものである。ここで、重心高さと中心高さはテーブル2を基準にしてもよいし、床面を基準にしてもよい。確定された目標高さによって、走査すべき領域を走査空間12の中心に位置させることが確保される。
【0051】
最後に、ステップ708においては、ステップ706により確定された目標高さに基づき、テーブル2の移動経路を計画する。具体的には、テーブル2を当初の高さ位置から目標高さまで上昇または下降させることができる。当初の高さ位置とは、例えば、対象22をテーブル2に載置した際の高さ位置である。
【0052】
本実施形態で説明されている方法700を採用することにより、対象3Dポイントクラウド及び走査計画に基づいて、走査計画を実行するときに必要なテーブル2の移動経路を自動で計画することができ、手動操作を回避することができる。
【0053】
いくつかの実施形態においては、更に、走査すべき領域の境界の、前記テーブルの前進後退ルート(システム軸10)上における位置、走査装置1の走査範囲に基づき、走査計画を実行するためにテーブル2が走査装置1に進入するときの最大深さを確定することができる。走査すべき領域の境界位置は、走査計画に含まれる走査すべき部分の位置情報に基づき確定することができる。そのため、当該最大深さに基づき、テーブル2の前進後退方向(システム軸10)におけるテーブル2の移動経路を計画することができる。
【0054】
例示的な走査衝突予測方法
図8は、実施形態に基づいて本明細書に記載されている医用イメージングシステムにおいて対象22の衝突を予測するための方法800のフローチャートである。本実施形態の方法は、テーブル2の計画高さに基づいて、計画高さで対象22がテーブル2によって前後に移動する過程において周囲環境と衝突を生じるか否かを予測する。テーブルの計画高さは、本明細書に記載されている例示的なテーブル移動経路の計画方法に基づいて得ることができる。
【0055】
本実施形態の方法800は、ステップ801から開始し、走査計画に基づいて、対象3D中の走査すべき領域を確定する。
【0056】
対象3Dポイントクラウドは、本開示の実施形態に記載されている方法を利用して生成することができ、その他の方式、例えば、レーザ光走査を利用して取得した対象の輪郭モデルを対象3Dポイントクラウドに変換することにより取得することもできる。
【0057】
走査すべき領域は、対象のすべてとすることができ、一部とすることもでき、例えば、人の胸腔、頭部、または位置情報を利用して示されるその他の部分とすることができる。いくつかの実施形態において、走査計画は走査すべき部分を表す位置情報を含む。いくつかの実施形態において、位置情報は、対象に対する走査すべき領域の位置を表す。別の実施形態において、位置情報は、走査すべき領域の境界を表す境界マークである。対象が生命を持つ生命体である場合、境界マークは、当該対象の解剖マーク、例えば、関節マークとすることができ、左目及び右目、左膝及び右膝、左腰及び右腰、鼠径部、左腕及び右腕、左肘及び右肘、左肩及び右肩、胸部の中心、頭の底部及び頭頂部などを含む。
【0058】
ステップ802においては、走査すべき領域の重心及び当該重心の高さを確定する。
【0059】
次いで、ステップ803においては、走査すべき領域の重心高さ及び走査装置1の走査空間12の中心高さに基づき、テーブルが位置決めされる目標高さを計画高さとして確定する。目標高さは、テーブル2が当該目標高さに位置決めされると、走査すべき領域の重心高さを走査空間12の中心高さに等しくするものである。ここで、重心高さと中心高さは、テーブル2を基準とすることができ、床面を基準とすることもできる。確定された目標高さによって、走査すべき領域の重心が走査空間12の中心に位置することが確保される。
【0060】
次いで、ステップ804においては、対象22の対象3Dポイントクラウドが、ステップ803により確定されたテーブル2の計画高さでテーブル2の前進後退方向(システム軸10)に沿って移動する移動過程において、環境3Dポイントクラウドと重なるか否かを判断することにより、対象22が当該移動過程において周囲環境と衝突を生じるか否かを予測する。
【0061】
環境3Dポイントクラウドは、上記のように既知であるか、または深度カメラにより撮像して得ることもできる。
【0062】
ステップ804において対象22がテーブル2とともに移動する際に周囲環境と衝突を生じないと予測された場合は、ステップ805に進む。ステップ805においては、オペレータに、対象が安全に走査位置に移動することができ、かつ、走査中に周囲環境と衝突を生じないことを表す表示、つまり安全表示を提示する。安全表示は、例えば、文字、画像、動画などの方式で表示することができるが、本願では限定するものではない。
【0063】
図9には実施形態に基づく安全表示を含む例示的なインターフェイスが示されている。当該安全表示は、例えば、出力ユニット5のヒューマン−コンピュータ・インタラクション・インターフェイスに提示することができる。
図9に示されている通り、外側の太い実線は走査空間12を表しており、内側の細い実線は衝突が発生しない安全領域の境界を表しており、細い実線内の図形は対象22の模擬画像である。従って、言うまでもなく、衝突を予測するとき、つまり対象3Dポイントクラウドが移動過程において環境3Dポイントクラウドと重なるか否かを判断するときに、安全マージンを設けることができる。また、対象22の模擬画像は、例えば、対象3Dポイントクラウドに基づいてリアルタイムで生成することができ、例えば、システム軸10に沿って対象3Dポイントクラウドを観察して得られる画像である。
【0064】
対象22がテーブル2とともに移動するときに周囲環境と衝突を生じないと予測されているため、
図9に示されているインターフェイスでは対象のすべての部分が細い実線で示された円内に位置しており、インターフェースに安全表示が提示されていることを視認することができる。オペレータは安全表示に基づいて衝突を生じないと判断することができ、更にCTシステム100の自動移動機能を利用してテーブル2を走査計画に従って自動的に移動させて、走査を実行することができる。
図9に示されているインターフェイスにおいて、当該自動移動機能をオペレータが始動させることを許可できるように、テーブルの自動移動の実行を確認するためのボタンが活性化状態にある。ここで、
図9に示されているインターフェイスは1つの例示に過ぎず、必要に応じて各表示要素をデザインすることができることを理解すべきである。また、
図9に示されているインターフェイスは、出力装置5に表示してもよいし、走査装置1の制御パネルに表示してもよいし、またはこれら両方に表示してもよい。
【0065】
オペレータが自動移動を確認し、ステップ807において計画した高さにより走査を実行した後、フローが終了となる。
【0066】
ステップ804において、対象22がテーブル2とともに移動する際に周囲環境と衝突を生じると予測された場合は、ステップ805に進む。ステップ805においては、オペレータに向けて衝突のリスクがあることを表す衝突警報を提示する。衝突警報は、例えば、文字、画像、動画などの方式で表示することができるが、本願では限定するものではない。
図10には実施形態に基づく衝突警報を含む例示的なインターフェイスが示されている。対象22が周囲環境と衝突すると予測されているため、
図10に示されている通り、対象の一部が、細い実線で表された安全境界からはみ出ていることが提示されており、かつ、「危険」警報が表示される。その場合、テーブル2の自動的な移動は禁止され、対象22の位置を変更して衝突のリスクを排除するかまたはオペレータがテーブル2の移動を手動で制御する必要がある。従って、
図10に示されているインターフェイスのテーブル2の自動的な移動を確認するためのボタンは使用禁止状態に変わっている。
【0067】
いくつかの実施形態において、
図9及び
図10に示されているインターフェイスは、ステップ804の予測結果に基づいてリアルタイムで変化し、オペレータがリアルタイムでかつ視覚的に衝突予測の結果を知ることができる。
【0068】
いくつかの実施形態においては、更にヒューマン−コンピュータ・インタラクション・インターフェイスに衝突の発生が予測される部位を提示することができる。
図11には実施形態に基づく衝突の発生が予測された部位を示す例示的なインターフェイスが示されており、そのインターフェイスには、更に、対象の、例えば走査装置1と衝突が発生するであろう部位が示されており、図中では破線で示されている右手である。それによりオペレータが、衝突のリスクがある部位を速やかに識別して、対象の位置、姿勢などを調整して衝突のリスクを解消することをサポートすることができる。衝突部位は、対象3Dポイントクラウドがステップ804において移動過程において環境3Dポイントクラウドと重なると判断された部分に対応する部位である。いくつかの実施形態においては、当該インターフェイスに、オペレータに衝突のリスクがあることを提示するとともに、対象の位置を調整するかまたは手動で制御することを提案するための情報が表示される。いくつかの実施形態において、当該インターフェイスはステップ804の予測結果にリアルタイムで対応している。いくつかの実施形態においては、他の部分とは異なる表示方法で、衝突する恐れが予測される部分を強調表示するが、本明細書では表示方式に対して如何なる限定をするものでもない。いくつかの実施形態においては、対象3Dポイントクラウドが移動過程において環境3Dポイントクラウドと重なる程度に基づいて衝突の程度を更に判断することにより、当該衝突の程度に対応した方式でヒューマン−コンピュータ・インタラクション・インターフェイスに衝突が発生するであろうと予測される部位を提示する。例えば、衝突の程度が重大であるほど、より目に付きやすい方式で、衝突が発生するであろうと予測される部位を提示する。
【0069】
ここで注意すべきことは、ステップ804に示されている衝突リスクの予測を周期的に実施する点である。対象の位置、姿勢などを調整することによって衝突のリスクを排除すると、ステップ806に進む。逆に、すでに衝突のリスクはないと判定されていたとしても、対象の位置、姿勢などが走査開始前に変化して、衝突のリスクが改めて発生した場合は、再度ステップ804を経由してステップ805に進み、衝突警報を発する。
【0070】
また、
図8に示されている方法800においては、ステップ802及びステップ803を実行してテーブル2の計画高さを取得する。その他の実施形態において、テーブル2の移動経路の計画を実行しない場合は、テーブル2の現在の高さを計画高さとすることもできる。
【0071】
また、
図8に示されている方法800においては、テーブル2の計画高さに基づき、衝突予測を実行する。しかし、以下の状況が存在している可能性もある。つまり、対象22の位置及び姿勢が変化しないと仮定した場合、対象22全体に対して走査を実行すると衝突のリスクを招く可能性があるが、対象22の一部に対してのみ走査を実行するなら衝突のリスクがない可能性がある。これは走査計画に基づいて確定される走査すべき領域が異なるためである。従って、いくつかの実施形態においては、更に、走査すべき領域の境界の、テーブル2の前進後退ルート(システム軸10)上における位置と、走査装置1の走査範囲とに基づいて、テーブル2の当該移動過程における前進後退方向(システム軸10)の移動範囲を確定することができる。これにより、衝突予測を実行する際に、テーブル2の前進後退方向(システム軸10)における移動範囲を、走査計画に基づき確定することができ、より正確な衝突予測結果を得ることができる。
【0072】
例示的なコンピュータ装置
図12は実施形態に基づく例示的なコンピュータ装置1200のブロック図である。当該コンピュータ装置1200は、例えば、パーソナルコンピュータ(PC)、ポータブル式コンピュータ、フラットパネル機器、ワークステーション、または当該機器が採るべき動作を指定する(順序またはその他の方式の)命令を実行可能ないずれかの機器とすることができる。いくつかの実施形態において、コンピュータ装置1200は、例えば、1つまたは複数のプロセッサ1220と、1つまたは複数のプログラムを記憶するための記憶装置1210とを含み、前記1つまたは複数のプログラムが前記1つまたは複数のプロセッサ1220により実行されると、前記1つまたは複数のプロセッサ1220が本開示の実施形態で説明されている方法を実現する。プロセッサは、例えば、デジタル信号プロセッサ(DSP)、マイクロコントローラ、特定用途向け集積回路(ASIC)またはマイクロプロセッサなどである。
【0073】
図12に示されているコンピュータ装置1200は1つの例示に過ぎず、本開示の実施形態の機能及び使用範囲に何らかの制限するものではない。
【0074】
図12に示されている通り、コンピュータ装置1200の構成要素は、異なるシステム構成要素(記憶装置1210及びプロセッサ1220を含む)を接続するバス1250に接続することができる。
【0075】
バス1250は幾つかのタイプのバス構造のうちの1つまたは複数を示しており、バス1250は、メモリバス若しくはメモリコントローラ、周辺バス、アクセラレーテッドグラフィックスポート(AGP)、プロセッサまたは複数のバス構造のうちの任意のバス構造を使用するローカルバスを含む。例を挙げると、それらのアーキテクチャは、業界標準アーキテクチャ(ISA)バス、マイクロチャネルアーキテクチャ(MCA)バス、拡張ISAバス、ビデオ エレクトロニクス スタンダーズ アソシエーション(VESA)ローカルバス、およびペリフェラル コンポーネント インターコネクト(PCI)バスを含むが、それらに限定されることはない。
【0076】
コンピュータ装置1200は、典型的には、複数のコンピュータシステム読取可能媒体を含む。それらの媒体は、コンピュータ装置1200によりアクセスすることができる利用可能な媒体とすることができ、揮発性媒体及び不揮発性媒体、可搬型媒体及び非可搬型媒体を含む。
【0077】
記憶装置1210は、揮発性メモリ形式のコンピュータシステムが読み取り可能な媒体、例えば、ランダムアクセスメモリ(RAM)1211及び/または高速キャッシュメモリ1212を含むことができる。コンピュータ装置1200は、その他の可搬型/非可搬型、揮発性/不揮発性のコンピュータシステム記憶媒体を更に含んでいてもよい。例を挙げると、メモリシステム1213は、非可搬型で不揮発性の磁気媒体(
図12は示されていないが、通常、「ハードディスクドライブ」と呼ばれる)の読み書きに使用することができる。
図12中に示されていないが、可搬型で不揮発性の磁気ディスク(例えば、「ソフトディスク」)の読み書きのための磁気ディスクドライバ、及び可搬型で不揮発性の光ディスク(例えば、CD−ROM、DVD−ROMまたはその他の光媒体)の読み書きに用いる光ディスクドライバを提供することができる。これらの場合、各ドライバは1つまたは複数のデータ媒体インターフェイスを介してバス1250に接続することができる。記憶装置1210は、少なくとも1つのプログラム製品を含むことができ、当該プログラム製品はプログラムモジュールのセット(例えば、少なくとも一つ)を有しており、それらのプログラムモジュールは本開示における各実施形態の機能を実行するように構成される。
【0078】
プログラムモジュール1215のセット(例えば、少なくとも一つ)を有するプログラム/ユーティリティツール1214は、例えば、記憶装置1210中に記憶することができ、それらのプログラムモジュール1215には、オペレーティングシステム、1つまたは複数のアプリケーションプログラム、その他のプログラムモジュール及びプログラムデータが含まれるが、それらに限定されず、これらの例示における各々またはある組合せには、ネットワーク環境のインプリメンテーションを含むことができる。プログラムモジュール1215は、通常、本開示で説明されている任意の実施形態における機能及び/または方法を実行する。
【0079】
コンピュータ装置1200は、1つまたは複数の入力装置1260(例えば、キーボード、ポインティングデバイスなど)及び出力装置1270(例えば、ディスプレイ)と通信することもでき、更にユーザが当該コンピュータ装置1200とインタラクション可能な1つまたは複数の装置と通信することができ、及び/または当該コンピュータ装置1200を、1つまたは複数のその他のコンピュータ装置と通信することができる任意の装置(例えば、ネットワークカード、モデムなど)と通信させることができる。これらの通信は入力/出力(I/O)インターフェイス1230を介して実行することができる。更に、コンピュータ装置1200は、ネットワークアダプタ1240を介して1つまたは複数のネットワーク(例えば、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)及び/または公共ネットワーク(例えばインターネット))と通信することができる。
図12に示されている通り、ネットワークアダプタ1240は、バス1250を介してコンピュータ装置1200の他のモジュールと通信する。図中には示されていないが、明らかに、コンピュータ装置1200に結合してその他のハードウェアモジュール及び/またはソフトウェアモジュールを使用することができ、それにはマイクロコード、機器ドライバ、冗長処理ユニット、外部磁気ディスク駆動アレイ、RAIDシステム、磁気テープドライバ及びデータバックアップ記憶システムなどが含まれるが、それらには限定されない。
【0080】
プロセッサ1220は、記憶装置1210中に記憶されているプログラムを実行して、各種機能アプリケーション及びデータ処理を実行し、例えば、本開示の実施形態で説明されている対象構造モデルの生成方法及び衝突予測方法を実現する。
【0081】
プログラムコードは、高水準手続き型プログラミング言語またはオブジェクト指向プログラミング言語を用いて実現することができ、処理システムと通信する。必要であれば、アセンブリ言語または機械語を用いてプログラムコードを実現することもできる。事実上、本明細書で説明されている手法は、任意の特定のプログラミング言語の範囲には限定されない。いずれの状況下においても、当該言語はコンパイラ型言語またはインタプリタ型言語とすることができる。
【0082】
以上、本開示の好適な実施形態について詳細に説明した。しかし、本開示は、開示された広い意味での精神及び範囲から脱離することなく、各種の実施形態及び変形を採用することができると、理解すべきである。当業者であれば創造的な作業を行う必要なく本開示の考えに基づき数多くの修正及び変更を施すことができる。従って、当業者が本開示の考えに従って現在の技術を基礎として論理的な分析、推論または限られた実験を通して取得することができる技術的解決策は、いずれも本開示の特許請求の範囲により確定される保護範囲内に属するものである。