(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0015】
以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。
【0016】
[電解質組成物]
本発明の電解質組成物は、ビス(フルオロスルホニル)イミドのアルカリ金属塩と、ポリエーテル系重合体、(メタ)アクリル系重合体、ニトリル系重合体、フッ素系重合体からなる群より選択される少なくとも1種の重合体と、イオン解離促進剤とを含むものである。本発明の電解質組成物は、このような特定の化合物を含むことにより、従来の電解質組成物よりも優れたイオン伝導性を発揮することができる。
【0017】
本発明の電解質組成物は、ビス(フルオロスルホニル)イミドのアルカリ金属塩以外のその他のアルカリ金属塩を含んでいてもよく、本発明の電解質組成物1kg当たりの、ビス(フルオロスルホニル)イミドのアルカリ金属塩とその他のアルカリ金属塩との合計のアルカリ金属塩濃度は、1.0mol/kg以上であることが好ましい。これにより本発明の電解質組成物はイオン伝導性により優れることになる。
上記アルカリ金属塩濃度としてより好ましくは1.2mol/kg以上であり、更に好ましくは1.5mol/kg以上であり、一層好ましくは1.8mol/kg以上であり、より一層好ましくは2.0mol/kg以上であり、特に好ましくは2.2mol/kg以上であり、最も好ましくは2.5mol/kg以上である。また、好ましくは5.3mol/kg以下であり、より好ましくは5.0mol/kg以下であり、更に好ましくは4.6mol/kg以下である。
【0018】
本発明の電解質組成物は、ビス(フルオロスルホニル)イミドのアルカリ金属塩の濃度が、1.0mol/kg以上であることが好ましい。これにより本発明の電解質組成物はイオン伝導性により優れることになる。より好ましくは1.2mol/kg以上であり、更に好ましくは1.5mol/kg以上であり、一層好ましくは1.8mol/kg以上であり、より一層好ましくは2.0mol/kg以上であり、特に好ましくは2.2mol/kg以上であり、最も好ましくは2.5mol/kg以上である。
【0019】
本発明の電解質組成物は、ビス(フルオロスルホニル)イミドのアルカリ金属塩以外のその他のアルカリ金属塩の濃度が0〜2.0mol/kgであることが好ましい。より好ましくは0〜1.5mol/kgであり、更に好ましくは0〜1.0mol/kgである。
【0020】
上記電解質組成物におけるアルカリ金属塩の合計の含有量は、特に限定はなく、例えば、電解質組成物100質量%に対して、5〜99質量%であることが好ましい。より好ましくは20〜99質量%であり、更に好ましくは35〜98質量%であり、特に好ましくは50〜95質量%であり、最も好ましくは70〜95質量%である。
上記電解質組成物におけるビス(フルオロスルホニル)イミドのアルカリ金属塩の含有量は、特に限定はなく、例えば、電解質組成物100質量%に対して、5〜99質量%であることが好ましい。より好ましくは20〜99質量%であり、更に好ましくは35〜98質量%であり、特に好ましくは50〜95質量%であり、最も好ましくは70〜95質量%である。
【0021】
上記電解質組成物におけるポリエーテル系重合体、(メタ)アクリル系重合体、ニトリル系重合体、フッ素系重合体からなる群より選択される少なくとも1種の重合体の含有量は、特に制限されないが、電解質組成物100質量%に対して、0.5〜45質量%であることが好ましい。より好ましくは1〜45質量%であり、更に好ましくは3〜40質量%であり、特に好ましくは5〜30質量%である。なお、上記重合体が、2種以上の重合体を含む場合、重合体の含有量は、2種以上の重合体の合計の含有量を表す。
【0022】
上記電解質組成物におけるイオン解離促進剤の含有量は、特に制限されないが、電解質組成物100質量%に対して、0.5〜45質量%であることが好ましい。これによりアルカリ金属塩濃度が高濃度であっても、より充分にイオンが解離し、イオン伝導性がより向上する。より好ましくは1〜45質量%であり、更に好ましくは3〜40質量%であり、特に好ましくは5〜30質量%である。
【0023】
上記電解質組成物は、ビス(フルオロスルホニル)イミドのアルカリ金属塩、その他のアルカリ金属塩、重合体、イオン解離促進剤以外のその他の成分を含んでいてもよく、その他の成分の含有量は、電解質組成物100質量%に対して、0〜20質量%であることが好ましい。より好ましくは0〜15質量%であり、更に好ましくは0〜10質量%である。
【0024】
以下では、本発明の電解質成物に含まれる必須成分及び任意成分について更に説明する。
<ビス(フルオロスルホニル)イミドのアルカリ金属塩>
上記ビス(フルオロスルホニル)イミドのアルカリ金属塩は、下記式(2);
MN(SO
2F)
2 (2)
(式中、Mはアルカリ金属イオンを表す。)で表される化合物である。
上記Mにおけるアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられる。好ましくは、リチウム、ナトリウム、カリウムであり、より好ましくはリチウムである。
【0025】
<その他のアルカリ金属塩>
その他のアルカリ金属塩としては、ビス(フルオロスルホニル)イミドのアルカリ金属塩以外のアルカリ金属塩であれば特に制限されないが、例えば、LiFSO
3等のフルオロスルホン酸のアルカリ金属塩;LiCF
3SO
3等のトリフロロメタンスルホン酸のアルカリ金属塩;LiN(CF
3SO
2)
2等のイミド系アルカリ金属塩;LiC(CF
3SO
2)
3等のパーフルオロアルカンスルホニルメチドのアルカリ金属塩;LiPF
a(C
mF
2m+1)
6−a(0≦a≦6、1≦m≦2)等のフルオロリン酸塩;LiClO
4等の過塩素酸アルカリ金属塩;LiBF
b(C
nF
2n+1)
4−b(0≦b≦4、1≦n≦2)等のフルオロホウ酸塩;LiBOB等のオキサラトボレートのアルカリ金属塩;リチウムテトラシアノボレート等のシアノホウ酸塩;LiAsF
6、LiI、LiSbF
6等のアルカリ金属塩等が挙げられる。
【0026】
<重合体>
上記重合体は、ポリエーテル系重合体、(メタ)アクリル系重合体、ニトリル系重合体、フッ素系重合体からなる群より選択される少なくとも1種の重合体である。
上記(メタ)アクリル系重合体としては、特に制限されないが、例えば(メタ)アクリル酸や(メタ)アクリル酸エステルのホモポリマー、これらの単量体やその他の単量体との共重合体等が挙げられる。
【0027】
上記(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸2−(アセトアセトキシ)エチル、(メタ)アクリル酸ポリオキシアルキレングリコール、(メタ)アクリル酸メトキシポリアルキレングリコール、(メタ)アクリル酸フェノキシポリアルキレングリコール、(メタ)アクリル酸シアノエチル等が挙げられる。
【0028】
上記その他の単量体としては、例えば、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、メチル(α−ヒドロキシメチル)アクリレート、エチル(α−ヒドロキシメチル)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート、(メタ)アクリル酸4−ヒドロキシメチルシクロヘキシルメチル等の水酸基含有(メタ)アクリル酸エステル類;マレイン酸、フマル酸、クロトン酸、イタコン酸、無水マレイン酸、カルボキシル基末端カプロラクトン変性(メタ)アクリレート、(メタ)アクリル酸スルホエチル、2−(メタ)アクリロイルオキシエチルアシッドホスフェート等の酸性官能基含有重合性単量体類;スチレン、α−メチルスチレン、ビニルトルエン、ジビニルベンゼン、酢酸ビニル、塩化ビニル、塩化ビニリデン等のビニル化合物類;ビニルトリクロルシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン等の珪素含有重合性単量体類;(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸オクタフルオロペンチル、(メタ)アクリル酸ヘプタドデカフルオロデシル、(メタ)アクリル酸パーフロロオクチルエチル等のハロゲン含有(メタ)アクリル酸エステル類;
【0029】
(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、(メタ)アクリル酸N,N’−ジメチルアミノエチル、N−メチル−N−ビニルホルムアミド、N−ビニルピリジン、N−ビニルイミダゾール、N−ビニルピロリドン、N−フェニルマレイミド、N−シクロヘキシルマレイミド、2−イソプロペニル−2−オキサゾリン、アクリロニトリル等の窒素原子含有重合性単量体類;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ビニロキシエチル(メタ)アクリレート、ビニロキシエトキシエチル(メタ)アクリレート等の多官能性重合性単量体類;(メタ)アクリル酸グリシジル、(メタ)アクリル酸α−メチルグリシジル、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート等のエポキシ基含有重合性単量体類;2−(メタ)アクロイルオキシエチルイソシアネート、(メタ)アクロイルイソシアネート、m−イソプロペニル−α,αジメチルベンジルイソシアネート等のイソシアネート基含有重合性単量体類;4−(メタ)アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン;
【0030】
メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、2−エチルヘキシルビニルエーテル、n−ノニルビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、メトキシエトキシエチルビニルエーテル、エトキシエトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル、2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、クロルエチルビニルエーテル等の単官能ビニルエーテル類;スチレン、α−メチルスチレン、ビニルトルエン、酢酸アリル、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等の単官能ビニル化合物類;等が挙げられる。
【0031】
上記ニトリル系重合体としては、特に制限されないが、例えばアクリロニトリルのホモポリマーや、その他の単量体との共重合体等が挙げられる。
その他の単量体は、上記(メタ)アクリル系重合体において述べたとおりである。
上記ニトリル系重合体は、アクリロニトリル由来の構造単位の割合が、全構造単位100質量%に対して30〜100質量%であることが好ましい。より好ましくは50〜100質量%であり、更に好ましくは70〜100質量%である。
【0032】
フッ素系重合体としては、特に制限されないが、例えばフッ化ビニリデン(VdF)、ヘキサフルオロプロピレン(HFP)、テトラフルオロエチレン(TFE)等のホモポリマー、これらの単量体やその他の単量体との共重合体等が挙げられる。
その他の単量体は、上記(メタ)アクリル系重合体において述べたものの他、エチレン、プロピレン、ビニルエーテル、ビニルエステル等が挙げられる。
上記フッ素系重合体は、上記VdF、HFP、TFE由来の構造単位の合計の割合が、全構造単位100質量%に対して30〜100質量%であることが好ましい。より好ましくは50〜100質量%であり、更に好ましくは70〜100質量%であり、特に好ましくは90〜100質量%である。
【0033】
上記ポリエーテル系重合体は、アルキレンオキシド由来の構造単位を有するものであれば特に制限されないが、エチレンオキシド由来の構造単位(以下、構造単位(a)ともいう。)を有することが好ましい。
上記ポリエーテル系重合体は、更に下記式(3);
【0035】
(式中、R
2は、同一又は異なって、炭素数1〜3の炭化水素基を表す。)で表される構造単位(b)及び/又は下記式(4);
【0037】
(式中、R
3は、同一又は異なって、炭素数1〜8の直鎖又は分岐鎖を有する炭化水素基を表す。R
4は、同一又は異なって、官能基を有していてもよい、炭素数1〜12の炭化水素基を表す。nは、0〜12の整数を表す。mは0又は1である。)で表される構造単位(c)を有していてもよい。
ポリエーテル系重合体は、好ましくは上記構造単位(a)及び構造単位(b)を有するものである。
ポリエーテル系重合体に、エーテル結合を有する側鎖官能基を導入することで、ポリマーの運動性が向上し、イオン伝導性、特にLiイオンの伝導性を向上させることができる。
【0038】
上記ポリエーテル系重合体における構造単位(a)の割合は、全構造単位100モル%に対して40〜100モル%であることが好ましい。より好ましくは70〜100モル%であり、更に好ましくは90〜100モル%である。
【0039】
上記ポリエーテル系重合体における構造単位(b)の割合は、全構造単位100モル%に対して0〜30モル%であることが好ましい。より好ましくは0〜20モル%であり、更に好ましくは0〜10モル%である。
【0040】
上記ポリエーテル系重合体における構造単位(c)の割合は、全構造単位100モル%に対して0〜30モル%であることが好ましい。より好ましくは0〜20モル%であり、更に好ましくは0〜10モル%である。
【0041】
上記式(3)におけるR
2は、同一又は異なって、炭素数1〜3の炭化水素基である。炭素数1〜3の炭化水素基としては、メチル基、エチル基等が挙げられ、R
2として好ましくはエチル基である。
ここで、「同一又は異なって」とは、上記ポリエーテル系重合体が式(3)で表される構造単位を複数有する場合に、それぞれのR
2が、同一であっても異なっていてもよいことを意味する。
【0042】
上記ポリエーテル系重合体に、式(3)で表される構造単位を導入するための原料単量体としては、プロピレンオキシド、ブチレンオキシド等が挙げられる。これらの中でも、ブチレンオキシドが好ましい。
【0043】
上記式(4)におけるR
3は、同一又は異なって、炭素数1〜8の直鎖又は分岐鎖を有する炭化水素基である。R
3の炭素数として、好ましくは1〜6であり、より好ましくは1〜4である。炭素数1〜8の直鎖又は分岐鎖を有する炭化水素基としては、メチレン(−CH
2−)、エチレン(−CH
2CH
2−)、トリメチレン(−CH
2CH
2CH
2−)、テトラメチレン(−CH
2CH
2CH
2CH
2−)等の、直鎖のアルキレン基;エチリデン[−CH(CH
3)−]、プロピレン[−CH(CH
3)CH
2−]、プロピリデン[−CH(CH
2CH
3)−]、イソプロピリデン[−C(CH
3)
2−]、ブチレン[−CH(CH
2CH
3)CH
2−]、イソブチレン[−C(CH
3)
2CH
2−]、ブチリデン[−CH(CH
2CH
2CH
3)−]、イソブチリデン[−CH(CH(CH
3)
2)−]等の分岐鎖のアルキレン基等が挙げられる。
これらの中でも、メチレン、エチレン、トリメチレン、テトラメチレン等の直鎖アルキレン基、プロピレン、プロピリデン、ブチレン、ブチリデン等の分岐鎖アルキレン基が高いイオン伝導度を示すという点で好ましい。より好ましくは、メチレン、エチレン、トリメチレン、テトラメチレン、プロピレン、プロピリデン、ブチレンであり、更に好ましくは、メチレン、エチレン、プロピレン、ブチレンである。
上記式(4)において、R
3は1種であっても2種以上であってもよい。R
3が2種以上である場合、−(R
3−O)−で表されるオキシアルキレン基の付加形態は、ブロック状、ランダム状等のいずれの形態であってもよい。
【0044】
上記式(4)におけるR
3Oで表される基の平均付加モル数を表すnは、0〜12であり、R
3Oで表されるオキシアルキレン基の種類によっても異なるが、1〜8の範囲であることが好ましい。上記ポリエーテル系重合体は、側鎖にオキシアルキレン基を有することにより、イオン伝導性がより優れたものとなる。nは、より好ましくは1〜6であり、更に好ましくは1〜4である。
式(4)におけるmは、0又は1であるが、nが0のとき、mとしては1が好ましい。
【0045】
上記式(4)におけるR
4は、同一又は異なって、官能基を有していてもよく、炭素数1〜12の炭化水素基である。上記炭化水素基としては、特に制限されないが、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基等が挙げられる。
上記炭化水素基がアリール基の場合、炭素数としては、6〜12であることが好ましく、より好ましくは、6〜8である。上記炭化水素基がアリール基以外の場合、炭素数としては、より好ましくは1〜8であり、更に好ましくは1〜4である。
炭化水素基としてはアルキル基が好ましく、中でもメチル、エチル、n−プロピル、イソプロピル、n−ブチル、n−ヘキシル、n−オクチル、イソブチル、sec−ブチル、tert−ブチルがより好ましい。更に好ましくは、メチル、エチル、n−プロピル、イソプロピル、n−ブチルである。
【0046】
上記ポリエーテル系重合体に、上記式(4)で表される構造単位を導入するための原料単量体としては、メトキシエチルグリシジルエーエル、プロポキシエチルグリシジルエーテル、ブトキシエチルグシリジルエーテル、メトキシエトキシエチルグリシジルエーテル、プロポキシエトキシエチルグリシジルエーテル、ブトキシエトキシエチルグシリジルエーテル、トリエチレングリコールメチルグリシジルエーテル、トリエチレングリコールプロピルグリシジルエーテル、トリエチレングリコールブチルグリシジルエーテル、テトラエチレングリコールメチルグリシジルエーテル等が挙げられる。
【0047】
上記ポリエーテル系重合体は、上記構造単位(a)、(b)、(c)以外のその他の構造単位を有していてもよい。その他の構造単位としては、特に制限されないが、例えば、側鎖に架橋性官能基を有する構造単位が挙げられる。
上記ポリエーテル系重合体が側鎖に架橋性官能基を有する構造単位を有する場合には、セパレーターを使用せずに、電解質膜を形成することが容易になる。
上記ポリエーテル系重合体に、側鎖に架橋性官能基を有する構造単位を導入するための原料単量体としては、エポキシブテン、3,4−エポキシ−1−ペンテン、1,2−エポキシ−5,9−シクロドデカジエン、3,4−エポキシ−1−ビニルシクロへキセン、1,2−エポキシ−5−シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、グリシジル−4−ヘキサノエート、又は、ビニルグリシジルエーテル、アリルグリシジルエーテル、4−ビニルシクロヘキシルグリシジルエーテル、α−テルペニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、4−ビニルベンジルグリシジルエーテル、4−アリルベンジルグリシジルエーテル、アリルグリシジルエーテル、エチレングリコールアリルグリシジルエーテル、エチレングリコールビニルグリシジルエーテル、ジエチレングリコールアリルグリシジルエーテル、ジエチレングリコールビニルグリシジルエーテル、トリエチレングリコールアリルグリシジルエーテル、トリエチレングリコールビニルグリシジルエーテル、オリゴエチレングリコールアリルグリシジルエーテル、オリゴエチレングリコールビニルグリシジルエーテル等が挙げられる。これらの中でも、エポキシブテン、アリルグリシジルエーテルが好ましく、アリルグリシジルエーテルがより好ましい。
【0048】
上記ポリエーテル系重合体は、ポリエーテル系重合体を形成する全構造単位の総量100モル%に対して、上記その他の構造単位の割合が0〜10モル%であることが好ましい。
ポリエーテル系重合体が側鎖に架橋性官能基を有する構造単位を有する場合、その割合が、10モル%以下であれば、電解質組成物を用いて膜を形成する際に、膜が固くなることをより充分に抑制することができ、イオン伝導性に優れることとなる。
ポリエーテル系重合体における上記その他の構造単位の割合として、より好ましくは0.1〜7モル%、更に好ましくは0.5〜5モル%である。
【0049】
上記ポリエーテル系重合体は、重量平均分子量が1万〜30万であることが好ましい。重量平均分子量が1万以上であれば、電解質組成物を用いて膜を形成する際の製膜性により優れることとなる。また、30万以下であれば、膜が固くなることをより充分に抑制することができ、イオン伝導性に優れることとなる。
より好ましくは3万〜20万であり、更に好ましくは5万〜15万である。
上記重量平均分子量は、後述する実施例と同様の方法により測定することができる。
【0050】
<イオン解離促進剤>
上記イオン解離促進剤は、アルカリ金属塩のイオンへの解離を促進するものであれば特に制限されないが、ヘテロ元素を有する化合物が好ましい。
上記ヘテロ元素を有する化合物としては、スルホニル化合物、ニトリル化合物、カーボネート化合物、カルボン酸無水物、硫酸エステル化合物、チオエーテル化合物、亜硫酸エステル化合物、含窒素環状化合物等が挙げられる。
これらの中でもスルホニル化合物及び/又はニトリル化合物が好ましい。上記イオン解離促進剤がスルホニル化合物及び/又はニトリル化合物を含むことにより、アルカリ金属塩のイオンへの解離がより促進され、組成物のイオン伝導性がより向上する。
イオン解離促進剤としてより好ましくはニトリル化合物である。
【0051】
スルホニル化合物としては、例えば、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、tert−ブチルメチルスルホン等のスルホン類;スルホラン(テトラメチレンスルホン)、2−メチルスルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等のスルホラン類;スルトン、1,3−プロパンスルトン、1,4−ブタンスルトン等のスルトン類;ブスルファン、スルホレン等が挙げられる。
スルホニル化合物として好ましくはスルホラン類であり、この中でもスルホランが好ましい。
【0052】
ニトリル化合物としては、例えば、モノニトリル化合物やジニトリル化合物が挙げられる。
モノニトリル化合物としては、例えば、プロピオニトリル、ブチロニトリル、ペンタンニトリル、ヘキサンニトリル、ヘプタンニトリル、オクタンニトリル、ペラルゴノニトリル、デカンニトリル、ウンデカンニトリル、ドデカンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル及び2−ヘキセンニトリル等が挙げられる。
【0053】
ジニトリル化合物としては、例えば、マロノニトリル、スクシノニトリル(サクシノニトリル)、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、2,3,3−トリメチルスクシノニトリル、2,2,3,3−テトラメチルスクシノニトリル、2,3−ジエチル−2,3−ジメチルスクシノニトリル、2,2−ジエチル−3,3−ジメチルスクシノニトリル、ビシクロヘキシル−1,1−ジカルボニトリル、ビシクロヘキシル−2,2−ジカルボニトリル、ビシクロヘキシル−3,3−ジカルボニトリル、2,5−ジメチル−2,5−ヘキサンジカルボニトリル、2,3−ジイソブチル−2,3−ジメチルスクシノニトリル、2,2−ジイソブチル−3,3−ジメチルスクシノニトリル、2−メチルグルタロニトリル、2,3−ジメチルグルタロニトリル、2,4−ジメチルグルタロニトリル、2,2,3,3−テトラメチルグルタロニトリル、2,2,4,4−テトラメチルグルタロニトリル、2,2,3,4−テトラメチルグルタロニトリル、2,3,3,4−テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4−ジシアノペンタン、2,6−ジシアノヘプタン、2,7−ジシアノオクタン、2,8−ジシアノノナン、1,6−ジシアノデカン、1,2−ジジアノベンゼン、1,3−ジシアノベンゼン、1,4−ジシアノベンゼン、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル及び3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等が挙げられる。
【0054】
ニトリル化合物として好ましくは、ジニトリル化合物であり、より好ましくは下記式(1);
【0056】
(式中、R
1は、炭素数1〜6のアルキル基又は炭素数6〜10のアリール基を表す。)で表される化合物である。
上記R
1としては、炭素数1〜6のアルキル基が好ましい。炭素数1〜6のアルキル基としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、t−ブチル、n−ペンチル、イソペンチル、n−ヘキシル等が挙げられる。
ジニトリル化合物として好ましくは、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリルであり、より好ましくはマロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリルである。
【0057】
カーボネート化合物としては、例えば、エチレンカーボネート(EC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、メチルビニレンカーボネート(MVC)、エチルビニレンカーボネート(EVC)等の環状カーボネート;フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等のフッ素化環状カーボネート等が挙げられる。
【0058】
カルボン酸無水物としては、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等が挙げられる。
【0059】
硫酸エステル化合物としては、例えば、メタンスルホン酸メチル、トリメチレングリコール硫酸エステル等が挙げられる。
チオエーテル化合物としては、例えば、テトラメチルチウラムモノスルフィド等が挙げられる。
亜硫酸エステル化合物としては、例えば、エチレンサルファイト等が挙げられる。
【0060】
含窒素環状化合物としては、例えば、1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシンイミド等が挙げられる。
【0061】
<その他の成分>
本発明の電解質組成物は、ビス(フルオロスルホニル)イミドのアルカリ金属塩、その他のアルカリ金属塩、重合体、イオン解離促進剤以外のその他の成分を含んでいてもよく、その他の成分としては、例えば、ヘプタン、オクタン、シクロヘプタン等の飽和炭化水素化合物;重合体の製造時に用いられる重合禁止剤、連鎖移動剤、溶媒や未反応の反応原料、反応原料が分解してできる副生成物;等が挙げられる。
[電池用材料]
本発明の電解質組成物は、電解質膜、電極等の各種電池用材料として好適に用いることができる。
このように、本発明の電解質組成物を用いる電池用材料もまた、本発明の1つである。
【0062】
<電解質膜>
本発明の電解質組成物は、電池用の電解質膜の材料として好適に用いることができる。
本発明の電解質組成物を含む電解質膜もまた本発明の1つである。
上記電解質膜は、セパレーター(以下、支持体ともいう。)を含んでいてもよい。これにより電解質膜の機械的強度を向上させることができる。
電解質膜がセパレーターを含む形態もまた、本発明の好適な実施形態の1つである。
【0063】
上記セパレーターとしては、特に制限されないが、織布、不織布、(微)多孔質膜及びガラス成形体等が挙げられる。
上記織布及び不織布としては、例えば、ポリプロピレン、ポリエチレン、ポリメチルペンテン等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、ナイロン等のポリアミド系樹脂、ポリパラフェニレンテレフタルアミド等のアラミド系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂、セルロース系樹脂(セルロース系繊維)等;アルミナ繊維、セラミックス繊維、ガラス繊維等からなるものが挙げられる。
上記(微)多孔質膜としては、例えば、ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体等のポリオレフィン系樹脂、ポリエステル系樹脂、四フッ化エチレン−パーフルオロアルコキシエチレン共重合体等のフッ素樹脂、ポリエーテルエーテルケトン、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアミド系樹脂、ポリイミド等からなるものが挙げられる。
上記ガラス成形体としては、例えば、ガラスクロス等が挙げられる。
これらのセパレーターとしては、更に親水性を向上させるために、界面活性剤を付与する方法、発煙硫酸、クロルスルホン酸等の化学薬品によるスルホン化、フッ素化、グラフト化処理等の方法、又は、コロナ放電やプラズマ放電等による方法によって親水化処理したものを用いても良い。
上記セパレーターとしては、セルロース不織布、PET不織布、ガラス不織布、ポリオレフィン不織布、ポリオレフィン微多孔膜及びポリイミド多孔膜からなる群より選択される少なくとも1種からなるものが好ましい。より好ましくはセルロース不織布、ポリオレフィン微多孔膜である。
【0064】
本発明の電解質組成物により電解質膜を形成する場合、膜厚(上記支持体も含めた厚さ)が5〜300μmとなるように形成することが好ましい。より好ましくは、10〜250μmであり、更に好ましくは、15〜200μmである。
また、本発明の電解質膜における上記支持体を含めた膜厚(α)と、支持体の膜厚(β)の比率(α/β)が、1.1〜20となるように形成することが好ましい。支持体を含む電解質の膜厚が、支持体のみの厚みと同じ(=電解質成分が支持体中に全て吸収され、電解質成分が表面に出てこない状態)であると、電解質としての性能を充分に発揮できないおそれがある。また、支持体を含む電解質の膜厚が、支持体のみの厚みの20倍を超えると、イオンの伝導距離が長くなり、充分な電池性能が得られない恐れがある。本発明の電解質膜における上記支持体を含めた膜厚(α)と、支持体の膜厚(β)の比率(α/β)は、より好ましくは、1.1〜10であり、更に好ましくは、1.1〜8である。
【0065】
上記電解質膜の製造方法は特に制限されないが、電解質膜が支持体を含む場合には、上記電解質組成物を含む電解質溶液を支持体に塗布又は含浸させ、乾燥させることが好ましい。
上記乾燥方法は、特に制限されないが、加熱乾燥及び/又は減圧乾燥を行うことが好ましい。
【0066】
上記電解質膜が支持体を含まない場合には、上記電解質組成物を含む電解質溶液をテフロン(登録商標)シート等のシートに塗布し、乾燥させることが好ましい。乾燥方法は上述のとおりである。
上記電解質組成物に含まれる重合体が架橋性官能基を有する場合等には、乾燥後、架橋反応を行うことが好ましい。
上記架橋反応は、架橋性官能基の種類等にもよるが、例えば、熱、光等により行うことができる。好ましくは光により重合反応を行うことである。
【0067】
<電極>
本発明の電解質組成物は、電池用の電極の材料として好適に用いることができる。
本発明の電解質組成物を含む電極もまた本発明の1つである。本発明の電解質組成物は、正極、負極のいずれに用いてもよい。
【0068】
正極は、正極活物質、導電助剤、結着剤および分散用溶媒等を含む正極活物質組成物が正極集電体に担持されているものであり、通常、シート状に成形されている。
【0069】
正極の製造方法としては、例えば、正極集電体に正極活物質組成物をドクターブレード法等で塗工したり、正極集電体を正極活物質組成物に浸漬した後に、乾燥する方法;正極活物質組成物を混練成形し乾燥して得たシートを正極集電体に導電性接着剤を介して接合し、プレス、乾燥する方法;液状潤滑剤を添加した正極活物質組成物を正極集電体上に塗布または流延して、所望の形状に成形した後、液状潤滑剤を除去し、次いで、一軸または多軸方向に延伸する方法;等が挙げられる。
【0070】
正極集電体の材料としては特に限定されず、例えば、アルミニウム、アルミニウム合金、SUS(ステンレス鋼)、チタン等の導電性金属が使用できる。中でも、薄膜に加工し易く、安価であるという観点からは、アルミニウムが好ましい。
【0071】
正極活物質としては、イオンを吸蔵・放出可能であれば良く、従来公知の正極活物質が用いられる。具体的には、MCoO
2、MNiO
2、MMnO
2、MNi
1−x−yCo
xMn
yO
2やMNi
1−x−yCo
xAl
yO
2(0≦x≦1、0≦y≦1)で表される三元系酸化物等の遷移金属酸化物、M
xNi
yMn
(2−y)O
4(0.9≦x≦1.1、0<y<1)で表されるニッケルマンガン酸、MAPO
4(A=Fe、Mn、Ni、Co)等のオリビン構造を有する化合物、遷移金属を複数取り入れた固溶材料(電気化学的に不活性な層状のM
2MnO
3と、電気化学的に活性な層状のMM”O([M”=Co、Ni等の遷移金属]との固溶体)(Mはアルカリ金属イオンを表す)等が正極活物質として例示できる。これらの正極活物質は、1種を単独で使用してもよく、または、複数を組み合わせて使用してもよい。
【0072】
導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト、金属粉末材料、単層カーボンナノチューブ、多層カーボンナノチューブ、気相法炭素繊維等が挙げられる。
【0073】
結着剤としては、ポリビニリデンフロライド、ポリテトラフルオロエチレン等のフッ素系樹脂;スチレン−ブタジエンゴム、ニトリルブタジエンゴム等の合成ゴム;ポリアミドイミド等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリ(メタ)アクリル系樹脂;ポリアクリル酸;カルボキシメチルセルロース等のセルロース系樹脂;等が挙げられる。これらの結着剤は単独で使用してもよく、複数種を混合して使用してもよい。また、これらの結着剤は、使用の際に溶媒に溶けた状態であっても、溶媒に分散した状態であっても構わない。
【0074】
導電助剤および結着剤の配合量は、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性等を考慮して適宜調整することができる。
【0075】
正極を製造するに際して、正極活物質組成物に用いられる溶媒としては、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトニトリル、アセトン、エタノール、酢酸エチル、水等が挙げられる。これらの溶媒は組み合わせて使用してもよい。溶媒の使用量は特に限定されず、製造方法や、使用する材料に応じて適宜決定すればよい。
【0076】
負極活物質としては、電池で使用される従来公知の負極活物質を用いることができ、イオンを吸蔵・放出可能なものであればよい。具体的には、アルカリ金属、アルカリ金属−アルミニウム合金等の金属合金、人造黒鉛、天然黒鉛等の黒鉛材料、石炭,石油ピッチから作られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料、Si、Si合金、SiO等のSi系負極材料、Sn合金等のSn系負極材料を用いることができる。
【0077】
負極の製造方法としては、正極の製造方法と同様の方法を採用することができる。また、負極の製造時に使用する導電助剤、結着剤、材料分散用の溶媒も、正極で用いられるものと同様のものが用いられる。
【0078】
本発明の電解質組成物は、バインダーとして正極又は負極材料スラリーに混合したうえで基板上に塗布しても、正極又は負極材料スラリーを基板上に塗布し、乾燥させたうえで、本発明の電解質組成物を含む電解質溶液をさらに塗布して乾燥させてもよい。
【0079】
上記電解質としては、本発明の電解質組成物の他、高分子固体電解質、無機固体電解質、溶融塩等を併用することができる。これらの中でも、本発明の電解質組成物を用いることが好ましい。
【0080】
上記正極用材料又は負極用材料からなるスラリーである電極組成物は、更にバインダーを含むことができる。バインダーとしては、例えば、水添ジエン系重合体にカルボキシル基等の官能基を導入した変性重合体や、ポリフッ化ビニリデン等のフッ素を含有する重合体と、カルボキシル基等の官能基を有するアクリル系重合体とを複合化した複合化重合体の水系分散体等を併用することができる。
【0081】
<電池>
本発明は、本発明の電解質組成物を用いて構成される電池でもある。
本発明はまた、本発明の電解質膜及び/又は電極を用いて構成される電池でもある。
本発明の電池は、セパレーターとして、上記本発明の電解質膜を備えていることが好ましい。より詳細には、正極と負極とを備えた二次電池であり、正極と負極との間には電解質膜が設けられ、正極、負極等と共に外装ケースに収容されていることが好ましい。
【0082】
本発明に係る電池の形状は特に限定されず、円筒型、角型、ラミネート型、コイン型、大型等、電池の形状として従来公知の形状はいずれも使用することができる。また、電気自動車、ハイブリッド電気自動車等に搭載するための高電圧電源(数10V〜数100V)として使用する場合には、個々の電池を直列に接続して構成される電池モジュールとすることもできる。
【0083】
上記電池としては、アルカリ金属電池であることが好ましく、本発明の電解質膜及び/又は電極を用いて構成されるアルカリ金属電池もまた、本発明の1つである。また、上述の本発明の電解質組成物を含む電解質膜又は電極が、アルカリ金属電池用電解質膜又は電極であることは、本発明の好ましい実施形態の1つである。
上記電池としては、二次電池であることがより好ましく、上記電池が、リチウムイオン二次電池である形態は、本発明の好ましい実施形態の1つである。
【0084】
[電解質組成物のイオン伝導性評価]
本発明の電解質組成物は、イオン伝導性に優れる。
電解質組成物のイオン伝導性は、アルカリ金属イオンが一方のアルカリ金属から電解質組成物を介してもう一方のアルカリ金属まで伝導する、全過程におけるイオン伝導性を、直流イオン伝導度として求めることができる。
上記直流イオン伝導度は、電解質組成物を2つのアルカリ金属で挟み、直流電流を印加したときの電圧上昇値と電流値から抵抗値を算出することにより評価することができる。
具体的には、電解質組成物を含む測定検体の厚さをT(cm)、アルカリ金属で挟む測定検体の面積をA(cm
2)、印加する直流電流をI(A)、印加時間0分からt分後の電圧の差を電圧上昇値ΔE(V)としたときの直流イオン伝導度Δσ
DC(S/cm)として、下記式(5);
Δσ
DC=T/A/(ΔE/I) (5)
により求めることができる。
【実施例】
【0085】
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を、「Mw」は「重量平均分子量」を意味するものとする。また、「リットル」を単に「L」、「モル/リットル」を「M]と記すことがある。
【0086】
<重合平均分子量(Mw)の測定条件>
GPC装置(東ソー社製、製品名;HLC−8320 GPC、カラム:TSKgel G5000PW、TSKgel G4000PW、TSKgel G3000PW、TSKgel G2500PW(いずれも東ソー製)、溶離液:「アセトニトリル/0.08M酢酸ナトリウム水溶液(体積比:50/50)」の混合液)により、ポリエチレンオキシドの標準分子量サンプルを用いて検量線を作成した。そして、反応後に得られた重合反応液(ポリマーを含む)を所定の溶媒に溶解させて測定し、Mwを求めた。
【0087】
<合成例1>ポリエチレンオキシド重合体(A)の合成
攪拌機、添加口および温度センサーを備えた1Lオートクレーブ反応器を窒素により置換後、モレキュラーシーブで脱水処理を施したトルエン335.3部と、t−ブトキシカリウム(1.0Mテトラヒドロフラン溶液)1.61部とを順次投入し、反応器内の圧力がゲージ圧で0.3MPaになるまで窒素で加圧した。
オイルバスで反応器の内温を95℃まで昇温した後、エチレンオキシドの供給を1.12部/分の供給速度で開始し、重合熱による内温上昇および内圧上昇を監視・制御しながら適宜供給速度を調整し、エチレンオキシド223.6部を100℃±5℃で350分かけて連続供給した。供給終了後、さらに100℃±5℃で2時間保持して熟成させた。熟成終了後、減圧脱揮によって反応混合物から溶媒を留去し、Mw11万のポリエチレンオキシド重合体(A)を得た。
【0088】
<実施例1>電解質膜(1)の製造
電解質塩として、0.8gのリチウムビス(フルオロスルホニル)イミド(以下、LiFSIと記す)(株式会社日本触媒製)と、0.1gの重合体(A)と、0.1gのサクシノニトリル(LBGグレード、キシダ化学株式会社製)をPPバイアル(10mL)に計量し、1.6mLのアセトニトリル(LBGグレード、キシダ化学株式会社製)を混合した後、恒温槽を用いて70℃で30分間加熱溶解させて、所望の溶液(電解質溶液)を得た。作製した電解質溶液を、テフロン(登録商標)シート上に設置したセルロースセパレーター(TF4425、ニッポン高度紙工業株式会社製、厚み25μm)に均一に塗布した後、熱風乾燥機を用いて、40℃で1時間の加熱乾燥後、減圧乾燥機を用いて、絶対圧で真空度−0.1MPa、70℃で2時間の減圧乾燥を行うことで、膜厚55μmの電解質組成物とセパレーターとの複合電解質膜を得た。
【0089】
<実施例2>電解質膜(2)の製造
配合比を0.6gのLiFSIと、0.2gの重合体(A)と、0.2gのサクシノニトリルと、1.6mLのアセトニトリルとしたこと以外は、実施例1と同様にして、膜厚50μmの複合電解質膜を得た。
【0090】
<実施例3>電解質膜(3)の製造
配合比を0.6gのLiFSIと、0.3gの重合体(A)と、0.1gのサクシノニトリルと、1.6mLのアセトニトリルとしたこと以外は、実施例1と同様にして、膜厚61μmの複合電解質膜を得た。
【0091】
<比較例1>比較電解質膜(1)の製造
配合比を0.2gのリチウムビス(トリフルオロメタンスルホニル)イミド(以下、LiTFSIと記す)(LBGグレード、キシダ化学株式会社製)と、0.8gの重合体(A)と、1.6mLのアセトニトリルとしたこと以外は、実施例1と同様にして、膜厚38μmの複合電解質膜を得た。
【0092】
<比較例2>比較電解質膜(2)の製造
配合比を0.5gのLiTFSIと、0.25gの重合体(A)と、0.25gのサクシノニトリルと、1.0mLのアセトニトリルとしたこと以外は、実施例1と同様にして、膜厚61μmの複合電解質膜を得た。
【0093】
<イオン伝導度及びイオン伝導性評価>
ポテンショガルバノスタット(VSP−300、Biologic製)を用いて定電流印加試験を行った。実施例1〜3及び比較例1、2で作製した膜をφ11mmのポンチで打ち抜き、φ10mmのリチウム箔(0.2mm厚、本城金属株式会社製)2枚で挟んだものを、SUS316L製セパレーター(0.5mm厚、φ15.5mm、宝泉株式会社製)2枚で挟み込んで、測定装置の治具に固定した。
実施例1〜3及び比較例1、2について、温度60℃の環境下、電流値I
S=+0.0785mA(0.1mA/cm
2)で5分、I
S=−0.0785mAで5分の通電処理を実施した。実施例1,2及び比較例1については、同一装置を用いてインピーダンス解析を実施し、Cole−coleプロットから得られたバルク抵抗値をR
b(Ω)とした。測定検体の厚さをT(cm)、リチウム箔との接触面積であるφ10mmを測定検体の面積A(cm
2)とし、下記式(6)に従いイオン伝導度σ(S/cm)を算出した。
σ=T/A/R
b (6)
【0094】
次いで、I=0.157mAで定電流印加試験を行い、5分後の電圧上昇値ΔE(V)を得た。リチウムイオンが、リチウム箔から電解質膜を介して対向面のリチウム箔まで伝導する全過程におけるイオン伝導性の指標を、直流イオン伝導度Δσ
DC(S/cm)とし、下記式(5)に従い算出した。
Δσ
DC=T/A/(ΔE/I) (5)
上記式(5)より得られた結果を、表1及び
図1に示した。
【0095】
【表1】
【0096】
<実施例4>リチウムイオン2次電池(1)の作成
正極活物質としてLiNi
1/3Co
1/3Mn
1/3O
2(Umicore製)100部と、導電助剤としてアセチレンブラック(粉状品、電気化学工業株式会社製)3部と、黒鉛粉末(J−SP、日本黒鉛工業株式会社製)3部、及び結着剤としてポリフッ化ビニリデン(#7200、株式会社クレハ製)3部を、N−メチルピロリドン(LBGグレード、キシダ化学株式会社製)に分散させて正極合剤スラリーを得た。正極集電体として、カーボンコートアルミニウム箔(SDX−PM、昭和電工パッケージング株式会社製)を用い、上記正極スラリーを均一に塗工したのち、熱風乾燥機を用いて70℃で30分間の加熱乾燥と、減圧乾燥機を用いて、絶対圧で真空度−0.1MPa、110℃で2時間の減圧乾燥をして溶媒を除去し、正極重量7.6mg/cm
2(アルミニウム箔除く)の正極シートを得た。
上記正極シート上に、実施例1で作製した電解質溶液を均一に塗布した後、熱風乾燥機を用いて40℃で30分間の加熱乾燥と、減圧乾燥機を用いて、絶対圧で真空度−0.1MPa、70℃で2時間の減圧乾燥をして溶媒を除去し、組成物を含浸させた複合正極シートを得た。
得られた複合正極シートをφ14mmで打ち抜いたものを電池の正極とし、実施例1で作製した複合電解質膜をφ16mmで打ち抜いたシートを電解質膜とし、φ15mmで打ち抜いた0.5mm厚のリチウム箔を負極として、リチウム箔、電解質膜2枚、正極の順に重ね合わせた。CR2032型コインセル部材(宝泉株式会社製)の正極ケース、負極キャップ、0.5mm厚のSUS製スペーサー、ウェーブワッシャー、ガスケットを用い、自動コインカシメ機(宝泉株式会社製)でかしめることでコイン型リチウムイオン2次電池を作製した。
【0097】
<実施例5>リチウムイオン2次電池(2)の作成
実施例2で作製した電解質溶液と、実施例2で得られた複合電解質膜を用いた以外は、実施例4と同様にして、コイン型リチウムイオン2次電池を作製した。
【0098】
<比較例3>比較リチウムイオン2次電池(1)の作成
比較例1で作製した電解質溶液と、比較例1で得られた複合電解質膜を用いた以外は、実施例4と同様にして、コイン型リチウムイオン2次電池を作製した。
【0099】
<リチウムイオン二次電池評価>
実施例4、5及び比較例3で得られたコイン型リチウムイオン2次電池について、充放電試験装置(ACD−01、アスカ電子株式会社製)を用いて充放電試験を行った。温度60℃の環境下、充電条件C/48(正極容量160mAh/gとした場合に、1時間で満充電される電流値を1Cとする)で4.1Vまで充電したのち、15分間休止し、放電条件C/12で3Vまで放電を行った。次いで、充電条件C/48で4.1Vまで充電した後、15分間休止し、放電条件C/4で3Vまで放電したときの放電曲線と、放電容量を得た。得られた放電曲線を
図2に、放電容量と、Δσ
DCと、σとの関係を表2に示した。
【0100】
【表2】
【0101】
図2及び表2より、本発明の電解質組成物を用いた実施例4、5のリチウムイオン2次電池は、比較例3と比較して、高い放電電圧と、高い放電容量を示した。さらに、放電容量は、従来から電解質膜の性能指標として用いられているσではなく、新たに導入したΔσ
DCに相関する結果を得た。すなわち、電池の充放電性能は、高周波領域における抵抗値から算出されるσ値よりも、直流印加時のリチウムイオンの伝導性から算出されるΔσ
DCとの相関が強く、Δσ
DCで評価することの重要性が明らかとなった。