(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
実施の形態1.
本発明の実施の形態1に係る空気調和機100について説明する。
図1は、本実施の形態1に係る空気調和機100の冷房運転時における冷媒回路10の一例を示す概略的な冷媒回路図である。
図1における黒矢印は、冷房運転時の冷媒の流れ方向を示している。また、
図1における白抜きのブロック矢印は空気流の流れ方向を表している。
【0012】
なお、
図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する構成要素には、同一の符号を付している。
【0013】
空気調和機100は、圧縮機1、冷媒流路切替装置2、熱源側熱交換器3、減圧装置4、及び負荷側熱交換器5を有する冷媒回路10を備える。冷媒回路10は、圧縮機1と熱源側熱交換器3と減圧装置4と負荷側熱交換器5とを冷媒配管を介して接続して、冷媒を循環させるように構成されている。
【0014】
圧縮機1は、吸入した低圧の冷媒を圧縮し、高圧の冷媒として吐出する流体機械であり、例えば、レシプロ圧縮機、ロータリ圧縮機、スクロール圧縮機等が用いられる。また、圧縮機1は、縦置型圧縮機であってもよいし、横置型圧縮機であってもよい。
【0015】
冷媒流路切替装置2は、空気調和機100の冷房運転から暖房運転への切替え、又は空気調和機100の暖房運転から冷房運転への切替えに応じて、冷媒流路切替装置2の内部の冷媒流路が切替えられる切替装置である。冷媒流路切替装置2は、冷媒流路切替装置2の内部の冷媒流路と連通する第1ポート2a、第2ポート2b、第3ポート2c、及び第4ポート2dを有している。第1ポート2aは、配管接続により圧縮機1の吐出側と連通される。第2ポート2bは、配管接続により熱源側熱交換器3と連通される。第3ポート2cは、配管接続により負荷側熱交換器5と連通される。第4ポート2dは、配管接続により圧縮機1の吸入側と連通される。冷媒流路切替装置2は、例えば電磁弁の動作を応用した四方弁として構成される。また、冷媒流路切替装置2は、二方弁又は三方弁を組み合わせて構成してもよい。
【0016】
なお、以降の説明においては、「冷房運転」とは、負荷側熱交換器5から流出した低圧の冷媒を圧縮機1に吸入させる空気調和機100の運転態様をいう。また、「暖房運転」とは、圧縮機1から吐出した高圧の前記冷媒を負荷側熱交換器5に流入させる空気調和機100の運転態様をいう。
【0017】
熱源側熱交換器3は、保有する熱エネルギーの異なる2つの流体間で熱エネルギーの移動及び交換を行う熱伝達機器である。熱源側熱交換器3は、冷房運転時には凝縮器として機能し、暖房運転時に蒸発器として機能する。
図1の熱源側熱交換器3は、熱源側熱交換器3を通過する空気流と、熱源側熱交換器3の内部を流通する高圧の冷媒との間で熱交換を行う空冷式熱交換器である。熱源側熱交換器3は、例えば、空気調和機100の用途に応じて、フィンアンドチューブ式熱交換器、又はプレートフィン式熱交換器等とすることができる。なお、空気調和機100において、蒸発器は冷却器と称される場合があり、凝縮器は放熱器と称される場合がある。
【0018】
熱源側熱交換器3を通過する空気流は、熱源側送風装置3aによって生成される。熱源側送風装置3aは、熱源側熱交換器3の用途に応じて、プロペラファン等の軸流送風機、シロッコファン若しくはターボファン等の遠心送風機、斜流送風機、又は横断流送風機等とすることができる。
【0019】
また、熱源側熱交換器3は、空気調和機100の用途に応じて、熱源側熱交換器3を通過する熱媒体と、熱源側熱交換器3を通過する高圧の冷媒との間で熱交換を行う水冷式熱交換器とすることもできる。熱源側熱交換器3を水冷式熱交換器とする場合、空気調和機100は、熱源側送風装置3aを有しない構成にできる。熱源側熱交換器3を水冷式熱交換器として構成する場合、熱源側熱交換器3は、空気調和機100の形態又は用途に応じて、シェルアンドチューブ式熱交換器、プレート熱交換器、又は二重管式熱交換器として構成できる。なお、熱源側熱交換器3が水冷式熱交換器である場合、空気調和機100には、冷却塔から熱媒体を循環させる熱媒体回路を設けることができる。
【0020】
減圧装置4は、高圧の液相冷媒を膨張及び減圧させる膨張装置である。減圧装置4としては、空気調和機100の用途に応じて、膨張機、温度式自動膨張弁、リニア電子膨張弁等が用いられる。膨張機は、受圧部にダイアフラムを採用した機械式膨張弁である。温度式自動膨張弁は、圧縮機1の吸入側における気相冷媒の過熱度によって冷媒量を調整する膨張装置である。リニア電子膨張弁は、多段階若しくは連続的に開度を調節可能な膨張装置である。
【0021】
負荷側熱交換器5は、保有する熱エネルギーの異なる2つの流体間で熱エネルギーの移動及び交換を行う熱伝達機器である。負荷側熱交換器5は、冷房運転時には蒸発器として機能し、暖房運転時に凝縮器として機能する。負荷側熱交換器5は、負荷側熱交換器5を通過する空気流と、負荷側熱交換器5の内部を流通する冷媒との間で熱交換を行う空冷式熱交換器として構成される。負荷側熱交換器5は、並列に整列された複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンチューブ型熱交換器として構成されている。
【0022】
負荷側熱交換器5を通過する空気流は、送風装置5aによって生成される。送風装置5aは、負荷側熱交換器5の形態に応じて、プロペラファン等の軸流送風機、シロッコファン若しくはターボファン等の遠心送風機、斜流送風機、又は横断流送風機等として構成できる。
【0023】
空気調和機100は、圧縮機1と、冷媒流路切替装置2と、熱源側熱交換器3と、減圧装置4と、負荷側熱交換器5とを接続し、冷媒回路10を構成する複数の冷媒配管を備えている。冷媒回路10を構成する冷媒配管は、第1冷媒配管10aと、第2冷媒配管10bと、第3冷媒配管10cと、第4冷媒配管10dと、第5冷媒配管10eと、第6冷媒配管10fとを有している。第1冷媒配管10aは、減圧装置4と負荷側熱交換器5との間を接続する冷媒配管である。第2冷媒配管10bは、負荷側熱交換器5と、冷媒流路切替装置2の第3ポート2cとの間を接続する冷媒配管である。第3冷媒配管10cは、冷媒流路切替装置2の第4ポート2dと圧縮機1の吸入側との間を接続する冷媒配管である。第4冷媒配管10dは、圧縮機1の吐出側と、冷媒流路切替装置2の第1ポート2aとの間を接続する冷媒配管である。第5冷媒配管10eは、冷媒流路切替装置2の第2ポート2bと熱源側熱交換器3との間を接続する冷媒配管である。第6冷媒配管10fは、熱源側熱交換器3と減圧装置4との間を接続する冷媒配管である。なお、第2冷媒配管10bは、冷媒流路切替装置2と第3冷媒配管10c及び第4冷媒配管10dのいずれかを介して圧縮機1と接続されるものである。すなわち、第2冷媒配管10bは、圧縮機1と負荷側熱交換器5とを接続する冷媒配管である。以降の説明においては、第1冷媒配管10a、第2冷媒配管10b、第3冷媒配管10c、第4冷媒配管10d、第5冷媒配管10e、及び第6冷媒配管10fは、区別する必要がない場合、単に「冷媒配管」と称する。
【0024】
なお、空気調和機100は、空気調和機100の用途に応じて、上述した以外の機器、例えば、アキュムレータ、レシーバ、消音マフラ、気液分離器、又は油分離器等を有する構成にできる。また、空気調和機100は、室内据置型の一体型空気調和機として設計してもよいし、負荷側熱交換器5を含む一部の機器のみが被空調対象空間に配置されたセパレート型空気調和機として設計してもよい。
【0025】
次に、本実施の形態1の空気調和機100における負荷側熱交換器5の構造について、
図1に加えて
図2及び
図3を用いて具体的に説明する。
図2及び
図3における白抜きのブロック矢印は、送風装置5a及び熱源側送風装置3aが生成する空気流の流れ方向を表している。また、
図2及び
図3における黒矢印は、空気調和機100の冷房運転時の負荷側熱交換器5における冷媒の流入方向及び流出方向を概略的に示したものである。
【0026】
図2は、本実施の形態1の空気調和機100における負荷側熱交換器5の具体的な構造の一例を示す概略図である。
図3は、本実施の形態1の空気調和機100における負荷側熱交換器5の具体的な構造の別の一例を示す概略図である。
【0027】
図1に示すように、負荷側熱交換器5は、送風装置5aが生成する空気流の風上側に配置された第1熱交換器52と、第1熱交換器52を通過する空気流の風下側に配置された第2熱交換器54とを備えている。なお、
図1の送風装置5aは、第1熱交換器52に対向して配置されているが、これに限定されるものではない。
図1の送風装置5aは、第1熱交換器52が第2熱交換器54よりも風上となるように通風できる位置であれば、
図1の送風装置5aの位置と異なる位置に配置できる。なお、第1熱交換器52は「補助熱交換器」と、第2熱交換器54は「主熱交換器」とも称される。
【0028】
また、
図1では、第1熱交換器52の第1内部流路52bの経路数は1経路であり、第2熱交換器54の第2内部流路54bの経路数は2経路となっている。しかしながら、第1内部流路52b及びの第2内部流路54bの経路数はこれに限定されるものではない。
【0029】
また、負荷側熱交換器5においては、連結配管56が、第1熱交換器52と第2熱交換器54とを接続している。すなわち、第2熱交換器54は、連結配管56を介して、第1熱交換器52に直列に接続されている。連結配管56は、冷媒回路10を構成する冷媒配管の1つである。減圧装置4と負荷側熱交換器5とを接続する冷媒配管である第1冷媒配管10aは、減圧装置4と第1熱交換器52とに接続されている。圧縮機1は、第2冷媒配管10b及び第3冷媒配管10cにより冷媒流路切替装置2を介して負荷側熱交換器5の第2熱交換器54に接続されている。
【0030】
図2では、第1熱交換器52は、W字形状に配置された4つの第1熱交換部52aから構成されている。また、第2熱交換器54は、第1熱交換器52の4つの第1熱交換部52aと直列に接続され、第1熱交換器52と同様にW字形状に配置された4つの第2熱交換部54aから構成されている。第1熱交換器52の第1熱交換部52aは、送風装置5aが生成する空気流の風上側に配置されている。第2熱交換器54の第2熱交換部54aは、送風装置5aが生成し、第1熱交換器52の第1熱交換部52aを通過する空気流の風下側に配置されている。
【0031】
第1熱交換部52aの各々は、並列に整列された複数の第1フィン52a1と、複数の第1フィン52a1を貫通する第1伝熱管52a2とを有するフィンチューブ型熱交換器として構成されている。第2熱交換部54aの各々は、並列に整列された複数の第2フィン54a1と、複数の第2フィン54a1を貫通する第2伝熱管54a2とを有するフィンチューブ型熱交換器として構成されている。なお、第1伝熱管52a2及び第2伝熱管54a2は、
図2では円管として構成されているが、扁平管として構成してもよい。
【0032】
第1熱交換器52と第2熱交換器54との間に接続された連結配管56は、分岐部56aを有している。連結配管56は、分岐部56aを有することにより、第1熱交換器52の第1内部流路52bを分岐して、第2熱交換器54の各々の第2内部流路54bに連通させることができる。なお、
図2では、
図1と同様に、第1熱交換器52は1経路の第1内部流路52bを有しており、第2熱交換器54は2経路の第2内部流路54bを有しているが、上述したようにこれに限定されない。
【0033】
図3の負荷側熱交換器5では、左上方からの空気流の風路のみに、第1熱交換器52が配置されている。第1熱交換器52は、第2熱交換器54よりも、送風装置5aが生成する空気流の風上側に配置されている。第2熱交換器54は、第1熱交換器52と直列に接続されている。第2熱交換器54の一部は、送風装置5aが生成し、第1熱交換器52を通過する空気流の風下側に配置されている。このように、第1熱交換器52は、送風装置5aにより生成され、第1熱交換器52と第2熱交換器54とを通過する空気流の風上側に配置されれば、負荷側熱交換器5の一部の風路のみに設けた構成としてもよい。
【0034】
また、
図1〜
図3では、第1熱交換器52及び第2熱交換器54は別体の熱交換器として構成しているが、第1熱交換器52の第1フィン52a1及び第2熱交換器54の第2フィン54a1を一体形成し、一体型の負荷側熱交換器5として構成してもよい。
【0035】
次に、空気調和機100におけるバイパス構造について説明する。
【0036】
図1〜
図3に示すように、空気調和機100は、バイパス配管60と、バイパス弁70とを有している。バイパス配管60は、減圧装置4と第1熱交換器52とを接続する冷媒配管である第1冷媒配管10aと、連結配管56との間に接続される冷媒配管であり、冷媒回路10を構成する冷媒配管の1つである。バイパス配管60は、第1冷媒配管10aとバイパス弁70との間を接続する第1バイパス配管60aと、バイパス弁70と連結配管56との間を接続する第2バイパス配管60bとを有している。以降の説明においては、第1バイパス配管60a及び第2バイパス配管60bは、区別する必要がない場合、単にバイパス配管60と称する。
【0037】
バイパス弁70は、バイパス配管60の冷媒流量を制御する制御機器である。バイパス弁70は、冷房運転の時に、第1冷媒配管10aから、バイパス配管60を介して、負荷側熱交換器5の連結配管56の方向に流れる前記冷媒を通過させるように構成されている。また、バイパス弁70は、暖房運転の時に、負荷側熱交換器5の連結配管56から、バイパス配管60を介して、第1冷媒配管10aの方向に流れる冷媒の流れを遮断するように構成されている。すなわち、冷房運転時においては、バイパス弁70は、バイパス配管60の内部の流路を開放するように構成されているため、冷媒回路10は、第1熱交換器52の両端を接続するバイパス回路を有する構成となる。一方、暖房運転時においては、バイパス弁70は、バイパス配管60の内部の流路を閉止するように構成されているため、冷媒回路10は、第1熱交換器52の両端を接続するバイパス回路を有しない構成となる。
【0038】
バイパス弁70は、圧力駆動型の弁等の機械式弁、又は電磁弁等の電動式弁等の自動弁を有する構成にできる。
図1〜
図3に示すように、バイパス弁70は、圧力駆動型の自動弁として逆止弁70aを有する構成にできる。逆止弁70aは、流体の流れを常に一定方向に保ち、逆流を防止するように構成された機械式弁である。
【0039】
なお、空気調和機100をセパレータ式空気調和機として構成する場合、空気調和機100は、室内機150を有する構成とし、負荷側熱交換器5と、送風装置5aと、バイパス配管60と、バイパス弁70とを室内機150に収容した構成にできる。
【0040】
次に、空気調和機100の冷房運転時における動作について、
図1を用いて説明する。なお、
図1では、冷房運転時における冷媒流路切替装置2の内部の冷媒流路が実線で示されている。
【0041】
冷房運転時には、冷媒流路切替装置2では、圧縮機1から熱源側熱交換器3へ高温高圧のガス冷媒が流れるように、冷媒流路切替装置2の内部の冷媒流路の経路制御が行われる。すなわち、冷房運転時には、冷媒流路切替装置2の内部の冷媒流路は、圧縮機1の吐出側に配管接続された第1ポート2aと、熱源側熱交換器3に配管接続された第2ポート2bとが連通するように切替えられる。また、冷媒流路切替装置2の内部の冷媒流路は、負荷側熱交換器5に配管接続された第3ポート2cと、圧縮機1の吸入側に配管接続された第4ポート2dとが連通するように切替えられる。
【0042】
圧縮機1から吐出された高温かつ高圧の気相冷媒は、第4冷媒配管10d、冷媒流路切替装置2の内部の第1ポート2aと第2ポート2bの間の冷媒流路、及び第5冷媒配管10eを介して熱源側熱交換器3に流入する。熱源側熱交換器3は、冷房運転時においては凝縮器として機能する。熱源側熱交換器3に流入した高温かつ高圧の気相冷媒は、熱源側熱交換器3を通過する、熱源側送風装置3aが生成した空気流との間で熱交換され、高圧の液相冷媒として流出する。
【0043】
熱源側熱交換器3から流出した高圧の液相冷媒は、第6冷媒配管10fを介して、減圧装置4に流入する。減圧装置4に流入した高圧の液相冷媒は、減圧装置4で膨張及び減圧され、低温低圧の二相冷媒として減圧装置4から流出し、第1冷媒配管10aに流入する。冷房運転時は、バイパス弁70により、バイパス配管60の内部の流路が開放されているため、第1冷媒配管10aに流入した低圧の二相冷媒の一部は、分流されバイパス配管60に流入し、バイパス弁70を介して、連結配管56に流入する。
【0044】
低温低圧の二相冷媒の他の一部は、第1冷媒配管10aを介して、負荷側熱交換器5の第1熱交換器52に流入する。第1熱交換器52は、冷房運転においては、蒸発器として機能する。第1熱交換器52に流入した低圧の二相冷媒は、第1熱交換器52を通過する、送風装置5aが生成した空気流との間で熱交換された後、連結配管56に二相冷媒として流出する。
【0045】
連結配管56に流入した二相冷媒は、第1冷媒配管10aから分流した二相冷媒と再度合流し、第2熱交換器54に流入する。第2熱交換器54は、冷房運転においては、蒸発器として機能する。第2熱交換器54に流入した低圧の二相冷媒は、第2熱交換器54を通過する空気流との間で熱交換され、低圧の気相冷媒として流出する。
【0046】
第2熱交換器54から流出した低圧の気相冷媒は、第2冷媒配管10b、冷媒流路切替装置2の内部の第3ポート2cと第4ポート2dの間の冷媒流路、及び第3冷媒配管10cを介して、圧縮機1に吸入される。圧縮機1に吸入された低圧の気相冷媒は、圧縮機1で圧縮され、高温かつ高圧の気相冷媒として圧縮機1から吐出される。空気調和機100の冷房運転時には、以上のサイクルが繰り返される。
【0047】
次に、冷房運転時における空気調和機100の効果について説明する。
【0048】
負荷側熱交換器5が蒸発器として機能する冷房運転の場合、負荷側熱交換器5の内部流路を流動する冷媒は、比容積が大きく流速が速い状態となるため、冷媒の圧力損失が大きくなる。例えば、第1熱交換器52の第1内部流路52bの数が、第2熱交換器54の第2内部流路54bの数よりも少なくなるように構成した場合、第1内部流路52bを通過する冷媒の流速は、第2内部流路54bを通過する冷媒の流速よりも速くなる。内部流路における冷媒の流速が速くなると、内部流路における冷媒圧力損失が大きくなるため、第1熱交換器52では冷媒の圧力損失が生じやすくなる。しかしながら、第1冷媒配管10aを流れる低温低圧の二相冷媒の一部は、分流してバイパス配管60に流入しているため、第1熱交換器52に流入する冷媒流量を低減することができる。第1熱交換器52に流入する冷媒流量を低減すると、第1熱交換器52における冷媒の圧力損失が低減できるため、第1熱交換器52の冷房性能を向上させることができる。
【0049】
減圧装置4から流出した全冷媒は、バイパス配管60及びバイパス弁70を経由する流路、並びに第1熱交換器52へ流入する流路へ分流されることで、第1熱交換器52における冷媒の圧力損失が低減される。一方、第1熱交換器52を流れる冷媒の流量が減少しすぎると、第1熱交換器52での熱交換量が減少し、冷媒の圧力損失の低減によって得られる冷房性能の改善効果を相殺する可能性もある。したがって、バイパス配管60およびバイパス弁70を経由する流路へバイパスする冷媒の流量は、負荷側熱交換器5が発揮すべき冷房能力又は全冷媒流量によって最適値が決定される。バイパス弁70は、バイパス弁70の開放時に最適値となる仕様のものであってもよいし、または、バイパス弁70の開度の調整によって最適値に設定される仕様のものであってもよい。
【0050】
さらに、第1熱交換器52及び第2熱交換器54は、冷房運転時においては、連結配管56を介して直列に接続されている。また、第2熱交換器54は、送風装置5aにより生成され、第1熱交換器52を通過する空気流の下流側に配置されている。また、少なくとも、第2熱交換器54は、送風装置5aにより生成された空気流が流れる風路の全域にわたって配置されている。そのため、負荷側熱交換器5の出口における冷媒のドライアウトの有無は、第2熱交換器54における冷媒流路ごとの熱交換量の分布にのみ依存し、第1熱交換器52の熱交換量の分布とは関連しない。例えば、空気調和機100では、第1熱交換器52又は第2熱交換器54の仕様、例えば、フィンのピッチ幅又は数量、伝熱管の本数等を任意に設定しても、第1熱交換器52と第2熱交換器54との間の熱負荷の差異による冷媒のドライアウトは発生しない。したがって、空気調和機100では、第1熱交換器52及び第2熱交換器54の設計変更の自由度を担保できるため、設計自由度の高い空気調和機100を提供できる。
【0051】
次に、空気調和機100の暖房運転時における動作について、
図4を用いて説明する。
図4は、本実施の形態1に係る空気調和機100の暖房運転時における冷媒回路10の一例を示す概略的な冷媒回路図である。
図4における黒矢印は、冷房運転時の冷媒の流れ方向を示している。また、
図4における白抜きのブロック矢印は空気流の流れ方向を表している。なお、
図4では、暖房運転時における冷媒流路切替装置2の内部の冷媒流路が実線で示されている。
図4に示されるように、空気調和機100においては、暖房運転時の負荷側熱交換器5の内部流路を流れる冷媒の流動方向は、冷房運転時の冷媒の流動方向と逆向きとなる。
【0052】
暖房運転時には、冷媒流路切替装置2では、圧縮機1から負荷側熱交換器5へ高温高圧のガス冷媒が流れるように、冷媒流路切替装置2の内部の冷媒流路の経路制御が行われる。すなわち、暖房運転時には、冷媒流路切替装置2の内部の冷媒流路は、圧縮機1の吐出側に配管接続された第1ポート2aと、負荷側熱交換器5に配管接続された第3ポート2cとが連通するように切替えられる。また、冷媒流路切替装置2の内部の冷媒流路は、熱源側熱交換器3に配管接続された第2ポート2bと、圧縮機1の吸入側に配管接続された第4ポート2dとが連通するように切替えられる。
【0053】
圧縮機1から吐出された高温かつ高圧の気相冷媒は、第4冷媒配管10d、冷媒流路切替装置2の内部の第1ポート2aと第3ポート2cの間の冷媒流路、及び第3冷媒配管10cを介して、負荷側熱交換器5の第2熱交換器54に流入する。第2熱交換器54は、暖房運転時においては、凝縮器として機能する。第2熱交換器54に流入した高温かつ高圧の気相冷媒は、第2熱交換器54を通過する、送風装置5aが生成した空気流との間で熱交換されて第2熱交換器54から流出する。
【0054】
第2熱交換器54から流出した冷媒は、連結配管56を介して、第1熱交換器52に流入する。暖房運転時は、バイパス弁70により、バイパス配管60の内部の流路が閉止されているため、連結配管56に流入した冷媒は、分流してバイパス配管60に流入することはなく、全ての冷媒が第1熱交換器52に流入する。
【0055】
第1熱交換器52は、暖房運転時においては、過冷却熱交換器として機能する。第1熱交換器52に流入した冷媒は、第1熱交換器52を通過する、送風装置5aが生成した空気流との間で熱交換され、過冷却された高圧の液相冷媒として流出する。
【0056】
過冷却された高圧の液相冷媒は、第1冷媒配管10aを介して、減圧装置4に流入する。減圧装置4に流入した過冷却された高圧の気相冷媒は、減圧装置4で膨張及び減圧され、低温低圧の二相冷媒として減圧装置4から流出する。
【0057】
減圧装置4から流出した低温低圧の二相冷媒は、第6冷媒配管10fを介して、熱源側熱交換器3に流入する。熱源側熱交換器3は、暖房運転時においては、蒸発器として機能する。熱源側熱交換器3に流入した低温かつ低圧の二相冷媒は、熱源側熱交換器3を通過する、熱源側送風装置3aが生成した空気流との間で熱交換され、低圧の気相冷媒として流出する。なお、熱源側熱交換器3から流出する冷媒は、低圧の乾き度の高い二相冷媒となる場合もある。
【0058】
熱源側熱交換器3から流出した低圧の気相冷媒は、第5冷媒配管10e、冷媒流路切替装置2の内部の第2ポート2bと第4ポート2dの間の冷媒流路、及び第4冷媒配管10dを介して、圧縮機1に吸入される。圧縮機1に吸入された低圧の気相冷媒は、圧縮機1で圧縮され、高温かつ高圧の気相冷媒として圧縮機1から吐出される。空気調和機100の暖房運転時には、以上のサイクルが繰り返される。
【0059】
次に、暖房運転時における空気調和機100の効果について説明する。
【0060】
負荷側熱交換器5が凝縮器として機能する暖房運転時において、負荷側熱交換器5の内部で並列に設けられた内部流路の数が増加した場合、負荷側熱交換器5の内部流路における冷媒流速が低下する。負荷側熱交換器5の内部流路における冷媒流速が低下すると、負荷側熱交換器5の管内熱伝達率が低下する。しかしながら、暖房運転時の負荷側熱交換器5においては、第1熱交換器52は、第2熱交換器54の下流側となるように第2熱交換器54と直列に接続されており、第2熱交換器54と並列には接続されない。そのため、負荷側熱交換器5の内部では、並列に設けられた内部流路の数が増加することはない。したがって、暖房運転時においては、負荷側熱交換器5の内部で並列に設けられた内部流路の数が増加せず、負荷側熱交換器5の内部流路における冷媒流速の低下が抑制されるため、負荷側熱交換器5の管内熱伝達率を維持することができる。
【0061】
また、暖房運転時は、バイパス弁70により、バイパス配管60の内部の流路が閉止されているため、連結配管56に流入した高圧の冷媒は、全て第1熱交換器52に流入し、流速が上昇するため、第1伝熱管52a2の熱伝達率を高めることができる。一方、第1熱交換器52を通過する冷媒は、高圧で高密度の冷媒であり、冷媒の圧力損失が小さいため、冷媒流速が上昇することによる圧力損失の影響は無視できる。したがって、空気調和機100では、暖房運転時にバイパス配管60の内部の流路が閉止されることにより、暖房性能を高めることができる。
【0062】
以上のように、空気調和機100は、バイパス配管60とバイパス弁70とを有することにより、冷房運転時においては、圧力損失を低減し、負荷側熱交換器5の冷房性能を向上させることができる。また、暖房運転時においては、第1熱交換器52が第2熱交換器54に直列に接続されるため、第2熱交換器54で冷媒流速を上げて管内熱伝達率を高めることができる。したがって、空気調和機100によれば、冷房運転時及び暖房運転時のそれぞれにおいて、負荷側熱交換器5の冷媒の圧力損失と伝熱性能との関係を最適化できるため、通年でのエネルギー消費量の削減を図ることができる。
【0063】
また、空気調和機100においては、第1熱交換器52の両端にバイパス配管60が接続され、バイパス配管60にバイパス弁70が設けられた簡素な構造でエネルギー消費量の削減を実現できる。したがって、空気調和機100においては、空気調和機100の性能を維持しつつ、空気調和機100の小型化を図ることができる。また、第1熱交換器52及び第2熱交換器54の設計内容、例えば、熱交換器の寸法、フィンの伝熱面積、伝熱管の配管数、伝熱管の配管径、伝熱管の内面溝形状、熱交換器の冷媒流路数は、任意の組合せで変更可能である。そのため、空気調和機100では、負荷側熱交換器5の設計変更の自由度が担保される。したがって、空気調和機100でのエネルギー消費量の削減とともに、空気調和機100の小型化を図り、空気調和機100の品質を高品質に維持することも可能である。
【0064】
例えば、冷房運転時において、第2熱交換器54におけるドライアウトの発生を抑制する必要が生じた場合を考える。最初に、負荷側熱交換器5の第1熱交換器52及び第2熱交換器54が、本実施の形態1とは異なり、負荷側熱交換器5の通風方向に対し並列に配置されている場合を考える。この場合、第2熱交換器54における冷媒のドライアウトを抑制するためには、常に、第1熱交換器52との熱負荷の関係を考慮する必要がある。例えば、第2熱交換器54における冷媒のドライアウトを抑制する方法としては、第1熱交換器52よりも第2熱交換器54の伝熱面積を減らすこと、又は、流量制御弁を用いて第1熱交換器52よりも第2熱交換器54へ振り分ける冷媒流量を増大させる等がある。次に、本実施の形態1の空気調和機100を考える。本実施の形態1の空気調和機100では、第1熱交換器52及び第2熱交換器54は、冷房運転時においては、連結配管56を介して直列に接続されている。また、第2熱交換器54は、送風装置5aにより生成され、第1熱交換器52を通過する空気流の下流側に配置されている。また、少なくとも、第2熱交換器54は、送風装置5aにより生成された空気流が流れる風路の全域にわたって配置されている。そのため、本実施の形態1の空気調和機100においては、第2熱交換器54における冷媒のドライアウトの有無は、第1熱交換器52における冷媒の熱交換量等の状態に依拠しないため、第2熱交換器54のみを独立して再設計することができる。したがって、本実施の形態1の空気調和機100では、負荷側熱交換器5の設計変更の自由度が担保できる。また、任意の熱交換器の性能及び品質を向上させる手段を、第1熱交換器52又は第2熱交換器54に、独立的又は選択的に付加することが可能である。また、本実施の形態1の空気調和機100をセパレート式空気調和機として構成し、室内機150を有する構成とした場合、負荷側熱交換器5と、送風装置5aと、バイパス配管60と、バイパス弁70とを室内機150に収容した簡易な構成にできる。したがって、設置寸法等の設置条件が制限される可能性のある室内機150の設置空間への実装が容易となる。
【0065】
実施の形態2.
本発明の実施の形態2の空気調和機100の構成を
図5を用いて説明する。
図5は、本実施の形態2に係る空気調和機100の冷房運転時における冷媒回路10の一例を示す概略的な冷媒回路図である。
図5における黒矢印は、冷房運転時の冷媒の流れ方向を示している。また、
図5における白抜きのブロック矢印は空気流の流れ方向を表している。
【0066】
図5に示すように、本実施の形態2の空気調和機100においては、バイパス弁70が、逆止弁70aに加えて、キャピラリチューブ70bを有するように構成されている。空気調和機100の他の構成については、上述の実施の形態1と同一であるため説明を省略する。
【0067】
キャピラリチューブ70bは、細長の銅管で構成され、配管抵抗により所要の冷媒量を通過させ、冷媒を減圧する膨張弁である。キャピラリチューブ70bは、逆止弁70aと連結配管56の間に配置されている。
【0068】
上述の実施の形態1において、負荷側熱交換器5の設計内容は、任意の組合せで変更可能であり、設計変更の自由度が担保されていると述べたが、設計変更の内容により、負荷側熱交換器5における冷媒の圧力損失に変動が生じる場合がある。例えば、第1熱交換器52を流れる冷媒流量に対するバイパス配管60を流れる冷媒流量の割合は、第1熱交換器52の圧力損失が大きいほど大きくなる。設計変更において、第1熱交換器52の流動抵抗が大きくなり、冷媒圧力損失が大きくなるように負荷側熱交換器5を構成した場合、バイパス配管60を通過する冷媒流量が過剰となるため、負荷側熱交換器5の伝熱性能が減少する。
【0069】
バイパス弁70がキャピラリチューブ70bを有する構成にすれば、バイパス配管60の流動抵抗を調整し、バイパス配管60を通過する冷媒流量を抑制できる。したがって、負荷側熱交換器5における冷媒の圧力損失と、負荷側熱交換器5の伝熱性能のバランスを維持し、更にエネルギー消費量の削減を図ることができる。
【0070】
実施の形態3.
本発明の実施の形態3の空気調和機100の構成を
図6を用いて説明する。
図6は、本実施の形態3に係る空気調和機100の冷房運転時における冷媒回路10の一例を示す概略的な冷媒回路図である。
図6における黒矢印は、冷房運転時の冷媒の流れ方向を示している。また、
図6における白抜きのブロック矢印は空気流の流れ方向を表している。
【0071】
図6に示すように、本実施の形態3の空気調和機100においては、バイパス弁70が、開度を調整自在な流量調整弁70cを有するように構成されている。また、空気調和機100は、通信線75を介して流量調整弁70cの開度を制御可能な制御部80を有している。また、空気調和機100は、制御部80に有線接続又は無線接続される1以上の温度センサを有する構成となっている。空気調和機100の他の構成については、上述の実施の形態1と同一であるため説明を省略する。
【0072】
流量調整弁70cは、内部流路の開度を調整することにより、内部を流れる冷媒流量を調整する制御機器である。流量調整弁70cは、例えば、リニア電子膨張弁等として構成される。流量調整弁70cは、制御部80からの指令に応じて、バイパス配管60を通過する冷媒流量を調整するように構成されている。
【0073】
制御部80は、例えば、専用のハードウェア、又は中央演算装置、メモリ等を備えたマイクロコンピュータ又はマイクロプロセッシングユニットとして構成される。なお、制御部80は、空気調和機100の運転状態、例えば、圧縮機1の周波数制御、減圧装置4の開度制御等を実施できる構成としてもよいし、流量調整弁70cの開度制御のみを行う構成としてもよい。また、流量調整弁70cと制御部80との間の通信線75は、有線であっても、無線であってもよい。
【0074】
温度センサは、例えば、サーミスタ等の半導体材料、又は測温抵抗体等の金属材料等を含む構成にできる。空気調和機100に設けられた複数の温度センサは、同一の構造を有する温度センサであってもよいし、異なる構造を有する温度センサであってもよい。なお、
図6においては、制御部80と温度センサとの間の接続線は図示していない。
【0075】
図6に示すように、空気調和機100は、温度センサとして、第1温度センサ90、第2温度センサ92、第3温度センサ94、第4温度センサ96、及び第5温度センサ98有する構成にできる。なお、空気調和機100は、空気調和機100の形態に応じて、一部の温度センサを省略した構成としてもよいし、更なる温度センサを追加した構成としてもよい。
【0076】
第1温度センサ90は、負荷側熱交換器5の周囲の任意の場所に配置され、被空調対象空間の温度を検出する温度センサである。第2温度センサ92は、第2熱交換器54の第2伝熱管54a2を流れる冷媒の温度を、第2伝熱管54a2を介して検知する温度センサである。第3温度センサ94は、第1熱交換器52の第1伝熱管52a2を流れる冷媒の温度を、第1伝熱管52a2を介して検知する温度センサである。第4温度センサ96は、連結配管56を流れる冷媒の温度を、連結配管56を介して検知する温度センサである。第5温度センサ98は、熱源側熱交換器3の周囲の任意の場所に配置され、外気温度を検知する外気温度センサである。なお、以降の説明において、第1温度センサ90、第2温度センサ92、第3温度センサ94、第4温度センサ96、及び第5温度センサ98の区別の必要がない場合、単に「温度センサ」と称する。
【0077】
制御部80は、圧縮機1から送信される運転周波数の情報、及び温度センサで検知された温度情報に基づいて、流量調整弁70cの開度の制御を行うことができる。
図7は、流量調整弁70cの開度と、冷房運転時の成績係数との関係を図示したグラフである。
図7の横軸は、流量調整弁70cの開度を示しており、矢印方向に向かうにつれて開度が高くなる。
図7の縦軸は、流量調整弁70cを閉止したとき、すなわち、開度を0としたときの成績係数を100%としたときの、成績係数の改善率を示しており、矢印方向に向かうにつれて成績係数が高くなる。なお、以降の説明において、成績係数を「COP」と略称する場合がある。また、各々のグラフの冷房能力が、キロワット単位で表示されており、かっこ書きで冷媒の種類が付記されている。
【0078】
図7に示すとおり、R32冷媒においては、冷房運転時における成績係数の改善率が最も高くなる流量調整弁70cの開度は、空気調和機100の冷房能力、すなわち空気調和機100の冷媒の循環量により異なることが示唆された。また、
図7では、冷房能力が大きくなるに伴い、流量調整弁70cの開度を大きくすることによって、成績係数の改善率を向上できる可能性があることが示唆された。したがって、流量調整弁70cを有するバイパス弁70を構成し、冷房能力に応じて流量調整弁70cの開度を制御することにより、負荷側熱交換器5における冷媒の圧力損失と、負荷側熱交換器5の伝熱性能のバランスとを、より効率的に維持できる。
【0079】
また、空気調和機100の冷房能力は、空気調和機100の冷媒の循環量に対応し、圧縮機1の運転周波数の増加に伴い、空気調和機100の冷媒の循環量は増加する。したがって、空気調和機100の可動周波数領域の全域において、流量調整弁70cの開度を制御することにより、負荷側熱交換器5における冷媒の圧力損失と、負荷側熱交換器5の伝熱性能のバランスとを、より効率的に維持できる。
【0080】
また、流量調整弁70cの開度、すなわち、バイパス配管60を通過する冷媒流量は、制御部80を有することにより、外気温度、被空調対象空間の温度、及び圧縮機1の運転周波数等の冷房運転の状態に基づき、成績係数を最大化するように調整できる。したがって、流量調整弁70cと制御部80と温度センサを有することにより、温度の変動があった場合においても、冷房期間における消費電力量を更に効率的に削減することができる。
【0081】
また、
図7では、同一の冷凍能力で見た場合、R32冷媒よりも、R290冷媒の方が、流量調整弁70cの開度の調整により、成績係数の改善率を向上できる可能性があることが示唆されている。
【0082】
なお、本実施の形態3の空気調和機100におけるバイパス弁70は、更に逆止弁70aを有する構成としてもよい。
【0083】
実施の形態4.
本発明の実施の形態4の空気調和機100の構成を
図8を用いて説明する。
図8は、本実施の形態4に係る空気調和機100の冷房運転時における負荷側熱交換器5の具体的な構造の一例を示す概略図である。
図8における白抜きのブロック矢印は、送風装置5aが生成する空気流の流れ方向を表している。また、
図8における黒矢印は、空気調和機100の冷房運転時の負荷側熱交換器5における冷媒の流入方向及び流出方向を概略的に示したものである。
【0084】
図8に示すように、
図8の負荷側熱交換器5においては、第1熱交換器52の第1伝熱管52a2の内径が、第2熱交換器54の第2伝熱管54a2の内径よりも小さくなるように構成されている。負荷側熱交換器5の他の構成については、上述の実施の形態1と同一であるため説明を省略する。
【0085】
負荷側熱交換器5は、例えば、第1伝熱管52a2の管の肉厚と第2伝熱管54a2の管の肉厚とを同一とした場合、第2伝熱管54a2との外径が7mmとなり、第1伝熱管52a2の外径が5mmとなるように構成される。
【0086】
空気調和機100を循環する冷媒として、地球温暖化係数の低いハイドロカーボン冷媒又はハイドロフルオロカーボン冷媒が用いられることがある。しかしながら、ハイドロカーボン冷媒は、可燃性冷媒であるため、封入される冷媒量は少量にすることが求められている。なお、ハイドロカーボン冷媒はHC冷媒と略称される場合がある。また、ハイドロフルオロカーボン冷媒は、HFC冷媒と略称される場合がある。
【0087】
空気調和機100の暖房運転時においては、第1熱交換器52は過冷却熱交換器として機能し、第1伝熱管52a2の内部を液相冷媒が流動する。第1伝熱管52a2の内部を液相冷媒が流動する場合、第1伝熱管52a2の内径が小さいほど、第1伝熱管52a2の内部の冷媒流速が速くなるため、第1伝熱管52a2の熱伝達率が向上し、暖房性能が向上する。また、第1伝熱管52a2の内径が小さいほど、第1伝熱管52a2の内容積が小さくなるため、冷媒回路10の動作に必要な冷媒の充填量を削減できる。
【0088】
冷房運転時においては、第1伝熱管52a2の内径が小さくなり、冷媒流量が大きくなるに従い、冷媒の圧力損失は大きくなる。しかしながら、上述の実施の形態1〜3で述べたとおり、バイパス配管60とバイパス弁70とを有することにより、冷房運転時においては、第1熱交換器52での圧力損失を低減し、第1熱交換器52の冷房性能を向上させることができる。
【0089】
また、上述の実施の形態1でも触れたが、第1熱交換器52の第1内部流路52bの数は、第2熱交換器54の第2内部流路54bの数よりも少ない構成とすることができる。空気調和機100の暖房運転時において、第1内部流路52bを液相冷媒が流動する場合、第1内部流路52bの数が少ないほど、第1内部流路52bの内部の冷媒流速が早くなるため、第1伝熱管52a2における熱伝達率が向上し、暖房性能が向上する。また、第1熱交換器52の第1内部流路52bの数が小さいほど、第1熱交換器52における第1内部流路52bの内容積が小さくなるため、冷媒回路10の動作に必要な冷媒の充填量を削減できる。
図7に示すように、負荷側熱交換器5は、例えば、1経路の第1内部流路52bと、2経路の第2内部流路54bとを有する構成にできる。
【0090】
なお、冷房運転時においては、第1内部流路52bの数が少なくなり、冷媒流量が大きくなるに従い、冷媒の圧力損失は大きくなる。しかしながら、バイパス配管60とバイパス弁70とを有することにより、冷房運転時においては、第1熱交換器52での圧力損失を低減し、第1熱交換器52の冷房性能を向上させることができる。
【0091】
なお、第1伝熱管52a2及び第2伝熱管54a2の外径については、上述の具体例に限られるものでなく、7mm外径の第2伝熱管54a2の内径よりも、内径の小さい管が第1伝熱管52a2として使用されれば、同様の効果が得られる。また、第1内部流路52b及び第2内部流路54bの数も、上述の具体例に限定されず、例えば、第1伝熱管52a2が扁平管であれば内部流路の数を、2経路以上とするような構成としてもよい。
【0092】
図9は、空気調和機100の冷媒としてR290冷媒又はR32冷媒を用いた場合の、空気調和機100における冷房能力と、負荷側熱交換器5における圧力損失との関係を示したグラフである。グラフの横軸は空気調和機100における冷房能力であり、矢印方向に向かうにつれて冷房能力が向上する。グラフの縦軸は負荷側熱交換器5における圧力損失であり、矢印方向に向かうにつれて圧力損失が大きくなる。また、R290冷媒はハイドロカーボン冷媒であり、R32冷媒はハイドロフルオロカーボン冷媒である。
【0093】
同一の冷房能力が要求される場合においては、R290冷媒を用いた場合には、R32冷媒を用いた場合によりも、圧力損失が常に大きくなった。しかしながら、上述の実施の形態3における
図7の説明で述べたように、同一の冷凍能力で見た場合、R32冷媒よりも、R290冷媒の方が、流量調整弁70cの開度の調整により、成績係数の改善率を向上できる可能性がある。したがって、特に、ハイドロカーボン冷媒を空気調和機100の冷媒として採用する場合には、冷媒の量の削減及び消費エネルギー削減の効果を高めることができる。
【0094】
また、一定の冷房能力において、成績係数を高めると、空気調和機100の消費電力が低下する。したがって、一定の消費電力において、冷房能力が向上するように空気調和機100を構成することも可能であり、空気調和機100における最大冷房能力の向上を図ることができるという効果も得られる。