特許第6984400号(P6984400)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ セイコーエプソン株式会社の特許一覧

特許6984400分光測定装置、電子機器及び分光測定方法
<>
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000002
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000003
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000004
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000005
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000006
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000007
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000008
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000009
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000010
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000011
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000012
  • 特許6984400-分光測定装置、電子機器及び分光測定方法 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6984400
(24)【登録日】2021年11月29日
(45)【発行日】2021年12月22日
(54)【発明の名称】分光測定装置、電子機器及び分光測定方法
(51)【国際特許分類】
   G01J 3/46 20060101AFI20211213BHJP
【FI】
   G01J3/46 Z
【請求項の数】9
【全頁数】24
(21)【出願番号】特願2017-249265(P2017-249265)
(22)【出願日】2017年12月26日
(65)【公開番号】特開2019-113494(P2019-113494A)
(43)【公開日】2019年7月11日
【審査請求日】2020年10月2日
(73)【特許権者】
【識別番号】000002369
【氏名又は名称】セイコーエプソン株式会社
(74)【代理人】
【識別番号】110000637
【氏名又は名称】特許業務法人樹之下知的財産事務所
(72)【発明者】
【氏名】久利 龍平
【審査官】 嶋田 行志
(56)【参考文献】
【文献】 特開2014−038042(JP,A)
【文献】 特開2015−232540(JP,A)
【文献】 特開2014−048271(JP,A)
【文献】 特開2001−099710(JP,A)
【文献】 特開2010−237097(JP,A)
【文献】 特開2011−223221(JP,A)
【文献】 ドラムスキャナを用いたカラー画像計測のための表色法,大阪電気通信大学研究論文集,1989年
(58)【調査した分野】(Int.Cl.,DB名)
G01J 3/00−G01J 3/52
G03G 13/00−G03G 15/36
JSTPlus/JST7580/JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
対象物からの光の複数の波長に対する光量を測定する分光器と、
前記複数の波長に対する光量の測定結果に基づいて前記対象物の反射率を算出する演算部と、
所定波長域の各波長の光に対する反射率が既知の基準物と、
前記基準物に光源からの光を照射した際の前記基準物に対する測定結果と、前記基準物に対する測定結果の初期値との相関係数が、所定の値よりも大きいか否かを判定するエラー判定部と、を備え
前記エラー判定部は、前記基準物に光源からの光を照射した際の前記基準物に対する測定結果と、前記基準物に対する測定結果の初期値との回帰直線の傾きが所定の閾値よりも大きいか否かを判定し、
前記演算部は、前記エラー判定部により前記相関係数が前記所定の値よりも大きく、かつ、前記傾きが前記所定の閾値よりも大きいと判定された場合、前記測定結果を反射率に変換する変換行列を、前記測定結果に作用させて、前記対象物の反射率を算出する
ことを特徴とする分光測定装置。
【請求項2】
請求項1に記載の分光測定装置において、
前記変換行列は、反射率が既知であるサンプルのk(kは自然数)個の波長に対する反射率と、前記サンプルを前記分光器により測定した際のm(mは自然数)個の波長に対する測定結果と、を用いて算出される行列である
ことを特徴とする分光測定装置。
【請求項3】
請求項2に記載の分光測定装置において、
色がそれぞれ異なるn(nは自然数)個の前記サンプルの各々における、前記k個の波長に対する既知の反射率の行列をSn,kとし、
前記n個の前記サンプルの各々における、前記m個の波長に対する光量の測定結果の行列をDn,mとし、
前記変換行列をMsとし、
評価関数F(Ms)をF(Ms)=|Sn,k−Ms・Dn,mとして、
前記変換行列Msは、前記評価関数F(Ms)が最小となる行列である
ことを特徴とする分光測定装置。
【請求項4】
請求項2に記載の分光測定装置において、
色がそれぞれ異なるn(nは自然数)個の前記サンプルの各々における、前記k個の波長に対する既知の反射率の行列をSn,kとし、
前記分光器により測定される前記n個の前記サンプルの各々における、前記m個の波長に対する光量の測定結果の行列をDn,mとし、
前記変換行列をMsとし、定数をβとし、
評価関数F(Ms)をF(Ms)=|Sn,k−Ms・Dn,m+β・Ms・Msとして、
前記変換行列Msは、前記評価関数F(Ms)が最小となる行列である
ことを特徴とする分光測定装置。
【請求項5】
請求項1から請求項4のいずれか1項に記載の分光測定装置において、
前記演算部は、反射率が既知であるサンプルを測定した際のm(mは自然数)個の波長に対する測定結果と、前記サンプルのk(kは自然数)個の波長の反射率と、を用いて前記変換行列を算出する
ことを特徴とする分光測定装置。
【請求項6】
請求項1から請求項5のいずれか1項に記載の分光測定装置において
記演算部は、前記基準物に光源からの光を照射した際の前記基準物に対する測定結果に基づいて、前記対象物を測定した際の測定結果を補正する
ことを特徴とする分光測定装置。
【請求項7】
請求項1から請求項6のいずれか1項に記載の分光測定装置において、
前記分光器の温度を測定する温度測定部をさらに備え、
前記演算部は、前記温度測定部により測定された温度に基づいて、前記対象物を測定した際の測定結果を補正する
ことを特徴とする分光測定装置。
【請求項8】
請求項1から請求項7のいずれか1項に記載の分光測定装置と、
前記演算部を制御する制御部と、
を備えることを特徴とする電子機器。
【請求項9】
分光器が対象物からの光の複数の波長に対する光量を測定し、
所定波長域の各波長の光に対する反射率が既知の基準物に対して光源から光を照射した際の前記基準物に対する測定結果と、前記基準物に対する測定結果の初期値との相関係数が、所定の値よりも大きいか否かをエラー判定部が判定し、
前記基準物に対して光源から光を照射した際の前記基準物に対する測定結果と、前記基準物に対する測定結果の初期値との回帰直線の傾きが所定の閾値よりも大きいか否かを前記エラー判定部が判定し、 前記エラー判定部により前記相関係数が前記所定の値よりも大きく、かつ、前記傾きが前記所定の閾値よりも大きいと判定された場合、演算部が前記複数の波長に対する光量の測定結果を反射率に変換する変換行列を、前記対象物に対する測定結果に作用させて、前記対象物の反射率を算出する
ことを特徴とする分光測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分光測定装置、電子機器及び分光測定方法に関する。
【背景技術】
【0002】
従来、入射光の各波長の光特性を測定する分析装置が知られている(例えば、特許文献1参照)。
【0003】
特許文献1の分光計測器では、光源部から対象物に光を照射し、検査対象で反射した光を複数の計測波長に分光して計測スペクトルを生成する。そして、得られた計測スペクトルに、スペクトルが既知の光から決定された変換行列を作用させることで、対象物のスペクトルを精度良く推定できるようにしている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013−142656号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、上述したような装置を印刷装置に設け、メディアに印刷された対象物の色を測色する測色装置として用いることがある。対象物の色を測色する場合、対象物の反射率を測定する必要があるが、通常、反射率を測定する場合にはキャリブレーションのために基準板を用いる。特許文献1に記載の装置では、上述したように、計測スペクトルから対象物のスペクトルは推定できるが、推定したスペクトルから対象物の反射率を算出するためには、基準色(例えば白色)で構成された基準板(白色板)の測定を行う必要がある。
しかしながら、高精度な測定を実施するためには、基準物(例えば基準板)の測色時とメディアに形成された対象物の測色時とで条件を揃える必要がある。このため、基準物をメディアと同じ高さの位置に配置する必要があり、基準物の配置位置を確保する必要がある。すなわち、基準物の配置位置の自由度が低下していた。
【0006】
本発明は、基準物の配置位置の自由度を高くすることができる分光測定装置、電子機器及び分光測定方法を提供することを目的の一つとする。
【課題を解決するための手段】
【0007】
本発明の一適用例に係る分光測定装置は、対象物からの光の複数の波長に対する光量を測定する分光器と、前記複数の波長に対する光量の測定結果に基づいて前記対象物の反射率を算出する演算部と、を備え、前記演算部は、前記測定結果を反射率に変換する変換行列を、前記測定結果に作用させて、前記対象物の反射率を算出することを特徴とする。
【0008】
本適用例では、演算部が、分光器により測定された測定値に対して、当該測定値を反射率に変換する変換行列を作用させて、対象物の反射率を算出する。つまり、分光器により測定された測定値から直接反射率を算出する。そのため、対象物の反射率を算出する際に、基準物(例えば基準板)を用いた基準色の反射率の測定を行う必要がなく、基準物と対象物とで測色時の条件を揃える必要がない。したがって、基準物を対象物と同じ高さの位置に配置する必要がなく、基準物の配置の自由度を高くすることができる。
【0009】
本適用例の分光測定装置において、前記変換行列は、反射率が既知であるサンプルのk(kは自然数)個の波長に対する反射率と、前記サンプルを前記分光器により測定した際のm(mは自然数)個の波長に対する測定結果と、を用いて算出される行列であることが好ましい。
本適用例では、変換行列が、反射率が既知であるサンプルのk個の波長に対する反射率と、サンプルを分光器により測定した際のm個の波長に対する測定結果と、から算出される。そのため、反射率が既知であるサンプルを分光器により測定することで、変換行列を算出することができる。つまり、反射率が既知であるサンプルを用意すれば、特別な装置を用いることなく変換行列を算出することができる。したがって、分光器により測定された測定値から直接反射率を算出するための変換行列を容易に算出することができる。
【0010】
本適用例の分光測定装置において、色がそれぞれ異なるn(nは自然数)個の前記サンプルの各々における、前記k個の波長に対する既知の反射率の行列をSn,kとし、前記分光器により測定される前記n個の前記サンプルの各々における、前記m個の波長に対する光量の測定結果の行列をDn,mとし、前記変換行列をMsとし、評価関数F(Ms)をF(Ms)=|Sn,k−Ms・Dn,mとして、前記変換行列Msは、前記評価関数F(Ms)が最小となる行列であることが好ましい。
本適用例では、変換行列Msは、反射率の行列Sn,k及び測定結果の行列Dn,mから導かれる評価関数F(Ms)が最小となる行列である。つまり、変換行列Msは、Sn,kとMs・Dn,mとが一致するような行列である。そのため、評価関数F(Ms)を一般の最小二乗誤差解と同様に展開することで、変換行列Msを決定することができる。したがって、分光器により測定された測定値から直接反射率を算出するための変換行列Msを容易に決定することができる。
【0011】
本適用例の分光測定装置において、色がそれぞれ異なるn個の前記サンプルの各々における、前記k個の波長に対する既知の反射率の行列をSn,kとし、前記分光器により測定される前記n個の前記サンプルの各々における、前記m個の波長に対する光量の測定結果の行列をDn,mとし、前記変換行列をMsとし、前記変換行列Msは、乗数項をβ・Ms・Msとし、評価関数F(Ms)をF(Ms)=|Sn,k−Ms・Dn,m+β・Ms・Msとして、前記変換行列Msは、前記評価関数F(Ms)が最小となる行列であることが好ましい。
ここで、βはハイパーパラメーターと呼ばれる定数であり、変換行列Msの右肩に表示されたTは転置行列であることを示すものである。
本適用例では、評価関数F(Ms)に乗数項であるβMsMsを加えることで、オーバーフィッティングを抑制した変換行列を算出できる。
つまり、評価関数F(Ms)において、このような乗数項が加えられない場合、行列Sn,kや行列Dn,mに誤差が含まれていないとの条件の下で、最良線形不偏推定量としての反射率を算出可能な変換行列Msを算出することが可能である。しかしながら、行列Sn,mや行列Dn,mに誤差が含まれると、その程度によってはオーバーフィッティング状態のパラメーターとなる。この場合、この評価関数F(Ms)を展開することで決定される変換行列Msのパラメーターは、非常に大きな値と小さな値とが混在した状態として得られることになり、パラメーターのバラツキは大きくなる。この場合、分光器による測定結果の測定値に変換行列を作用させて反射率を算出する際、測定結果の測定値が、変換行列の算出時と同程度の誤差を含む測定値であれば、高精度に反射率を求めることができるが、測定結果の測定値に含まれる誤差の程度やバラツキによっては、反射率の推定精度が低下してしまう(オーバーフィッティング)。
これに対して、本適用例では、上記のように、評価関数F(Ms)に乗数項であるβMsMsを加えることで、変換行列Msのパラメーターの分散(又は、ユークリッドノルム)を最小化する制約項を加えることになり、正則化することができる。これにより、変換行列Msのパラメーターのバラツキを小さくでき、オーバーフィッティングを抑制可能な変換行列を算出できる。つまり、変換行列Msを用いて、測定結果の測定値を反射率に変換する際に、測定値に含まれる誤差にバラツキがある場合でも、反射率を高精度に算出することが可能となる。
【0012】
本適用例の分光測定装置において、前記演算部は、前記分光器により反射率が既知であるサンプルを測定した際のm個の波長に対する測定結果と、前記サンプルのk個の波長の反射率とを用いて前記変換行列を算出することが好ましい。
本適用例では、演算部が、反射率が既知であるサンプルの測定結果と、サンプルの反射率とから変換行列を算出する。これにより、このような演算部を備える分光測定装置は、反射率が既知であるサンプルを用意すれば、分光器により測定された測定値から直接反射率を算出するための変換行列を算出することができる。したがって、例えば、分光測定装置が長時間の使用により光源等が経年変化した場合に、その状態における変換行列を算出することができ、対象物の反射率を精度良く算出することができる。
【0013】
本適用例の分光測定装置において、基準物をさらに備え、前記演算部は、前記基準物に光源からの光を照射した際の前記分光器による前記基準物に対する測定結果に基づいて、前記分光器により前記対象物を測定した際の測定結果を補正することが好ましい。
本適用例では、演算部は、基準物(例えば基準板)に対する測定結果に基づいて、対象物の測定結果を補正する。これにより、例えば、分光器の光源の光量が変化していても、光源の光量が変化した状態で測定された基準物の測定結果に基づいて対象物の測定結果が補正されるので、その影響を排除することができる。したがって、対象物の反射率を精度良く算出することができる。
【0014】
本適用例の分光測定装置において、前記分光器の温度を測定する温度測定部をさらに備え、前記演算部は、前記温度測定部により測定された温度に基づいて、前記分光器により前記対象物を測定した際の測定結果を補正することが好ましい。
本適用例では、演算部は、温度測定部により測定された温度に基づいて、対象物の測定結果を補正する。これにより、例えば、温度変化によって分光器の分光デバイス等の特性が変化していても、分光デバイス等の特性と温度との関係を予め求めておけば、測定された温度によってその特性の変化を把握することができる。したがって、その特性の変化に応じた補正を行うことができ、対象物の反射率を精度良く算出することができる。
【0015】
本発明の一適用例に係る電子機器は、上述したような分光測定装置と、前記演算部を制御する制御部と、を備えることを特徴とする。
本適用例では、上述した分光測定装置を備えているため、分光器により測定された測定値から反射率を算出する際に、基準物(例えば基準板)を用いた基準色の測定を行う必要がない。これにより、基準物と対象物とで測色時の条件を揃える必要がない。したがって、基準物を対象物と同じ高さの位置に配置する必要がなく、基準物の配置の自由度を高くすることができる。
【0016】
本発明の一適用例に係る分光測定方法は、分光器が対象物からの光の複数の波長に対する光量を測定し、演算部が前記複数の波長に対する光量の測定結果を反射率に変換する変換行列を、前記測定結果に作用させて、前記対象物の反射率を算出することを特徴とする。
本適用例では、上記分光測定装置と同様の作用効果を奏することができ、基準物(例えば基準板)を対象物と同じ高さの位置に配置する必要がなく、基準物の配置の自由度を高くすることができる。
【図面の簡単な説明】
【0017】
図1】第一実施形態のプリンターの概略構成を示す外観図。
図2】第一実施形態のプリンターの概略構成を示すブロック図。
図3】第一実施形態のキャリッジの概略構成を示す平面図。
図4】第一実施形態の分光器の概略構成を示す断面図。
図5】第一実施形態のキャリッジの概略構成を示す断面図。
図6】第一実施形態のプリンターのCPUの機能構成を示したブロック図。
図7】第一実施形態のプリンターにおける変換行列算出処理を示すフローチャート。
図8】第一実施形態のプリンターにおける補正処理の一例を示すフローチャート。
図9】第一実施形態のプリンターにおける基準板測定処理を示すフローチャート。
図10】第一実施形態のプリンターにおける反射率演算処理を示すフローチャート。
図11】第一実施形態のプリンターにおける基準板を測定処理した際の、受光量の初期値と測定値との相関関係を示すグラフ。
図12】第一実施形態のプリンターにおける基準板を測定処理した際の、受光量の初期値に対する測定値の傾きを示すグラフ。
【発明を実施するための形態】
【0018】
[第一実施形態]
以下、本発明に係る第一実施形態について、図面に基づいて説明する。本実施形態では、本発明の電子機器の一例として、分光測定装置を備えたプリンター1(インクジェットプリンター)について、以下説明する。
【0019】
[プリンターの概略構成]
図1は、本実施形態のプリンター1の外観の構成例を示す斜視図である。図2は、本実施形態のプリンター1の概略構成を示すブロック図である。図3は、本実施形態のプリンター1のキャリッジ13の概略構成を示す平面図である。
図1に示すように、プリンター1は、本発明の電子機器に相当し、ユニット筐体10と、供給ユニット11と、搬送ユニット12と、キャリッジ13と、キャリッジ移動ユニット14と、本発明の制御部に相当する制御ユニット15(図2参照)と、メンテナンスユニット20と、を備えている。また、キャリッジ13には、図3に示すように、印刷部16と、分光器17と、インクミスト等の異物から分光器17を保護するためのシャッター機構19と、が設けられている。
【0020】
このように構成されたプリンター1は、例えばパーソナルコンピューター等の外部機器30から入力された印刷データに基づいて、各ユニット11,12,14及びキャリッジ13を制御し、メディアM上に画像を印刷する。この画像として、例えば、濃度むらを補正するための補正用パターンを用いることができる。プリンター1は、分光器17によって補正用パターンを測色し、当該補正用パターンの測色結果に基づいて色ずれの補正等の各種補正処理を行う。
以下、プリンター1の各構成について具体的に説明する。
【0021】
ユニット筐体10は、各ユニット11,12,14,15,20及びキャリッジ13が設けられる。このユニット筐体10は、+Z側に位置し、搬送ユニット12やメンテナンスユニット20等が配置される底面部101と、底面部101から−Z方向に立ち上る第一側面部102、第二側面部103、背面部104と、を備える。第一側面部102は−X側に位置し、第二側面部103は+X側に位置し、背面部104はX方向に沿って、第一側面部102と第二側面部103との間に位置する。
ここで、第一側面部102は、後述するシャッター機構19の第一端部194が当接する面であり、第二側面部103は、シャッター機構19の第二端部195が当接する面である。なお、図示を省略するが、プリンター1は、ユニット筐体10の少なくとも一部を覆う外装筐体を備える。
【0022】
供給ユニット11は、本発明の対象物であるメディアM(本実施形態では、紙面を例示)を、画像形成位置に供給するユニットである。この供給ユニット11は、例えばメディアMが巻装されたロール体111(図1参照)、ロール駆動モーター(図示略)、及びロール駆動輪列(図示略)等を備える。そして、制御ユニット15からの指令に基づいて、ロール駆動モーターが回転駆動され、ロール駆動モーターの回転力がロール駆動輪列を介してロール体111に伝達される。これにより、ロール体111が回転し、ロール体111に巻装された紙がY方向(副走査方向)における下流側(+Y方向)に供給される。
なお、本実施形態では、ロール体111に巻装された紙を供給する例を示すがこれに限定されない。例えば、トレイ等に積載された紙等のメディアMをローラー等によって例えば1枚ずつ供給する等、如何なる供給方法によってメディアMが供給されてもよい。
【0023】
搬送ユニット12は、供給ユニット11から供給されたメディアMを、Y方向に沿って搬送する。この搬送ユニット12は、搬送ローラー121と、搬送ローラー121との間でメディアMを挟む位置に配置され、搬送ローラー121に従動する従動ローラー(図示略)と、プラテン122と、を含んでいる。
搬送ローラー121は、図示略の搬送モーターからの駆動力が伝達され、制御ユニット15の制御により搬送モーターが駆動されると、その回転力により回転駆動されて、従動ローラーとの間にメディアMを挟み込んだ状態でY方向に沿って搬送する。また、搬送ローラー121のY方向の下流側(+Y側)には、キャリッジ13に対向するプラテン122が設けられている。
【0024】
キャリッジ13は、メディアMに対してインクを吐出して画像を印刷する印刷部16と、メディアM上の画像の色を分光測定する分光器17、シャッター機構19と、を搭載する筐体である。
このキャリッジ13は、キャリッジ移動ユニット14によって、主走査方向(X方向)に沿って移動される。なお、キャリッジ13、印刷部16、分光器17、及びシャッター機構19の詳細な構成については後述する。
以降の説明にあたり、主走査方向(X方向)における、−X側をHome側と称し、+X側をFull側と称す場合がある。ここで、Homeとは、印刷処理を実施しない待機状態に、キャリッジ13が退避される位置である。また、Fullは、Homeとは反対側である。
【0025】
キャリッジ移動ユニット14は、制御ユニット15からの指令に基づいて、キャリッジ13をX方向に沿って往復移動させる。
このキャリッジ移動ユニット14は、例えば、図1に示すように、キャリッジガイド軸141と、キャリッジモーター142と、タイミングベルト143と、を含んでいる。
キャリッジガイド軸141は、X方向に沿って配置され、両端部がプリンター1の例えば筐体に固定されている。キャリッジモーター142は、タイミングベルト143を駆動する。タイミングベルト143は、キャリッジガイド軸141と略平行に支持され、キャリッジ13の一部が固定されている。そして、制御ユニット15の指令に基づいてキャリッジモーター142が駆動されると、タイミングベルト143が正逆に動き、タイミングベルト143に固定されたキャリッジ13がキャリッジガイド軸141にガイドされて往復移動する。
【0026】
メンテナンスユニット20は、印刷部16が備える後述するノズルユニット161(図3参照)のメンテナンスを行う際に用いられる。このメンテナンスユニット20は、図1及び図3に示すように、プリンター1のHome位置に設けられている。プリンター1は、メンテナンス時に、キャリッジ13をHome位置まで移動させた後、ノズルユニット161が備えるノズルからインクを吸引する、キャップや吸引ポンプ等(図示略)を備えている。
【0027】
制御ユニット15は、図2に示すように、I/F151と、ユニット制御回路152と、メモリー153と、CPU(Central Processing Unit)154と、を含んで構成されている。
I/F151は、外部機器30から入力される印刷データをCPU154に入力する。
ユニット制御回路152は、供給ユニット11、搬送ユニット12、キャリッジ移動ユニット14、メンテナンスユニット20、印刷部16、及び分光器17をそれぞれ制御する制御回路を備えており、CPU154からの指令信号に基づいて、各ユニットの動作を制御する。なお、各ユニットの制御回路が、制御ユニット15とは別体に設けられ、制御ユニット15に接続されていてもよい。
【0028】
メモリー153は、プリンター1の動作を制御する各種プログラムや各種データを記憶している。各種データとしては、例えば、印刷データとして含まれる色データに対する各インクの吐出量を記憶した印刷プロファイルデータ等が挙げられる。また、後述する光源179の各波長に対する発光特性や、分光デバイス173Aの温度による分光特性等が記憶されていてもよい。
【0029】
CPU154は、メモリー153に記憶された各種プログラムを読み出し実行することで、供給ユニット11、搬送ユニット12、及びキャリッジ移動ユニット14の駆動制御、印刷部16の印刷制御、分光器17の測定制御、並びに、分光器17の測定結果に基づく演算処理や補正処理(例えば濃度むらの補正処理や、色ずれの補正処理)等を実施する。CPU154の具体的な機能については後述する。
【0030】
[キャリッジの構成]
次に、キャリッジ13及び、当該キャリッジ13に設けられる印刷部16、分光器17、及びシャッター機構19の構成について説明する。
図3に示すように、キャリッジ13は、印刷部16と、分光器17と、シャッター機構19と、を搭載する筐体であり、キャリッジ移動ユニット14によって主走査方向(X方向)に沿って移動可能に構成される。これらのうち印刷部16、及び分光器17は、フレキシブル回路130(図1参照)によって制御ユニット15に接続され、制御ユニット15から制御信号に基づいて駆動される。
また、後に詳述するが、シャッター機構19が備えるシャッター192は、X方向に沿ったキャリッジ13の移動に応じて、分光器17の窓部176A(図4参照)を閉塞する状態と、窓部176Aを開放する状態(分光器17への光の入射が可能となる状態)と、を変更可能に構成されている。
【0031】
[印刷部の構成]
印刷部16は、制御ユニット15からの指令信号に基づいて、メディアMと対向する部分に、インクを個別にメディアM上に吐出して、メディアM上に画像を形成する印刷処理(メディアMに対する画像形成処理)を行う。
この印刷部16は、図3に示すように、複数色のインクに対応したノズルユニット161と、各ノズルユニット161にインクを供給するインクカートリッジ(図示略)と、インクカートリッジからノズルユニット161にインクを供給する供給管(図示略)と、を含み構成される。
ノズルユニット161は、メディアMに吐出する色毎(例えば、シアン、マゼンタ、イエロー、ライトシアン、ライトマゼンタ、グレー、ライトグレー、マットブラック、フォトブラック等)に対応してそれぞれ設けられている。これらノズルユニット161は、インク滴を吐出するノズル(図示略)が設けられている。これらのノズルには、例えばピエゾ素子が配置されており、ピエゾ素子を駆動させることで、インクタンクから供給されたインク滴が+Z側に吐出されてメディアMに着弾し、ドットが形成される。
【0032】
[分光器の構成]
図4は、分光器17の概略構成を示す断面図である。なお、図4では、窓部176Aが開放された状態(シャッター192が窓部176Aから離れた位置(開放位置)に移動した状態)での分光器17の構成を示している。
分光器17は、図4に示すように、基台171と、基台171に固定された基板保持部172と、基板保持部172に保持される分光デバイス保持基板173及び受光素子保持基板174と、カバー部175と、を備えている。
【0033】
基台171は、メディアMの測定位置にて反射された光が通過する測定光導入部176と、光源179が配置される光源配置部177とを備える。
測定光導入部176は、例えばZ方向に沿った貫通孔であり、+Z側端部に、窓部176Aが配置されている。また、測定光導入部176の−Z側には、例えばアパーチャー178Aや入射レンズ178B等の入射光学系を保持する光学保持部178が固定されている。窓部176A、アパーチャー178A、入射レンズ178Bの光軸は、後述する分光デバイス173Aや、受光素子174Aの測定光軸Lと一致する。
【0034】
光源配置部177は、例えば、中心軸が+Z側に向かうに従って、測定光軸Lに近接する筒状孔部177Aを有する。この筒状孔部177Aの−Z側には、光源179が配置されている。光源179としては、例えばLEDを例示でき、LEDが設けられたLED基板を筒状孔部177Aの−Z側端部に例えばねじ止め等により固定することで、基台171に対してLED(光源179)が固定される。なお、光源179を保持する基板(LED基板等)は、後述するコネクター175Bに接続されている。
また、筒状孔部177Aの+Z側端部は、光源179の光が出射される照明窓177Bとなる。シャッター192が開放位置に位置する場合、図4に示すように、照明窓177Bも開放され、プラテン122上に載置されたメディアMに対向する。この状態で光源179が発光されると、光源179の光が、メディアMと、測定光軸Lとの交点を中心とした所定範囲の測定位置Pに照射される。なお、本実施形態では、測色規格(JIS Z 8722)により規定された光学的幾何条件における(45°x:0°)の方式に従って分光測定を実施する。すなわち、本実施形態では、光源179からの照明光を測定位置Pに対して45°±2°の入射角で入射され、測定対象にて0°±10°で法線方向に反射された光が測定光軸Lに沿って受光素子174Aに入射する。
【0035】
基板保持部172は、基台171に対して、例えばねじ止め等によって固定されている。この基板保持部172には、分光デバイス保持基板173及び受光素子保持基板174が固定される。
分光デバイス保持基板173は、分光デバイス173Aが保持された基板であり、分光デバイス173Aの光軸(測定光軸L)上に貫通孔を有する。分光デバイス保持基板173は、光学保持部178の−Z側の位置で、かつ、分光デバイス173Aの光軸が測定光軸Lと一致する位置で、基板保持部172に固定される。なお、分光デバイス173Aは、入射光から特定の波長の光を透過させる光学装置であり、例えば、エタロン素子や、液晶チューナブルフィルター(LCTF)や、音響光学可変波長フィルター(AOTF)等を例示できる。なお、分光デバイス保持基板173には、分光デバイス173Aを制御する各種回路が設けられ、当該回路はコネクター175Bに接続されている。また、分光デバイス保持基板173には、温度測定部173Bが設けられている(図2参照)。温度測定部173Bは本発明の温度測定部であり、本実施形態では分光器17において、分光デバイス173Aの温度を測定する。
【0036】
受光素子保持基板174は、受光素子174Aが保持された基板である。受光素子保持基板174は、分光デバイス保持基板173の−Z側の位置で、かつ、受光素子174Aの光軸が測定光軸Lと一致する位置で、基板保持部172に固定される。また、受光素子保持基板174は、受光素子174Aを制御する各種回路を備え、当該回路はコネクター175Bに接続されている。
また、受光素子174Aは分光デバイス173Aを透過した光を受光領域で受光して、受光量に応じた検出信号(電流値)を出力する。受光素子174Aによる出力された検出信号は、I−V変換器(図示略)、増幅器(図示略)、及びAD変換器(図示略)を介して制御ユニット15に入力される。
【0037】
カバー部175は、図4に示すように、例えば、基台171の外周縁に固定され、基台171とともに、基板保持部172、分光デバイス保持基板173、受光素子保持基板174、及び光学保持部178を収納する閉空間(暗空間)を形成する。
また、カバー部175の一部には、開口175Aが設けられ、当該開口175Aには、コネクター175Bが設けられている。このコネクター175Bは、制御ユニット15と電気的に接続されており、光源179や、分光デバイス保持基板173、受光素子保持基板174に、制御ユニット15からの制御信号を伝達する。
【0038】
[シャッター機構の構成]
図5は、シャッター機構19を備えたキャリッジ13の概略構成を示す断面図である。図5では、シャッター192が、窓部176Aを閉塞する閉塞位置に位置する際の状態を示している。
本実施形態で示すシャッター機構19は、キャリッジ13、シャッター192を有するシャッター保持部191、及びユニット筐体10により構成されている。
具体的には、キャリッジ13の底部131には、図5に示すように、Z方向において分光器17(窓部176A)と重なる位置に、メディアMからの反射光を分光器17へ入射させる開口部132が形成されている。また、キャリッジ13の±X側の側面133には、シャッター保持部191が挿通される挿通孔134が形成されている。この挿通孔134の+Z側の面は、XY平面に平行な平坦面であり、キャリッジ13の底部131における上面131A(−Z側の面)と面一となる。
さらに、±X側の挿通孔134の少なくともいずれか一方(本実施形態では+X側の挿通孔134)には、シャッター保持部191を位置決めするための位置決め機構135が配置されている。位置決め機構135としては、例えば、挿通孔134内又はシャッター保持部191のいずれか一方に設けられる係止突起と、他方に設けられて係止突起を係合する係合穴とを備える構成等が例示できる。
【0039】
シャッター保持部191は、図5に示すように、例えばX方向に長手の平板形状に形成されている。このシャッター保持部191の一部にはシャッター192が設けられており、当該シャッター192の+X側で距離uだけ離れた位置に、光通過部193が設けられている。
【0040】
シャッター192は、窓部176Aを閉塞する部分である。シャッター192には、対象物であるメディアMの測定結果の補正値を算出するための基準物である基準板192Aが設けられている。本実施形態では、基準板192Aは、所定波長域(例えば可視光域)の各波長の光に対する反射率が例えば99%以上である白色板であり、シャッター192が閉塞位置に移動された状態において、窓部176Aに対向する位置に設けられている。
【0041】
また、シャッター192には、+X側の端部に、分光器17の下面と接する第一ワイパー192Bが設けられている。第一ワイパー192Bは、シャッター192が閉塞位置から開放位置に移動する際に、−X側に向かって移動すると、窓部176Aの下面と接触する。同様に、第一ワイパー192Bは、シャッター192が開放位置から閉塞位置に移動する際にも、窓部176Aの下面と接触する。このように、シャッター192を開閉させることで、第一ワイパー192Bによる窓部176Aのクリーニングをすることができる。
【0042】
さらに、分光器17(基台171)のシャッター192に対向する+Z側面で、窓部176Aの−X側に、+Z側に突出する第二ワイパー192Cが設けられている。第二ワイパー192Cは、シャッター192が閉塞位置から開放位置に移動する際に、−X側に向かって移動すると、基準板192Aと接触し、基準板192Aの表面のインク滴等による汚れを除去する。
【0043】
光通過部193は、測定位置Pからの反射光を分光器17に通過させる部分である。光通過部193としては、例えば、シャッター保持部191をZ方向に貫通する貫通孔により構成されてもよく、当該貫通孔にガラス板等の透光性の光学部材が嵌合されていてもよい。
【0044】
そして、シャッター保持部191は、下面(+Z側の面)がキャリッジ13の底部131の上面131Aに摺動可能に載置されるとともに、両端部が挿通孔134に挿通されており、キャリッジ13をX方向に貫通して配置されている。
すなわち、シャッター保持部191の−X側端部(第一端部194)は、キャリッジ13の−X側の挿通孔134を介して−X側に突出し、シャッター192の+X側端部(第二端部195)は、キャリッジ13の+X側の挿通孔134を介して+X側に突出する。そして、これらの第一端部194及び第二端部195はフランジ形状に形成されており、これにより、シャッター保持部191のキャリッジ13からの抜け落ちが抑制される。
【0045】
このような構成のシャッター機構19では、キャリッジ13の移動によって、窓部176Aがシャッター192により開閉される。具体的には、キャリッジ13が+X側の端部(FULL位置)に移動されると、第二端部195がユニット筐体10の第二側面部103に当接され、キャリッジ13に対してシャッター保持部191が−X側に所定の距離uだけ移動する(開放位置)。これにより、光通過部193が、窓部176Aに対向し、分光器17に測定位置Pからの反射光が入射可能となる。
一方、キャリッジ13が−X側の端部(HOME位置)に移動されると、第一端部194がユニット筐体10の第一側面部102に当接され、図5に示すように、キャリッジ13に対してシャッター保持部191が+X側に所定の距離uだけ移動する(閉塞位置)。これにより、窓部176Aにシャッター192が対向し、シャッター192により閉塞される。
【0046】
[CPUの機能構成]
図6は、CPU154の機能構成を示したブロック図である。
CPU154は、本発明の演算部であり、メモリー153に記憶された各種プログラムを読み出し実行することで、図6に示すように、走査制御部154A、印刷制御部154B、測定制御部154C、補正部154D、変換行列算出部154E、エラー判定部154F及び反射率算出部154Gとして機能する。
【0047】
走査制御部154Aは、供給ユニット11、搬送ユニット12、及びキャリッジ移動ユニット14を駆動させる旨の指令信号をユニット制御回路152に出力する。これにより、ユニット制御回路152は、供給ユニット11のロール駆動モーターを駆動させて、メディアMを搬送ユニット12に供給させる。また、ユニット制御回路152は、搬送ユニット12の搬送モーターを駆動させて、メディアMの所定領域をプラテン122のキャリッジ13に対向する位置まで、Y方向に沿って搬送させる。また、ユニット制御回路152は、キャリッジ移動ユニット14のキャリッジモーター142を駆動させて、キャリッジ13をX方向に沿って移動させる。
【0048】
また、走査制御部154Aは、シャッター192の位置を変更する際に、キャリッジ移動ユニット14を駆動させる旨の指令信号をユニット制御回路152に出力する。これにより、ユニット制御回路152は、シャッター192を閉塞位置に移動させる場合、キャリッジ13をHomeに移動させ、開放位置に移動させる場合、キャリッジ13をFullに移動させる。
【0049】
印刷制御部154Bは、例えば外部機器30から入力された印刷データに基づいて、供給ユニット11、搬送ユニット12、キャリッジ移動ユニット14、及び印刷部16を駆動制御する旨の印刷指令信号をユニット制御回路152に出力する。ユニット制御回路152は、印刷部16に印刷制御信号を出力し、ノズルに設けられたピエゾ素子を駆動させてメディアMに対してインクを吐出させる。
【0050】
測定制御部154Cは、分光器17を駆動する旨の測定指令信号を、ユニット制御回路152に出力し、分光器17に測定処理を実施させて、測定位置Pに対する各波長の反射率を取得する。また、測定制御部154Cは、分光器17を駆動させて、基準板192AやメディアMの測定処理を行う。具体的な測定処理の方法については後述する。
【0051】
補正部154Dは、分光器17により得られたメディアMの各波長に対する反射率に基づいて、各種補正処理を実施する。補正処理としては、例えば、濃度むらや色ずれの補正等が挙げられる。
変換行列算出部154Eは、後述する変換行列Msの算出処理を行う。具体的な算出方法については後述する。
エラー判定部154Fは、基準板192Aの測定結果に基づいて、エラー判定処理を行う。
反射率算出部154Gは、メディアMの各波長に対する反射率を算出する処理を行う。具体的な算出方法については後述する。
【0052】
[分光測定と変換行列の算出処理]
次に、本実施形態のプリンター1において、対象物の反射率を算出するための変換行列Msの算出処理について、図面に基づいて説明する。
図7は、プリンター1における変換行列の算出処理の一例を示すフローチャートである。
本実施形態のプリンター1では、測定制御部154Cの制御によって、分光器17からメディアMに照明光を照射し、メディアMで反射された光を分光デバイス173Aで複数の波長の光に分光し、分光された各波長の光を受光素子174Aで受光する。これにより、分光器17から制御ユニット15に、受光素子174Aで受光した光の光量に応じた検出信号が測定結果として入力される。測定結果には、メディアMを測定した際の、複数の波長(例えば400nmから700nmまでの20nm間隔となる16バンドの波長)に対する測定値(電圧値)が含まれる。そして、反射率算出部154Gは、この測定結果に含まれる各波長に対する測定値に対して、変換行列を作用させて、直接、メディアMの各波長に対する反射率を算出する。
【0053】
このような変換行列は、個々の分光器17の特性に応じてそれぞれ設定する必要があるため、例えばプリンター1の製造時において、分光器17毎に予め測定されてメモリー153に記憶されている。これに加え、本実施形態では、CPU154が変換行列算出部154Eとして機能することで、プリンター1の出荷後において、光源179や分光デバイス173Aにおいて経年変化が生じた場合でも、変換行列を算出し、メモリー153に記憶された変換行列を更新することが可能となる。プリンター1により、変換行列を更新する場合、例えば、プリンター1の使用を開始してから所定期間が経過した時点で、例えば表示ディスプレイ(図示略)等に案内メッセージを出力して、ユーザーに対して更新処理を促す。そして、ユーザーにより、更新処理を実施する旨の操作が入力された場合に、図7に示すような変換行列の算出処理が開始される。
【0054】
変換行列の算出処理は、プラテン122の上面、すなわちメディアMが配置される位置にサンプルZが配置された状態で実施される。サンプルZには、例えば、退色等の色味の劣化の少ないセラミックタイルが用いられることが好ましく、RGBの階調値をほぼ等間隔に振ったn(nは自然数)個(例えば50色)分のパターン画像(カラーパッチ)が形成されている。
本実施形態では、サンプルZに形成されたカラーパッチの各々における、分光器17により測定が可能な対象波長域におけるk(kは自然数)個の波長に対する反射率(例えば、400nmから700nmまで10nm間隔で31バンドの反射率)が既知であり、各色の反射スペクトルが、行列Sn,kとしてメモリー153に記憶されている。例えば、本実施形態では、サンプルZに50色のカラーパッチが形成され、各色に対する31バンドの反射率が既知であり、各色の反射スペクトルが行列S50,31としてメモリー153に記憶されている。
【0055】
ユーザーにより変換行列の算出処理が指令されると、まず、走査制御部154Aは、キャリッジ13をFULLに移動させ、シャッター192を開放位置に移動させる(ステップS1)。
この後、測定制御部154Cは、分光器17を駆動させてサンプルZの分光測定を行うサンプル測定処理を実行する(ステップS2)。
サンプル測定処理では、測定制御部154Cは、分光デバイス173A及び受光素子174Aを制御して、サンプルZに形成されたカラーパッチの各色について、対象波長域におけるm(mは自然数)個の波長(例えば400nmから700nmまで可視光域において20nm間隔となる16バンドの波長)に対する測定値を測定する。本実施形態では、受光素子174Aで光が受光されると、受光素子174Aから受光量に応じた電流の検出信号が出力され、受光素子保持基板174のI−V変換器、増幅器、及びAD変換器で信号処理されることで、電圧値を示すデジタル信号として制御ユニット15に入力される。そして、検出信号に応じた測定値は、行列Dn,mとしてメモリー153に記憶される。すなわち、本実施形態では、測定値が行列D50,16としてメモリー153に記憶される。なお、ステップS2において、対象波長領域における測定バンド数(m個)は、サンプルZの反射スペクトルの測定バンド数(k個)と同じでも良い。
【0056】
ステップS2の後、変換行列算出部154Eは、メモリー153に記憶された反射率の行列Sn,kと測定値の行列Dn,mとを用いて、変換行列演算処理を実行する(ステップS3)。
ここで、変換行列Msは、行列Sn,kと行列Dn,mとから次式(1)のように表すことができる。
【0057】
n,k=Ms・Dn,m ・・・(1)
【0058】
上記式(1)において、反射率の行列Sn,k及び測定値の行列Dn,mの右肩に表示されたTは転置行列であることを示している。
ここで、仮に、正しい変換行列Msが得られれば、Ms・Dn,mはSn,mと一致するはずである。そこで、Sn,kとMs・Dn,mとの偏差を表す評価関数F(Ms)を次式(2)のように設定し、この評価関数F(Ms)が最小となるように展開することで変換行列Msを決定することができる。
【0059】
F(Ms)=|Sn,k−Ms・Dn,m ・・・(2)
【0060】
そして、上記(2)式を最小とする解は、最小二乗誤差解と同様に、評価関数F(Ms)をMsで偏微分した値が0となる解である。すなわち、上記(2)式を展開して、以下の(3)式のように求めることができる。
【0061】
−2(Dn,m・Dn,m)・Ms+2Dn,m・Sn,k=0
(Dn,m・Dn,m)・Ms=Dn,m・Sn,k
Ms=(Dn,m・Dn,m−1・Dn,m・Sn,k ・・・(3)
【0062】
ステップS3では、変換行列算出部154Eは、上記(3)式のように展開することで、行列Sn,kと行列Dn,mとを用いて変換行列Msを算出する。
【0063】
図7に戻って、ステップS3で変換行列Msが算出されたら、変換行列算出部154Eはメモリー153に算出した変換行列Msを記憶させる(ステップS4)。
【0064】
[補正処理]
次に、本実施形態のプリンター1における補正処理の一例として、色ずれの補正処理について、図面に基づいて説明する。
図8は、プリンター1における補正処理の一例を示すフローチャートである。
プリンター1による補正処理は色ずれ、例えば、電源投入時や、補正処理の実行指示を受けた場合に実施される。
【0065】
図8に示す分光測定方法では、まず、走査制御部154Aは、キャリッジ13をHOMEに移動させ、シャッター192を閉塞位置に移動させる(ステップS10)。
この後、印刷制御部154Bは、色ずれ補正用のパターン画像をメディアMに印刷する(ステップS20)。なお、色ずれ補正用のパターン画像は、例えば、互いに色が異なる複数のカラーパッチがX方向及びY方向に沿って配置されたカラーチャート等を例示できる。ここで用いるカラーパッチは、変換行列の算出時と同色のカラーパッチであってもよい。
この際、シャッター192が閉塞位置に位置するため、印刷時におけるインクミスト等の異物の分光器17内への侵入が抑制される。
【0066】
ステップS20の後、測定制御部154Cは、分光器17を駆動させて基準物である基準板192Aを分光測定する基準板測定処理を行う(ステップS30)。
図9は、基準板測定処理を示すフローチャートである。
ステップS30の基準板測定処理では、図9に示すように、測定制御部154Cは、対象波長域におけるm個の波長の光に対する測定値の測定と、温度測定部173Bによる温度の測定とを実施する(ステップS31)。このステップS31における測定値の測定は、ステップS2におけるサンプル測定処理と同一の処理であり、ステップS2で測定した各波長と同じ波長に対する測定値を取得する。例えば、測定制御部154Cは、例えば、400nmから700nmまで20nm間隔で16バンドの測定値を測定する。
【0067】
次に、図9に示すように、エラー判定部154Fは、メモリー153に記憶されている工場出荷時における各測定波長に対する測定値の初期値と、ステップS31で測定した測定値との相関係数Rと傾きαを算出する(ステップS32)。
【0068】
次に、エラー判定部154Fは、相関係数Rが、所定の基準値H以上であるか否かを判定する(ステップS33)。なお、基準値Hは、メモリー153に予め記憶された相関係数Rの下限値であり、補正処理に係る分光測定結果の許容誤差等に応じて適宜設定することができ、例えば、0.9程度の値が設定されている。
図11は、測定値の初期値と、ステップS31で測定された測定値との相関関係の一例を示す図である。図11の例は、横軸を工場出荷時における400nmから700nmまでの20nm間隔となる16バンドの波長の測定値(初期値)とし、縦軸をステップS31で測定された同様の波長の測定値として、各バンドの受光量の測定値を初期値に対応させてプロットした場合の相関関係を示す例である。
窓部176Aの汚れ、基準板192Aの汚れがないときは、測定値はあまり変動しないので、初期値に対するステップS31で測定された測定値のバラツキが小さくなり、相関係数Rは大きくなる。
これに対して、窓部176Aや基準板192Aにインクミスト等の汚れが付着していると、受光量の測定値が変動するので、図11に示すように、初期値に対して、ステップS31で測定された測定値のバラツキが大きくなる。すなわち、初期値と測定値との相関係数Rが小さくなる。そのため、ステップS33において、相関係数Rが基準値H以上となるか否かを判定することで、窓部176Aや基準板192Aの汚れを検出することが可能となる。
【0069】
このステップS33でNoと判定された場合(R<Hの場合)、走査制御部154Aは、キャリッジ13をFULL位置に移動させ、シャッター192を開閉させることで、ワイパー192B,192Cによる窓部176A及び基準板192Aのクリーニングを行う(ステップS331)。窓部176Aのクリーニングが終了したら、エラー判定部154Fは、クリーニング回数を示す変数「j」(初期値:0)に1を加算し(ステップS332)、j≧Nか否かを判定する(ステップS333)。
【0070】
エラー判定部154Fは、ステップS333でNOと判定した場合、ステップS31に戻って再度基準板192Aの分光測定を実行する。
ステップS333でYESと判定される場合は、ワイパー192B,192Cによるクリーニングでは除去できない汚れがある可能性、或いは、他の要因により正確な分光測定が実施されない可能性がある。この場合、エラー判定部154Fは、エラーを出力する(ステップS334)。例えば、エラー判定部154Fは、図示略のディスプレイ等にエラーメッセージを表示して、使用者にメンテナンスの実行を促す。
なお、分光測定及びクリーニングを繰り返し行う所定回数Nとして、通常、3回程度の回数が設定されている。
【0071】
一方、ステップS33でYESと判定されると、エラー判定部154Fは、傾きαが閾値K以上であるか否かを判定する(ステップS34)。なお、閾値Kはメモリー153に予め記憶された傾きαの下限値であり、例えば、0.7程度の値が設定されている。
図12は、図11と同様に、各バンドの受光量の測定値を初期値に対応させてプロットした場合の、初期値に対する測定値の傾きの一例を示す図である。
光源の劣化がない場合、ステップS31で測定された各測定波長の受光量は、初期値に近い値を示すので、初期値に対する測定値の傾きαは「1」に近い値となる。
これに対して、光源179の劣化等によって光量が低下すると、各測定波長に対する受光量は一律に小さくなる。そうすると、図12に示すように、初期値に対する測定値の傾きαが小さくなる。そのため、ステップS34において、傾きαが閾値K以上となるか否かを判定することで、光源179の劣化等によって光量が低下していることを検出することが可能となる。
【0072】
このステップS34でNOと判定された場合(α<K)、光源179が劣化している可能性がある。この場合、エラー判定部154Fは、図示略のディスプレイ等にエラーメッセージを表示して、使用者にメンテナンスの実行を促す(ステップS341)。
【0073】
ステップS34でYESと判定されると、測定制御部154Cは、傾きα及び温度測定値Tをメモリー153に記憶させ(ステップS35)、基準板測定処理を終了する。
【0074】
図8に戻り、基準板測定処理が終了すると、走査制御部154Aは、キャリッジ13をFULLに移動させ、シャッター192を開放位置に移動させる(ステップS40)。そして、制御ユニット15は、パターン画像測定処理を実行する(ステップS50)。
パターン画像測定処理では、走査制御部154Aは、キャリッジ13及びメディアMを移動させて、分光器17の測定領域を、カラーパッチ上に順次位置させる。そして、測定制御部154Cは、各カラーパッチに対して分光測定を行う。この分光測定は、図9に示した基準板測定処理と同様に行われ、各測定波長に対する測定値D´がメモリー153に記憶される。
【0075】
そして、すべてのカラーパッチに対して測定が終了すると、反射率算出部154Gは、メモリー153に記憶された変換行列Ms、傾きα、温度測定値T及び測定値D´から対象物であるメディアMの反射率を演算する反射率演算処理を実行する(ステップS60)。
図10は、反射率演算処理を示すフローチャートである。
ステップS60の反射率演算処理では、図10に示すように、反射率算出部154Gは、測定値D´を傾きα及び温度測定値Tに基づいて補正する(ステップS61)。ここで、測定値D´の補正は、傾きαによる補正と温度測定値Tによる補正のどちらを先に行ってもよい。また、この補正は、傾きα及び温度測定値Tに応じた補正テーブルを予めメモリー153に記憶させておいてもよいし、傾きα及び温度測定値Tに応じて補正値を演算するようにしてもよい。
本実施形態では、このように測定値D´を基板測定処理の測定結果及び温度測定結果に基づいて補正することで、光源劣化や分光デバイス等の温度ドリフトの影響を排除することができる。以降、補正後の測定値D´を、補正測定値Dとする。
【0076】
この後、反射率算出部154Gは、式(1)に示すように補正測定値Dに変換行列Msを乗じることで、対象物であるメディアMの反射率を演算する(ステップS62)。すなわち、分光器17により測定された測定値に変換行列Msを作用させることで、基準板192Aの反射率を求めることなく、対象物であるメディアMの反射率を直接算出することができる。
そして、反射率算出部154Gは、算出した反射率をメモリー153に記憶させ(ステップS63)、反射率演算処理を終了する。
【0077】
図8に戻って、補正部154Dは、反射率演算処理で算出した反射率をメモリー153に予め記憶されている基準反射率と比較することで、測色結果(例えばXYZ値、L*a*b*値等)を算出する(ステップS70)。そして、補正部154Dは、ステップS70により得られた測色結果に基づいて、色ずれ補正処理を行う(ステップS80)。
色ずれ補正処理を行った後、新たにカラーパッチを印刷し、メディアMに印刷部がカラーパッチを印刷し、分光器が分光測定を行って測定結果を得て、メモリー153に記憶された変換行列を用いてカラーパッチの反射率を演算する。所望の反射率でなかった場合は、さらにカラーパッチ印刷と分光測定を繰り返し、印刷するカラーパッチの色ずれの量が許容範囲となるようにする。
このように、カラーパッチの反射率を算出する際に、メモリー153に記憶された変換行列を用いるため、基準物の反射率の測定を行うことなく反射率を算出することができる。
【0078】
[第一実施形態の作用効果]
本実施形態のプリンター1は、対象物であるメディアMからの光の複数の波長に対する光量を測定する分光器17と、分光器17による測定結果に基づいてメディアMの反射率を算出する演算部であるCPU154とを備え、CPU154は、分光器17により測定された測定値に対して、当該測定値を反射率に変換する変換行列Msを作用させて、メディアMの反射率を算出する。
【0079】
このような構成では、CPU154が、分光器17により測定された測定値(電圧値)からメディアMの反射率を直接算出することができる。そのため、メディアMの反射率を算出する際に、基準物である基準板192Aを用いた基準色の反射率の測定を行う必要がなく、基準板192AとメディアMとで測色時の条件を揃える必要がない。したがって、基準板192AをメディアMと同じ高さの位置に配置する必要がなく、基準板192Aの配置の自由度を高くすることができる。
【0080】
本実施形態では、変換行列Msは、反射率が既知であるサンプルZのk個の波長に対する反射率と、サンプルZを分光器17により測定した際のm個の波長に対する測定値とを用いて算出される。
このため、反射率が既知であるサンプルZを用意すれば、特別な装置を用いることなく変換行列Msを算出することができる。したがって、分光器17により測定された測定値から直接反射率を算出するための変換行列Msを容易に算出することができる。
【0081】
本実施形態では、評価関数F(Ms)をF(Ms)=|Sn,k−Ms・Dn,mとして、変換行列Msは、評価関数F(Ms)が最小となる行列である。
このため、評価関数F(Ms)を一般の最小二乗誤差解と同様に展開することで、変換行列Msを決定することができる。したがって、分光器17により測定された測定値から直接反射率を算出するための変換行列Msを容易に決定することができる。
【0082】
本実施形態では、CPU154は、分光器17によりサンプルZを測定した際の測定値の行列Dn,mと、サンプルZの既知の反射率の行列Sn,kとを用いて変換行列Msを算出する。
このため、反射率が既知であるサンプルZを用意すれば、分光器17により測定された測定値から直接反射率を算出するための変換行列Msを算出することができる。したがって、例えば、プリンター1が長時間の使用により光源179等が経年変化した場合に、その状態における変換行列Msを算出することができ、メディアMの反射率を精度良く算出することができる。
【0083】
本実施形態では、プリンター1が基準物である基準板192Aを備え、CPU154は、基準板192Aに光源179からの光を照射した際の分光器17による基準板192Aに対する測定結果に基づいて、分光器17によりメディアMを測定した際の測定値D´を補正する。
このため、例えば、分光器17の光源179の光量が変化していても、光源179の光量が変化した状態で測定された基準板192Aの測定結果に基づいてメディアMの測定結果である測定値D´が補正されるので、その影響を排除することができる。したがって、メディアMの反射率を精度良く算出することができる。
【0084】
本実施形態では、プリンター1が分光器17の温度を測定する温度測定部173Bを備え、CPU154は、温度測定部173Bにより測定された温度測定値Tに基づいて、分光器17によりメディアMを測定した際の測定値D´を補正する。
このため、例えば、温度変化によって分光デバイス173Aの特性が変化しても、分光デバイス173Aの特性と温度との関係を予め求めておけば、測定された温度測定値Tによってその特性の変化を把握することができる。したがって、その特性の変化に応じて測定値D´補正をすることができ、対象物の反射率を精度良く算出することができる。
【0085】
[第二実施形態]
次に、第二実施形態について説明する。
上記第一実施形態では、式(2)で示したように、評価関数F(Ms)=|Sn,k−Ms・Dn,mを展開することで変換行列Msを決定したが、第二実施形態では、変換行列Msを決定する式が、上記第一実施形態と相違する。
【0086】
上記式(2)では、行列Sn,kや行列をDn,mに誤差が含まれていないとの条件の下で、最良線形不偏推定量としての反射率を算出可能な変換行列Msを算出することが可能である。しかしながら、行列Sn,mや行列をDn,mに誤差が含まれると、その程度によってはオーバーフィッティング状態のパラメーターとなる。この場合、この評価関数F(Ms)を展開することで決定される変換行列Msのパラメーターは、非常に大きな値と小さな値とが混在した状態として得られることになり、パラメーターのバラツキは大きくなる。この場合、分光器17による測定結果の測定値に変換行列を作用させて反射率を算出する際、測定結果の測定値が、変換行列の算出時と同程度の誤差を含む測定値であれば、高精度に反射率を求めることができるが、測定結果の測定値に含まれる誤差の程度やバラツキによっては、反射率の推定精度が低下してしまう(オーバーフィッティング)。このオーバーフィッティングを抑制するためには、パラメーターのバラツキを小さくするような制約を加える必要がある。そこで、ラグランジュの未定乗数法を用いて、上記(2)式を以下のように置き換える。
【0087】
F(Ms)=|Sn,k−Ms・Dn,m+β・Ms・Ms ・・・(4)
【0088】
上記式(4)式において、βはハイパーパラメーターと呼ばれる定数である。上記(4)式では、評価関数F(Ms)に乗数項であるβMsMsを加えている。そのため、変換行列Msのパラメーターの分散(又は、ユークリッドノルム)を最小化する制約項を評価関数F(Ms)に加えることになり、正則化することができる。これにより、変換行列Msのパラメーターのバラツキを小さくでき、オーバーフィッティングを抑制可能な変換行列を算出できる。つまり、変換行列Msを用いて、測定結果の測定値を反射率に変換する際に、測定値に含まれる誤差にバラツキがある場合でも、反射率を高精度に算出することが可能となる。
【0089】
[変形例]
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
【0090】
上記各実施形態では、測定値は、受光素子保持基板174のI−V変換器、増幅器、及びAD変換器で信号処理された、電圧値を示すデジタル信号である例を示すが、これに限らない。例えば、受光素子174Aから出力された検出信号(電流値)を、分光デバイス173Aで分光波長を切り替えるタイミングでサンプリングすることで、各波長に対する電流値(電流スペクトル)を測定値として取得してもよい。この場合、変換行列Msとして、電流値を反射率に変換する行列が用いられる。
【0091】
上記各実施形態では、基準物である基準板192Aは、所定波長域(例えば可視光域)の各波長の光に対する反射率が99%以上である白色板である例を示すが、これに限らない。基準板192Aの基準色は白色に限定されるものではなく、測定を実施する際の基準が設定できれば如何なる色であってもよい。この場合、基準色の反射率は既知であることが好ましいが、これに限らない。つまり、基準板に対して光源の光を照射した際に、受光素子から出力される検出信号の初期値がメモリーに記憶されていればよい。
【0092】
上記各実施形態では、基準板192Aは、シャッター192の窓部176Aに対向する位置に設けられる例を示すが、これに限らない。例えば、基準板192Aは、プラテン122の上面に設けられていてもよく、分光器17で測定可能な位置に設けられていればよい。また、基準板に変えて基準物としてシャッター192そのものや、柱状の物質等を用いてよい。
【0093】
上記各実施形態では、プリンター1の使用を開始してから所定期間が経過した時点で、変換行列Msを算出する例を示すが、これに限らない。例えば、プリンター1では変換行列Msの算出処理は行わず、プリンター1の製造時において予め測定されてメモリー153に記憶された変換行列MsをメディアMの反射率演算処理に用いるようにしてもよい。この場合、プリンター1において変換行列の算出処理は行わないので、変換行列算出部154Eは設けられなくてもよい。
また、上記実施形態で算出した変換行列Msを、メモリー153の中で、製造時において予め測定された変換行列と置き換えて記憶しておき、定常的にメディアMの反射率演算処理に用いるようにしてもよい。また、変換行列Msは必要に応じ算出し、更新するようにしてもよい。
【0094】
上記各実施形態では、温度測定部173Bは、分光デバイス保持基板173に設けられる例を示すが、これに限られない。例えば、温度測定部は、受光素子保持基板174に設けられていてもよく、分光器17の温度が測定可能な位置に設けられていればよい。また、温度測定部は複数設けられていてもよい。
【0095】
上記各実施形態では、ステップS30の基準板測定処理において、温度測定部173Bによる温度の測定を実施する例を示すが、これに限らない。例えば、温度測定部173Bによる温度測定は、ステップS50のパターン画像測定処理において実施されてもよく、補正処理において温度測定が実施されていればよい。
【0096】
上記各実施形態では、シャッター保持部191の移動によりシャッター192がキャリッジ13に対してX方向に移動可能となる例を示すが、これに限らない。例えば、シャッター192がZ方向に平行な回転軸を中心に回転可能に設けられ、回転軸を中心に回転させることで、閉塞位置と開放位置とに移動可能な構成としてもよい。
また、キャリッジ13を移動させて、第一端部194や第二端部195をユニット筐体10に当接させることで、シャッター192を移動させたが、例えばモーター等の駆動源をキャリッジ13に搭載し、当該駆動源からの駆動力によってシャッター192を移動させてもよい。
【0097】
上記各実施形態では、プリンター1として、インクを吐出して画像形成する印刷部16を備える、所謂、インクジェットプリンターである例を示すが、これに限られず、画像形成材料をメディアMに転写して画像形成する印刷部を備えるプリンターに、上記各実施形態の構成を適用することができる。このようなプリンターとしては、例えば、画像形成材料としてのインクリボンを加熱溶融させてメディアMに転写する、所謂、熱転写プリンターや、トナーを用いて潜像画像を現像し、現像された画像をメディアMに転写する、所謂、電子写真プリンターが挙げられる。
【0098】
また、電子機器としてプリンター1を示したが、これに限らない。例えば、印刷部16を備えず、メディアMの測定のみを実施する測定装置であってもよい。また、例えば工場等において製造された印刷物の品質検査を行う品質検査装置に、本発明の分光測定装置を組み込んでもよく、その他、如何なる電子機器に本発明の分光測定装置を組み込んでもよい。
【0099】
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で他の構造等に適宜変更できる。
【符号の説明】
【0100】
1…プリンター(電子機器)、10…ユニット筐体、13…キャリッジ、15…制御ユニット(制御部)、17…分光器、153…メモリー、154…CPU(演算部)、154D…補正部、154E…変換行列算出部、154F…エラー判定部、154G…反射率演算部、192…シャッター、192A…基準板(基準物)、M…メディア(対象物)、Z…サンプル。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12