【実施例】
【0070】
<LASColを含む溶液の作製>
塩化ナトリウムの濃度が0mMと1500mMである50mMクエン酸緩衝液(pH3.0)を準備した。なお、当該水溶液の溶媒として、水を用いた。
【0071】
アクチニダインを活性化するため、10mMのジチオスレイトールおよび5mMのEDTA(Ethylenediaminetetraacetic acid)を含む50mMのリン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。なお、アクチニダインとしては、周知の方法にて精製したものを利用した(例えば、非特許文献1参照)。
【0072】
次いで、塩を含む50mMのクエン酸緩衝液(pH3.0)に対し、ブタ由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、ブタ由来のI型コラーゲンを含む当該溶液を10日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、ブタ由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献1参照)。
【0073】
上述した分解物をラウリル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動(SDS−PAGE)にかけ、I型コラーゲンの分解物を分離した。
【0074】
次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
【0075】
なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
【0076】
表1に、塩濃度が0mMと1500mMの場合のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列を示す。
【0077】
表1に示すように、塩濃度が低いと(0mM)、「GPMGPSGPRG・・・」で表されるトリプルヘリカルドメインの外側で切断が生じ、塩濃度が高いと(1500mM)、トリプルヘリカルドメインの内側で切断が生じる。配列番号3では、左から3番目のグリシン(G)からC末端に向かってトリプルヘリカルドメインが始まる。0mMの時に生成したものがLASCol−Aの溶液であり、1500mMで生成したものがLASCol−Bの溶液である。以下の実施例ではLASCol−Aの溶液をLASColの溶液として使用した。
【0078】
【表1】
【0079】
なお、LASCol−Aは、α2鎖でも切断が生じる。表2において、配列番号5は、α2鎖のアミノ酸末端部分を示す。配列番号5では「・・GPMGLMG・・・」の左端のグリシン(G)からC末端に向かってトリプルヘリカルドメインが始まる。そしてLASCol−Aの作成条件である塩濃度が0mMの時のα2鎖の末端を配列番号6に示す。これは配列番号2を参照し、GとX
3との間の化学結合が切断されていることに相当する。
【0080】
つまり、LASCol−Aはα1鎖ではトリプルヘリカルドメインの外側で切断が生じているが、α2鎖ではトリプルヘリカルドメインの内側で切断が生じている。LASCol−Aは配列番号3若しくは配列番号6のいずれかの切断を有していればよい。
【0081】
【表2】
【0082】
図1には、LASColを含む溶液の弾性特性(複素弾性率における貯蔵弾性率G’)を示す。横軸は時間(分)であり、縦軸は貯蔵弾性率G’(Pa)である。
図1(a)と
図1(b)は、横軸は同じであるが、縦軸が異なる。
図1(b)の縦軸のスケールは
図1(a)より大きい。
図1(a)および
図1(b)のそれぞれの曲線はLASColの濃度の違いを表す。濃度の異なるLASCol溶液は、最終濃度が2.1mg/mL、3.5mg/mL、4.9mg/mL(以上
図1(a))、21mg/ml(
図1(b)になるように5mMの塩酸溶液で調製した。
【0083】
これらLASColは、酸性溶液中に5℃から10℃で保存される。この状態ではLASColは液状で保存できる。
図1は、LASColにpH調整剤と濃度調整液を加え、pHをほぼ7.4に調整した後に、動的粘弾性測定装置(レオメーター、HAAKE MARS III、サーモフィッシャーサイエンティフィック社)にセットし、37℃に昇温後測定した結果である。測定条件は、周波数1Hz、振り幅6°/秒、ひずみ量1%とした。なお、昇温は数秒で完了する。
【0084】
図1(a)を参照して、何れの濃度の場合も、測定開始した直後の貯蔵弾性率G’は低かった。その後、どの濃度においても、貯蔵弾性率G’は上昇し、約10分後で飽和値に近くなった。一方、
図1(b)では、測定開始1分で飽和値まで貯蔵弾性率G’は上昇し、その後緩やかに下降し飽和した。
図1および
図2より明らかなように、濃度を高くすることで貯蔵弾性率G’が上昇するまでの時間も短くなった。
【0085】
このことから、pHおよび濃度を調整し、温度を上昇させるとLASColを含む溶液の貯蔵弾性率G’は、濃度に応じた所定の値まで上昇することがわかった。また、LASColを所定濃度に調製し、37℃にしてから30分経過するとほぼ貯蔵弾性率は安定した値となることがわかった。そこで、この時の貯蔵弾性率をLASColの「実用弾性率」と呼ぶ。
【0086】
LASColは適切な条件に暴露することで、弾性率が測定できないゾルから弾性率を定量できるゲルに性状が変化し、特に生体に注入する上でインジェクタブルゲルとして利用できることが示された。
【0087】
図2はレオメーターで37℃で30分経過した後の「ひずみ(レオメーターの駆動側の回転方向の変位)」と「応力(レオメータの受動側が受ける応力)」の関係を表すものである。左縦軸はひずみφ(rad)であり、右縦軸は応力M(μNm)であり、横軸はマシンステップ数であり無単位であるが、500ステップで1秒に相当する。すなわち、
図2の各図は、5×10
−4radから−5×10
−4radまでの往復を1秒かけて測定したものである。
【0088】
図2(a)は、LASCol濃度が2.1mg/mlの場合であり、
図2(b)はLASCol濃度が3.5mg/mlであり、
図2(c)はLASCol濃度が5.6mg/mlである。それぞれの実用弾性率は、8Pa、20Pa、70Paであった。LASCol濃度が2.1mg/ml(
図2(a))では、ひずみに対して応力の応答性はほとんどなかった。つまりLASColは、液体に近い状態といえる。LASCol濃度が3.5mg/ml(
図2(b))に上昇すると、ひずみに相当する応力の応答性が見られた。
【0089】
LASColの濃度がさらに上がると(
図2(c))、応力は加えられたひずみと同期するようになった。なお、ひずみと応力の位相がずれるのは、ゲルが損失弾性率を持つからである。したがって、
図2(b)のLASCol濃度が3.5mg/mlの時点でゲル状を呈するようになると判断できた。これは実用弾性率では、20Paに相当した。
【0090】
椎間板変性の治療剤として利用する場合は、ゲル状になった際の貯蔵弾性率は、20Paが下限であると考えられる。LASColは細胞の足場としての機能も有しているため、1か所にある程度貯留している必要がある。20Paより低い弾性では、LASColはゲルとしての挙動をしないため、椎間板中に貯留することが困難と考えられるからである。
【0091】
以下に本発明に係る椎間板変性の治療剤の実施例について説明する。なお、以下の実験は、全て神戸大学医学倫理委員会ならびに同動物実験委員会の承認を得て行われたものである。
【0092】
ヒトの椎間板の髄核と線維輪のサンプルを腰椎椎間板切除または椎体間固定術で患者から取り出した。患者数(n数)は15であった。患者の年齢は46.1±24.1歳であり、男性8名、女性7名であった。また、椎間板変性の度合いを表すPfirrmann分類では中央値が2であった。
【0093】
また、12週齢のスプラグ・ダウリーラット(Sprague−Dawley rat:以下「SDラット」と呼ぶ。)の椎間板髄核細胞と線維輪細胞も取り出した。
【0094】
次に24ウエルプレートに、7.0mg/mlのLASColゲルを固定したもの、2.1mg/mlのアテロコラーゲンゲルを固定したものを用意した。培養したサンプル細胞は、ラットおよびヒトそれぞれn=6とした。各サンプルは、それぞれのプレートに入れられた、10%FBSを添加したDMEM(ダルベッコ改変イーグル培地)中で192時間培養した。
【0095】
なお、LASColゲル上で培養された細胞は、LASColゲル群と呼び、アテロコラーゲンゲル上で培養された細胞はACゲル群と呼ぶ。
【0096】
その結果、アテロコラーゲンゲル上では、ヒト椎間板髄核細胞及びヒト線維輪細胞は共に有意に増殖した。一方、LASColゲル上では、明らかにこれらの細胞は増殖しなかった。しかしながら、細胞の凝集であるスフェロイドはLASColの方が多く観察された。なお、
図3は、培養された細胞がスフェロイドになった状態を示す写真である。
【0097】
図3を参照する。
図3(a)は、LASColゲル上でのスフェロイドを示し、
図3(b)はアテロコラーゲンゲル上でのスフェロイドを示す。写真中のスケールバーは100μmを示す。
図3(a)では、多くの細胞が密集しスフェロイド(三角矢印)を形成しているのに対して、
図3(b)では、数個の細胞が集まっているだけである(三角矢印)。
【0098】
図4および
図5は、それぞれ、ラットの椎間板髄核細胞(
図4(a))、線維輪細胞(
図4(b))、ヒトの椎間板髄核細胞(
図5(a))、線維輪細胞(
図5(b))における培養時間とスフェロイド数の推移を示すグラフである。それぞれ横軸は培養時間(時間)であり、縦軸はスフェロイド数である。なお、スフェロイドは細胞が3個以上凝集したものとし、100倍の倍率の視野内での個数をカウントしたものである。
【0099】
例えば
図3(b)の三角矢印で示した状態のものをスフェロイドとしてカウントした。もちろん、
図3(a)に示したように、多数の細胞が集まっている場合はスフェロイドとした。
図4及び
図5のいずれのグラフでも実線がLASColゲル群であり、点線がACゲル群である。それぞれのグラフでは、平均±標準偏差で記載し、統計学的解析にはTwo−way ANOVAとTukey−Kramer post−hoc testを使用した。
【0100】
図4(a)、
図4(b)のラット細胞の結果を参照する。どちらの細胞種でも、LASColゲル群ではスフェロイドは増加していた。しかし、ACゲル群では増加は見られなかった。スフェロイド数は、培養開始後12時間から192時間までLASColゲル群で有意に多かった。
【0101】
図5(a)、
図5(b)のヒト細胞の結果を参照する。いずれの細胞種でもLASColゲル群はスフェロイド数が増加していた。しかし、ACゲル群ではスフェロイド数の増加は見られなかった。スフェロイド数は、髄核細胞では培養開始後48時間から192時間まで、線維輪細胞では24時間から192時間までLASColゲル群で有意に多かった。
【0102】
以上のことから、LASColゲル環境で細胞を培養すると、アテロコラーゲンゲル環境で培養する場合と比べ、髄核細胞でも線維輪細胞でも、スフェロイドの数が多く、またスフェロイドを構成する細胞も多くなるといえる。すでに述べたようにLASColがゲル状になるのは、濃度が3.5mg/ml以上(実用弾性率で20Pa以上)であった。したがって、LASCol濃度が3.5mg/ml以上(少なくとも7.0mg/ml以上)であれば、生体内で細胞を培養しスフェロイド形成能を発揮するといえる。
【0103】
次に細胞の表現型毎に免疫染色を行う培養細胞多重蛍光免疫染色を行った。髄核細胞については、DNAと結合するDAPI(4’,6−diamidino−2−phenylindole)、髄核・脊索マーカーであるBrachyury、前駆細胞のマーカーであるTie2、および細胞外マトリックスであるアグリカン(Aggrecan)を用いた。線維輪細胞に対しては、DAPI、線維輪のマーカーであるPAX1、Aggrecanを用いた。
【0104】
図6はヒト椎間板髄核細胞のLASColゲル群の染色結果を表す写真において、染色された部分だけを黒色にし、他を白色に画像処理した写真である。右下のスケールバーはそれぞれ100μmである。
図6(a)から
図6(d)はそれぞれDAPI、Brachyury、Tie2、Aggrecanの結果である。
図6(e)は全てを合わせた図である(「Merge」と記した。)。
【0105】
DAPI(
図6(a))では複数のスフェロイド形成が認められた。また、髄核・脊索マーカーであるBrachyury(
図6(b))、前駆細胞マーカーのTie2(
図6(c))、細胞外マトリックスを構成するAggrecan(
図6(d))ではスフェロイドに一致した強い発現が観察された。
【0106】
図7はヒト椎間板髄核細胞のACゲル群の染色結果を示す写真である。
図6と同様に染色された部分だけを黒色とし、他は白色に画像処理した写真である。右下のスケールバーはそれぞれ100μmである。DAPI(
図7(a))では一様な細胞の分布が認められた。
図6(a)のような細胞が凝集したスフェロイド形成は認められなかった。Brachyury(
図7(b))およびTie2(
図7(c))ではほとんど発現が認められなかった。つまり、髄核・脊索および前駆細胞の存在は認められなかった。Aggrecan(
図7(d))では細胞の分布(
図7a))に一致した弱い発現が認められた。
【0107】
図8はヒト椎間板線維輪細胞のLASColゲル群の染色結果を示す写真である。
図6と同様に染色された部分だけを黒色とし、他は白色に画像処理した写真である。右下のスケールバーはそれぞれ100μmである。DAPI(
図8(a))では複数のスフェロイド形成が認められた。線維輪マーカーであるPAX1(
図8(b))およびAggrecan(
図8(c))ではスフェロイド(
図8(a))に一致した強い発現が認められた。
【0108】
図9はヒト椎間板線維輪細胞のACゲル群の染色結果を示す写真である。
図6と同様に染色された部分だけを黒色とし、他は白色に画像処理した写真である。右下のスケールバーはそれぞれ100μmである。DAPI(
図9(a))では一様な細胞の分布が認められたが、スフェロイド形成は見られなかった。線維輪マーカーであるPAX1(
図9(b))とAggrecan(
図9(c))では細胞分布(
図9(a))に一致した弱い発現が認められた。
【0109】
以上のことより、LASColは髄核細胞および線維輪細胞のスフェロイドを促進させ、それによって、組織を再生させる髄核細胞、前駆細胞、線維輪細胞が遊走・浸潤・定着し、組織に特異的な細胞外マトリックス(Aggrecan)が発現される。この点アテロコラーゲンでは細胞数は増えるものの、髄核細胞、前駆細胞、線維輪細胞はほとんど検出できず、組織の細胞外マトリックスはほとんど発現されない。すなわち、LASColは、髄核細胞および線維輪細胞の機能を維持してさらに高める培養材として利用することができる。
【0110】
これはLASColが単体での椎骨間維持能が低い場合でも、補助物質と混ぜて使用すれば、椎骨間を維持しながら、髄核細胞、前駆細胞、線維輪細胞の再生を期待できることを示している。なお、後述する実施例において実際にLASColが髄核細胞を取り去った椎骨間に周囲の細胞から髄核の成分であるプロテオグリカンを産生する細胞を遊走・浸潤させることができることを示す。
【0111】
次にラットを用いたin vivoの実験結果について説明する。実験には、12週齢のSDラットを用いた。全身麻酔下にSDラットの尾の皮膚に小切開を加え、8−9、9−10および10−11番の尾椎骨の間の椎間板から髄核摘出を行った後、21.0mg/mlのLASColを15μl、7.0mg/mlのアテロコラーゲン、コントロールとしての溶媒をそれぞれの椎間板の髄核部分に注入した。小切開はナイロン糸にて縫合した。
【0112】
そして術後0、7、14、28、そして56日後の単純X線写真を撮影した。椎骨間距離を術前値で補正した値(% Disc Height Index:以後「%DHI」と呼ぶ。)は、Masudaらの方法(非特許文献2)で算出した。LASCol、アテロコラーゲンおよび溶媒を注入した各群を、LASCol投与群、AC投与群およびコントロール群と呼ぶ。
【0113】
図10に単純エックス線写真(
図10(a))と術後4週のMRI(Magnetic Resonance Imaging)のT2強調像(
図10(b))を例示する。
図10(a)は、術後の経過日毎の単純エックス線写真である。矢印は、LASCol(第8、第9番尾椎骨間)、アテロコラーゲン(「AC」と記した。第9、第10番尾椎骨間)およびコントロール(「Control」と記した。第10、第11番尾椎骨間)を投与した箇所を表す。
【0114】
図10(b)を参照する。MRIのT2強調像では、LASCol投与群、AC投与群、コントロール群ともに、正常椎間板(
図10(b)では「Normal」と記した。)より輝度が低かった。しかし、LASCol投与群は、AC投与群やコントロール群と比較して輝度は高かった。したがって、髄核が除去された後、LASCol投与群は、AC投与群、コントロール群と比較して変性が低減しているといえる。
【0115】
図11は、この単純エックス線写真より求めた%DHIと経過時間を示すグラフである。
図11を参照して、横軸は経過時間(術後週)を表し、縦軸は%DHIである。また、術後1週、術後2週そして術後4週はn=8のデータに基づき、術後8週はLASCol投与群とAC投与群はn=8のデータであるが、コントロールはn=6のデータである。
【0116】
図11を参照して、全ての場合について、術後7日までは%DHIは低下した。しかし、その低下の程度は、LASColは有意にコントロールよりも高い値で低下が止まった。また、LASCol投与群とAC投与群およびAC投与群とコントロール群の間に優位な差は認められなかった。その後はLASCol投与群、AC投与群およびコントロール群の%DHIは全て低下傾向を示した。
【0117】
次に%DHIに対するLASColの濃度の違いによる効果を調べた。濃度違いのサンプルとして、7mg/ml、14mg/ml、21mg/ml、42mg/mlのLASColを用意した。また、対比として、7mg/mlのアテロコラーゲンとコントロールの溶媒も用意した。
【0118】
7mg/ml濃度のLASColを用いたラットを「7mgLASCol投与群」、14mg/ml濃度のLASColを用いたラットを「14mgLASCol投与群」、21mg/ml濃度のLASColを用いたラットを「21mgLASCol投与群」、42mg/ml濃度のLASColを用いたラットを「42mgLASCol投与群」とする。また、7mg/mlのアテロコラーゲンを与えたラットを7mgAC投与群とする。
【0119】
結果を
図12(a)に示す。横軸は術後の経過時間(術後週)であり、縦軸は%DHIである。また、各群のラットの使用匹数を
図12(b)に示す。術後8週の時点で、42mgLASCol投与群、21mgLASCol投与群および7mgAC投与群はコントロールに対して有意に高い%DHIの値を示した。したがって、少なくとも21mg/ml以上のLASColは単独で椎骨間維持能を有するといえる。
【0120】
次にLASColに成長因子を加えた場合の効果について調べた。成長因子の混合で、髄核部分での細胞再生が期待できる。成長因子としては、OP−1(Osteogenic Protein−1)を入れたものを用意した。なお、成長因子としては、OP−1の他、bFGF、TGF−β1、GDF−5、BMP2、VEGF、IGF−1といったものを使用してもよい。OP−1の濃度は、21mg/mlの濃度のLASCol15μlに対して2μgのOP−1を混合した。これをOP−1+LASCol投与群と呼ぶ。
【0121】
図13(a)には、OP−1+LASCol投与群、21mgLASCol投与群、7mgAC投与群およびコントロールの%DHIの結果を示す。横軸は術後週であり、縦軸は%DHIである。また、各群のラットの使用匹数は
図13(b)に示す。
【0122】
図13(a)を参照して、OP−1+LASCol投与群、21mgLASCol投与群ともに術後4週までの間、コントロールよりも%DHIは有意に高かった。したがって、この結果からも、少なくとも21mg/ml以上のLASColは単独でアテロコラーゲンと同等以上の椎骨間維持能を有するといえる。
【0123】
したがって、椎間板変性の治療剤としてヒトに単体で適用する場合、LASColは21mg/ml以上の濃度であるのが好適であると考えられる。
【0124】
なお、ラットの尾骨の髄核領域に投与するLASColの量は微量(15μl)であるので、42mg/mlという濃度は、取扱濃度としては、上限に近い。しかし、ヒトに適用する場合は、投与方法や形態の工夫により、乾燥状態を含むより高い濃度まで使用できると考えられる。
【0125】
図14は術後1週のラット尾椎髄核領域の組織標本をサフラニン−Oで染色した写真である。より具体的には、ラットの尾の椎間板とその椎間板の両側にある尾椎骨を取り出し、ホルマリンで固定し、パラフィン包埋して、切断面を作成し、サフラニン−Oで染色した。サフラニン−Oでは代表的な細胞外基質であるプロテオグリカンが赤色に染色される。
図14の各写真は、染色した写真を白黒に画像処理したものである。いずれの写真も左右に尾椎骨があり、尾椎骨の間を標本にしたものである。
図14(e)に尾椎骨および髄核領域を示した。他の写真および以後の
図15から
図17の写真も同じである。
【0126】
図14(a)及び
図14(b)はラット尾椎髄核を摘出した後、髄核領域(髄核があった部分をいう。)に21mg/mlの濃度のLASColを充填した場合を示す(これはLASCol投与群である。)。
図14(c)及び
図14(d)は髄核領域に7mg/mlの濃度のアテロコラーゲンを充填した場合(これはAC投与群である。)を示す。
図14(e)及び
図14(f)は髄核領域に溶媒を充填した場合を示す(
図14中では「コントロール」と記した。)。
【0127】
各写真において右下のスケールバーは100μmを示し、
図14(a)と
図14(b)、
図14(c)と
図14(d)、
図14(e)と
図14(f)はそれぞれ同一部分の倍率違いの写真である。
図14(e)および
図14(f)にスケールバーを示した。他の写真および以後の
図15から
図17の写真も同様である。
【0128】
図14(a)及び
図14(b)を参照して、LASCol投与の場合では、髄核領域において赤色に濃染された部分が観測され、プロテオグリカンが豊富な領域(矢頭)があった。また、プロテオグリカンが豊富な領域には細胞の浸潤が認められた。
【0129】
図14(c)及び
図14(d)を参照して、アテロコラーゲン投与の場合も髄核領域において赤色に染色された部分(矢頭)が認められた。しかし、その色調は
図14(a)及び
図14(b)のLASCol投与した場合と比較して淡く、浸潤した細胞もごくわずかであった。
【0130】
図14(e)及び
図14(f)を参照して、溶媒投与の場合では髄核領域において赤色に染色された部分はなく、細胞も認められなかった。
【0131】
図15、
図16、
図17はそれぞれ、術後2週、術後4週、術後8週の場合のラット尾椎髄核領域の組織標本をサフラニン−Oで染色した写真である。それぞれの写真において、(a)及び(b)はラット尾椎髄核を摘出した後、髄核領域にLASColを充填した場合を示す。(c)及び(d)は髄核領域にアテロコラーゲンを充填した場合を示す。(e)及び(f)は髄核領域に溶媒を充填した場合を示す(各図中ではコントロールと記した。)。
【0132】
図17(a)及び
図17(b)を参照して、LASCol投与の場合では髄核領域が赤く濃染された。これはプロテオグリカンが豊富であることを示している。また、髄核領域への細胞浸潤も確認された。
【0133】
図17(c)及び
図17(d)を参照して、アテロコラーゲン投与の場合も髄核領域において赤色に染色された部分が認められた。しかし、その色調は
図17(a)及び
図17(b)のLASCol投与した場合と比較して淡く、浸潤した細胞もごくわずかであった。
【0134】
図17(e)及び
図17(f)を参照して、溶媒投与の場合では髄核領域において赤色に染色された部分はなく、細胞も認められなかった。結果、術後1週の場合とほぼ同じ結果が得られた。
【0135】
図18は、
図14から
図17をより定量的に調べた結果を示す。横軸は術後週であり、縦軸はプロテオグリカン陽性を示す赤色部分の面積(×10
3μm
2)である。各術後週において、LASCol投与群、AC投与群およびコントロール群が併記されている。術後1週の部分に、LASCol投与群を「L」で表し、アテロコラーゲン投与群を「AC」で表し、コントロール群を「Cont」で示した。
【0136】
術後1週ではLASCol群では(3.33±0.89)×10
5μm
2、アテロコラーゲン群は(1.27±0.29)×10
5μm
2、コントロール群は(7.47±3.67)×10
3μm
2であった。術後2週ではそれぞれ、(2.83±0.30)×10
5μm
2、(1.36±0.37)×10
5μm
2、(5.03±2.70)×10
3μm
2であった。術後4週ではそれぞれ、(2.64±0.73)×10
5μm
2、(6.55±1.53)×10
4μm
2、(3.50±1.39)×10
3μm
2であった。術後8週ではそれぞれ、(2.44±0.59)×10
5μm
2、(7.80±5.03)×10
4μm
2、(2.52±1.68)×10
3μm
2であった。
【0137】
いずれの時点でもLASCol投与群は他の2群より有意に面積が大きく、アテロコラーゲン投与群はコントロール群より有意に大きかった。また、術後1週から8週にかけて、いずれの投与群でも有意な変化は認められなかった。
【0138】
図19は、
図14から
図17において、髄核領域に浸潤している細胞数をカウントした結果を示す。横軸は術後週であり、縦軸は髄核領域に浸潤している椎間板あたりの細胞の数(個/椎間板)である。各術後週において、LASCol投与群、AC投与群およびコントロール群が併記されている。術後1週の部分に、LASCol投与群を「L」で表し、アテロコラーゲン投与群を「AC」で表し、コントロール群を「Cont」で示した。
【0139】
術後1週ではLASCol投与群では細胞数は平均66.3±9.4個、アテロコラーゲン投与群は20.4±7.1個、コントロール群は2.3±2.2個であった。術後2週ではそれぞれ62.4±17.4個、19.2±5.6個、1.0±0.7個であった。術後4週ではそれぞれ77.8±23.2個、23.3±5.3個、2.0±2.2個であった。術後8週ではそれぞれ65.8±18.0個、28.8±8.7個、2.6±2.4個であった。
【0140】
いずれの時点でもLASCol投与群は他の2群より細胞数が有意に多く、アテロコラーゲン投与群はコントロール群より有意に多かった。また、術後1週から8週にかけて、いずれの群でも有意な変化は認められなかった。
【0141】
図20は、術後1週の髄核領域を多重蛍光免疫染色した画像を白黒に処理した写真である。多重蛍光免疫はDAPI、Brachyury、Tie2およびAggrecanで行った。より具体的には、ラットの尾の椎間板とその椎間板の両側にある尾椎骨を取り出し、ホルマリンで固定し、パラフィン包埋して、切断面を作成した。次にキシレンを用いて脱パラフィン処理をし、緩衝液を用いた温浴法で賦活化、過酸化水素水にてブロッキングした。そして、各マーカーで一次抗体反応させ、動物種ごとに標識二次抗体反応を行い、封入した。
【0142】
LASCol投与群では髄核領域にBrachyury,Tie2陽性細胞を認め、Aggrecanの発現も強く見られた。一方、アテロコラーゲン投与群とコントロール群ではBrachyury,Tie2陽性細胞はほとんどなく、Aggrecanの発現も弱かった。
【0143】
図21、
図22、
図23は、それぞれ術後2週、術後4週、術後8週の髄核領域を多重蛍光免疫染色した画像を白黒に処理した結果である。多重蛍光免疫染色の結果は、
図20の場合と同じ傾向であった。
【0144】
図24には、術直後、術後3日、術後1週における髄核部分のサフラニン−Oによる染色の結果写真を示す。
図24(a)〜
図24(c)はLASCol投与群(「LASCol」と記した。)であり、
図24(d)〜
図24(f)はアテロコラーゲン投与群(「AC」と記した。)であり、
図24(g)〜
図24(i)はコントロール群(「Control」と記した。)である。
【0145】
LASCol投与群では術直後は髄核領域に緑色に染色されたLASColゲルが認められた。術後3日、1週ではゲル内に多数の細胞浸潤が認められた。アテロコラーゲン投与群でも術直後から1週で髄核領域に緑色のコラーゲンゲルが認められたが、術後3日、1週では細胞はゲル表面にわずかに認めるのみであった。コントロール群は術直後および術後3日では、髄核領域は空隙であった。術後1週では髄核領域は圧潰した状態であり、細胞浸潤も認められなかった。このように、LASColは、投与後3日で細胞浸潤が認められた。
【0146】
図25〜
図30には、髄核領域の多重蛍光免疫染色の写真を示す。
図25は術直後、
図26は術後3日、
図27〜
図29は術後1週の場合である。それぞれLASCol投与群を「LASCol」、アテロコラーゲン投与群を「AC」、コントロール群を「Control」と記した。
【0147】
図25(術直後)を参照する。
図25(a)〜
図25(d)はLASCol投与群、
図25(e)〜
図25(h)はアテロコラーゲン投与群、
図25(i)〜
図25(l)は、コントロール群である。各群に対して、DAPI、Col1(I型コラーゲンに反応する。)、Col2(II型コラーゲンに反応する。)による染色結果である。Mergeは、
図25内での併合を表す。
【0148】
LASCol投与群、アテロコラーゲン投与群では髄核領域にCol1で濃染する領域があり、注入した各コラーゲンゲルの存在を示していた。また、LASCol、アテロコラーゲンともCol2は陰性であった。また、3群ともDAPIによる染色で染色される部分がほとんどなく、髄核細胞はほとんど除去されていることが分かった。
【0149】
図26(術後3日)を参照する。
図26(a)〜
図26(d)はLASCol投与群、
図26(e)〜
図26(h)はアテロコラーゲン投与群、
図26(i)〜
図26(l)は、コントロール群である。各群に対して、DAPI、Col1(I型コラーゲンに反応する。)、Col2(II型コラーゲンに反応する。)による染色結果である。Mergeは
図26内での併合を表す。
【0150】
LASCol投与群ではDAPIで細胞が集簇している部分にCol1陽性領域が認められ、LASColゲル内に細胞が浸潤していることが示された。Col2陽性部分は髄核領域内にほとんどなかった。アテロコラーゲン群ではCol1陽性のアテロコラーゲンを認めたが、ゲル表面に留まっており、ゲル内への細胞浸潤はなかった。
【0151】
図27(術後1週)を参照する。
図27(a)〜
図27(d)はLASCol投与群、
図27(e)〜
図27(h)はアテロコラーゲン投与群、
図27(i)〜
図27(l)は、コントロール群である。各群に対して、DAPI、Col1(I型コラーゲンに反応する。)、Col2(II型コラーゲンに反応する。)による染色結果である。Mergeは
図27内での併合である。
【0152】
LASCol投与群では細胞が集簇している部分がCol2陽性となっていた。一方Col1は弱い発現が見られるのみであった。アテロコラーゲン投与群ではCol1陽性のアテロコラーゲンゲルが残存していることが分かった。Col2陽性領域は認められなかった。コントロール群では線維輪細胞領域に部分的にCol1陽性部分を認めた。
【0153】
図28(術後1週)を参照する。
図28(a)〜
図28(e)はLASCol投与群、
図28(f)〜
図28(j)はアテロコラーゲン投与群、
図28(k)〜
図28(o)は、コントロール群である。各群に対して、DAPI、Brachyury、Tie2、Aggrecanによる染色結果である。Mergeは
図28内での併合である。
【0154】
LASCol投与群ではDAPIで細胞の集簇が見られた。また髄核領域内にBrachyury、Tie2陽性の細胞が少量ながら見られた。アテロコラーゲン投与群では残存細胞と考えられる細胞を認めたが、Brachyury、Tie2とも陰性であった。コントロール群では線維輪領域の圧迫により、髄核領域が圧潰していた。
【0155】
以上のように、本発明に係る椎間板変性の治療に用いる治療剤は髄核細胞が流出した髄核領域に充填することで髄核を再生することができる。また、単体では21mg/ml以上の濃度で、椎骨間維持能を有する。したがって、椎骨間距離を維持しつつ、髄核を再生することができる。また、少なくとも3.5mg/ml以上の濃度であれば、LASColはゲル状を呈するので、椎骨間維持能を有する他の補助物質と共に用いることで、同様の治療効果を期待できる。本治療剤は生細胞やドナーの髄核細胞を使用しないので安全性が高い。
【0156】
また、本発明に係る椎間板細胞(髄核細胞及び/又は線維輪細胞)の培養材は、髄核細胞や線維輪細胞のスフェロイドを促し、また1つ1つのスフェロイドの細胞数も多いスフェロイドを培養することができる。