(58)【調査した分野】(Int.Cl.,DB名)
前記更新要否判定部は、前記予測乖離判定部により前記予測乖離が生じていると判定された場合に、前記乖離発生理由に基づいて前記挙動予測モデルデータベースの更新必要度を演算し、前記更新必要度が更新閾値以上であるとき前記挙動予測モデルデータベースの更新が必要であると判定する、請求項1に記載の挙動予測装置。
前記挙動予測演算部は、予め設定された短期予測時点における前記移動体の挙動予測である短期挙動予測と、前記短期予測時点より後の時点として予め設定された長期予測時点における前記移動体の挙動予測である長期挙動予測とを少なくとも演算し、
前記更新要否判定部は、同じ前記乖離発生理由に基づいた前記更新必要度の演算において、前記予測乖離判定部により前記短期挙動予測の前記予測乖離が生じていると判定された場合、前記短期挙動予測の前記予測乖離が生じておらず前記長期挙動予測の前記予測乖離のみが生じていると判定された場合と比べて、前記更新必要度を大きい値として演算する、請求項2に記載の挙動予測装置。
前記乖離発生理由推定部は、前記挙動予測における前記移動体の位置が地図上の移動体進入不能領域に含まれず、前記挙動予測に対応する前記移動体挙動の検出結果における前記移動体の位置が地図上の前記移動体進入不能領域に含まれる場合、前記乖離発生理由として前記地図情報の異常を推定し、
前記更新要否判定部は、前記乖離発生理由推定部により前記乖離発生理由として前記地図情報の異常が推定された場合、前記挙動予測モデルデータベースの更新を不要と判定する、請求項4に記載の挙動予測装置。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について図面を参照して説明する。
【0015】
[第1実施形態]
図1に示す第1実施形態の挙動予測装置100は、乗用車などの車両(自車両)に搭載され、自車両の周囲の移動体の挙動予測を行う装置である。移動体とは、他車両(四輪車、二輪車など)である。移動体には、歩行者、自転車を含んでもよい。移動体は、道路上に位置するものに限られてもよい。
【0016】
〈第1実施形態の挙動予測装置の構成〉
図1に示すように、第1実施形態の挙動予測装置100は、装置を統括的に管理する挙動予測ECU[Electronic Control Unit]10を備えている。挙動予測ECU10は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]、CAN[Controller Area Network]通信回路などを有する電子制御ユニットである。挙動予測ECU10では、例えば、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種の機能を実現する。挙動予測ECU10は、複数の電子ユニットから構成されていてもよい。
【0017】
挙動予測ECU10は、GPS受信部1、外部センサ2、内部センサ3、地
図DB(地図データベース)4、挙動予測モデルDB(挙動予測モデルデータベース)5、及び自動運転ECU6と接続されている。なお、挙動予測ECU10は、自動運転ECU6と一体であってもよい。
【0018】
GPS受信部1は、3個以上のGPS衛星から信号を受信することにより、自車両の位置(例えば自車両の緯度及び経度)を測定する。GPS受信部1は、測定した自車両の位置情報を挙動予測ECU10へ送信する。
【0019】
外部センサ2は、自車両の周辺の状況を検出する検出機器である。外部センサ2は、カメラ、レーダセンサのうち少なくとも一つを含む。
【0020】
カメラは、自車両の外部状況を撮像する撮像機器である。カメラは、自車両のフロントガラスの裏側に設けられ、車両前方を撮像する。カメラは、自車両の外部状況に関する撮像情報を挙動予測ECU10へ送信する。カメラは、単眼カメラであってもよく、ステレオカメラであってもよい。
【0021】
レーダセンサは、電波(例えばミリ波)又は光を利用して車両の周辺の物体を検出する検出機器である。レーダセンサには、例えば、ミリ波レーダ又はライダー[LIDAR:Light Detection and Ranging]が含まれる。レーダセンサは、電波又は光を自車両の周辺に送信し、物体で反射された電波又は光を受信することで物体を検出する。レーダセンサは、検出した物体情報を挙動予測ECU10へ送信する。物体には、移動体の他、ガードレール、建物などの固定物が含まれる。
【0022】
内部センサ3は、自車両の走行状態を検出する検出機器である。内部センサ3は、車速センサ、加速度センサ、及びヨーレートセンサを含む。車速センサは、自車両の速度を検出する検出器である。車速センサとしては、例えば、自車両の車輪又は車輪と一体に回転するドライブシャフトなどに対して設けられ、車輪の回転速度を検出する車輪速センサが用いられる。車速センサは、検出した車速情報(車輪速情報)を挙動予測ECU10に送信する。
【0023】
加速度センサは、自車両の加速度を検出する検出器である。加速度センサは、例えば、自車両の前後方向の加速度を検出する前後加速度センサと、自車両の横加速度を検出する横加速度センサとを含んでいる。加速度センサは、例えば、自車両の加速度情報を挙動予測ECU10に送信する。ヨーレートセンサは、自車両の重心の鉛直軸周りのヨーレート(回転角速度)を検出する検出器である。ヨーレートセンサとしては、例えばジャイロセンサを用いることができる。ヨーレートセンサは、検出した自車両のヨーレート情報を挙動予測ECU10へ送信する。
【0024】
地
図DB4は、地図情報を記憶するデータベースである。地
図DB4は、例えば、自車両に搭載されたHDD[Hard Disk Drive]内に形成されている。地図情報には、道路の位置情報、交差点及び分岐点の位置情報などが含まれる。地図情報には、車線毎の位置情報が含まれていてもよく、道路の曲率情報が含まれていてもよい。また、地図情報には、地図上の位置と関連付けられた法定最高速度などの交通規則情報も含まれていてもよい。なお、地
図DB4は、自車両と通信可能な管理センターのサーバなどに形成されていてもよい。
【0025】
挙動予測モデルDB5は、挙動予測モデルを記憶するデータベースである。挙動予測モデルDB5は、例えば、自車両に搭載されたHDD[Hard Disk Drive]内に形成されている。挙動予測モデルとは、移動体挙動を予測するためのモデルである。移動体挙動には、移動体の位置、進行方向、及び速度が少なくとも含まれる。予測される移動体挙動は、地図情報を基準とした挙動(地図上の位置、進行方向、速度など)であってもよく、自車両を基準とした相対的な挙動(相対位置、相対進行方向、相対速度など)であってもよい。なお、挙動予測モデルDB5は、自車両と通信可能な管理センターのサーバなどに形成されていてもよい。
【0026】
挙動予測モデルは、外部センサ2による移動体挙動の検出結果から、移動体の挙動予測を演算できるように構成されていればよい。挙動予測モデルには、移動体の運動特性を示す周知のモデルを含むことができる。挙動予測モデルは、例えば車両(四輪車、二輪車)の運動特性を示す周知の車両モデルを含んでもよい。挙動予測モデルには、各種運動パラメータの制約条件が付与されていてもよい。運動パラメータとは、速度、回転角速度(ヨーレート)などである。運動パラメータには加速度が含まれていてもよい。運動パラメータの制約条件とは、速度上限、回転角速度上限などである。
【0027】
挙動予測モデルは、地図上の位置と関連付けて記憶されていてもよい。挙動予測モデルは、例えば、未舗装路においては車両モデルの加速度特性を低下させるなど、地図上の位置に応じて運動特性が変更されてもよい。また、挙動予測モデルは、法定最高速度に応じた速度限界の設定など、地図上の位置に対応する交通規則に応じて制約条件が付与されてもよい。
【0028】
挙動予測モデルは、移動体の種類と関連付けて記憶されていてもよい。移動体の種類とは、四輪車、二輪車、歩行者、自転車などの種別の分類である。四輪車は、バスなどの大型車両と乗用車などの小型車両とに分類されていてもよい。また、移動体の種類には犬、猫などの動物が含まれていてもよい。
【0029】
挙動予測モデルは、四輪車モデル及び二輪車モデルを含むことができる。挙動予測モデルは、歩行者モデルを含んでいてもよく、自転車モデルを含んでいてもよい。この場合、移動体の種類に応じて各モデルの運動特性及び/又は制約条件が異なる。例えば、歩行者モデルは、四輪車モデル及び二輪車モデルと異なり、横方向に移動可能である。二輪車モデルは、四輪車モデルより小さい回転半径で向きを変更することができる。歩行者モデルの速度上限は、四輪車モデル及び二輪車モデルより小さい。このような移動体の種類に応じた各モデルの運動特性及び制約条件については周知の態様を採用することができる。また、挙動予測モデルは、先行車モデル、対向車モデル、後続車モデルなど自車両に対する移動体の相対的な交通関係に応じて分けられていてもよい。
【0030】
挙動予測モデルは、機械学習によって作成されてもよい。挙動予測モデルは、移動体挙動の検出結果、移動体の周囲の状況などの入力から、正確な挙動予測を出力できるように機械学習で最適化される。移動体の周囲の状況とは、挙動予測の対象となる移動体の周囲に存在する他の移動体及び自車両の状況である。移動体の周囲の状況には、他の移動体の位置及び進行方向と自車両の位置及び進行方向とが含まれる。移動体の周囲の状況には、他の移動体の加速度及び/又は回転角速度と自車両の加速度及び/又は回転角速度とが含まれてもよい。
【0031】
挙動予測モデルへの入力には、更に地図情報を含めてもよい。この場合には、地図上の車線に対する移動体の位置(車線中心に対する移動体の位置及び/又は白線に対する移動体の位置)を挙動予測に用いることができる。この場合には、地図上の位置に応じて挙動予測モデルが選択されてもよい。
【0032】
挙動予測モデルへの入力には、更に移動体の種類を含めてもよい。この場合には、移動体の種類に応じて挙動予測モデルが選択されてもよい。挙動予測モデルは、一例として、移動体挙動の検出結果、移動体の周囲の状況、地図情報、移動体の種類を入力することで、移動体の挙動予測を出力できるように作成されていればよい。機械学習の手法は特に限定されない。例えば、過去の移動体挙動の検出履歴を利用した教師有り学習を採用することができる。
【0033】
自動運転ECU6は、自車両に搭載され、自車両の自動運転を実行するための電子制御ユニットである。自動運転とは、運転者が運転操作をすることなく、自動で自車両を走行させる車両制御である。自動運転ECU6は、複数の電子ユニットから構成されていてもよい。自動運転ECU6の機能の一部は、自車両と通信可能なサーバ(センター)で行われてもよい。
【0034】
自動運転ECU6は、例えば、GPS受信部1の測定した自車両の地図上の位置、地
図DB4の地図情報、自車両の周辺の状況、車両状態(車速、ヨーレート等)、及び挙動予測ECU10による自車両の周辺の移動体の挙動予測に基づいて、予め設定された目標ルートに沿った行動計画及び走行計画を生成する。目標ルートは、車両の乗員により手動で設定されてもよく、周知のナビゲーションシステム又は自動運転ECU6により自動で設定されてもよい。
【0035】
自動運転ECU6は、行動計画及び走行計画に沿って自動運転を実行する。自動運転ECU6は、車両のアクチュエータ(エンジンアクチュエータ、操舵アクチュエータ、ブレーキアクチュエータ等)に制御信号を送信することで自動運転を実行する。自動運転ECU6は周知の手法により行動計画及び走行計画の生成と自動運転とを実行可能である。
【0036】
次に、挙動予測ECU10の機能的構成について説明する。挙動予測ECU10は、車両位置認識部11、移動体挙動検出部12、種類認識部13、挙動予測演算部14、予測乖離判定部15、乖離発生理由推定部16、車間マージン設定部17、及び更新要否判定部18を有している。なお、以下に説明する挙動予測ECU10の機能の一部は、自車両と通信可能な管理センターのサーバなどにおいて実行される態様であってもよい。
【0037】
車両位置認識部11は、GPS受信部1の位置情報及び地
図DB4の地図情報に基づいて、自車両の地図上の位置を認識する。また、車両位置認識部11は、地
図DB4の地図情報に含まれた電柱等の固定障害物の位置情報及び外部センサ2の検出結果を利用して、SLAM[Simultaneous Localization and Mapping]技術により自車両の位置を認識してもよい。車両位置認識部11は、自車両の地図上の位置の変化から自車両の地図上の進行方向(向き)を認識してもよい。
【0038】
移動体挙動検出部12は、外部センサ2の検出結果に基づいて、自車両の周囲の移動体挙動(例えば先行車の挙動)を検出する。移動体挙動検出部12は、例えば、レーダセンサの検出した物体情報から、自車両に対する移動体の相対位置、相対進行方向、相対速度などの移動体挙動を検出する。移動体挙動検出部12は、カメラの撮像画像の画像処理により移動体挙動を検出してもよい。また、移動体挙動検出部12は、自車両の地図上の位置及び地図情報を更に用いて、地図情報を基準とした移動体挙動(地図上の位置、進行方向、速度など)を検出してもよい。
【0039】
種類認識部13は、外部センサ2の検出結果に基づいて、移動体の種類を認識する。種類認識部13は、例えば、レーダセンサの検出した物体情報から、移動体の形状及び大きさを認識し、予め記憶された移動体の種類の分類データを参照することで移動体の種類を認識する。種類認識部13は、カメラの撮像画像から、画像パターンのマッチングなどによって移動体の種類を認識してもよい。
【0040】
挙動予測演算部14は、予め設定された予測時点における移動体の挙動予測を演算する。予測時点は特に限定されず、任意の時点を採用することができる。予測時点は、一例として現時点から1秒後、2秒後、3秒後、4秒後、5秒後、10秒後、15秒後、20秒後とすることができる。予測時点は一つの時点のみであってもよい。
【0041】
挙動予測演算部14は、挙動予測に利用可能な地図情報が存在する場合には、地図情報を利用して移動体の挙動予測を演算する。挙動予測に利用可能な地図情報とは、少なくとも車線ごとの位置情報を含む地図情報である。
【0042】
挙動予測演算部14は、地
図DB4の地図情報及び車両位置認識部11の認識した自車両の地図上の位置に基づいて、挙動予測に利用可能な地図情報が存在するか否かを判定する。挙動予測演算部14は、例えば、自車両の地図上の位置における地図情報に車線ごとの位置情報が含まれている場合、挙動予測に利用可能な地図情報が存在すると判定する。なお、挙動予測演算部14は、更に移動体挙動検出部12による移動体挙動の検出結果に基づいて、挙動予測の対象となる移動体の位置における地図情報に車線ごとの位置情報が含まれている場合に、挙動予測に利用可能な地図情報が存在すると判定してもよい。
【0043】
挙動予測演算部14は、挙動予測に利用可能な地図情報が存在すると判定した場合、地図情報、自車両の地図上の位置、移動体挙動の検出結果、及び移動体の種類の認識結果に基づいて挙動予測モデルDB5の挙動予測モデルを利用することで移動体の挙動予測を演算する。なお、挙動予測における入力としての移動体挙動の検出結果には、挙動予測の対象となる移動体以外の他の移動体(挙動予測の対象となる移動体の付近に位置する移動体など)の検出結果も含まれている。
【0044】
具体的に、挙動予測演算部14は、移動体挙動の検出結果、地図情報、及び自車両の地図上の位置から、地図上の車線に対する移動体の位置(車線中心に対する移動体の位置及び/又は白線に対する移動体の位置)を認識する。挙動予測演算部14は、移動体挙動の検出結果、地図上の車線に対する移動体の位置、地図情報(車線の位置情報、車線の形状、交差点及び分岐点の位置情報など)、及び移動体の種類を入力として、挙動予測モデルを利用することで、移動体の挙動予測を演算する。挙動予測演算部14は、種類認識部13の認識した移動体の種類に応じた挙動予測モデルを用いて移動体の挙動予測を演算する。なお、挙動予測演算部14は、更に自車両の車速、進行方向などを挙動予測における入力として用いてもよい。
【0045】
一方、挙動予測演算部14は、挙動予測に利用可能な地図情報が存在しないと判定した場合、移動体挙動の検出結果及び移動体の種類の認識結果に基づいて挙動予測モデルDB5の挙動予測モデルを利用することで移動体の挙動予測を演算する。挙動予測演算部14は、種類認識部13の認識した移動体の種類に応じた挙動予測モデルを用いて移動体の挙動予測を演算する。
【0046】
挙動予測演算部14は、移動体の挙動予測を演算した場合、挙動予測の結果を自動運転ECU6に送信する。具体的に、挙動予測演算部14は、例えば、移動体として自車両の前を走行する先行車が交差点を左折する挙動予測を行った場合、その挙動予測の結果を自動運転ECU6に送信する。挙動予測演算部14は、左折する先行車の減速量の予測の結果も自動運転ECU6に送信する。この場合、自動運転ECU6は、自動運転中の自車両と先行車との車間を広げると共に、先行車が減速しても自車両の速度変化量が少なくなるように自車両の速度を調整する自動運転を行う。
【0047】
予測乖離判定部15は、挙動予測演算部14による移動体の挙動予測と当該挙動予測に対応する移動体挙動の検出結果とに基づいて、予測乖離が生じているか否かを判定する。挙動予測に対応する移動体挙動の検出結果とは、挙動予測の予測時点における実際の移動体挙動を検出した結果である。予測乖離判定部15は、予測時点ごとに予測乖離が生じているか否かを判定する。
【0048】
予測乖離判定部15は、例えば、挙動予測における移動体の位置と当該挙動予測に対応する移動体挙動の検出結果における移動体の位置とが距離閾値以上に離れている場合、予測乖離が生じていると判定する。距離閾値は予め設定された閾値である。
【0049】
予測乖離判定部15は、挙動予測における移動体の進行方向と当該挙動予測に対応する移動体挙動の検出結果における移動体の進行方向とのなす鋭角の角度差が角度閾値以上である場合、予測乖離が生じていると判定してもよい。角度閾値は予め設定された閾値である。また、予測乖離判定部15は、挙動予測における移動体の速度と当該挙動予測に対応する移動体挙動の検出結果における移動体の速度との絶対値の差が速度閾値以上である場合、予測乖離が生じていると判定してもよい。速度閾値は予め設定された閾値である。
【0050】
予測乖離判定部15は、移動体の位置、移動体の進行方向、移動体の速度に関して挙動予測と検出結果との差を総合的に評価して、予測乖離が生じているか否かの判定を行ってもよい。予測乖離判定部15は、更に、移動体の加速度及び回転角速度などを利用した総合的な評価から予測乖離が生じているか否かの判定を行ってもよい。
【0051】
乖離発生理由推定部16は、予測乖離判定部15により予測乖離が生じていると判定された場合に、移動体の挙動予測と当該挙動予測に対応する移動体挙動の検出結果とに基づいて、乖離発生理由を推定する。当該挙動予測に対応する移動体挙動の検出結果とは、当該挙動予測の予測時点において実際に移動体挙動検出部12が検出した移動体挙動の検出結果である。乖離発生理由とは、予測乖離の発生の理由である。乖離発生理由には、挙動予測モデルの精度不足などが含まれる。乖離発生理由には、予測対象の移動体の挙動異常が含まれていてもよく、地図情報の異常が含まれていてもよく、移動体の種類の認識異常が含まれていてもよい。
【0052】
乖離発生理由推定部16は、例えば、移動体の挙動予測及び当該挙動予測に対応する移動体挙動の検出結果を入力することで乖離発生理由を出力する機械学習プログラムを用いて、乖離発生理由を推定する。乖離発生理由推定部16は、移動体の挙動予測及び当該挙動予測に対応する移動体挙動の検出結果の組み合わせと乖離発生理由とを予め関連付けたテーブルデータを用いることにより、乖離発生理由を推定してもよい。
【0053】
乖離発生理由推定部16は、移動体挙動の検出結果から予測対象の移動体の挙動が異常と判定した場合、乖離発生理由として予測対象の移動体の挙動異常を推定してもよい。挙動異常とは、例えば移動体の故障(車輪の脱輪、走行制御システムの異常など)に起因して移動体が行う異常な挙動である。この場合の挙動異常には、急旋回、急停止、急加速などが考えられる。また、挙動異常には、移動体の運転者の不適切な運転操作などにより、通常では予測されない蛇行運転、急加速、急減速などを含めてもよい。挙動異常には、予測対象の移動体が他の移動体又は構造物(壁、電柱など)に向かって急接近する挙動を含めてもよく、予測対象の移動体が急に車線を逸脱する挙動を含めてもよい。
【0054】
乖離発生理由推定部16は、予測対象の移動体挙動の検出結果から、予め設定された正常な挙動の範囲を逸脱した挙動異常を認識した場合、乖離発生理由として予測対象の移動体の挙動異常を推定してもよい。正常な挙動の範囲としては、操舵角速度の範囲、加速度の範囲、減速度の範囲などを予め設定することができる。その他、乖離発生理由推定部16は、予測対象の移動体挙動の検出結果から、予測対象の移動体が他の移動体に向かって急接近する挙動を行ったと認識した場合、乖離発生理由として予測対象の移動体の挙動異常を推定してもよい。
【0055】
乖離発生理由推定部16は、乖離発生理由として移動体の種類の認識異常を推定してもよい。乖離発生理由推定部16は、例えば、挙動予測モデルの種類を変更し、挙動予測に用いた入力値としての移動体挙動の検出結果を用いて移動体の挙動予測の再演算を行う。乖離発生理由推定部16は、再演算による挙動予測と当該挙動予測に対応する移動体挙動の検出結果とでは予測乖離が生じないと判定される場合、予測乖離の原因は挙動予測モデルの種類の誤認識であると考えられることから、乖離発生理由として移動体の種類の認識異常を推定する。
【0056】
乖離発生理由推定部16は、移動体の挙動予測及び当該挙動予測に対応する移動体挙動の検出結果の他、地図情報を用いて乖離発生理由を推定してもよい。この場合において、乖離発生理由推定部16は、地図情報から移動体進入不能領域を設定してもよい。移動体進入不能領域とは、道路脇の壁の上、川の中、海の中など移動体が進入できないと考えられる領域である。移動体進入不能領域は移動体の種類ごとに区別されていてもよい。移動体が車両である場合の移動体進入不能領域には、中央分離帯、歩道のうち車両通行帯とガードレールで仕切られた領域などを含めてもよい。移動体が歩行者である場合の移動体進入不能領域には、少なくとも歩道を含まない。移動体進入不能領域は地図情報に対して予め設定されていてもよい。
【0057】
乖離発生理由推定部16は、挙動予測における移動体の位置が地図上の移動体進入不能領域に含まれず、挙動予測に対応する移動体挙動の検出結果における移動体の位置が地図上の移動体進入不能領域に含まれる場合、乖離発生理由として地図情報の異常を推定する。乖離発生理由推定部16は、車両などの移動体の位置が川などの移動体進入不能領域に含まれる場合、地図情報の異常に起因して予測乖離が生じたと考えられることから、乖離発生理由として地図情報の異常を推定する。
【0058】
その他、乖離発生理由推定部16は、地図情報の異常などの他の乖離発生理由が推定されなかった場合、乖離発生理由として挙動予測モデルの精度不足を推定してもよい。乖離発生理由推定部16は、乖離発生理由として挙動予測モデルの精度不足を推定した場合において、挙動予測モデルの精度不足だけではなく、移動体の挙動にも予測乖離の原因が含まれる可能性があることから、当該移動体の特徴(形状など)を記憶してもよい。乖離発生理由推定部16は、記憶した移動体に関する情報をセンターに送信してもよい。これにより、挙動予測モデルによる挙動予測が合わない移動体(十分な挙動予測の精度を確保しにくい移動体)に関する情報を集めることができる。なお、挙動予測演算部14は、このような移動体に対する挙動予測において前回と異なる挙動予測モデルを用いるようにしてもよく、挙動予測モデルを用いない従来の挙動の推定を行ってもよい。
【0059】
乖離発生理由推定部16は、乖離発生理由として地図情報の異常を推定した場合、地
図DB4へ更新用情報を提供してもよい。乖離発生理由推定部16は、地図情報の異常が発生したときの自車両の地図上の位置などを更新用情報として地
図DB4に提供する。なお、地
図DB4への更新用情報の提供とは、地
図DB4自体への情報提供の意味に限られず、地
図DB4の更新をコントロールするサーバ又は電子制御ユニットへの情報提供も含まれる。乖離発生理由推定部16により乖離発生理由として地図情報の異常を推定した場合、挙動予測演算部14は、地図情報の異常が推定された自車両の地図上の位置(及び当該位置の周囲)において、地図情報を挙動予測に用いることを禁止してもよい。
【0060】
車間マージン設定部17は、自車両の自動運転における車間マージンを設定する。車間マージンとは、自動運転中の自車両と先行車との車間の余裕である。車間マージン設定部17は、例えば予測乖離判定部15により予測乖離が生じていると判定された場合に、予測誤差に応じた車間マージンを設定する。予測誤差とは、移動体の挙動予測と当該挙動予測に対応する移動体挙動の検出結果との差である。
【0061】
予測誤差は、予測乖離判定部15における予測乖離判定と同じ基準で演算することができる。すなわち、車間マージン設定部17は、予測乖離判定部15が挙動予測における移動体の位置と当該挙動予測に対応する移動体挙動の検出結果における移動体の位置に基づいて予測乖離が生じていると判定した場合、挙動予測における移動体の位置と当該挙動予測に対応する移動体挙動の検出結果における移動体の位置との差(離間距離)を予測誤差として演算する。その他、車間マージン設定部17は、挙動予測における移動体の進行方向と当該挙動予測に対応する移動体挙動の検出結果における移動体の進行方向との角度差を用いて予測誤差を演算してもよい。
【0062】
車間マージン設定部17は、予測誤差が大きいほど車間マージンを大きい値として連続的に設定する。車間マージン設定部17は、段階的に車間マージンを設定してもよい。すなわち、車間マージン設定部17は、予測誤差が閾値以上である場合、予測誤差が閾値未満である場合と比べて、車間マージンを大きい値として設定してもよい。車間マージン設定部17は、設定した車間マージンを自動運転ECU6に送信する。自動運転ECU6は、自車両と先行車などの移動体との距離が設定された車間マージン以上となるように自車両の自動運転を行う。
【0063】
車間マージン設定部17は、挙動予測が困難な状況である場合、車間マージンを設定してもよい。挙動予測が困難な状況とは、例えば道路構造が複雑である状況である。道路構造が複雑である状況には、例えば自車両が信号機のない右左折が可能な交差点に進入する状況が含まれる。挙動予測が困難な状況には、歩行者が多数存在する状況が含まれてもよく、動物などの予測困難な移動体が存在する状況を含んでもよい。
【0064】
車間マージン設定部17は、地図情報及び自車両の地図上の位置、又は移動体挙動の検出結果から、挙動予測が困難な状況であるか否かを判定する。車間マージン設定部17は、挙動予測が困難な状況であると判定した場合、予め決められた車間マージンを設定する。予め決められた車間マージンは、固定値であってもよく、上述した挙動予測が困難な状況の種類に応じて異なる値であってもよい。車間マージン設定部17は、設定した車間マージンを自動運転ECU6に送信する。
【0065】
更新要否判定部18は、予測乖離判定部15により予測乖離が生じていると判定された場合に、乖離発生理由推定部16の推定した乖離発生理由に基づいて、挙動予測モデルDB5の更新の要否を判定する。
【0066】
まず、更新要否判定部18は、乖離発生理由と挙動予測及び挙動予測に対応する移動体挙動の検出結果に基づいて、挙動予測モデルDB5の更新必要度を演算する。更新要否判定部18は、例えば、挙動予測と挙動予測に対応する移動体挙動の検出結果と乖離発生理由とを入力することで更新必要度を出力する機械学習プログラムを用いて、挙動予測モデルDB5の更新必要度を演算する。更新要否判定部18は、挙動予測、挙動予測に対応する移動体挙動の検出結果、及び乖離発生理由と挙動予測モデルDB5の更新必要度とを予め関連付けたテーブルデータを用いて、更新必要度を演算してもよい。
【0067】
また、更新要否判定部18は、上述した予測誤差(移動体の挙動予測と当該挙動予測に対応する移動体挙動の検出結果との差)が大きいほど、更新必要度を大きい値として連続的に演算してもよい。更新要否判定部18は、更新必要度を段階的に大きな値とするように演算してもよい。すなわち、更新要否判定部18は、予測誤差が閾値以上である場合、予測誤差が当該閾値未満である場合と比べて、更新必要度を大きな値とするように演算してもよい。
【0068】
更新要否判定部18は、挙動予測モデルDB5の更新必要度が更新閾値以上である場合、挙動予測モデルDB5の更新が必要であると判定する。更新要否判定部18は、挙動予測モデルDB5の更新必要度が更新閾値未満である場合、挙動予測モデルDB5の更新が不要であると判定する。更新閾値は予め設定された値である。
【0069】
なお、更新要否判定部18は、乖離発生理由のみから更新必要度を演算してもよい。更新要否判定部18は、例えば乖離発生理由と更新必要度とを予め関連付けたテーブルデータを用いて、乖離発生理由から更新必要度を演算する。
【0070】
更新要否判定部18は、乖離発生理由として地図情報の異常が推定された場合には、挙動予測モデルに精度不足がある可能性が比較的小さいことから、更新必要度をゼロとしてもよい。同様に、更新要否判定部18は、乖離発生理由として移動体の種類の認識異常が推定された場合には、挙動予測モデルに精度不足がある可能性が比較的小さいことから、更新必要度をゼロとしてもよい。
【0071】
更新要否判定部18は、乖離発生理由として予測対象の移動体の挙動異常が推定された場合、更新必要度をゼロとしてもよい。或いは、更新要否判定部18は、移動体の挙動異常にも対応する挙動予測を可能とするため、更新必要度を大きい値(後述する挙動予測モデルDB5の更新を必要と判定する値)としてもよい。更新要否判定部18は、乖離発生理由として挙動予測モデルの精度不足が推定された場合、更新必要度を大きい値(後述する挙動予測モデルDB5の更新を必要と判定する値)とする。
【0072】
更新要否判定部18は、挙動予測モデルDB5の更新が必要と判定した場合、挙動予測モデルDB5へ更新用情報の提供を行う。更新要否判定部18は、例えば、今回の判定に関連する挙動予測及び挙動予測に対応する移動体挙動の検出結果を更新用情報として挙動予測モデルDB5へ提供する。挙動予測モデルDB5への更新用情報には、乖離発生理由を含めてもよく、更新必要度を含めてもよい。挙動予測モデルDB5への更新用情報には、挙動予測モデルによる挙動予測が対応できていない移動体として、移動体の種類の情報を含んでもよく、移動体が車両である場合には車種の情報を含んでもよい。挙動予測モデルDB5への更新用情報には、移動体の挙動予測を行ったときの自車両の周辺環境の情報を含んでもよい。
【0073】
なお、挙動予測モデルDB5への更新用情報の提供とは、挙動予測モデルDB5自体への情報提供の意味に限られず、挙動予測モデルDB5の更新をコントロールするサーバ又は電子制御ユニットへの情報提供も含まれる。
【0074】
また、挙動予測演算部14は、更新要否判定部18により挙動予測モデルDB5の更新が必要と判定された場合、予測乖離に関係する挙動予測モデルの使用を禁止する。挙動予測演算部14は、例えば当該挙動予測モデルが更新されるまで移動体の挙動予測に当該挙動予測モデルを用いない。なお、挙動予測演算部14は、更新要否判定部18により挙動予測モデルDB5の更新が必要と判定された場合に、必ずしも一回の判定で予測乖離に関係する挙動予測モデルの使用を禁止する必要はなく、更新が必要との判定が一定回数以上行われた場合に挙動予測モデルの使用を禁止する態様であってもよい。
【0075】
〈第1実施形態の挙動予測装置の処理〉
次に、第1実施形態の挙動予測装置100の処理について図面を参照して説明する。
【0076】
《挙動予測処理》
図2は、挙動予測処理の一例を示すフローチャートである。
図2に示すフローチャートの処理は、例えば自車両のエンジン駆動中又は自車両の自動運転中に実行される。
【0077】
図2に示すように、挙動予測装置100の挙動予測ECU10は、S10として、移動体挙動検出部12による移動体挙動の検出及び種類認識部13による移動体の種類の認識を行う。移動体挙動検出部12は、外部センサ2の検出結果に基づいて、自車両の周囲の移動体挙動を検出する。種類認識部13は、外部センサ2の検出結果に基づいて、移動体の種類を認識する。その後、挙動予測ECU10は、S12に移行する。
【0078】
S12において、挙動予測ECU10は、挙動予測演算部14により移動体の挙動予測に利用可能な地図情報が存在するか否かを判定する。挙動予測演算部14は、地
図DB4の地図情報及び車両位置認識部11の認識した自車両の地図上の位置に基づいて、移動体の挙動予測に利用可能な地図情報が存在するか否かの判定を行う。挙動予測ECU10は、移動体の挙動予測に利用可能な地図情報が存在すると判定された場合(S12:YES)、S14に移行する。挙動予測ECU10は、移動体の挙動予測に利用可能な地図情報が存在しないと判定された場合(S12:NO)、S16に移行する。
【0079】
S14において、挙動予測ECU10は、挙動予測演算部14により移動体の挙動予測を行う。S14では、挙動予測演算部14は、地図情報、自車両の地図上の位置、移動体挙動の検出結果、及び移動体の種類の認識結果に基づいて挙動予測モデルDB5の挙動予測モデルを利用することで移動体の挙動予測を演算する。その後、挙動予測ECU10は、今回の処理を終了する。
【0080】
S16において、挙動予測ECU10は、挙動予測演算部14により移動体の挙動予測を行う。S16では、挙動予測演算部14は、地図情報を用いず、自車両の地図上の位置、移動体挙動の検出結果、及び移動体の種類の認識結果に基づいて挙動予測モデルDB5の挙動予測モデルを利用することで移動体の挙動予測を演算する。その後、挙動予測ECU10は、今回の処理を終了する。
【0081】
《更新要否判定処理》
図3は、更新要否判定処理の一例を示すフローチャートである。
図3に示すフローチャートは、
図2に示される挙動予測が行われる度に実行される。
【0082】
図3に示すように、挙動予測ECU10は、S20として、予測乖離判定部15により予測乖離が生じているか否かを判定する。予測乖離判定部15は、挙動予測演算部14による移動体の挙動予測と当該挙動予測に対応する移動体挙動の検出結果とに基づいて、予測乖離が生じているか否かの判定を行う。挙動予測ECU10は、予測乖離が生じていると判定されなかった場合(S20:NO)、今回の処理を終了する。挙動予測ECU10は、予測乖離が生じていると判定された場合(S20:YES)、S22に移行する。
【0083】
S22において、挙動予測ECU10は、乖離発生理由推定部16により乖離発生理由を推定する。乖離発生理由推定部16は、移動体の挙動予測と当該挙動予測に対応する移動体挙動の検出結果と地図情報とに基づいて、乖離発生理由を推定する。乖離発生理由推定部16は、例えば、挙動予測における移動体の位置が地図上の移動体進入不能領域に含まれず、挙動予測に対応する移動体挙動の検出結果における移動体の位置が地図上の移動体進入不能領域に含まれる場合、乖離発生理由として地図情報の異常を推定する。乖離発生理由推定部16は、地図情報の異常などの他の乖離発生理由が推定されなかった場合、乖離発生理由として挙動予測モデルの精度不足を推定してもよい。その後、挙動予測ECU10は、S24に移行する。
【0084】
S24において、挙動予測ECU10は、更新要否判定部18により挙動予測モデルDB5の更新必要度を演算する。更新要否判定部18は、乖離発生理由と挙動予測と挙動予測に対応する移動体挙動の検出結果とに基づいて更新必要度を演算する。更新要否判定部18は、乖離発生理由のみに基づいて更新必要度を演算してもよい。その後、挙動予測ECU10は、S26に移行する。
【0085】
S26において、挙動予測ECU10は、更新要否判定部18により挙動予測モデルDB5の更新の要否を判定する。更新要否判定部18は、更新必要度が更新閾値以上である場合、挙動予測モデルDB5の更新が必要であると判定する。更新要否判定部18は、更新必要度が更新閾値未満である場合、挙動予測モデルDB5の更新が不要であると判定する。挙動予測ECU10は、挙動予測モデルDB5の更新が必要であると判定した場合(S26:YES)、S28に移行する。挙動予測ECU10は、挙動予測モデルDB5の更新が不要であると判定した場合(S26:NO)、S32に移行する。
【0086】
S28において、挙動予測ECU10は、挙動予測演算部14により予測乖離に関係する挙動予測モデルの使用を禁止する。挙動予測演算部14は、例えば当該挙動予測モデルが更新されるまで移動体の挙動予測に当該挙動予測モデルを用いない。挙動予測ECU10は、挙動予測モデルの使用を禁止した場合、S30に移行する。
【0087】
S30において、挙動予測ECU10は、更新要否判定部18により挙動予測モデルDB5への更新用情報の提供を行う。更新要否判定部18は、例えば、今回の判定に関連する挙動予測及び挙動予測に対応する移動体挙動の検出結果を更新用情報として挙動予測モデルDB5へ提供する。その後、挙動予測ECU10は、今回の処理を終了する。
【0088】
S32において、挙動予測ECU10は、乖離発生理由推定部16により乖離発生理由が地図情報の異常であるか否かを判定する。挙動予測ECU10は、乖離発生理由が地図情報の異常であると判定した場合(S32:YES)、S34に移行する。挙動予測ECU10は、乖離発生理由が地図情報の異常ではないと判定した場合(S32:NO)、今回の処理を終了する。
【0089】
S34において、挙動予測ECU10は、乖離発生理由推定部16により地
図DB4へ更新用情報を提供する。乖離発生理由推定部16は、地図情報の異常が発生したときの自車両の地図上の位置などを更新用情報として地
図DB4に提供する。その後、挙動予測ECU10は、今回の処理を終了する。
【0090】
《車間マージン設定処理》
図4(a)は、車間マージン設定処理の一例を示すフローチャートである。
図4(a)に示すフローチャートの処理は、自車両の自動運転開始時に開始される。
【0091】
図4(a)に示すように、挙動予測ECU10は、S40として、車間マージン設定部17により挙動予測が困難な状況であるか否かを判定する。車間マージン設定部17は、例えば自車両が信号機のない右左折が可能な交差点に進入する状況である場合、挙動予測が困難な状況であると判定する。挙動予測ECU10は、挙動予測が困難な状況であると判定されなかった場合(S40:NO)、今回の処理を終了する。その後、挙動予測ECU10は、自車両が自動運転中である場合、一定時間の経過後に再びS40から処理を繰り返す。挙動予測ECU10は、挙動予測が困難な状況であると判定された場合(S40:YES)、S42に移行する。
【0092】
S42において、挙動予測ECU10は、車間マージン設定部17により車間マージンを設定する。車間マージン設定部17は、例えば挙動予測が困難な状況の種類に応じて予め決められた車間マージンを設定する。車間マージン設定部17は、設定した車間マージンを自動運転ECU6に送信する。その後、挙動予測ECU10は、自車両が自動運転中である場合、一定時間の経過後に再びS40から処理を繰り返す。
【0093】
図4(b)は、車間マージン設定処理の他の例を示すフローチャートである。
図4(b)に示すフローチャートの処理は、自車両の自動運転中に予測乖離判定部15により予測乖離が生じていると判定される度に実行される。
【0094】
図4(b)に示すように、挙動予測ECU10は、S50として、車間マージン設定部17により予測誤差の演算を行う。車間マージン設定部17は、例えば、挙動予測における移動体の位置と当該挙動予測に対応する移動体挙動の検出結果における移動体の位置との差(離間距離)を予測誤差として演算する。その後、挙動予測ECU10は、S52に移行する。
【0095】
S52において、挙動予測ECU10は、車間マージン設定部17により予測誤差に応じた車間マージンの設定を行う。車間マージン設定部17は、例えば予測誤差が大きいほど車間マージンを大きい値として連続的に設定する。車間マージン設定部17は、設定した車間マージンを自動運転ECU6に送信する。その後、挙動予測ECU10は今回の処理を終了する。
【0096】
〈第1実施形態の挙動予測装置の作用効果〉
以上説明した第1実施形態の挙動予測装置100によれば、移動体の挙動予測と挙動予測に対応する移動体挙動の検出結果との予測乖離が生じていると判定された場合に、移動体の挙動予測と検出結果とから乖離発生理由を推定し、乖離発生理由に基づいて挙動予測モデルDB5の更新の要否を判定するので、乖離発生理由を考慮しない場合と比べて挙動予測モデルDB5の更新の要否を適切に判定することができる。
【0097】
また、挙動予測装置100によれば、乖離発生理由に基づいて挙動予測モデルDB5の更新必要度を演算することで、更新必要度を用いて挙動予測モデルDB5の更新の要否を判定することができる。
【0098】
更に、挙動予測装置100によれば、地図情報を考慮して挙動予測モデルを利用した移動体の挙動予測を演算することができるので、地図情報を用いない場合と比べて挙動予測の精度向上を図ることが可能になる。また、挙動予測装置100では、挙動予測における移動体の位置が川などの移動体進入不能領域に含まれないにも関わらず、挙動予測に対応する移動体挙動の検出結果における移動体の位置が移動体進入不能領域に含まれる場合には、地図情報の異常により予測乖離が生じたと考えられるので、乖離発生理由として地図情報の異常を推定して挙動予測モデルDB5の更新を不要とすることができる。
【0099】
また、挙動予測装置100では、車両、歩行者などの移動体の種類を考慮して挙動予測モデルを利用した移動体の挙動予測を演算することができるので、移動体の種類を考慮しない場合と比べて挙動予測の精度向上を図ることが可能になる。
【0100】
[第2実施形態]
次に、第2実施形態の挙動予測装置について図面を参照して説明する。
図5は、第2実施形態の挙動予測装置を示すブロック図である。
図5に示す第2実施形態の挙動予測装置200は、第1実施形態と比べて、挙動予測として短期挙動予測と長期挙動予測とを行い、短期挙動予測の予測乖離の場合と長期挙動予測の予測乖離の場合とで処理を変える機能を更に有している点が異なっている。
【0101】
〈第2実施形態の挙動予測装置の構成〉
図5に示すように、第2実施形態の挙動予測装置200は、第1実施形態と比べて、挙動予測演算部21、予測乖離判定部22、乖離発生理由推定部23、車間マージン設定部24、及び更新要否判定部25の機能が異なっている。
【0102】
挙動予測演算部21は、短期挙動予測及び長期挙動予測を行う。短期挙動予測とは、予め設定された短期予測時点(例えば現時点から5秒以内の時点)における挙動予測である。長期挙動予測とは、予め設定された長期予測時点(例えば現時点から5秒より後の時点)における挙動予測である。短期予測時点は、例えば1秒後、2秒後、3秒後、4秒後、5秒後の時点である。長期予測時点は、例えば現時点から10秒後、15秒後、20秒後の時点である。
【0103】
なお、短期予測時点は、予め設定された第1基準時点より前の予測時点であればよく、第1基準時点は必ずしも5秒である必要はない。長期予測時点も、予め設定された第2基準時点より後の予測時点であればよく、第2基準時点は必ずしも第1基準時点と同じである必要はない。第2基準時点は、第1基準時点より前の時点であってもよい。本実施形態では説明の簡素化のため、挙動予測の予測時点は短期予測時点と長期挙動予測との何れかに分けられることとする。
【0104】
予測乖離判定部22は、挙動予測演算部21による移動体の短期挙動予測と当該短期挙動予測に対応する移動体挙動の検出結果とに基づいて、予測乖離が生じているか否かを判定する。予測乖離判定部22は、予測時点ごとに予測乖離が生じているか否かを判定する。同様に、予測乖離判定部22は、挙動予測演算部21による移動体の長期挙動予測と当該長期挙動予測に対応する移動体挙動の検出結果とに基づいて、予測乖離が生じているか否かを判定する。予測乖離判定部22は、短期挙動予測と長期挙動予測とで、予測乖離の判定に用いる閾値(距離閾値、角度閾値など)を異なる値としてもよい。
【0105】
乖離発生理由推定部23は、予測乖離判定部15により短期挙動予測に予測乖離が生じていると判定された場合、移動体の短期挙動予測と当該短期挙動予測に対応する移動体挙動の検出結果とに基づいて、短期挙動予測の乖離発生理由を推定する。また、乖離発生理由推定部23は、予測乖離判定部22により長期挙動予測に予測乖離が生じていると判定された場合、移動体の短期挙動予測と当該短期挙動予測に対応する移動体挙動の検出結果とに基づいて、短期挙動予測の乖離発生理由を推定する。
【0106】
ここで、乖離発生理由推定部23は、短期挙動予測においては地図情報の異常などの外的な要因ではなく、挙動予測モデルの精度不足が予測乖離を招いている可能性が高いことから、短期挙動予測の予測乖離が生じていると判定された場合、長期挙動予測の予測乖離が生じていると判定された場合と比べて、挙動予測モデルの精度不足が乖離発生理由であると推定しやすくする。乖離発生理由推定部23は、短期挙動予測の予測乖離が生じていると判定された場合には、常に乖離発生理由として挙動予測モデルの精度不足を推定してもよい。
【0107】
一方で、乖離発生理由推定部23は、短期挙動予測の予測乖離が生じていると判定されず、長期挙動予測の予測乖離が生じていると判定された場合には、地図情報の異常などの外的な要因が予測乖離を招いている可能性が高くなることから、短期挙動予測の予測乖離が生じていると判定された場合と比べて、挙動予測モデルの精度不足が乖離発生理由であると推定しにくくする。乖離発生理由推定部23は、短期挙動予測の予測乖離が生じていると判定されず、長期挙動予測の予測乖離が生じていると判定された場合には、挙動予測モデルの精度不足以外の乖離発生理由を推定する態様としてもよい。
【0108】
車間マージン設定部24は、予測乖離判定部22により短期挙動予測の予測乖離が生じていると判定されず、長期挙動予測に予測乖離が生じていると判定された場合(長期挙動予測の予測乖離のみが生じていると判定された場合)、予め決められた車間マージンを設定する。車間マージン設定部24は、予測誤差に応じた大きさの車間マージンを設定してもよい。
【0109】
車間マージン設定部24は、現時点に近い短期予測時点ではなく長期予測時点の予測乖離のみであることから、自車両の減速などではなく、車間マージンを予め設定することにより長期挙動予測の予測乖離の影響が自動運転に与える影響を少なくする。車間マージン設定部24は、設定した車間マージンを自動運転ECU6に送信する。
【0110】
更新要否判定部25は、同じ乖離発生理由に基づいた更新必要度の演算において、短期挙動予測の予測乖離と長期挙動予測の予測乖離とで更新必要度を異なる値として演算する。すなわち、更新要否判定部25は、同じ乖離発生理由に基づいた更新必要度の演算において、予測乖離判定部22により短期挙動予測の予測乖離が生じていると判定された場合、短期挙動予測の予測乖離が生じておらず長期挙動予測の予測乖離のみが生じていると判定された場合と比べて、挙動予測モデルDB5の更新必要度を大きい値として演算する。
【0111】
具体的に、更新要否判定部25は、予測乖離判定部22により短期挙動予測の予測乖離が生じていると判定された場合、更新必要度を第一の値として演算する。更新要否判定部25は、同じ乖離発生理由に基づいた更新必要度の演算において、予測乖離判定部22により短期挙動予測の予測乖離が生じていると判定されておらず長期挙動予測の予測乖離のみが生じていると判定された場合、更新必要度を第二の値として演算する。第二の値は、第一の値より大きい値を意味する。更新要否判定部25は、短期挙動予測においては地図情報の異常などの外的な要因ではなく、挙動予測モデルの精度不足が予測乖離を招いている可能性が高くなることから更新必要度を大きい値として演算する。
【0112】
なお、更新要否判定部25は、短期挙動予測の予測乖離が生じていると判定された場合、短期挙動予測に基づいて生成された自車両の自動運転の走行計画を継続すると、移動体と急接近するなどの影響が生じる可能性があることから、自動運転ECU6に減速要求を行ってもよい。自動運転ECU6は、自動運転中の自車両の減速を行う。
【0113】
一方、更新要否判定部25は、長期挙動予測の予測乖離のみが生じていると判定された場合、自車両の自動運転の走行計画を継続すると、10秒後や20秒後などに自車両と移動体との接近が生じるなどの影響が生じる可能性があることから、車間マージン設定部17により車間マージンを設定して自動運転ECU6に送信してもよい。この場合において、更新要否判定部25は、予測乖離が生じていると判定された移動体が先行車又は後続車である場合には、自車両のレーンチェンジ要求を自動運転ECU6に送信してもよい。自動運転ECU6は、予測乖離が生じていると判定された移動体と自車両との距離を取るように又は移動体と自車両とが異なる車線となるように自車両の自動運転を行う。
【0114】
〈第2実施形態の挙動予測装置の更新必要度演算処理〉
続いて、第2実施形態の挙動予測装置200の更新必要度演算処理の一例について
図6を参照して説明する。
図6は、第2実施形態における更新必要度演算処理の一例を示すフローチャートである。
【0115】
図6に示す更新必要度演算処理は、第1実施形態における
図3のフローチャートのS24の処理に対応する。すなわち、
図6に示す更新必要度演算処理は、
図3のフローチャートのS20で既に予測乖離が生じていると判定された後の処理である。
図3のフローチャートのその他の処理は、第1実施形態と同様であるため説明を省略する。なお、ここでは移動体が自車両の前方を走行する先行車である場合の例とし、予測乖離の判定結果に応じた自車両の自動運転ECU6への要求についても言及する。
【0116】
図6に示すように、挙動予測ECU20は、S60として、予測乖離判定部22により先行車の短期挙動予測の予測乖離が生じているか否かを判定する。予測乖離判定部22は、例えば、一つの短期予測時点に対応する短期挙動予測における先行車の位置と当該短期予測時点において検出された先行車の位置(移動体挙動の検出結果の位置)とが距離閾値以上に離れている場合、先行車の短期挙動予測の予測乖離が生じていると判定する。
【0117】
挙動予測ECU20は、先行車の短期挙動予測の予測乖離が生じていると判定された場合(S60:YES)、S62に移行する。挙動予測ECU20は、先行車の短期挙動予測の予測乖離が生じていると判定されなかった場合(S60:NO)、S66に移行する。なお、本フローチャートにおいては、先行車の短期挙動予測の予測乖離が生じていると判定されなかった場合とは、先行車の短期挙動予測の予測乖離が生じておらず長期挙動予測の予測乖離が生じている場合を意味する。
【0118】
S62において、挙動予測ECU20は、更新要否判定部25により更新必要度を第一の値として演算する。更新要否判定部25は、予測乖離判定部22により短期挙動予測の予測乖離が生じていると判定された場合、乖離発生理由に基づいて更新必要度を第一の値として演算する。第一の値は、乖離発生理由ごとに予め設定された値であってもよい。その後、挙動予測ECU20は、S64に移行する。
【0119】
S64において、挙動予測ECU20は、更新要否判定部25により自車両の減速要求を行う。更新要否判定部25は、短期挙動予測の予測乖離に起因して自車両及び移動体が急接近するなどの影響が生じる可能性があることから、自動運転ECU6に減速要求を行う。その後、挙動予測ECU20は、今回の処理を終了する。
【0120】
S66において、挙動予測ECU20は、更新要否判定部25により更新必要度を第二の値として演算する。すなわち、更新要否判定部25は、先行車の短期挙動予測の予測乖離が生じておらず長期挙動予測の予測乖離が生じている場合、乖離発生理由に基づいて更新必要度を第二の値として演算する。第二の値は、乖離発生理由が同じである場合には第一の値より大きい値となる。第二の値は、乖離発生理由ごとに予め設定された値であってもよい。その後、挙動予測ECU20は、S68に移行する。
【0121】
S68において、挙動予測ECU20は、車間マージン設定部24により車間マージンの設定を行う。車間マージン設定部24は、設定した車間マージンを自動運転ECU6に送信する。その後、挙動予測ECU20は、今回の処理を終了する。なお、
図6に示すフローチャートにおけるS64及びS68の処理は必ずしも行う必要はない。
【0122】
[第2実施形態の挙動予測装置の作用効果]
以上説明した第2実施形態の挙動予測装置200によれば、挙動予測の予測時点が先の時点であるほど挙動予測モデル以外の影響により予測乖離が生じた可能性が高まっていくことから、短期挙動予測の予測乖離が生じていると判定された場合には、長期挙動予測の予測乖離が生じていると判定された場合と比べて挙動予測モデルDBの更新必要度を大きい値とすることで、挙動予測モデルDBの更新の要否を適切に判定することができる。
【0123】
以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。
【0124】
挙動予測装置100、200は、自動運転システムの一部であってもよい。この場合、挙動予測ECU10、20は、自動運転ECU6と一体であってもよい。
【0125】
一方で、挙動予測装置100、200は、必ずしも自動運転ECU6と接続されている必要はない。挙動予測装置100、200の挙動予測の結果の用い方は特に限定されない。挙動予測装置100、200は、運転者に対する移動体の注意喚起などの運転支援制御を行う運転支援ECUと接続されていてもよい。
【0126】
挙動予測装置100、200は、移動体の挙動予測に必ずしも地図情報を用いる必要はない。この場合には、乖離発生理由の推定においても地図情報を用いることはなく、地
図DB4は必須ではない。
【0127】
挙動予測装置100、200は、乖離発生理由推定部16、23により乖離発生理由として予測対象の移動体の挙動異常が推定された場合、当該移動体の特徴情報(形状、追跡結果など)を記憶してもよい。同様に、挙動予測装置100、200は、乖離発生理由推定部16、23により乖離発生理由として挙動予測モデルの精度不足と推定された場合であっても、挙動予測モデルの精度不足だけではなく挙動予測モデルと移動体との相性(挙動予測モデルによる挙動予測が苦手とする移動体などの相性)も影響すると考えられることから、当該移動体の特徴情報を記憶してもよい。
【0128】
この場合、挙動予測演算部14、21は、特徴情報を記憶した移動体に対して、挙動予測モデルを変えた挙動予測、挙動予測モデルを用いない従来の挙動予測など別な方法による挙動予測を行ってもよい。挙動予測演算部14、21は、挙動予測の予測時点の間隔を短くしてもよい(例えば1秒間隔の挙動予測ではなく0.5秒間隔の挙動予測を行う)。その他、挙動予測装置100、200は、移動体の特徴情報をセンターに送信してもよい。
【0129】
また、挙動予測装置100、200は、特徴情報を記憶した移動体から自動運転中の自車両が離れるように自動運転ECU6に車両制御を要求する。挙動予測装置100、200は、車間マージンの設定又はレーンチェンジを自動運転ECU6に要求してもよい。自動運転ECU6は、自車両が移動体から離れるように車間距離の調整又はレーンチェンジを行う。
【0130】
また、挙動予測装置100、200は、移動体の挙動予測に必ずしも移動体の種類を用いる必要はない。この場合、挙動予測ECU10,20は、種類認識部13を有する必要はない。挙動予測装置100、200は、必ずしも車間マージンの設定を行う必須ではない。この場合、車間マージン設定部17、24は不要である。
【0131】
また、挙動予測装置100、200は、必ずしも更新必要度を演算する必要はない。挙動予測装置100、200は、乖離発生理由から直接的に挙動予測モデルDB5の更新の要否を判定してもよい。更新要否判定部18、25は、例えば、乖離発生理由が挙動予測モデルの精度不足である場合には、挙動予測モデルDB5の更新が必要であると判定してもよい。更新要否判定部18、25は、乖離発生理由が地図情報の異常である場合又は移動体の種類の認識異常である場合には、挙動予測モデルDB5の更新が不要であると判定してもよい。同様に、更新要否判定部18、25は、乖離発生理由が予測対象の移動体の挙動異常である場合にも、挙動予測モデルDB5の更新が不要であると判定してもよい。
【0132】
その他、挙動予測装置100、200は、移動体の挙動予測の予測乖離が生じていない場合、自動運転の行動計画及び/又は走行計画について異常判定を行ってもよい。自動運転の行動計画について、一定時間前の行動計画から変更があり一致していない場合には、行動計画の異常と判定することができる。自動運転の走行計画について、運転者が自動運転を中断させた場合には走行計画の異常と判定することができる。挙動予測装置100、200は、異常判定結果を運転者に通知する。
【0133】
また、挙動予測装置100、200は、物体追跡ロジックの異常検知を行ってもよい。挙動予測装置100、200は、移動体の挙動予測の予測乖離が生じていると判定した場合であっても、物体追跡ロジックの異常を検知した場合には、挙動予測モデルDB5の更新を不要と判定してもよい。挙動予測装置100、200は、物体追跡ロジックの異常を運転者に通知する。挙動予測装置100、200は、自車両の自動運転中に、物体追跡ロジックの異常によって自車両の周囲の移動体をロストした場合(例えば直進路にもかかわらず先行車をロストした場合)には、運転者に手動運転への切り換え(ハンドオーバ)を要求してもよい。