特許第6985210号(P6985210)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社 日立産業制御ソリューションズの特許一覧

特許6985210検査機能診断装置、検査機能診断方法及び検査機能診断プログラム
<>
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000002
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000003
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000004
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000005
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000006
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000007
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000008
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000009
  • 特許6985210-検査機能診断装置、検査機能診断方法及び検査機能診断プログラム 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6985210
(24)【登録日】2021年11月29日
(45)【発行日】2021年12月22日
(54)【発明の名称】検査機能診断装置、検査機能診断方法及び検査機能診断プログラム
(51)【国際特許分類】
   G01B 11/02 20060101AFI20211213BHJP
   G05B 19/418 20060101ALI20211213BHJP
   G01N 21/84 20060101ALI20211213BHJP
【FI】
   G01B11/02 H
   G05B19/418 Z
   G01N21/84 Z
【請求項の数】9
【全頁数】20
(21)【出願番号】特願2018-102518(P2018-102518)
(22)【出願日】2018年5月29日
(65)【公開番号】特開2019-207156(P2019-207156A)
(43)【公開日】2019年12月5日
【審査請求日】2020年7月27日
(73)【特許権者】
【識別番号】000153443
【氏名又は名称】株式会社 日立産業制御ソリューションズ
(74)【代理人】
【識別番号】110001807
【氏名又は名称】特許業務法人磯野国際特許商標事務所
(72)【発明者】
【氏名】藤田 秀樹
(72)【発明者】
【氏名】豊田 誠
(72)【発明者】
【氏名】厚綿 洋治
【審査官】 續山 浩二
(56)【参考文献】
【文献】 特開2017−020850(JP,A)
【文献】 特開2015−087940(JP,A)
【文献】 特開2007−310665(JP,A)
【文献】 特開2014−016437(JP,A)
【文献】 特開2013−058036(JP,A)
【文献】 特開2006−317266(JP,A)
【文献】 特開2008−224638(JP,A)
【文献】 特開2014−145694(JP,A)
【文献】 特開2003−211209(JP,A)
【文献】 特開2006−099632(JP,A)
【文献】 特開2016−071419(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/02
G05B 19/418
G01N 21/84
(57)【特許請求の範囲】
【請求項1】
製品の画像から抽出された特徴量の経時的又は経数的グラフを作成し、
前記特徴量に関する値と所定の基準値との大小関係に基づき、警報を出力する特徴量変化診断部と、
画像元データから前記画像を生成する際に前記画像元データに対して適用されるパラメータの複数の候補を生成し、
前記生成した複数の候補を、既存の前記画像元データに適用することによって前記画像を生成し、
前記生成した画像の特徴量に所定の閾値を適用することによって前記製品の良/不良を判定し、
前記製品の良/不良の判定を分離する分離度の大きさに基づいて前記生成した複数の候補のうちのある候補を特定し、
前記特定した候補を見直し後の前記パラメータとして出力し、
前記特定した候補と、現在運用中のパラメータとの差分に応じて、警報を出力するパラメータ妥当性診断部と、
を備えること、
を特徴とする検査機能診断装置。
【請求項2】
前記特徴量に関する値は、平均又は標準偏差を含み、
前記平均は、移動平均を含み、
前記標準偏差は、移動標準偏差を含むこと、
を特徴とする請求項に記載の検査機能診断装置。
【請求項3】
前記平均は、経時的又は経数的増減を含み、
前記標準偏差は、経時的又は経数的増減を含むこと、
を特徴とする請求項に記載の検査機能診断装置。
【請求項4】
前記所定の基準値は、前記特徴量に関する値の前回の値を含むこと、
を特徴とする請求項に記載の検査機能診断装置。
【請求項5】
前記製品の画像がヘッダに関連付けて記憶されるヘッダ情報を格納する記憶部を備え、
前記特徴量変化診断部は、
前記ヘッダをキーとして製品群ごとに複数の前記経時的又は経数的グラフを作成すること、
を特徴とする請求項に記載の検査機能診断装置。
【請求項6】
前記パラメータ妥当性診断部は、
前記製品が良品であるヒストグラム及び前記製品が不良品であるヒストグラムを使用して、前記分離度を算出すること、
を特徴とする請求項に記載の検査機能診断装置。
【請求項7】
前記特徴量は、
撮像位置、大きさ、輝度、コントラスト及びフォーカスのうちのいずれかを含むこと、
を特徴とする請求項に記載の検査機能診断装置。
【請求項8】
検査機能診断装置の特徴量変化診断部は、
製品の画像から抽出された特徴量の経時的又は経数的グラフを作成し、
前記特徴量に関する値と所定の基準値との大小関係に基づき、警報を出力し、
前記検査機能診断装置のパラメータ妥当性診断部は、
画像元データから前記画像を生成する際に前記画像元データに対して適用されるパラメータの複数の候補を生成し、
前記生成した複数の候補を、既存の前記画像元データに適用することによって前記画像を生成し、
前記生成した画像の特徴量に所定の閾値を適用することによって前記製品の良/不良を判定し、
前記製品の良/不良の判定を分離する分離度の大きさに基づいて前記生成した複数の候補のうちのある候補を特定し、
前記特定した候補を見直し後の前記パラメータとして出力し、
前記特定した候補と、現在運用中のパラメータとの差分に応じて、警報を出力すること、
を特徴とする検査機能診断装置の検査機能診断方法。
【請求項9】
検査機能診断装置の特徴量変化診断部に対し、
製品の画像から抽出された特徴量の経時的又は経数的グラフを作成し、
前記特徴量に関する値と所定の基準値との大小関係に基づき、警報を出力する処理を実行させ
前記検査機能診断装置のパラメータ妥当性診断部に対し、
画像元データから前記画像を生成する際に前記画像元データに対して適用されるパラメータの複数の候補を生成し、
前記生成した複数の候補を、既存の前記画像元データに適用することによって前記画像を生成し、
前記生成した画像の特徴量に所定の閾値を適用することによって前記製品の良/不良を判定し、
前記製品の良/不良の判定を分離する分離度の大きさに基づいて前記生成した複数の候補のうちのある候補を特定し、
前記特定した候補を見直し後の前記パラメータとして出力し、
前記特定した候補と、現在運用中のパラメータとの差分に応じて、警報を出力する処理を実行させること、
を特徴とする検査機能診断装置を機能させるための検査機能診断プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査機能診断装置、検査機能保全確認方法及び検査機能保全確認プログラムに関する。
【背景技術】
【0002】
近年、食品、飲料等の生産ラインにおいて、製品の外観等を高速に検査する検査装置が普及している。検査装置は、製品を撮像した画像から特徴量を検出し、検出した特徴量を所定の閾値と比較することにより、製品に対する合否判定を行っている。しかしながら、例えば、画像を生成する際のパラメータが最適化されていない場合、不良品が多量に市場に出回る、良品が多量に廃棄される等の弊害が生ずる。また、パラメータの設定とは別に、カメラ等の光学系のずれ又はベルトコンベア等の駆動系の劣化が発生すると、検査精度は落ちる。そこで、検査装置とは別に、検査装置の機能を診断する診断装置もまた、近年普及している。
【0003】
特許文献1の診断装置は、検査装置の光学系(カメラ、照明ヘッド等)に対する診断、検査装置の動作(不良品の排出装置等)に対する診断、及び、検査精度(画像から特徴量を判定する精度)に対する診断を独立的に行う。3種類の診断を独立的に行うのは、交互作用を捨象し、異常原因の特定を容易にするためである。特許文献2のパラメータ決定支援装置は、画像処理に使用されるパラメータ(特徴量検出のための諸条件)の組の候補から、実際の処理結果が期待される処理結果に一致するものを決定する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第4918003号明細書
【特許文献2】特許第5509773号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
検査装置のユーザは、予防保全の観点から、検査装置が正常に稼働しているうちに、画像から取得される特徴量の変化の傾向を知りたいと考えている。そして、検査装置のユーザは、その傾向に基づき、特徴量に対して適用するべき閾値等の再設定を早めに行いたい、又は、検査装置の光学系、駆動系等の検査を行いたい、とのニーズを有する。さらに、検査装置のユーザは、閾値の妥当性又は有意な余裕度を簡易的にかつ統計的に検証したいとのニーズを有する。いずれのニーズも、生産ラインの稼働率の維持及び製品の品質保証を、高次元で両立したいとの要望に基づく。
【0006】
しかしながら、特許文献1は、生産中に発生する特徴量の緩やかな変動までには言及していない。特許文献2は、最適なパラメータの組を度数分布等の統計的分析によって裏付けることまでには言及していない。
そこで、本発明は、画像から取得された特徴量の変化、及び、画像を生成する際に使用されるパラメータの妥当性を知ることを目的とする。
【課題を解決するための手段】
【0007】
本発明の検査機能診断装置は、製品の画像から抽出された特徴量の経時的又は経数的グラフを作成し、前記特徴量に関する値と所定の基準値との大小関係に基づき、警報を出力する特徴量変化診断部と、画像元データから前記画像を生成する際に前記画像元データに対して適用されるパラメータの複数の候補を生成し、前記生成した複数の候補を、既存の前記画像元データに適用することによって前記画像を生成し、前記生成した画像の特徴量に所定の閾値を適用することによって前記製品の良/不良を判定し、前記製品の良/不良の判定を分離する分離度の大きさに基づいて前記生成した複数の候補のうちのある候補を特定し、前記特定した候補を見直し後の前記パラメータとして出力し、前記特定した候補と、現在運用中のパラメータとの差分に応じて、警報を出力するパラメータ妥当性診断部と、を備えること、を特徴とする。
その他の手段については、発明を実施するための形態のなかで説明する。
【発明の効果】
【0008】
本発明によれば、画像から取得された特徴量の変化、及び、画像を生成する際に使用されるパラメータの妥当性を知ることができる。
【図面の簡単な説明】
【0009】
図1】製品の動き並びに検査装置及び検査機能診断装置の構成を説明する図である。
図2】特徴量情報を説明する図である。
図3】閾値・判定結果情報を説明する図である。
図4】ヘッダ情報を説明する図である。
図5】特徴量変化診断処理手順のフローチャートである。
図6】特徴量推移グラフの一例である。
図7】パラメータ妥当性診断処理手順のフローチャートである。
図8】良/不良別ヒストグラムの一例である。
図9】ラインごとの特徴量の推移の比較を説明する図である。
【発明を実施するための形態】
【0010】
以降、本発明を実施するための形態(“本実施形態”という)を、図等を参照しながら詳細に説明する。本実施形態は、製品の生産ラインにおいて製品の検査を行う検査装置の機能を診断する検査機能診断装置の例である。なお、本発明は、特許文献1の診断装置をさらに発展させたものである。
【0011】
(製品の動き)
図1に沿って、製品の動きを説明する。ベルトコンベア9は、製品3を図1の左から右の方向に搬送する。本実施形態の製品3は、飲料を収容する缶、樽、ビン等である。製品3が所定の位置に達すると、センサ7が製品3を検出する。すると、センサ7は、製品3を検出した旨の信号を検査装置1に送信する。検査装置1は、カメラ4に、シャッタを開く旨の指示を送信する。同時に、検査装置1は、照明電源6に、照明ヘッド5に対して電力を供給する旨の指示を送信する。すると、照明ヘッド5は、フラッシュ光を発光する。カメラ4は、フラッシュ光を照射された製品3の静止画像を取得する。検査装置1は、製品3の画像を参照し、製品が不良品であると判定した場合、排出装置8に、製品3をベルトコンベア9から排出する旨の指示を送信する。すると、排出装置8は、製品3を排出する。
【0012】
(検査装置及び検査機能診断装置)
さらに図1に沿って、検査装置1及び検査機能診断装置2の構成を説明する。まず、検査装置1を説明する。検査装置1は、検査機能診断装置2が行う診断の対象となる。検査装置1は、一般的なコンピュータであり、中央制御装置11、キーボード等の入力装置12、ディスプレイ等の出力装置13、主記憶装置14、補助記憶装置15及び通信装置16を備える。これらは、バスで相互に接続されている。図1では、検査装置1が検査機能診断装置2と一体化されているが、このことについては後記する。
【0013】
補助記憶装置15は、特徴量情報31、閾値・判定結果情報32、画像元データ33及び画像34(いずれも詳細後記)を格納している。主記憶装置14における起動制御部21、A/D変換部22、特徴量抽出部23、閾値設定部24、判定部25及び外部出力処理部26は、プログラムである。中央制御装置11は、これらのプログラムを補助記憶装置15から読み出し主記憶装置14にロードすることによって、それぞれのプログラムの機能を実現する。
【0014】
起動制御部21は、センサ7から前記した信号を受信し、照明電源6及びカメラ4に前記した指示を送信する。A/D変換部22は、カメラ4が取得したアナログ画像をデジタル信号に変換する。カメラ4が元々デジタル画像を取得する場合、A/D変換部22は不要である。特徴量抽出部23は、製品3の画像34から特徴量を抽出する。閾値設定部24は、特徴量に対して適用される閾値を検査装置1のユーザから受け付ける。判定部25は、特徴量と閾値との大小関係に基づき、製品の良/不良を判定する。外部出力処理部26は、判定結果に関するデータを外部記憶装置51等に送信する。なお、端末装置52は、外部記憶装置51にアクセスし判定結果に関するデータを視聴・取得することができる。
【0015】
次に、検査機能診断装置2を説明する。図1では、検査機能診断装置2は、検査装置1と一体化されている。しかしながら、検査機能診断装置2は、検査装置1と別の筺体となっていてもよい。そうすると、検査装置1が複数存在する場合、ユーザは、検査機能診断装置2をそれぞれの検査装置1に接続し替えることができる。
【0016】
検査機能診断装置2は、プログラムとしての特徴量変化診断部41、パラメータ妥当性診断部42を自身の補助記憶装置(図示せず)に格納している。検査機能診断装置2は、これらのプログラムを補助記憶装置から読み出し、自身の主記憶装置(図示せず)にロードすることによって、それぞれのプログラムの機能を実現する。検査機能診断装置2は、警報基準値45、特徴量推移グラフ46、ヘッダ情報47、及び、良/不良別ヒストグラム48(いずれも詳細後記)を格納している。
【0017】
(画像元データ、画像及びパラメータ)
カメラ4が被写体から取得する元々のデータは、画素位置及び画素値の組合せの集合である。本実施形態においては、この集合を“画像元データ”(図1の符号33)と呼ぶ。検査装置1は、画像元データ33から直接被写体の形状等を認識することはできない。そこで、検査装置1は、画像元データ33から“エッジ”を検出する。エッジとは、製品の輪郭であり、エッジが検出されてはじめて、検査装置1は、製品の形状等を認識することができる。
【0018】
検査装置1は、隣接する2つの画素値(又は輝度)を取得し、それらの間の差分がある値を超えた場合、その位置にエッジがあると判断する。又は、検査装置1は、隣接する画素値を順に参照して行き、画素値がある値を超えた場合、その位置にエッジがあると判断する。この値は、エッジ検出パラメータと呼ばれる。本実施形態では、エッジ検出パラメータに限らず、画像元データ33から画像34を生成する際に用いられる数値は“パラメータ”と呼ばれる。
【0019】
(特徴量情報)
図2に沿って、特徴量情報31を説明する。特徴量情報31においては、画像ID(Identifier)欄101に記憶された画像IDに関連付けて、時点欄102には時点が、パラメータ欄103にはパラメータが、特徴量欄104には各種の特徴量が記憶されている。
画像ID欄101の画像は、製品3を撮像した画像34(図1)を一意に特定する識別子である。本実施形態では、1つの製品3に対して1つの画像元データ33及び1つの画像34が対応している。したがって、画像IDは、製品3を一意に特定する識別子でもある。
【0020】
時点欄102の時点は、カメラ4が製品3の画像を取得した時点の時分秒である。もちろん、年月日が時分秒に加わってもよい。本実施形態では、カメラ4が1秒ごとに1個の製品3を撮像できるように、製品3がベルトコンベア9上に並ぶ間隔、及び、ベルトコンベア9の速度が設定されている。
パラメータ欄103のパラメータは、前記したパラメータである。画像元データ33に対して適用されるパラメータは、一般的には複数存在する。ここでは、検出対象となるエッジが3種類あり、それぞれに対して適用されるパラメータが3種類(小欄103a、103b及び103c)あるものとする。“*”は、同じ値を省略的に示している。“**”及び“***”についても同様である。
【0021】
特徴量欄104は、中欄105〜109を有し、それぞれの中欄は、3つの小欄105a等を有している。一般に、特徴量とは、検査装置1が検査対象の製品の画像34から取得できるデータのうち、ユーザがその製品の良/不良の判定に使用する任意のデータである。例えば、フランジ欄105の中心座標105aは、製品3(缶)を上から見た場合の、外周(フランジ)の中心の座標値である。ここでの座標値は、カメラ4の画面の2次元座標系における座標値である。直径105bは、フランジの直径である。高さ105cは、フランジの高さである。カメラ3は、いわゆる3次元レーザスキャナのように、対象物からの距離も測定できるものとする。
【0022】
同様に、ドーム欄106の中心座標106aは、製品3を上から見た場合の、円形突起部(ドーム)の中心の座標値である。直径106bは、ドームの直径である。高さ106cは、ドームの高さである。
【0023】
フランジ輝度欄107の最大107aは、製品3を上から見た場合の、フランジにおける輝度のうちの最大値である。フランジは、肉厚を有する結果、ドーナツ状の輪となって画像34に現れる。すると複数の画素に対応して、複数の輝度が定義される。最大107aは、フランジにおける輝度のうちの最大値である。最小107bは、フランジにおける輝度のうちの最小値である。平均107cは、フランジにおける輝度の平均値である。
【0024】
胴側面輝度欄108及びドーム輝度欄109も、フランジ輝度欄107と同様である。なお、カメラ4は、ミラー(図示せず)を使用して製品3の胴体側面を撮像している。図2の“#”は、異なる数値を省略的に表している。図2の二重線110の直ぐ上の行の“1”、“2”及び“3”については後記する。
これら以外の特徴量の例として、製品の部分の画角(大きさを光軸からの角度で示したもの)、コントラスト、フォーカス等が挙げられる。
【0025】
図3に沿って、閾値・判定結果情報32を説明する。閾値・判定結果情報32においては、画像ID欄111に関連付けて、閾値欄112には閾値が、判定結果欄113には判定結果が記憶されている。
画像ID欄111の画像IDは、図2の画像IDと同じである。
閾値欄112の閾値は、製品の良/不良を判定する目的で、図2の15種類の特徴量のそれぞれに対して適用される閾値である。ユーザは、15種類の特徴量のうちから、判定のために実際に使用する特徴量を指定し、指定した特徴量に適用する閾値を設定する。図3は、紙面の都合上、ユーザが設定した閾値を3種類だけ記載している。♭”は、異なる数値を省略的に表している。
【0026】
判定結果欄113の判定結果は、製品に対する判定結果であり、“良”又は“不良”のいずれかである。“不良”は、指定された特徴量のうち、少なくとも1つが、その閾値が定める範囲に入らなかったことを示す。“良”は、指定された特徴量のすべてが、その閾値が定める範囲に入ったことを示す。
【0027】
(閾値)
その閾値以上の特徴量を有する製品を“不良”と判定したい場合、上限閾値“○○以上”が適用される。その閾値以下の特徴量を有する製品を“不良”と判定したい場合、下限閾値“○○以下”が適用される。上限閾値及び下限閾値のうちいずれか一方が単独で使用されることもあるし、両方が同時に使用されることもある。
【0028】
(警報基準値)
警報基準値(図1の符号45)は、閾値と同様、製品の特徴量に対して適用されるが、閾値とは別の概念である。警報基準値45は、不良品が発生する一歩手前でユーザに対して警報を出力するための値であり、閾値を基準として、やや甘めの値となっている。具体的には、上限閾値“○○以上”に対して、上限警報基準値“○○−α以上”が定義される。下限閾値“○○以下”に対して、下限警報基準値“○○+β以下”が定義される。α及びβは、マージン(安全率)である。
【0029】
(ヘッダ情報)
図4に沿って、ヘッダ情報47を説明する。ヘッダ情報47においては、画像ID欄121に記憶された画像IDに関連付けて、製品名欄122には製品名が、顧客ID欄123には顧客IDが、工場ID欄124には工場IDが、ラインID欄125にはラインIDが、検査装置ID欄126には検査装置IDが、カメラID欄127にはカメラIDが、累積運転時間欄128には累積運転時間が、累積検査個数欄129には累積検査個数が、製品情報欄130には製品情報が記憶されている。
【0030】
画像ID欄121の画像IDは、図2の画像IDと同じである。
製品名欄122の製品名は、製品3の名称である。
顧客ID欄123の顧客IDは、検査装置1のユーザを一意に特定する識別子である。
工場ID欄124の工場IDは、製品3が製造された工場又は検査装置が配置されている工場を一意に特定する識別子である。
ラインID欄125のラインIDは、製品3の生産ラインを一意に特定する識別子である。
【0031】
検査装置ID欄126の検査装置IDは、検査装置1を一意に特定する識別子である。あるユーザは、複数の検査装置1を使用していることもある。
カメラID欄127のカメラIDは、カメラ4を一意に特定する識別子である。1台の検査装置1は、複数のカメラ4のうちの1台を交替して(切り替えて)接続することができる。
【0032】
累積運転時間欄128の累積運転時間は、検査装置1が現在までに稼働した累積時間である。
累積検査個数欄129の累積検査個数は、検査装置1が現在までに検査した製品3の累積個数である。
製品情報欄130の製品情報は、製品3に関する任意の情報(液種、容器種、外装種、資材メーカ等)である。
図4の“$”は、異なる数値又は文字を省略的に表している。
【0033】
(処理手順)
以降で、処理手順を説明する。処理手順は2つ存在する。一方は、特徴量変化診断処理手順であり、そこでは、主として検査機能診断装置2の特徴量変化診断部41が動作主体となる。他方は、パラメータ妥当性処理手順であり、そこでは、主として検査機能診断装置2のパラメータ妥当性診断部42が動作主体となる。
【0034】
(特徴量変化診断処理手順)
図5に沿って、特徴量変化診断処理手順を説明する。特徴量変化診断処理手順を開始する前提として、いま、検査装置1は、ベルトコンベア9上を搬送される製品3の画像を次から次へと取得しているとする。そして、製品3の種類は1つであるとする。したがって、製品から取得される特徴量は、すべての製品3について同じであることが期待される。
【0035】
ステップS201において、検査機能診断装置2の特徴量変化診断部41は、特徴量の指定を受け付ける。具体的には、特徴量変化診断部41は、ユーザが入力装置12を介して1又は複数の特徴量を指定するのを受け付ける。ここでは、フランジの直径(図2の小欄105b)が指定されたとする。
【0036】
ステップS202において、特徴量変化診断部41は、特徴量を取得する。具体的には、特徴量変化診断部41は、検査装置1の補助記憶装置15に記憶されている特徴量情報31(図2)から、特徴量としてフランジの直径(小欄105b)を取得する。このとき、特徴量変化診断部41は、特徴量情報31にアクセスするまでもなく、特徴量抽出部23から特徴量を直接取得してもよい。いずれにしても、特徴量変化診断部41は、1秒ごとに1つの特徴量を取得することになる。そして、取得した特徴量が所定の数(例えば15分に相当する900個)になった時点でステップS203に進む。
【0037】
ステップS203において、特徴量変化診断部41は、特徴量の平均及び標準偏差を算出する。具体的には、特徴量変化診断部41は、900個のフランジの直径の平均μ及び標準偏差σを算出する。はずれ値及び測定誤差の影響を小さくするために、特徴量変化診断部41は、移動平均及び移動標準偏差を算出してもよい。
【0038】
特徴量変化診断部41は、例えば、時点t−1、時点t及び時点t+1におけるフランジの直径の平均を、時点tのフランジの直径とし、900時点のフランジの直径の平均を移動平均としてもよい。なお、より一般的には、時点“t−m、・・・、t−1、t、t+1、・・・、t+m”におけるフランジの直径の平均を時点tのフランジの直径とし、900時点のフランジの直径の平均を移動平均としてもよい。移動標準偏差についても同様である。以降では、平均及び移動平均を総称して平均μと呼び、標準偏差及び移動標準偏差を総称して標準偏差σと呼ぶ。
【0039】
ステップS204において、特徴量変化診断部41は、平均及び標準偏差を基準値と比較する。具体的には、第1に、特徴量変化診断部41は、ステップS203において算出した平均μを、図1の警報基準値45として記憶されている警報基準値μと比較する。警報基準値μは、ユーザが設定したものであってもよいし、前回の特徴量変化診断処理手順において取得された同種の製品についての平均であってもよい。後記する標準偏差σについても同様である。特徴量が警報基準値μに該当する場合、特徴量変化診断部41は、警報を出力する(詳細後記)。この警報は、ユーザが、現在設定されている閾値を見直す必要があることを示している。なお、特徴量が警報基準値に“該当する”とは、特徴量が上限警報基準値以上である、又は、下限警報基準値以下であることをまとめて表現している(以下で説明する標準偏差についても同様)。
【0040】
第2に、特徴量変化診断部41は、比較の結果として、“警報不要”又は“警報要”のいずれかを生成する。“警報不要”は、フランジの直径の平均μが警報基準値μに該当しないことを示す。“警報要”は、フランジの直径の平均μが警報基準値μに該当することを示す。
第3に、特徴量変化診断部41は、ステップS203において算出した標準偏差σを、図1の警報基準値45として記憶されている警報基準値σと比較する。
第4に、特徴量変化診断部41は、比較の結果として、“警報不要”又は“警報要”のいずれかを生成する。“警報不要”は、フランジの直径の標準偏差σが警報基準値σに該当しないことを示す。“警報要”は、フランジの直径の標準偏差σが警報基準値σに該当することを示す。
【0041】
ステップS205において、特徴量変化診断部41は、警報を出力する必要があるか否かを判断する。具体的には、特徴量変化診断部41は、ステップS204の“第2”及び“第4”において、少なくとも1回“警報要”が生成された場合(ステップS205“Yes”)、ステップS206に進む。特徴量変化診断部41は、それ以外の場合(ステップS205“No”)、ステップS207に進む。
【0042】
ステップS206において、特徴量変化診断部41は、警報を出力する。具体的には、特徴量変化診断部41は、警報“フランジの直径の平均が許容範囲外にあります”及び/又は“フランジの直径の標準偏差が許容範囲外にあります”を、検査装置1の出力装置13に文字又は音声で出力する。特徴量変化診断部41は、検査機能診断装置2の出力装置(図示せず)に警報を出力してもよい(以下同様)。
【0043】
このとき、特徴量変化診断部41は、インタロックで生産ラインを停止してもよい。ただし、この場合、警報出力用の基準値“○○−α以上”等とは別に、生産ライン停止用の基準値“○○−α以上”等が設定されていることが望ましい。なお、例えば、α<αと設定されておれば、特徴量変化診断部41は、まず警報を出力し、その後、生産ラインを停止することになる。
【0044】
ステップS207において、特徴量変化診断部41は、特徴量の平均の増減及び標準偏差の増減を算出する。具体的には、第1に、特徴量変化診断部41は、ステップS203において算出した900個のフランジの直径の平均から、直前の15分について算出された900個のフランジの直径の平均を減算した増減Δμを算出する。
第2に、特徴量変化診断部41は、ステップS203において算出した900個のフランジの直径の標準偏差から、直前の15分について算出された900個のフランジの直径の標準偏差を減算した増減Δσを算出する。
【0045】
ステップS208において、特徴量変化診断部41は、平均の増減Δμ及び標準偏差の増減Δσを基準値と比較する。具体的には、第1に、特徴量変化診断部41は、ステップS207の“第1”において算出した平均の増減Δμを警報基準値45として記憶されている警報基準値Δμと比較する。ここでの警報基準値Δμは、ユーザが設定したものであってもよいし、前回の特徴量変化診断処理手順において取得された同種の製品についての平均の増減であってもよい。後記する標準偏差の増減Δσについても同様である。特徴量の増減が警報基準値Δμに該当する場合、特徴量変化診断部41は、警報を出力する(詳細後記)。この警報は、ユーザが、現在設定されている閾値を見直す必要があることを示している。
【0046】
第2に、特徴量変化診断部41は、比較の結果として、“警報不要”又は“警報要”のいずれかを生成する。“警報不要”は、フランジの直径の平均の増減Δμが警報基準値Δμに該当しないことを示す。“警報要”は、フランジの直径の平均の増減Δμが警報基準値Δμに該当することを示す。
第3に、特徴量変化診断部41は、ステップS207の“第2”において算出した標準偏差の増減Δσを警報基準値45として記憶されている警報基準値Δσと比較する。
第4に、特徴量変化診断部41は、比較の結果として、“警報不要”又は“警報要”のいずれかを生成する。“警報不要”は、フランジの直径の標準偏差の増減Δσが警報基準値Δσに該当しないことを示す。“警報要”は、フランジの直径の標準偏差の増減Δσが警報基準値Δσに該当することを示す。
【0047】
ステップS209において、特徴量変化診断部41は、警報を出力する必要があるか否かを判断する。具体的には、特徴量変化診断部41は、ステップS208の“第2”及び“第4”において、少なくとも1回“警報要”が生成された場合(ステップS209“Yes”)、ステップS210に進む。特徴量変化診断部41は、それ以外の場合(ステップS209“No”)、ステップS211に進む。
【0048】
ステップS210において、特徴量変化診断部41は、警報を出力する。具体的には、特徴量変化診断部41は、警報“フランジの直径の平均の増減が許容範囲外にあります”及び/又は“フランジの直径の標準偏差の増減が許容範囲外にあります”を、検査装置1の出力装置13に文字又は音声で出力する。前記と同様に、このとき、特徴量変化診断部41は、インタロックで生産ラインを停止してもよい。
【0049】
ステップS211において、特徴量変化診断部41は、製品の検査が終了したか否かを判断する。具体的には、特徴量変化診断部41は、検査装置1のセンサ7が所定の期間に亘って製品を検出しない場合(ステップS211“Yes”)、ステップS212に進む。特徴量変化診断部41は、それ以外の場合(ステップS211“No”)、ステップS202に戻る。ステップS211“No”を経由した場合、特徴量変化診断部41は、15分(製品900個)ごとに、ステップS202〜S210の処理を繰り返すことになる。
【0050】
ステップS212において、特徴量変化診断部41は、時系列の特徴量の変化を表示する。具体的には、特徴量変化診断部41は、時系列又は本数系列の特徴量(フランジの直径)の変化を示す特徴量推移グラフ46(図6)を、検査装置1の出力装置13に表示する。図6の横軸は時間又は製品(缶)の本数であり、縦軸は特徴量である。折れ線グラフ51は、特徴量の標準偏差σを示す。折れ線グラフ52は、特徴量の平均μを示す。1時間あたり4本の棒グラフ55は、15分ごとのフランジの直径の分布を示す。棒グラフ55の上辺53は、15分ごとのフランジの直径の最大値を示し、下辺54は最小値を示す。
【0051】
特徴量変化診断部41は、特徴量推移グラフ46を外部記憶装置51に出力してもよい。その後、任意の端末装置52は、特徴量推移グラフ46を表示できるようになる。
【0052】
図6の特徴量推移グラフ46には、平均の警報基準値μの上限56a及び下限56b、並びに、標準偏差の警報基準値σの上限57a及び下限57bを示す破線が示されている。図6によれば、最初の1時間において、標準偏差は下限警報基準値57bよりも下にあったことになる。特徴量変化診断処理手順の説明に戻る。
【0053】
ステップS213において、特徴量変化診断部41は、特徴量の平均等を記憶する。具体的には、特徴量変化診断部41は、ステップS203及びS207において算出した特徴量の平均、標準偏差、平均の増減及び標準偏差の増減を、任意の記憶装置に記憶する。その後、特徴量変化診断処理手順を終了する。
【0054】
(記憶された特徴量の平均等の活用)
前記では、特徴量変化診断部41は、特徴量の平均等をその警報基準値と比較した。このときの警報基準値は、前記したように、“○○−α以上”等のように、閾値を基準としていた。しかしながら、 特徴量変化診断部41は、この例とは別に、前回の特徴量変化診断処理手順のステップS213において記憶した特徴量の平均等を、今回の処理の警報基準値としてもよい。
【0055】
前記の特徴量変化診断処理手順は、缶資材を検査する例であった。しかしながら、他の検査であっても、予防保全(無駄バネ等の予防)が行えることは言うまでもない。例えば、製品に対する印字を検査する場合、文字列全体の撮像画素数、文字ごとの撮像画素数、文字と背景との輝度差を特徴量とすることにより、予防保全が図れる。さらに、印字ヘッドが複数存在する場合、どの印字ヘッドに問題があるかを診断することもできる。
【0056】
(特徴量の類型)
図2の二重線110の直ぐ上の行の“1”、“2”及び“3”は、特徴量の類型である。
〈類型1〉フランジの中心座標等の標準偏差が増大した場合、ベルトコンベア9に異常(例えば、搬送ガイドの劣化、搬送バキューム圧力の不安定化、エンコーダの不具合)が発生している可能性が高い。フランジの中心座標等の平均が偏った場合、センサ7の位置又はカメラ4の位置がずれている可能性が高い。
【0057】
〈類型2〉フランジの直径等の標準偏差が増大した場合、資材公差が変化していたり、ベルトコンベア9が浮き上がっていたりする可能性が高い。フランジの直径等の平均が偏った場合、カメラ4の昇降位置がずれていたり、ベルトコンベア9が摩耗していたりする可能性が高い。
【0058】
〈類型3〉フランジ等の輝度が変化した場合、照明ヘッド5の照度又は資材である鋼材の公差が変化していたり、カメラ4のレンズ面の汚れに起因してコントラストが低下していたり、レンズの緩みに起因してフォーカスが外れていたりする可能性が高い。
【0059】
(パラメータ妥当性診断処理手順)
図7に沿って、パラメータ妥当性診断処理手順を説明する。パラメータ妥当性診断処理手順を開始する前提として、いま、検査装置1は、一連の製品3の検査を終了し、特徴量情報31のレコード、閾値・判定結果情報32のレコード、画像元データ33及び画像34(図1)を、検査した製品3の数だけ記憶しているとする。そして、製品3の種類は1つであり、すべての製品のある特徴量について、同じ閾値が適用されていたとする。
【0060】
ステップS301において、検査機能診断装置2のパラメータ妥当性診断部42は、パラメータを選択する。具体的には、パラメータ妥当性診断部42は、ユーザが入力装置12を介して、図2の3種類のパラメータのうち1つを選択するのを受け付ける。ここでは、ここでは、フランジの外側を検出するためのパラメータである“エッジ検出1”が選択されたとする。
【0061】
ステップS302において、パラメータ妥当性診断部42は、運用されているパラメータを取得する。具体的には、パラメータ妥当性診断部42は、特徴量情報31(図2)のうち、例えば“エッジ検出1”欄103aのパラメータ“*”を取得する。前記したように、ここで取得されるすべての“*”の値は同じである。ここで取得されたパラメータを“θ”とする。
【0062】
ステップS303において、パラメータ妥当性診断部42は、θをインクリメント又はデクリメントしてθを生成する。具体的には、パラメータ妥当性診断部42は、“θ=p×q×r+θ”を発生させる。ここで、“r”は、パラメータのずらし幅である。“q”は、ステップS303を経由した回数である。“p”は、“q”が偶数であるとき“+1”となり、“q”が奇数であるとき“−1”となる係数である。いま、仮にθ=10.0及びr=0.1が成立するとする。すると、ステップS303を経由する都度、パラメータ妥当性診断部42は、“θ=9.9,10.2,9.7,10.4,・・・”を生成することとなる。ユーザは、rの値を任意に設定することができる。
【0063】
ステップS304において、パラメータ妥当性診断部42は、画像元データ33にθを適用し、画像34を生成する。具体的には、パラメータ妥当性診断部42は、未処理の画像元データ33に対してパラメータθを適用し、エッジを検出する。この段階で、画像元データ33は、そこから特徴量が検出できる画像34となる。
【0064】
ステップS305において、パラメータ妥当性診断部42は、画像34の特徴量に閾値を適用し、判定結果を取得する。具体的には、第1に、パラメータ妥当性診断部42は、ステップS304において生成した画像34の特徴量に対して、現在使用されている閾値を適用する。ここでの特徴量は、例えば、フランジの直径(図2の小欄105b)である。
第2に、パラメータ妥当性診断部42は、特徴量と閾値との大小関係に基づき、判定結果“良”又は“不良”を生成する。
【0065】
ステップS306において、パラメータ妥当性診断部42は、すべての画像元データ33を取得したか否かを判断する。具体的には、パラメータ妥当性診断部42は、未処理の画像元データ33がない場合(ステップS306“Yes”)、ステップS307に進み、それ以外の場合(ステップS306“No”)、ステップS304に戻る。
【0066】
ステップS306の“Yes”を経由した段階で、パラメータ妥当性診断部42は、“(θ,画像ID,判定結果)=(9.9,P0001,良),(9.9,P0002,良),(9.9,P0003,良),・・・”のようなデータを生成していることになる。
【0067】
ステップS307において、パラメータ妥当性診断部42は、画像元データ33にθを適用した画像34に対する判定結果を、画像元データ33にθを適用した画像34に対する判定結果と比較する。具体的には、第1に、パラメータ妥当性診断部42は、閾値・判定結果情報32(図3)の閾値欄112bの“♭”及び判定結果欄113の“良”又は“不良”を使用して、以下のようなデータを生成する。
“(θ,画像ID,判定結果)=(10.0,P0001,良),(10.0,P0002,良),(10.0,P0003,良),・・・”
【0068】
第2に、パラメータ妥当性診断部42は、画像IDごとに判定結果を比較する。閾値妥当性診断部42は、“(9.9,P0001,良)”の“良”と“(10.0,P0001,良)”の“良”とを比較し、“(9.9,P0002,良)”の“良”と“(10.0,P0002,良)”の“良”とを比較し、以下同様の比較をする。両者は、“良”同士で一致する場合もあり、“不良”同士で一致する場合もある。一方が“良”であるのに対し他方が“不良”であり、両者が一致しない場合もある。
【0069】
ステップS308において、パラメータ妥当性診断部42は、すべての判定結果が一致したか否かを判断する。具体的には、パラメータ妥当性診断部42は、ステップS307の“第2”において、すべての画像IDについて判定結果が一致した場合(ステップS308“Yes”)、ステップS309に進み、それ以外の場合(ステップS308“No”)、ステップS303に戻る。
【0070】
ステップS309において、パラメータ妥当性診断部42は、良/不良別ヒストグラム48を作成する。具体的には、第1に、パラメータ妥当性診断部42は、“(θ,画像ID,特徴量,判定結果)”を生成する。ここでの特徴量は、当該閾値θを適用した当該画像IDの特徴量である。すると、例えば、“(θ,画像ID,特徴量,判定結果)=(9.9,P0001,#,良),(9.9,P0002,#,良),(9.9,P0003,#,良),・・・”のようなデータが生成される。このデータは、“(9.9,P0008,#,不良)”のようなデータも含んでいる。“(9.9,P0008,#,不良)”は、特徴量“#”が“9.9”よりも大きく、その結果、画像“P008”の製品が不良品と判定されるケースに対応している。
【0071】
第2に、パラメータ妥当性診断部42は、判定結果が“良”である特徴量のヒストグラム(度数分布曲線)61及び判定結果が“不良”である特徴量のヒストグラム62を作成する(図8参照)。このとき、これら2つのヒストグラム61及び62に対し、ラベル“θ=9.9”を付す。そして、ヒストグラム61及び62は、まとめて良/不良別ヒストグラム48と呼ばれる。図8は、ここで作成された良/不良別ヒストグラム48の例である。以降、ヒストグラム61を単に“良ヒストグラム”と呼び、ヒストグラム62を単に“不良ヒストグラム”と呼ぶ。
【0072】
パラメータ妥当性診断部42は、ステップS309の処理を、ステップS308“Yes”を経由した場合におけるすべてのθについて繰り返す。すると、ラベル“θ”が付された良ヒストグラム及び不良ヒストグラムの組が、多くのθについて作成、蓄積される。
【0073】
ステップS310において、パラメータ妥当性診断部42は、判定結果別に平均及び標準偏差を算出する。具体的には、第1に、パラメータ妥当性診断部42は、あるθのラベルが付されている良ヒストグラムの平均μok及び標準偏差σokを算出する。
第2に、パラメータ妥当性診断部42は、当該θのラベルが付されている不良ヒストグラムの平均μng及び標準偏差σngを算出する。
第3に、パラメータ妥当性診断部42は、良品上限(図8の符号63)及び不良品下限(図8の符号64)を算出する。
【0074】
良品上限63の算出式は、“良品上限=μok+N×σok”である。
不良品下限64の算出式は、“不良品下限=μng−M×σng”である。
さらに、閾値妥当性診断部42は、“良/不良分離度=不良品下限−良品上限”を算出する。いま、N≧4及びM≧3が成立しているとする。
【0075】
パラメータ妥当性診断部42がN=4を採用するとき、無駄バネ率は30ppm(100万本あたり30本)となることがわかっている。また、パラメータ妥当性診断部42がM=3を採用するとき、不良検出率は99.8%となることがわかっている。これらは、無駄バネ率及び不良検出率の現実的な限界に近い。
【0076】
ステップS311において、パラメータ妥当性診断部42は、生成したθの数及び範囲が適当であるか否かを判断する。具体的には、パラメータ妥当性診断部42は、ステップS303において生成したθの数が所定の閾値より多く、かつ、θの最大値及び最小値がθを中心とする所定の範囲のそれぞれ上限及び下限に達している場合(ステップS311“Yes”)、ステップS312に進む。パラメータ妥当性診断部42は、それ以外の場合(ステップS311“No”)、ステップS303に戻る。
【0077】
ステップS312において、パラメータ妥当性診断部42は、分離度が最大のパラメータθを推奨パラメータθとして特定する。具体的には、パラメータ妥当性診断部42は、良/不良分離度が最大になるような良ヒストグラム及び不良ヒストグラムの組に付されているラベルのθを見直し後の推奨パラメータθとして特定する。ここで、良/不良分離度が“最大”になることが唯一の条件ではない。パラメータ妥当性診断部42は、良/不良分離度に基づいて、様々な方法で推奨パラメータθを特定できる。例えば、パラメータ妥当性診断部42は、良/不良分離度が大きい上位○個のθのうち、現在のパラメータの値に最も近いものをθとして特定してもよい。パラメータ妥当性診断部42は、良/不良分離度が大きい上位○個のθの平均値をθとして特定してもよい。
【0078】
ステップS313において、パラメータ妥当性診断部42は、選択すべきパラメータが他にあるか否かを判断する。具体的には、第1に、パラメータ妥当性診断部42は、出力装置13に“選択すべきパラメータが他にありますか”という質問を表示し、ユーザが回答として“はい”又は“いいえ”を入力するのを促す。
第2に、パラメータ妥当性診断部42は、“はい”が入力された場合(ステップS313“Yes”)、ステップS301に戻り、“いいえ”が入力された場合(ステップS313“No”)、ステップS314に進む。
【0079】
ステップS314において、パラメータ妥当性診断部42は、θとθとの差分は充分に大きいか否かを判断する。具体的には、パラメータ妥当性診断部42は、θとθとの差分が所定の閾値より大きい場合(ステップS314“Yes”)、ステップS315に進み、それ以外の場合(ステップS314“No”)、ステップS316に進む。θは、多次元のベクトルであり、θも同次元のベクトルである。パラメータ妥当性診断部42は、θとθとの差分として、多次元空間における両者の間のユークリッド距離を算出する。ここでは、パラメータ妥当性診断部42は、現在のパラメータθに比して、推奨パラメータθが大きく変わらないケースを除外している。
【0080】
ステップS315において、パラメータ妥当性診断部42は、警報を出力する。具体的には、パラメータ妥当性診断部42は、警報“パラメータを見直すことを推奨します”を出力装置13に文字又は音声で出力する。このとき、パラメータ妥当性診断部42は、ベクトルθ及びベクトルθを表示してもよい。
【0081】
ステップS316において、パラメータ妥当性診断部42は、θ及びθを記憶する。具体的には、パラメータ妥当性診断部42は、補助記憶装置15に、ベクトルθ、ベクトルθ及び両者の差分を記憶する。その後、パラメータ妥当性診断処理手順を終了する。
【0082】
(ヘッダ情報の活用)
検査機能診断装置2がヘッダ情報47(図4)を記憶していることによって、特徴量変化診断部41は、例えば以下のような処理を行うことができる。
・特徴量変化診断部41は、製品情報(図4の欄130)のうちの資材メーカをキーとして、特徴量情報31を資材メーカごとに分割する。
・特徴量変化診断部41は、分割された特徴量情報31ごとに、特徴量変化診断処理手順(図5)を実行する。すると、特徴量変化診断部41は、特徴量推移グラフ46(図6)を、資材メーカごとに作成することができる。
【0083】
・特徴量変化診断部41は、これらの特徴量推移グラフ46を比較することによって、特定の資材メーカについての特徴量推移グラフ46だけが他とは異なる推移を示すことを検出することができる。例えば、メーカAの特徴量が異常であれば、ユーザは、メーカAに対して改善を促すことができる。
・特徴量変化診断部41は、メーカAについて、ある特徴量(例えば、缶に飲料を入れる前の資材検査における特徴量)の標準偏差と、他の特徴量(例えば、缶に飲料を入れた後の巻締検査における特徴量)の相関関係を検出することができる。すると、ユーザは、メーカAに対して、さらに具体的な改善(巻締工程の精度向上等)を促すことができる。
【0084】
特徴量変化診断部41が特徴量情報31を分割する基準は、任意である。前記の例の他にも、特徴量変化診断部41は、ラインID(図4欄125)ごとに特徴量情報31を分割することによって、“缶ライン”、“樽ライン”及び“ビンライン”の特徴量の推移を相互に比較しながら分析できる(図9参照)。
【0085】
(本実施形態の効果)
本実施形態の検査機能診断装置の効果は以下の通りである。
(1)検査機能診断装置は、画像の特徴量の変化を出力することができる。
(2)検査機能診断装置は、画像元データから画像を生成する際のパラメータのうち、製品の良/不良を分離する分離度が最大であるものを出力できる。
(3)検査機能診断装置は、画像の特徴量の変化を、平均又は分散というわかり易い統計量の変化として出力できる。さらに、検査機能診断装置は、移動平均又は移動標準偏差を使用するので、ノイズに影響されにくい。
(4)検査機能診断装置は、画像の特徴量の変化を、時系列の増減として出力できる。
(5)検査機能診断装置は、画像の特徴量の変化を、前回の特徴量と比較できる。
(6)検査機能診断装置は、見直し後の推奨パラメータが、現行のパラメータと比して大きく変化する場合に限り、警報を出力できる。
(7)検査機能診断装置は、例えば、工場ごと、ラインごとに、特徴量の変化を比較できる。
(8)検査機能診断装置は、ヒストグラムを用いて分離度を算出するので、パラメータが製品の良/不良を判別する度合いがわかり易くなる。
(9)検査機能診断装置は、撮像位置、大きさ等の特徴量のうちから、ユーザにとって使用しやすいものを選択できる。
【0086】
なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0087】
また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウエアで実現してもよい。また、前記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。
【符号の説明】
【0088】
1 検査装置
2 検査機能診断装置
3 製品
4 カメラ
5 照明ヘッド
6 照明電源
7 センサ
8 排出装置
11 中央制御装置
12 入力装置
13 出力装置
14 主記憶装置
15 補助記憶装置
16 通信装置
21 起動制御部
22 A/D変換部
23 特徴量抽出部
24 閾値設定部
25 判定部
26 外部出力処理部
31 特徴量情報
32 閾値・判定結果情報
33 画像元データ
34 画像
41 特徴量変化診断部
42 パラメータ妥当性診断部
45 警報基準値
46 特徴量推移グラフ
47 ヘッダ情報
48 良/不良別ヒストグラム
図1
図2
図3
図4
図5
図6
図7
図8
図9