(58)【調査した分野】(Int.Cl.,DB名)
炭素繊維が互いに絡み合った炭素繊維集積体からなり、前記炭素繊維集積体の前記炭素繊維を結着する炭化物と、前記炭素繊維集積体の前記炭素繊維間に保持された中位径が40μm〜120μmの範囲内にある球状黒鉛及び/または人造黒鉛とを含み、多孔質であるガス拡散層基材。
前記球状黒鉛及び/または人造黒鉛は、前記炭素繊維を100質量部に対し、40質量部〜80質量部の範囲内であることを特徴とする請求項1に記載のガス拡散層基材。
ベースとなる炭素繊維と、後の加熱処理で焼失される有機繊維と、中位径が40μm〜120μmの範囲内にある球状黒鉛及び/または人造黒鉛とを共に抄紙することによって集積体を形成する抄紙工程と、
前記抄紙工程で形成された集積体に、炭素前駆体樹脂を含浸させる樹脂含浸工程と、
炭素前駆体樹脂が含浸された集積体を乾燥させる乾燥工程と、
前記乾燥工程で乾燥させた集積体を非酸化性雰囲気で加熱焼成する炭化・黒鉛化工程と
を具備するガス拡散層基材の製造方法。
前記抄紙工程において、前記炭素繊維100質量部に対し、前記有機繊維が20質量部〜80質量部の範囲内、前記球状黒鉛及び/または人造黒鉛が、40質量部〜80質量部の範囲内で配合され抄紙されることを特徴とする請求項3乃至請求項5の何れか1つに記載のガス拡散層基材の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0010】
ところが、特許文献1の技術においては、消失材の消失跡を細孔、空孔とすることで水分やガスの透過性を向上させることができるも、気孔率を高めてガス拡散性を高めようとするほど、逆に、基材(シート)の厚み方向の導電性及び強度が低下する。したがって、電池性能の向上にも限度があり、更なる電池性能の向上のためには、ガス拡散性と導電性及び強度とを両立させることが求められる。特に、強度が不足すると、基材(シート)の成形時の加圧や、燃料電池の作成時、例えば、電極として燃料電池に組み込む際にセパレータで挟持する加圧締結時の加圧等により、基材の内部細孔が潰れたり、炭素繊維が破壊されたりする基材の構造崩壊が生じ、圧力解放後には基材の厚みが大きく減少している現象が見られる。そのような場合、ガス拡散層基材が燃料電池において良好な特性を発揮できなくなってしまうことになる。
【0011】
また、特許文献2の技術では、導電性粉末に柔軟性のある膨張黒鉛を用い、所定の温度で溶融された樹脂によって材料同士を結着することで、可とう性を確保できるも、強度が不十分であり、基材(シート)の成形時の加圧や、燃料電池作成時にセパレータで挟持する加圧締結時の加圧等により、炭素繊維や樹脂が損傷し易い。このため、圧力を解放した際には、基材の厚みが十分に回復することなく薄くなり、導電性が低下したり、ガスや水分の透過性が低下したりする問題がある。更に、膨張黒鉛やカーボンファイバーを結着する樹脂が存在するも、それによる電気抵抗の低減効果はそれほど高いものではなく、導電性に優れるものでもない。
【0012】
更に、特許文献3及び特許文献4の技術においても、カーボンブラックまたは黒鉛粒子等からなる炭素粒子を含む無定形炭素で炭素繊維同士の交差部を接合することによって、弾力性、柔軟性を付与できるも、強度が不十分であり、基材(シート)の成形時の加圧や、燃料電池作成時にセパレータで挟持する加圧締結時の加圧等により、炭素繊維や樹脂が損傷し易くて、圧力を開放した際には厚みが十分に回復することなく薄くなり、導電性が低下したり、ガスや水分の透過性が低下したりする問題があった。また、炭素粒子を含む無定形炭素で炭素繊維同士の交差部を接合するも、無定形炭素の導電性もそれほど高いものでないから、優れた導電性は得られなかった。
【0013】
加えて、特許文献5の技術においては、抄紙に含浸させるフェノール樹脂等の樹脂量を多くし、それを炭化・黒鉛化させることで、その樹脂が炭化・黒鉛化されてなる樹脂炭化物によって、基材全体が固まる。このため、抵抗値を大きく下げることが可能である。また、消失材の消失によってガス拡散性を高めることができる。更に、基材全体を固めていることで、優れた強度を有し、基材(シート)の成形時の加圧や、燃料電池の作成時にセパレータで挟持する加圧締結時の加圧等によっても、炭素繊維が破壊、破損され難く、加圧による厚みの変化を少なくできる。ところが、基材全体を固めるものであると、弾力性が少なくなり、燃料電池に組み込んで電池を稼働させた際に生じる電解質膜の膨張や収縮に対し、追従性を高くするのが困難である。電解質膜の膨張や収縮に対する追従性が低いと、燃料電池においてガス拡散層基材の良好な特性が有効に発揮されず、電池性能の低下を招く恐れもある。よって、高い電池性能を維持するために、ガス拡散層基材において電解質膜の膨張及び収縮に対する寸法吸収性を高めることが望まれる。
【0014】
そこで、本発明は、ガス拡散性及び導電性を両立でき、かつ、加圧前後における厚み変化を少なくできる強度及び弾力性を有するガス拡散層基材及びその製造方法の提供を課題とするものである。
【課題を解決するための手段】
【0015】
請求項1の発明のガス拡散層基材は、炭素繊維が互いに絡み合った炭素繊維集積体からなり、前記炭素繊維を結着する炭化物と、前記炭化物により結着される前記炭素繊維間に分布した中位径が40μm〜120μmの範囲内にある球状黒鉛及び/または人造黒鉛とを含み、多孔質であるものである。
【0016】
ここで、上記炭素繊維が互いに絡み合った炭素繊維集積体とは、多数の炭素繊維が絡み合って、二次元的及び三次元的に配列している構造であることを意味し、例えば、炭素繊維を抄紙処理することによって形成することができる。そして、上記炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、フェノール系炭素繊維、レーヨン系炭素繊維が例示される。
上記炭化物は、主に樹脂の炭化物であり、炭化率が高い、例えば、フェノール樹脂等の炭素前駆体樹脂を非酸化性雰囲気下で高温加熱焼成することにより炭化・黒鉛化したものであり、炭素繊維を結着し、また、所定粒径の球状黒鉛及び/または人造黒鉛を炭素繊維間に保持、担持させるものである。好ましくは、炭化による残存率が多いフェノール樹脂の炭化物である。このときの炭化・黒鉛化は、ガス拡散層基材の目的、所望とする特性、樹脂の特性等に応じて加熱焼成の温度条件が設定されるものであり、炭化または黒鉛化の区別を問うものではない。即ち、上記炭化物は黒鉛化物を含む概念である。
【0017】
また、上記球状黒鉛及び/または人造黒鉛は、球状黒鉛のみであってもよいし、人造黒鉛のみであってもよいし、球状黒鉛及び人造黒鉛の併用であってもよいことを意味する。
上記球状黒鉛は、例えば、鱗片状黒鉛等を球状化粉砕加工等により成形してなる非結晶(アモルファス)の球状化黒鉛であり、その中位径が40μm以上、120μm以下の範囲内、好ましくは、50μm以上、100μm以下の範囲内にあるものが用いられる。
また、上記人造黒鉛は、鱗片状黒鉛、塊状(鱗状)黒鉛、土状黒鉛等の天然黒鉛に対し人工的に製造された黒鉛であり、一般的に、天然黒鉛と比べ高純度であり、天然黒鉛のフレーク形状とは異なるブロック形状を呈するものである。上記人造黒鉛としては、その中位径が40μm以上、120μm以下の範囲内、好ましくは、50μm以上、100μm以下の範囲内にあるものが使用される。
【0018】
ここで、「中位径」とは、JIS Z 8901「試験用粉体及び試験用粒子」の本文及び解説の用語の定義によれば、粉体の粒径分布において、ある粒子径より大きい個数(または質量)が、全粉体のそれの50%を占めるときの粒子径(直径)、即ち、オーバサイズ50%の粒径であり、通常、メディアン径または50%粒子径といいD
50と表わされるものである。定義的には、平均粒子径と中位径で粒子群のサイズを表現されるが、ここでは、商品説明の表示、レーザ回折・散乱法によって測定した値である。そして、この「レーザ回折・散乱法によって測定した中位径」とは、レーザ回折式粒度分布測定装置を用いてレーザ回折・散乱法によって得られた粒度分布において積算重量部が50%となる粒子径(D
50)をいう。なお、上記数値は、厳格なものでなく、製品毎の誤差があり、測定等による誤差を含むと1割程度以下の誤差の混入を否定するものではない。この誤差の観点から見ると、正規分布を呈しており、粒径は正規分布を示すものであるから、中位径≒平均粒子径と見做しても両者の違いは数パーセント内であり、誤差と見做される程度である。
【0019】
請求項2の発明のガス拡散層基材の前記球状黒鉛及び/または人造黒鉛は、前記炭素繊維を100質量部に対し、40質量部以上、80質量部以下の範囲内、好ましくは、50質量部以上、70質量部以下であるものである。また、前記球状黒鉛または前記人造黒鉛の何れかを含む場合は、前記球状黒鉛または前記人造黒鉛が、前記炭素繊維を100質量部に対し、40質量部以上、80質量部以下の範囲内、好ましくは、50質量部以上、70質量部以下であり、前記球状黒鉛及び前記人造黒鉛の両方を含む場合には、それらの合計量が、前記炭素繊維を100質量部に対し、40質量部以上、80質量部以下、好ましくは、50質量部以上、70質量部以下の範囲内である。
なお、上記数値は、計測等による誤差を含む概略値であり、当然、数割の誤差を否定するものではない。
【0020】
請求項3の発明のガス拡散層基材の製造方法は、抄紙工程にてベースとなる炭素繊維と、後の加熱処理で焼失される有機繊維と、中位径が40μm以上、120μm以下の範囲内にある球状黒鉛及び/または人造黒鉛とを共に抄紙することによって集積体を形成し、樹脂含浸工程にて前記抄紙工程で形成された集積体に炭素前駆体樹脂を含浸させ、乾燥工程にて前記炭素前駆体樹脂が含浸された集積体を乾燥し、炭化・黒鉛化工程にて前記乾燥工程で乾燥させた集積体を非酸化性雰囲気で加熱焼成するものである。
【0021】
上記抄紙工程は、炭素繊維と、有機繊維と、所定粒径の球状黒鉛及び/または人造黒鉛とを一緒に抄紙することにより、シート状等の集積体を形成するものである。
上記炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、フェノール系炭素繊維、レーヨン系炭素繊維が例示される。
上記有機繊維としては、後の乾燥工程や炭化・黒鉛化工程等における加熱によって熱分解され焼失されるものであればよく、木綿、パルプ等の植物繊維、羊毛等の動物繊維、樹脂繊維が例示される。上記有機繊維は、後の乾燥工程や炭化・黒鉛化工程等における加熱によって熱分解され焼失されることで、その焼失跡がガスや水分を透過するための空孔(細孔、気孔)を形成するものである。更に、上記有機繊維は、抄紙時に、炭素繊維を捕獲して炭素繊維を結び付け、絡み合い性を向上させるバインダとしての機能も有するものである。
【0022】
更に、上記球状黒鉛及び/または人造黒鉛は、球状黒鉛のみであってもよいし、人造黒鉛のみであってもよいし、球状黒鉛及び人造黒鉛の併用であってもよいことを意味する。
上記球状黒鉛は、例えば、鱗片状黒鉛等を球状化粉砕加工等により成形してなる非結晶(アモルファス)の球状化黒鉛であり、その中位径が40μm以上、120μm以下の範囲内、好ましくは、50μm以上、100μm以下の範囲内にあるものが用いられる。
また、上記人造黒鉛は、鱗片状黒鉛、塊状(鱗状)黒鉛、土状黒鉛等の天然黒鉛に対し人工的に製造された黒鉛であり、一般的に、天然黒鉛と比べ高純度であり、天然黒鉛のフレーク形状とは異なるブロック形状を呈するものである。その中位径が40μm以上、120μm以下の範囲内、好ましくは、50μm以上、100μm以下の範囲内にあるものが使用される。
【0023】
ここで、「中位径」とは、JIS Z 8901「試験用粉体及び試験用粒子」の本文及び解説の用語の定義によれば、粉体の粒径分布において、ある粒子径より大きい個数(または質量)が、全粉体のそれの50%を占めるときの粒子径(直径)、即ち、オーバサイズ50%の粒径であり、通常、メディアン径または50%粒子径といいD
50と表わされるものである。定義的には、平均粒子径と中位径で粒子群のサイズを表現されるが、ここでは、商品説明の表示、レーザ回折・散乱法によって測定した値である。そして、この「レーザ回折・散乱法によって測定した中位径」とは、レーザ回折式粒度分布測定装置を用いてレーザ回折・散乱法によって得られた粒度分布において積算重量部が50%となる粒子径(D
50)をいう。なお、上記数値は、厳格なものでなく、製品毎の誤差があり、測定等による誤差を含むと1割程度以下の誤差の混入を否定するものではない。この誤差の観点から見ると、正規分布を呈しており、粒径は正規分布を示すものであるから、中位径≒平均粒子径と見做しても両者の違いは数パーセント内であり、誤差と見做される程度である。
【0024】
上記樹脂含浸工程は、前記炭素繊維と前記有機繊維と前記所定粒径の球状黒鉛及び/または人造黒鉛からなる集積体に、後の炭化・黒鉛化工程における非酸化性雰囲気下での加熱焼成により炭化・黒鉛化する炭素前駆体樹脂を含浸させる工程である。通常、前記抄紙工程で形成した集積体に対し、樹脂溶液(分散液)または樹脂フィルムの形態で供給されて炭素前駆体樹脂が添加される。
上記炭素前駆体樹脂としては、例えば、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ユリア樹脂、不飽和ポリエステル樹脂、ピッチ等の熱硬化性樹脂等が例示される。中でも、取扱性が良く、また、残炭率が高く、炭化・黒鉛化した際に炭素繊維を結着する結着力が強いフェノール樹脂が好ましい。
【0025】
上記乾燥工程は、前記樹脂含浸工程で樹脂が含浸された集積体を乾燥させることによって、前記樹脂含浸工程で含浸させた炭素前駆体樹脂の溶液分(溶媒、分散媒)を蒸発させ除去する工程である。樹脂の特性等に応じて加熱焼成の温度条件が設定されるが、その温度条件、樹脂の特性等によっては、このときの乾燥温度で前記炭素前駆体樹脂を硬化させることも可能である。また、前記有機繊維の種類によっては、このときの乾燥温度で前記有機繊維が焼失する場合もある。
【0026】
そして、上記炭化・黒鉛化工程は、前記乾燥工程で乾燥させた集積体を非酸性雰囲気下で高温焼成することによって前記集積体中の前記炭素前駆体樹脂分を炭化・黒鉛化させる工程である。
ここで、上記炭化・黒鉛化は、ガス拡散層基材の目的、所望とする特性、樹脂の特性等に応じて加熱焼成の温度条件(例えば、1500℃〜3000℃)が設定されるものであり、炭化または黒鉛化の区別を問うものではない。このときの加熱によっても、前記有機繊維の焼失を可能とするが、前記有機繊維の種類によって、また、焼成条件によっては、前記有機繊維の一部が炭化・黒鉛化し炭化物として残存する場合もある。
更に、上記非酸化性雰囲気とは、広く酸化性でない雰囲気を意味するものとし、通常、窒素(N
2)ガス中、アルゴン(Ar)ガス中、ヘリウムガス中等の不活性ガス中とされるが、一酸化炭素(CO)ガス中、水素(H
2)ガス中のような還元雰囲気や、真空下や、二酸化炭素ガス等の雰囲気下、更には密閉空間内で活性炭等の炭素粉中に埋める方法等も含むものとする。
【0027】
請求項4の発明のガス拡散層基材の製造方法の前記有機繊維は、パルプ繊維及び/または樹脂繊維であるものであり、木材等からなるパルプ繊維を単独で用いても良いし、樹脂繊維を単独で用いても良いし、パルプ繊維及び樹脂繊維の両方を用いてもよい。
上記樹脂繊維としては、ポリ乳酸繊維、ポリビニルアルコール繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリウレタン繊維、ポリエステル繊維、ナイロン繊維、アクリル繊維が例示される。
【0028】
請求項5の発明のガス拡散層基材の製造方法の前記炭素前駆体樹脂は、フェノール樹脂であるものである。
上記フェノール樹脂としては、レゾール型、ノボラック型等が使用できるが、電池性能の維持からすると、レゾール型が好ましい。
【0029】
請求項6の発明のガス拡散層基材の製造方法の前記抄紙工程において、前記炭素繊維100質量部に対し、前記有機繊維が20質量部以上、80質量部以下、好ましくは、30質量部以上、40質量部以下の範囲内であり、前記球状黒鉛及び/または人造黒鉛が、40質量部以上、80質量部以下、好ましくは、50質量部以上、70質量部以下の範囲内で配合されて抄紙されるものである。
前記有機繊維が複数種の場合にはそれらの合計量が、前記炭素繊維100質量部に対し、前記有機繊維が20質量部以上、80質量部以下、好ましくは、30質量部以上、40質量部以下の範囲内である。また、前記球状黒鉛または前記人造黒鉛の何れかを含む場合は、前記球状黒鉛または前記人造黒鉛が、前記炭素繊維を100質量部に対し、40質量部以上、80質量部以下、好ましくは、50質量部以上、70質量部以下の範囲内であり、前記球状黒鉛及び前記人造黒鉛の両方を含む場合には、それらの合計量が、前記炭素繊維を100質量部に対し、40質量部以上、80質量部以下、好ましくは、50質量部以上、70質量部以下の範囲内である。
なお、上記数値は、計測等による誤差を含む概略値であり、当然、数割の誤差を否定するものではない。
【発明の効果】
【0030】
請求項1の発明に係るガス拡散層基材によれば、炭素繊維が絡みあった炭素繊維集積体において、前記炭素繊維を結着する炭化物と、前記炭素繊維間に保持された中位径が40μm〜120μmの範囲内にある球状黒鉛及び/または人造黒鉛とが含まれる。
本発明者らは、ガス拡散性及び導電性を両立させ、かつ、加圧前後における厚み変化が抑えられる強度及び弾力性を有するガス拡散層基材についての鋭意実験研究を重ねる中、導電性材料であり、原料、製造条件等により極めて多様な物性値を有する黒鉛に注目して鋭意検討を積み重ねたところ、炭素繊維及び有機繊維と共に球状黒鉛及び/または人造黒鉛を抄紙し、更に、炭素前駆体樹脂を含浸させたのち、非酸化性雰囲気で高温の加熱処理を行い炭素前駆体樹脂の炭化・黒鉛化を行ったところ、それによって得られたガス拡散層基材は、ガス拡散性及び導電性に優れ、かつ、加圧時に厚みが減少しても、圧力を解放すると厚みが元に戻り、加圧前後の厚み変化が少ないことを見出し、これらの知見に基づいて本発明を完成させたものである。
【0031】
即ち、請求項1の発明のガス拡散層基材によれば、炭素繊維間に粒径が中位径で40μm〜120μmの範囲内である球状黒鉛及び/または人造黒鉛が保持されていることで、その所定粒径の球状黒鉛及び/または人造黒鉛によって炭素繊維集積体の厚み方向で炭素繊維間に通電パスが形成される。更に、球状黒鉛及び/または人造黒鉛は、電気伝導率が高い特性を有する。加えて、炭素繊維は炭化物により結着されている。これらにより、厚み方向の電気抵抗が極めて小さくなる。よって、炭素繊維集積体の空隙率を高めても、所定粒径の球状黒鉛及び/または人造黒鉛による炭素繊維間の通電パスの構成、球状黒鉛及び/または人造黒鉛の高い電気伝導率、更には、炭化物による炭素繊維の結着により高い導電性を確保できるから、ガス拡散性及び導電性の両立が可能である。
【0032】
加えて、炭素繊維間に粒径が中位径で40μm〜120μmの範囲内である球状黒鉛及び/または人造黒鉛が保持されて、炭素繊維集積体の厚み方向で炭素繊維間に所定粒径の球状黒鉛及び/または人造黒鉛による強固なパスが形成されているから、炭素繊維間を繋ぐ所定粒径の球状黒鉛及び/または人造黒鉛が支点、支柱として機能し、炭素繊維の弾力性を引き出して外力を吸収できる構造である。また、炭素繊維は炭化物によって結着されている。したがって、厚み方向に加圧されときでも、炭素繊維や炭化物の損傷、破壊を防止できる。そして、加圧時に寸法変化が起こるも、圧力が解放された際には、集積体は元の厚みに回復し、加圧前後で厚みの変化が少ないものとなる。即ち、請求項1の発明のガス拡散層基材は、適度な強度及び弾力性を有するものである。
【0033】
ここで、本発明者らの実験研究によれば、球状黒鉛及び/または人造黒鉛の粒径が中位径で40μm未満のものでは、導電性の向上効果が少なく、また、加圧による厚みの減少を効果的に抑制できなかった。これは、球状黒鉛及び/または人造黒鉛の粒径が小さすぎると、炭素繊維集積体の厚み方向で炭素繊維間に球状黒鉛及び/または人造黒鉛による強固なパスを形成できないためである。一方、球状黒鉛及び/または人造黒鉛の粒径が中位径で120μmを超えるのものでは、炭素繊維集積体に定着させることができない。
よって、粒径が中位径で40μm〜120μmの範囲内である球状黒鉛及び/または人造黒鉛であれば、炭素繊維集積体の厚み方向で炭素繊維間に球状黒鉛及び/または人造黒鉛による強固なパスを形成できることで、高い導電性を確保できると共に、加圧による厚み変化を抑えることができる強度及び弾力性を確保できる。
更に、炭化物によって炭素繊維間が結着されていることでも、導電性が高まり、また、強度が高められる。
【0034】
このようにして、ガス拡散性及び導電性を両立させ、かつ、加圧前後における厚み変化を少なくできる強度及び弾力性を有するガス拡散層基材となる。
【0035】
請求項2の発明に係るガス拡散層基材によれば、前記球状黒鉛及び/または人造黒鉛は、前記炭素繊維を100質量部に対し、40質量部〜80質量部以下の範囲内である。
前記球状黒鉛、人造黒鉛が少なすぎると、空隙率が高い場合、導電性が不十分となり、また、加圧によって厚みが少なくなり炭素繊維や炭化物の破壊防止の実用的な効果が得られない。一方で、前記炭素繊維に定着できる量から、前記炭素繊維集積体に含まれる前記球状黒鉛、人造黒鉛の上限値が決定される。
本発明者らの実験研究によれば、前記球状黒鉛、人造黒鉛は、前記炭素繊維を100質量部に対し、40質量部以上であれば、空隙率が高くても、優れた導電性を確保でき、また、加圧による厚み変化の抑制効果が高く実用的な効果が得られることを確認している。また、前記炭素繊維集積体に定着できる量の最大は、前記炭素繊維100質量部に対し、80質量部であった。よって、前記球状黒鉛及び/または人造黒鉛は、前記炭素繊維を100質量部に対し、40質量部〜80質量部以下の範囲内であれば、請求項1に記載の効果に加えて、導電性に優れるものとなる。また、加圧前後における厚み変化を少なくできる強度及び弾力性にも優れる。好ましくは、前記球状黒鉛及び/または人造黒鉛は、前記炭素繊維を100質量部に対し、50質量部〜70質量部の範囲内である。
【0036】
請求項3の発明のガス拡散層基材の製造方法によれば、まず、抄紙工程において、ベースとなる炭素繊維と、後の加熱処理で焼失される有機繊維と、粒径が中位径で40μm〜120μmの範囲内である球状黒鉛及び/または人造黒鉛とを共に抄紙することによって集積体を形成し、次に、樹脂含浸工程において、前記抄紙工程で形成された集積体に炭素前駆体樹脂を含浸し、更に、乾燥工程で、前記炭素前駆体樹脂が含まれた集積体を乾燥し、そして、炭化・黒鉛化工程で、前記乾燥された集積体を非酸化性雰囲気で高温加熱焼成する。
【0037】
本発明者らは、ガス拡散性及び導電性を両立させ、かつ、加圧による厚み変化が抑えられる強度及び弾力性を有するガス拡散層基材についての鋭意実験研究を重ねる中、導電性材料であり、原料、製造条件等により極めて多様な物性値を有する黒鉛に注目し鋭意検討を積み重ねたところ、炭素繊維及び有機繊維と共に球状黒鉛及び/または人造黒鉛を抄紙し、更に、炭素前駆体樹脂を含浸させたのち、非酸化性雰囲気で高温の加熱処理を行い炭素前駆体樹脂の炭化・黒鉛化を行ったところ、それによって得られたガス拡散層基材は、ガス拡散性及び導電性に優れ、かつ、加圧時に厚みが減少しても、圧力を解放すると厚みが元に戻り、加圧前後の厚み変化が少ないことを見出し、これらの知見に基づいて本発明を完成させたものである。
【0038】
即ち、請求項3の発明に係るガス拡散層基材の製造方法によれば、炭素繊維及び有機繊維と共に所定粒径の球状黒鉛及び/または人造黒鉛を抄紙して集積体を形成し、更に、その集積体に炭素前駆体樹脂を含浸させたのち、乾燥させてから、非酸化性雰囲気で高温の加熱処理を行うことによって、前記炭素繊維が互いに絡み合った炭素繊維集積体の前記炭素繊維間に所定粒径の球状黒鉛及び/または人造黒鉛が保持され、また、前記有機繊維が焼失されその焼失跡が空孔となり、更に、前記炭素前駆体樹脂が炭化・黒鉛化されて炭化物となり前記炭素繊維を結着する。即ち、炭素繊維が互いに絡み合った炭素繊維集積体からなり、炭素繊維を結着する炭化物と、炭素繊維間に保持された粒径が中位径で40μm〜120μmの範囲内である球状黒鉛及び/または人造黒鉛とを含み、多孔質であるガス拡散層基材が得られる。
【0039】
このガス拡散層基材によれば、炭素繊維間に粒径が中位径40μm〜120μmの範囲内である球状黒鉛及び/または人造黒鉛が保持されていることで、その所定粒径の球状黒鉛及び/または人造黒鉛によって炭素繊維集積体の厚み方向で炭素繊維間に通電パスが形成される。更に、球状黒鉛及び/または人造黒鉛は、電気伝導率が高い特性を有する。加えて、炭素繊維は炭化物により結着されている。これより、電気抵抗が極めて小さくなる。よって、炭素繊維集積体の空隙率を高めても、所定粒径の球状黒鉛及び/または人造黒鉛による炭素繊維間の通電パスの構成、球状黒鉛及び/または人造黒鉛の高い電気伝導率、更には、炭化物による炭素繊維の結着によって高い導電性を確保できるから、ガス拡散性及び導電性の両立が可能である。
【0040】
加えて、炭素繊維間に粒径が中位径で40μm〜120μmの範囲内にある球状黒鉛及び/または人造黒鉛が保持されて、炭素繊維集積体の厚み方向で炭素繊維間に所定粒径の球状黒鉛及び/または人造黒鉛による強固なパスが形成されているから、炭素繊維間を繋ぐ所定粒径の球状黒鉛及び/または人造黒鉛が支点、支柱として機能し、炭素繊維の弾力性を引き出して外力を吸収できる構造である。また、炭素繊維は炭化物によっても結着されている。したがって、厚み方向に加圧されときでも、炭素繊維や炭化物の損傷、破壊が防止される。そして、加圧によって寸法変化が起こるも、圧力が解放された際には、集積体は元の厚みに回復し、加圧前後で厚みの変化は少ないものとなる。即ち、請求項3の発明のガス拡散層基材の製造方法により得られたガス拡散層基材は適度な強度及び弾力性を有するものである。
【0041】
ここで、本発明者らの実験研究によれば、球状黒鉛、人造黒鉛の粒径が中位径で40μm未満のものでは、導電性の向上効果が少なく、また、加圧による厚みの減少を効果的に抑制できなかった。これは、球状黒鉛、人造黒鉛の粒子径が小さすぎると、炭素繊維集積体の厚み方向で炭素繊維間に球状黒鉛及び/または人造黒鉛による強固なパスを形成できないためである。一方、球状黒鉛、人造黒鉛の粒径が中位径で120μmを超えるのものでは、炭素繊維集積体に定着させることができない。
よって、粒径が中位径で40μm〜120μmの範囲内である球状黒鉛、人造黒鉛であれば、炭素繊維集積体の厚み方向で炭素繊維間に球状黒鉛、人造黒鉛による強固なパスを形成できることで、高い導電性を確保できると共に、加圧による厚み変化を抑えることができる強度及び弾力性を確保できる。
更に、炭化物によって炭素繊維間が結着されていることでも、導電性が高まり、また、強度が高められる。
【0042】
そして、抄紙工程において炭素繊維、球状黒鉛及び/または人造黒鉛と共に、有機繊維を抄紙するも、この有機繊維は乾燥工程や炭化・黒鉛化工程における加熱処理で焼失されるものであるから、その焼失跡が空孔となるために、水分やガスの透過性を高めることができる。加えて、炭素繊維とは特性を異にする有機繊維を炭素繊維、球状黒鉛及び/または人造黒鉛と共に抄紙することで、有機繊維の特性によって炭素繊維の捕捉性、絡み合い性、集積体の強度を高めることができるから、球状黒鉛や人造黒鉛の保持率を高めることができる。故に、導電性の向上が可能であり、また、加圧による厚み変化を抑えることができる強度及び弾力性の向上が可能である。
【0043】
このようにして、ガス拡散性及び導電性を両立させ、かつ、加圧前後における厚み変化を少なくできる強度及び弾力性を有するガス拡散層基材の製造方法となる。
【0044】
請求項4の発明に係るガス拡散層基材の製造方法によれば、前記有機繊維は、パルプ繊維及び/または樹脂繊維である。パルプ繊維によれば、抄紙時にカーボン繊維の捕捉性、絡み合い性を高めることができる。よって、強度及び導電性を高めることができ、更に、球状黒鉛や人造黒鉛の保持率を高めることができる。また、樹脂繊維によっても、その強度により集積体を補強して強度、特に引張り強度を高めることができる。そして、パルプ繊維と樹脂繊維を併用した場合には、パルプ繊維の品質(繊維長、繊維径、材質)のばらつきによる集積体の特性のばらつきが抑えられ、信頼性が高まる。したがって、請求項3に記載の効果に加えて、ガス拡散層基材の強度を高めることができる。
【0045】
請求項5の発明に係るガス拡散層基材の製造方法によれば、前記炭素前駆体樹脂は、フェノール樹脂であり、フェノール樹脂は炭化率(残炭率)が高いものである。したがって、請求項3または請求項4に記載の効果に加えて、炭素繊維を結着する結着性を高めて、更に強度を向上させることができる。
【0046】
請求項6の発明に係るガス拡散層基材の製造方法によれば、前記抄紙工程において、前記炭素繊維100質量部に対し、前記有機繊維が20質量部〜80質量部の範囲内、前記球状黒鉛及び/または人造黒鉛が、40質量部〜80質量部の範囲内で配合されて抄紙されるものである。
ここで、前記有機繊維が少なすぎると、十分なガス拡散性能が得られない。一方で、前記有機繊維が多すぎると、空隙率が高くなり、強度が損なわれる。
また、前記球状黒鉛及び/または人造黒鉛が少なすぎると、空隙率が高い場合、導電性が不十分となり、また、加圧によって厚みが少なくなり炭素繊維や炭化物の破壊防止の実用的な効果が得られない。一方で、前記炭素繊維に定着できる量から、前記炭素繊維集積体に含まれる前記球状黒鉛及び/または人造黒鉛の上限値が決定される。
本発明者らの実験研究によれば、前記炭素繊維100質量部に対し、前記有機繊維が20質量部〜80質量部の範囲内であれば、強度及びガス拡散性を両立させることができる。更に、前記球状黒鉛及び/または人造黒鉛は、前記炭素繊維を100質量部に対し、40質量部以上であれば、空隙率が高くても、優れた導電性を確保でき、また、加圧による厚み変化の抑制効果が高く実用的な効果が得られることを確認している。そして、前記炭素繊維集積体に定着できる量の最大は、前記炭素繊維100質量部に対し、80質量部であった。
したがって、前記抄紙工程において、前記炭素繊維100質量部に対し、前記有機繊維が20質量部〜80質量部の範囲内、前記球状黒鉛及び/または人造黒鉛が、40質量部〜80質量部の範囲内であれば、請求項3乃至請求項5の何れか1つに記載の効果に加えて、強度を損なうことなく、ガス拡散性及び導電性に優れるものとなる。好ましくは、前記炭素繊維を100質量部に対し、前記有機繊維が30質量部〜40質量部の範囲内、前記球状黒鉛及び/または人造黒鉛は、50質量部〜70質量部の範囲内である。
【発明を実施するための形態】
【0048】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同一の記号及び同一の符号は、実施の形態中の同一または相当する機能部分を意味するものであるから、ここでは重複する詳細な説明を省略する。
【0049】
まず、本発明の実施の形態のガス拡散層基材1の製造方法について、
図1を参照して説明する。
本実施の形態においては、
図1のフローチャートに示されるように、最初に、抄紙工程(ステップS10)にて、ベース繊維である炭素繊維11と、後の加熱処理で焼失する有機繊維としてのパルプ繊維21及び樹脂繊維22と、所定粒径の球状黒鉛31及び/または人造黒鉛32とを一緒に抄紙して抄紙体である集積体を形成する。
【0050】
炭素繊維(カーボンファイバー)11としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維等が用いられる。これらの1種を単独で用いても良いし、2種以上を併用しても良く、繊維種は燃料電池の用途(運転条件、使用条件)等に応じたガス拡散層基材1の目的、所望とする特性に応じて選択される。好ましくは、強度等の観点からポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維である。特に、ポリアクリロニトリル系炭素繊維を用いると、圧縮強さや引張り破断伸度が高いことで、弾力性の高いガス拡散層基材1を得ることができる。また、ピッチ系炭素繊維を用いると、カールが強いから、繊維同士の絡み合い性が増し、また、黒鉛の保持率を高めることも可能となり、高強度のガス拡散層基材1を得ることができる。更に、ポリアクリロニトリル系炭素繊維とピッチ系炭素繊維を併用すると、ガス拡散層基材1の弾力性、強度及び柔軟性を確保できる。そして、炭素繊維11として平均径や平均長が異なる2種以上の繊維を用いた際には、ガス拡散層基材1の表面平滑性や、導電性や、強度等の特性の調節、制御が容易となり、黒鉛の脱落も少ないものとなる。
【0051】
炭素繊維11は、短繊維でも長繊維でも良いが、分散性、抄紙のしやすさ(収率)等を考慮すると、短繊維が好ましい。繊維長が短いと、ガス拡散層基材1においてガス透過路や水排出路となる通路(空孔、気孔、細孔)の長さが過剰に長くなることを抑えることができ、また通路の多様な方向性を獲得できる。その結果、ガスや水分を逃がし易い方向に透過させるのに有利となり、ガスや水分の透過性を高めることが可能となる。また、水分の適度な保持性にも有利である。短繊維は、連続した長繊維を切断することにより得た短繊維を用いても良いし、水等の分散媒中で連続した長繊維を攪拌機(例えば、ミキサー、スラッシュファイナー)等によって攪拌して短繊維化することにより得てもよい。
【0052】
炭素繊維11の単繊維の長さ、径としては適宜選択することができるが、分散性、形成するガス拡散層基材1の強度等を考慮すると、例えば、平均繊維径(太さ)が1〜500μm、好ましくは、2〜60μm、より好ましくは、3〜30μmの範囲内である。繊維径が大きすぎると得られるガス拡散層基材1の厚み方向の導電性が低下し、一方で、小さすぎると得られるガス拡散層基材1の強度が低下する恐れがある。更に好ましくは、平均繊維径が4〜20μmの範囲内、より好ましくは5〜15μmの範囲内であれば、形成するガス拡散層基材1においてガスや水分の高い透過性を確保できる。特に、生産コスト、分散性の観点からすると3〜9μmの範囲内が好ましく、ガス拡散層基材1の平滑性や導電性の観点を含めると4〜8μmの範囲内がより好ましい。なお、扁平な断面の炭素繊維の場合は、長径と短径の平均を繊維径とする。
【0053】
また、炭素繊維11の単繊維の平均繊維長は、例えば、0.2〜50mm、好ましくは0.5〜30mm、更に好ましくは3〜25mm、より好ましくは5〜15mmの範囲内である。繊維長が長すぎると、絡み合い性が強くなり均一性が低下する一方で、短すぎると、強度が低下する。抄紙時の捕獲性や、後述する炭化物による結着性等の観点からすると、更に好ましくは2〜12mm、より好ましくは3〜9mmの範囲内である。また、繊維長が3〜20mmの範囲内、より好ましくは4〜10mmの範囲内であれば、抄紙時の分散性が良く、炭素繊維11が網やその上の抄紙物をすり抜け難い。よって、抄紙性が良く、炭素繊維11の配合量の調整、制御を容易とする。また、シート状とする抄紙体の目付むらのばらつきを少なくし均質なものとするから、黒鉛の保持率も高くでき、得られるガス拡散層基材1の強度等を高くできる。なお、カールが大きいピッチ系炭素繊維の場合、その平均繊維長はカールを延ばしたときの長さに相当する。
【0054】
更に、本実施の形態では、炭素繊維11と共に有機繊維が抄紙される。有機繊維としては、後の乾燥工程(ステップS30)、プレス工程(ステップS40)、または、炭化・黒鉛化工程(ステップS50)における加熱処理で焼失される繊維状のものであればよい。例えば、木材、セルロース、綿、竹、草、葦、麻等のパルプといった植物性繊維や、羊毛等の動物性繊維や、ポリ乳酸、ポリビニルアルコール(PVA)、ポリエチレン、ポリオレフィン、ポリプロピレン、ポリウレタン、ポリエステル、ナイロン、ビニロン、アクリル、アラミド、ポリアセタール、ノボロイド等の樹脂繊維等が使用できる。このような有機繊維を炭素繊維11と共に抄紙することで、有機繊維の特性によって、抄紙時に炭素繊維11を捕獲し、炭素繊維11の絡み合い性を高め、炭素繊維11同士を結び付けるバインダとして機能する。また、このように有機繊維によって炭素繊維11の抄紙性を高めることで、球状黒鉛31及び/または人造黒鉛32の保持性も増大する。よって、形成するガス拡散層基材1の強度、導電性を高めることができる。更に、このような有機繊維は後の加熱処理で焼失されるものであるから、その焼失跡が空孔となることで、ガス透過性の向上が可能である。こうした有機繊維として、ここでは、パルプ繊維21及び樹脂繊維22を用いている。
【0055】
パルプ繊維21としては、例えば、主に木材を原料としたパルプが用いられる。このパルプ繊維21は、セルロースを主成分とした軟質繊維であり、微細な起毛状部分を有するため抄紙時に炭素繊維11を捕獲しやすく、炭素繊維11の絡み合い性を高めることができる。抄紙後は、後述する乾燥工程(ステップS30)、プレス工程(ステップS40)、または、炭化・黒鉛化工程(ステップS50)における所定の加熱によって分解されて焼失(消失)するが、そのパルプ跡がガス拡散層基材1においてガスや水の通路となる空孔(気孔、細孔)となる。このとき、パルプ繊維21は繊維状であるため、基本的には、そのパルプ跡もパルプ繊維21の形態に対応する形状となり、ガス透過性が良好な連続孔が形成される。パルプ繊維21の種類によっては、その一部が、後述する炭化・黒鉛化工程(ステップS50)における非酸化性雰囲気下の加熱処理で炭化・黒鉛化され炭化物(黒鉛化物を含む)となることもある。
【0056】
特に、このような植物性繊維のパルプ繊維21は、熱分解性が高く、電池性能を阻害する残渣、不純物が生じ難いものである。また、炭素繊維11との親和性も高く、更に吸水性も良く、炭素繊維11の捕獲性、絡み合い性、接触性に有利で、炭素繊維11が網や抄紙物をすり抜けるのを効果的に防止できる。よって、黒鉛の保持にも有利となる。加えて、安価であり取扱性もよい。
【0057】
更に、こうしたパルプ繊維21は、離解・叩解してフィブリル化したものが好ましい。フィブリル化によって炭素繊維11の絡み合い性、接触性を向上させ、抄紙体からなる集積体の強度や形状保持性をより高めることができる。
なお、フィブリル(fibril)化とは、繊維内部のフィブリルが摩擦作用で表面に現れて毛羽立ち、ささくれる現象をいう。また、「叩解」とは、『パルプスラリーを、リファイナー、ビーター等の回転する向かい合った凹凸の刃の間を通過させることにより、パルプに連続的な圧縮・開放を繰り返して作用させて、パルプ繊維に膨潤、フィブリル化、切断を起こさせること』(社団法人日本化学会・編『化学便覧 応用化学編(第6版)』250頁,平成15年1月30日,丸善株式会社発行)である。叩解方法は特に限定されず、パルパー、加圧水流の噴射(ウオータージェットパンチング)等によりフィブリル化できる。予め各原料を解繊機等で解繊してもよいし、同時に離解・叩解してもよい。勿論、パルプ繊維21に限らず、その他の有機繊維であっても、必要に応じ、フィブリル化したものを使用してもよい。
【0058】
また、樹脂繊維22としては、熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよく、具体的には、ポリ乳酸、ポリビニルアルコール(PVA)、ポリエチレン、ポリオレフィン、ポリプロピレン、ポリウレタン、ポリエステル、ナイロン、ビニロン、アクリル、アラミド、ポリアセタール、レーヨン、ノボロイド等からなる繊維が用いられる。これらの1種を単独で用いても良いし、2種以上を用いてもよい。なお、疎水性または親水性は問われないが、湿式抄紙する場合には、抄紙用液(分散媒)に溶解し難いものが選択される。ポリ乳酸等の生分解性樹脂繊維であってもよい。
樹脂繊維22も、抄紙後は、その有機成分が後述する乾燥工程(ステップS30)、プレス工程(ステップS40)、または、炭化・黒鉛化工程(ステップS50)における所定の加熱によって分解されて焼失(消失)する。そして、その焼失跡がガス拡散層基材1においてガスや水の通路となる空孔(気孔、細孔)となる。このとき、樹脂繊維22も繊維状であるから、基本的には、その焼失跡も樹脂繊維22の形態に対応する形状となり、ガス透過性が良好な連続孔が形成される。樹脂繊維22の種類によっては、その一部が、後述する炭化・黒鉛化工程(ステップS50)における非酸化性雰囲気下の加熱処理で炭化・黒鉛化され炭化物(黒鉛化物を含む)となることもある。
【0059】
特に、樹脂繊維22は、その強度特性(引張り強度を含む)等によって、抄紙体である集積体を補強して集積体の強度や耐引張力を高めることができる。よって、例えば、ロール状の巻き取り、ロール搬送において、集積体のシートに引張り力が作用したときでも、シートの破れや損傷が効果的に防止される。また、樹脂繊維22は、その長さが長いから、焼失させてガス透過性を高めるのにも有効である。
【0060】
なお、このような樹脂繊維22は、繊維長が短すぎると、引張り強度等の強度が低下し、また、炭素繊維11の捕獲性、絡み合い性を低下させるから、球状黒鉛31及び/または人造黒鉛32の保持性を低下させる恐れがある。一方で、繊維長が長すぎても、特定の配向性(繊維長の方向)が高くなり、また、絡み合いが強くなって均一性も低下することから、形成するガス拡散層基材1の強度を低下させる恐れがある。よって、単繊維の平均繊維長は2mm〜100mmの範囲内が好ましく、より好ましくは、3mm〜20mm、更に好ましくは、5mm〜12mmの範囲内である。
また、樹脂繊維22の繊維径が大きすぎると、厚みが均一にならず燃料電池に組み込んだ際の接合性が低下し、一方で繊維径が小さすぎると、強度が低下する恐れがある。よって、平均繊維径は0.5〜30μmの範囲内が好ましく、より好ましくは、2μm〜25μm、更に好ましくは、3μm〜20μmの範囲内である。
そして、樹脂繊維22のアスペクト比(繊維長/繊維径)が大きいと、繊維長が長くなることで、シート状の集積体の耐引張り性が高くなり、樹脂繊維22のアスペクト比が小さいと、耐引張り性が低下するため、樹脂繊維22のアスペクト比としては、例えば、10〜10000であり、好ましくは、100〜5000、より好ましくは、300〜4000、更に好ましくは、700〜3000の範囲内である。
【0061】
更に、本実施の形態では、これら炭素繊維11、パルプ繊維21、及び樹脂繊維22と共に球状黒鉛31及び/または人造黒鉛32が抄紙される。
このとき、球状黒鉛31のみを単独で用いても良いし、人造黒鉛32のみを単独で用いても良いし、球状黒鉛31と人造黒鉛32を併用してもよい。
球状黒鉛31、人造黒鉛32としては、例えば、伊藤黒鉛株式会社、日本黒鉛工業株式会社、富士黒鉛工業株式会社、株式会社レイホー製作所、東日本カーボン株式会社等の市販の製品が使用される。
【0062】
ここで、球状黒鉛31、人造黒鉛32は、好ましくは、粒径が中位径で40μm以上、より好ましくは、50μm以上のものである。また、その上限値は、好ましくは、120μm以下、より好ましくは、100μm以下のものである。本発明者らの実験研究によれば、粒径が小さすぎるものでは、目的とする導電性の向上効果、及び、加圧による厚みの低下抑制の効果を得ることができなかった。これは、粒径が小さいと、ガス拡散層基材1となる集積体の厚み方向で、球状黒鉛31や人造黒鉛32が炭素繊維11間を二次元、三次元的に繋ぐパスを形成できないためと推測される。即ち、粒径が小さいと、ガス拡散層基材1となる集積体の厚み方向で、炭素繊維11間を球状黒鉛31や人造黒鉛32によって繋ぐ導電パスが形成されないから、電気抵抗を低減することができないものと思われる。また、粒径が小さいと、集積体の厚み方向で、炭素繊維11間を球状黒鉛31や人造黒鉛32によって繋ぐ強固なパスが形成されず、球状黒鉛31や人造黒鉛32を炭素繊維11間の支点として機能させることができないため、ガス拡散層基材1となる集積体において加圧による炭素繊維11の破壊を阻止できる強度及び弾力性を持たせることができないものと思われる。一方、粒径が大きいと、抄紙の時点で黒鉛を定着させることができず、黒鉛による導電性の向上効果、及び、加圧による厚みの低下抑制の効果を得ることができない。
球状黒鉛31、人造黒鉛32の粒径が中位径で40μm〜120μmの範囲内、より好ましくは、中位径で50μm〜100μmの範囲内であれば、目的とする導電性の向上効果、及び、炭素繊維11等の破壊を防止し加圧による厚みの低下を少なくできる効果を確保できる。
【0063】
こうして、本実施の形態では、ステップS10の抄紙工程において、炭素繊維11と、パルプ繊維21と、樹脂繊維22と、球状黒鉛31及び/または人造黒鉛32とが一緒に抄紙され、炭素繊維11と、パルプ繊維21と、樹脂繊維22と、球状黒鉛31及び/または人造黒鉛32とからなる抄紙体である集積体が形成される。
【0064】
この抄紙工程(ステップS10)における抄紙の方法としては、炭素繊維11と、パルプ繊維21と、樹脂繊維22と、球状黒鉛31及び/または人造黒鉛32との原料を分散媒に分散させてから抄紙する湿式抄紙法や、空気中に、原料を分散させて降り積もらせる乾式抄紙法等が用いられるが、抄紙体である集積体の目付の制御性、均一性、強度、生産性等の観点からすると、好ましくは湿式抄紙法が採用される。
【0065】
湿式抄紙法では、原料を分散媒(抄紙媒体)に分散させて抄紙するが、このときの抄紙処理としては、公知の方法を採用できる。例えば、分散媒中に原料を分散させて作製した原料混合物(スラリー)を網で抄くことにより、網上に抄造する。即ち、原料を含んだ抄紙用の液状物を網状部材に接触させ、液分(分散媒)と固形分(炭素繊維11、パルプ繊維21、樹脂繊維22、球状黒鉛31及び/または人造黒鉛32)を網状部材によって分離し、固形分を網状部材に集積(集合)させる。具体的には、例えば、長網抄紙機、短網抄紙機、ワイヤーを有する円網抄紙機、傾斜抄紙機等を用いて抄紙することができる。長網抄紙機、円網抄紙機等の抄紙機を用いる場合には、金網による繊維の濾し取り、ロール間の絞り(脱水、搾水)、ドライヤーによる乾燥、シーズニング、及びキャレンダー加工等を経て集積体が取り出される。脱水、搾水時には、必要に応じ、減圧吸引を行うこともできる。また、各成分を含んだ混合スラリーを多数の吸引孔が設けられた吸引成形型に供し、その吸引成形型で液分を吸引することで、吸引成形型上に固形分を集積、堆積させてもよい。この場合、吸引圧によって抄紙体である集積体の密度、目付けを制御することが可能である。
【0066】
なお、湿式抄紙する際に用いる分散媒(抄紙媒体)としては、一般的には水が採用されるが、場合によっては、トルエン、キシレン、シクロヘキサン、アルコール等の有機溶媒でも良い。
また、上記原料混合物(スラリー)の調製方法は特に問わず、例えば、パルパー等の回転式の装置等を用いて抄紙成分を混合分散することも可能である。
そして、抄紙用液中の固形分(炭素繊維11、パルプ繊維21、樹脂繊維22、球状黒鉛31及び/または人造黒鉛32)の濃度は1〜50g/Lの範囲内であるのが好ましい。当該濃度範囲であれば、抄紙性もよく、更に、原料の分散性が良好で、原料成分の凝集が抑制される。これより、目付むらが抑えられて均質な抄紙体である集積体を得ることができる。
【0067】
ここで、これら炭素繊維11、パルプ繊維21、樹脂繊維22、球状黒鉛31及び/または人造黒鉛32の配合は、それらの種類やガス拡散層基材1の所望とする特性(強度、導電性、電気抵抗、熱伝導性、ガス拡散性、水分保持率、排水性等)を考慮して設定されるが、好ましくは、炭素繊維11を100質量部に対し、パルプ繊維21が15質量部〜60質量部の範囲内、樹脂繊維22が2質量部〜20質量部の範囲内、球状黒鉛31及び/または人造黒鉛32が、40質量部〜80質量部の範囲内である。
【0068】
また、抄紙する全体の固形分(炭素繊維11、パルプ繊維21、樹脂繊維22、球状黒鉛31及び/または人造黒鉛32の合計量)を100質量%としたとき、好ましくは、炭素繊維11の配合を50質量%〜85質量%、パルプ繊維21の配合を10質量%〜40質量%、樹脂繊維22の配合を2質量%〜30質量%、球状黒鉛31及び/または人造黒鉛32の配合を30質量%〜50質量%である。
【0069】
炭素繊維11が少なすぎると、強度が損なわれ、一方で、炭素繊維11が多すぎると、空隙が少なくなり、十分なガス拡散性を確保できなくなる。
また、パルプ繊維21が少なすぎると、炭素繊維11の絡み合い性が少なくなり、十分な強度が得られない。また、空隙が少なくなり、十分なガス拡散性も得られない。一方で、パルプ繊維21が多すぎると、空隙が多くなり、強度が損なわれる。
更に、樹脂繊維22が少なすぎると、ロール搬送等を伴う連続抄紙性が損なわれる。一方で、樹脂繊維22が多すぎると、空隙が多くなり、強度が損なわれる。
加えて、球状黒鉛31及び/または人造黒鉛32が少なすぎると、空隙率が高い場合、導電性が不十分となり、目的とする導電性の向上効果が得られない。また、加圧による厚みの低下抑制の実用的な効果を得ることができない。一方で、球状黒鉛31及び/または人造黒鉛32を多くしても、炭素繊維11間に定着できる量には限度がある。
【0070】
本発明者らの実験研究によれば、炭素繊維11を100質量部に対し、パルプ繊維21が15質量部〜60質量部の範囲内、樹脂繊維22が2質量部〜20質量部の範囲内、球状黒鉛31及び/または人造黒鉛32が、40質量部〜80質量部の範囲内であれば、空隙率が高くても、優れた導電性及び強度を確保でき、強度及び導電性とガス拡散性とを両立させることができる。また、加圧による厚み変化が極めて少ない実用的な効果を確保できる。更に、連続抄紙にも耐え得る十分な強度(引張り強度等)の確保が可能で、連続抄紙が容易に可能であり、生産性を高くでき、コストの低減化を図ることも可能である。
より好ましくは、炭素繊維11を100質量部に対し、パルプ繊維21が20質量部〜40質量部の範囲内、樹脂繊維22が3質量部〜7質量部の範囲内である。
更に好ましくは、パルプ繊維21及び樹脂繊維22の合計量が、炭素繊維11を100質量部に対し、20質量部〜80質量部の範囲内、より好ましくは、30質量部〜40質量部の範囲内である。
【0071】
また、抄紙する全体の固形分を100質量%としたとき、炭素繊維11の配合を50質量%〜85質量%、パルプ繊維21の配合を10質量%〜40質量%、樹脂繊維22の配合を2質量%〜30質量%、球状黒鉛31及び/または人造黒鉛32の配合を30質量%〜50質量%の範囲内であれば、空隙率が高くても、優れた導電性及び強度を確保でき、強度及び導電性とガス拡散性とを両立させることができる。また、加圧による厚み変化が極めて少ない実用的な効果を確保できる。更に、連続抄紙にも耐え得る十分な強度(引張り強度等)の確保が可能で、連続抄紙が容易に可能であり、生産性を高くでき、コストの低減化を図ることも可能である。
より好ましくは、抄紙する全体の固形分を100質量%としたとき、炭素繊維11の配合を55質量%〜80質量%、パルプ繊維21の配合を15質量%〜35質量%、樹脂繊維22の配合を5質量%〜15質量%、球状黒鉛31及び/または人造黒鉛32の配合を35質量%〜45質量%の範囲内である。
更に好ましくは、パルプ繊維21及び樹脂繊維22の合計量が、抄紙する全体の固形分を100質量%としたとき、10質量%〜35質量%の範囲内、より好ましくは、15質量%〜30質量%の範囲内である。
【0072】
こうして、本実施の形態では、ステップS10の抄紙工程において、炭素繊維11と、パルプ繊維21と、樹脂繊維22と、球状黒鉛31及び/または人造黒鉛32とが一緒に抄紙され、炭素繊維11と、パルプ繊維21と、樹脂繊維22と、球状黒鉛31及び/または人造黒鉛32とからなる抄紙体である集積体が形成される。
詳しくは、ステップS10の抄紙工程により得られた抄紙体である集積体は炭素繊維11、パルプ繊維21及び樹脂繊維22が互いに絡み合った集積体であり、更に、それらの相互間に所定粒径の球状黒鉛31及び/または人造黒鉛32が保持、担持されているものである。
【0073】
そして、本実施の形態では、抄紙により集積体を形成するものであるから、ステップS10の抄紙工程で得られた集積体は薄いシート状(紙状)のものである。このようなシート状のものは、表面積が大きく均質で取扱い易く、セパレータや触媒層との接合性も良いから、燃料電池用電極への使用に最適となる。また、燃料電池用電極の厚みの薄肉化にも対応できる。そして、シート状であるから、生産性も良い。なお、ステップS10の抄紙工程により得られたシート状の集積体の目付(秤量)は、例えば10〜200g/m
2、好ましくは、50〜100g/m
2の範囲内であり、平均厚みは、例えば20〜400μm、好ましくは、100μm〜300μm、より好ましくは、250μm〜300μmの範囲内とされる。
【0074】
特に、本実施の形態では、抄紙時に炭素繊維11と共に、パルプ繊維21及び樹脂繊維22の有機繊維を抄紙することによって、それら有機繊維により炭素繊維11の分散性を高めて再収束を防止すると共に、炭素繊維11の捕獲性、絡み合い性、抄紙性を高めて、抄紙化を容易とし抄紙率を向上させることができる。これより、集積体の強度を強くし、また、形状保持性を高めることができる。更に、炭素繊維11の捕獲性、抄紙性が良いから、炭素繊維11量の制御も容易となる。また、こうして有機繊維が炭素繊維11の絡み合い性を高め炭素繊維11同士を結び付けるバインダとして機能することから、所定粒径の球状黒鉛31及び/または人造黒鉛32が炭素繊維11間に保持、担持されやすくなる。故に、所定粒径の球状黒鉛31及び/または人造黒鉛32の炭素繊維11間への保持性が高く、抄紙後の炭素繊維11や黒鉛の脱落を防止できる。そして、炭素繊維11の脱落を防止できるから、炭素繊維11を増やして導電性を高めるのにも有利である。更に、抄紙後に炭素繊維11の配向が変化するのも抑制できる。加えて、炭素繊維11の絡み性の向上により、炭素繊維11の折損が起こり難くなることから、燃料電池を構成する高分子膜への炭素繊維11の突き刺さりによる発電性能の低下を防止できる。
【0075】
こうして、抄紙時に炭素繊維11、所定粒径の球状黒鉛31及び/または人造黒鉛32と共に、パルプ繊維21及び樹脂繊維22の有機繊維を抄紙してなる集積体は、均質で、その強度や形状保持性が高いものとなる。即ち、連続抄紙装置による連続抄紙にも耐え得る十分な強度が得られ、シート状の連続抄紙も容易に可能である。特に、樹脂繊維22によって耐引張り性も高いものとなる。したがって、複数のロール間を曲成しながらの搬送、巻き取りによって集積体に引張り力が作用したときでも集積体が損傷し難い。
【0076】
そして、本実施の形態では、炭素繊維11、パルプ繊維21及び樹脂繊維22と共に所定粒径の球状黒鉛31及び/または人造黒鉛32を抄紙したことにより、炭素繊維11、パルプ繊維21及び樹脂繊維22が互いに絡み合った相互間に所定粒径の球状黒鉛31及び/または人造黒鉛32を保持、担持させることができる。このように炭素繊維11、パルプ繊維21及び樹脂繊維22と共に、所定粒径の球状黒鉛31及び/または人造黒鉛32を抄紙してなる集積体では、その厚み方向で、炭素繊維11、パルプ繊維21及び樹脂繊維22が互いに絡み合った相互間に所定粒径の球状黒鉛31及び/または人造黒鉛32が保持、担持されることで、所定粒径の球状黒鉛31及び/または人造黒鉛32が炭素繊維11、パルプ繊維21及び樹脂繊維22が互いに絡み合った相互間を繋いで、支点として作用するから、強度が高められると共に、炭素繊維11の弾力性が引き出され、適度な弾力性や柔軟性を有する。よって、ハンドリング性が高く、抄紙処理で形成したシート状の集積体のロール搬送性も高いものである。つまり、ロール状に巻き取るロール搬送性が向上し、長尺状の巻き取り可能な集積体を形成できる。
【0077】
なお、所定粒径の球状黒鉛31及び/または人造黒鉛32によってシート状の集積体の適度な弾力性、柔軟性、強度を確保できるから、炭素繊維11の選択幅を増やすことも可能である。加えて、炭素繊維11、パルプ繊維21及び樹脂繊維22が互いに絡み合った相互間に所定粒径の球状黒鉛31及び/または人造黒鉛32が保持、担持されることで、集積体の強度が高められるから、炭素繊維11を増やして導電性を高めるのにも有利であり、更に、パルプ繊維21及び樹脂繊維22を増やしてガス拡散性を高めるのにも有利である。
また、抄紙は連続で行なう連続抄紙の方法とバッチ式で行なう方法があるが、目付の制御が容易で、生産性を高くできることから連続抄紙が好ましい。特に、本実施の形態では、上述したように、パルプ繊維21及び樹脂繊維22によって、炭素繊維11の絡み性を高めることで、連続抄紙に耐え得る十分な強度、耐引張り性の確保が可能であるから、シート状の連続抄紙も容易である。つまり、連続抄紙装置を用いての抄紙、複数のロール間を曲成しながらの搬送、巻き取りによって抄紙体である集積体が損傷することはなく、ロール状に巻き取れるロール搬送性が良くて長尺状に巻き取れる集積体を形成できる。
【0078】
ところで、本発明を実施する場合には、抄紙性や原料の結合性(強度)等を高めるために、必要に応じて、結合剤(バインダー、糊剤、紙力増強剤)、例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリアクリロニトリル、セルロース、ポリエチレンオキシド、ポリアクリルアミド、スチレン−ブタジエンゴム、澱粉、コーンスターチ等を使用することも可能である。このような結合剤は、抄紙時に上述の原料と共に混合して湿式抄紙させてもよいし、抄紙後に含浸させても良い。このような結合剤の使用により抄紙成分の結合性を高め、脱落を防止して形状保持性、ハンドリング性(取扱性)を高めることが可能である。
【0079】
しかし、本実施の形態では、有機繊維としてパルプ繊維21及び樹脂繊維22を用いることで、それらが炭素繊維11の結び付きを高める機能を有することから、実質的には結合剤は不要であり、結合剤を添加しなくても炭素繊維11、パルプ繊維21、樹脂繊維22、所定粒径の球状黒鉛31及び/または人造黒鉛32を抄紙してなる集積体は高い強度及び形状保持性を有する。
なお、その他、例えば、凝集剤、粘度調整剤、界面活性剤等を用いて集積体を形成することも可能である。
【0080】
また、本発明を実施する場合には、抄紙時に機械交絡法(ニードルパンチング法等)、高圧液体噴射法(ウォータージェットパンチング法等)、高圧気体噴射法(スチームジェットパンチング法等)等による交絡処理を行って、炭素繊維11等の繊維を3次元的に交絡させて集積体の強度、形状保持性、ハンドリング性、導電性等を高めることも可能である。更に、分散媒の脱水、搾水速度の調節等により繊維の配向度を制御する操作を行うことも可能である。
【0081】
次に、このようにして炭素繊維11、パルプ繊維21、樹脂繊維22、球状黒鉛31及び/または人造黒鉛32を共に抄造することにより得られた集積体に対し、樹脂含浸工程(ステップS20)にて、後の非酸化性雰囲気下における高温加熱焼成処理で炭素化・黒鉛化される炭素前駆体樹脂41を含浸する。
この樹脂含浸工程(ステップS20)で集積体に含浸させる炭素前駆体樹脂41としては、後述の炭化・黒鉛化工程(ステップS50)での非酸化性雰囲気下における高熱処理により炭化・黒鉛化して導電性の炭化物となる樹脂(炭素源となる樹脂)であればよく、例えば、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ユリア樹脂、不飽和ポリエステル樹脂、ピッチ等の熱硬化性樹脂等が使用される。これらの1種を単独で用いてもよいし2種以上であってもよいが、取扱性が良く、また、炭化率が高くて炭化後に導電性物質として残存しやすく、更に、炭素繊維11を結着する結着力が強いフェノール樹脂が好ましい。このようなフェノール樹脂は40%以上の残炭率を有するものである。
【0082】
そして、フェノール樹脂としては、フェノールの他、レゾール型フェノール樹脂、クレゾール型フェノール、キシレノール樹脂等が挙げられる。特に、アンモニア系触媒存在下においてフェノール類(フェノール、レゾルシン、クレゾール、キシロール等)とアルデヒド類(ホルムアルデヒド、パラホルムアルデヒド、フルフラール等)の反応によって得られるレゾール型フェノール樹脂が燃料電池の耐久性の低下の原因となる金属分を含まない点で好ましい。
【0083】
なお、後の工程で炭化・黒鉛化させるフェノール樹脂等の炭素前駆体樹脂41の配合量は、ガス拡散層基材1の所望とする特性等に応じて設定されるが、形成されるガス拡散層基材1において樹脂炭化物の比率が10〜90質量%、好ましくは15〜80質量%の範囲内であれば、ガス拡散層基材1の導電性及び強度が十分に高いものとなる。より好ましくは15〜40質量%、更に好ましくは20〜40質量%の範囲内であれば、ガス拡散層基材1の水分やガスの透過性も高いものとなる。また、炭化の際の熱収縮による変形も少なく、形状保持性も高くなる。例えば、炭素繊維11の配合量100質量部に対し、抄紙工程で得られた集積体に含浸させる炭素前駆体樹脂41としてのフェノール樹脂の樹脂量(固形分量)が20〜150質量部、より好ましくは30〜80質量部の範囲内とすることにより、上述の樹脂炭化物の比率に調整できる。
【0084】
このようなフェノール樹脂等の炭素前駆体樹脂41を、炭素繊維11、パルプ繊維21、樹脂繊維22、球状黒鉛31及び/または人造黒鉛32からなる集積体に含浸する方法としては、樹脂溶液(樹脂分散液)中に集積体を浸漬する方法や、集積体に樹脂溶液(樹脂分散液)を塗布する方法(キスコート法、ディップ法、スプレー法、カーテンコート法、ローラ接触法等)や、樹脂フィルムを集積体に重ねて転写する方法等が挙げられる。このような含浸法は炭素前駆体樹脂41の性質、添加量等によって適宜選択されるが、生産性や均一性の観点から、炭素前駆体樹脂41の溶液(分散液)中に集積体を浸漬することによって集積体に炭素前駆体樹脂41を含浸させるのが好ましい。なお、絞り出し法(dip−nip方法等)により、絞り装置を用いて炭素前駆体樹脂41の溶液(分散液)が集積体全体に均一に含浸されるようにしてもよい。このとき絞り装置のロール間隔を変えることで含浸する炭素前駆体樹脂41量の調整、制御を行うことも可能である。
【0085】
こうした炭素前駆体樹脂41の含浸では、通常、炭素前駆体樹脂41がアルコール類(エタノール等)、ケトン類(アセトン等)、トルエン等の溶媒に溶解した樹脂溶液や、水等の分散媒に分散した樹脂分散液等が用いられるが、例えば、フェノール樹脂ではメタノール、エタノール、ブチルアルコール等の有機溶媒(溶剤)に溶解、分散した溶媒系の樹脂や水に溶解、分散した水系樹脂(水性樹脂、水溶性樹脂)が使用される。なお、炭素前駆体樹脂41の含浸処理はバッチ式であっても連続式であってもよい。特に、本実施の形態では、樹脂繊維22を配合していることで、含浸によって湿潤状態としても、引張り強度が確保され、ロールで搬送されたり、巻き取られるときに引張り力が作用しても湿潤状態の集積体が損傷し難いものである。
【0086】
なお、本発明を実施する場合には、このステップS20の樹脂含浸工程で、必要に応じ、炭素繊維11等の脱落防止や、強度向上等のために、例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリエチレンオキシド、ポリアクリルアミド等の結合剤(糊剤、バインダ)を炭素前駆体樹脂41と共に集積体に含浸させることも可能である。しかし、上述したように、有機繊維としてパルプ繊維21及び樹脂繊維22を用いることで、それらが炭素繊維11の結び付きを高める機能を有することから、実質的には結合剤は不要であり、結合剤を添加しなくても集積体は高い強度及び形状保持性を有する。
【0087】
続いて、こうして炭素前駆体樹脂41が含浸された集積体は、乾燥工程(ステップS30)にて乾燥させる。これにより、集積体に含まれていた液分、即ち、炭素前駆体樹脂41の樹脂液に含まれていた溶媒分、水分を蒸発させる。
この乾燥工程(ステップS30)では、例えば、100℃〜300℃の乾燥温度、好ましくは、100〜150℃の乾燥温度によって、炭素前駆体樹脂41が含浸された集積体を乾燥させ、その集積体に含浸されていた溶媒分、水分を蒸発させる。このときの乾燥温度は、炭素前駆体樹脂41の樹脂液に含まれていた溶媒分、水分を蒸発させることができる温度であればよいが、乾燥温度によっては、フェノール樹脂等の炭素前駆体樹脂41や樹脂繊維22の樹脂分を硬化させることもできる。また、このときの乾燥温度によっては、有機繊維としてのパルプ繊維21や樹脂繊維22の一部或いは全体が焼失される。
【0088】
特に、後の炭化・黒鉛化工程(ステップS50)における非酸化性雰囲気での高温加熱処理の前に、この乾燥工程(ステップS30)における乾燥温度によって、フェノール樹脂等の熱硬化性の炭素前駆体樹脂41を硬化させることで、炭素前駆体樹脂41の炭化時の気化を抑制して定着を図ることができる。また、炭化時の気化が抑制されることで、炭素繊維11と炭素前駆体樹脂41の接触性が高められ、更に、変形が防止される。故に、炭化物による結着性を高めることが可能であり、形成するガス拡散層基材1の強度を高めることができる。また、変形が防止され平滑性が高まるから、燃料電池に組み込んだ際の周囲層との接合性を高めることが可能となる。
【0089】
ここで、炭素前駆体樹脂41がフェノール樹脂であり、フェノール樹脂液の溶媒、分散媒が水である場合、つまり、水系フェノール樹脂を使用した場合、例えば、大気下で乾燥させるときの乾燥温度が100℃〜150℃の範囲内であれば、短時間(例えば、3〜10分)で十分に水分が除去される。また、大気下で乾燥温度が100℃〜150℃の範囲内であると、フェノール樹脂の硬化を進行させることも可能である。そして、当該温度範囲内であれば、炭素繊維11の劣化による強度の低下等を招く恐れもない。
【0090】
しかし、本発明を実施する場合、ステップS30の乾燥工程では、炭素前駆体樹脂41を硬化させる温度設計としなくとも、集積体に含浸させた炭素前駆体樹脂41の溶媒、分散媒、水分が除去できればよい。例えば、乾燥温度としては100℃以上、好ましくは130℃以上であり、その上限は400℃以下、好ましくは300℃以下である。なお、乾燥時間が長すぎると連続的に乾燥させる場合には大規模な乾燥炉が必要でコスト高となり、生産性も低下することから、乾燥時間は、例えば1分〜60分間、より好ましくは、1分〜30分間とされる。
【0091】
このときの乾燥方法としては、例えば、熱風を循環・供給する温風乾燥機、高温ヒーターを用いた雰囲気炉、赤外線ヒーターを用いたIR炉、マイクロ波を用いたマイクロ波炉等の設備を用いた非接触方式や、加熱されたロールや熱板に接触させて乾燥させる接触方式等がある。特に、温風乾燥機等で温風を吹き付ける方法等の非接触方式では、操作性やメンテナンス性が容易で、熱源への接触による集積体成分の脱落等を防止できる。なお、乾燥処理はバッチ式であっても連続式であってもよい。特に、多筒式ドライヤー,ヤンキー式ドライヤー等のロール式乾燥機である連続式乾燥機を用いると、加熱・加圧加工を連続的に一度に行なうことができるから、次のプレス工程(ステップS40)を同時に行うことができ、連続生産が容易で、生産性が高いものとなる。
【0092】
即ち、本発明を実施する場合、必要に応じて、乾燥工程(ステップS30)後に、ステップS30の乾燥工程で乾燥された集積体に対しその厚み方向にプレス加圧するプレス工程(ステップS40)を実施することもできる。
このときのプレス加圧する方法としては、例えば、集積体の厚み方向の両面に平板(剛板)を当てて厚み方向に熱プレス(ホットプレス)する方法、連続ロールプレス装置や連続ベルトプレス装置を用いる方法等がある。
【0093】
このようなプレス加工(加熱加圧成形)を行うことで、最終的なガス拡散層基材1の厚みが、例えば、100μm〜300μmの範囲内となるよう、集積体の厚みを調整できる。また、集積体の表面を平滑にして厚みの均等化を図ることができ、燃料電池に組み込む際に周辺層との接触性を高めて接触抵抗を低減することも可能となる。加えて、集積体の表面に繊維ほつれ等の突起物が存在していても、プレスにより抑制することができるから、燃料電池に組み込んだ際に電解質膜への突き刺さりを防止できる。また、プレス加圧によって、集積体を構成する炭素繊維11同士の接触度が高まるため、黒鉛の保持性を高め、形成されるガス拡散層基材1の導電性、強度、弾力性等の向上を可能とする。更に、プレス加圧により炭素繊維11の配向性や空孔容積を調整できるから、目的とするガス透過性に制御できる。特に、炭素繊維11間に所定粒径の球状黒鉛31及び/または人造黒鉛32を保持、担持しているから、それが支点として機能することで集積体は所定の強度及び弾力性を有し、プレス工程の際でも、カーボン繊維11等の損傷、折損が抑制される。よって、強度や導電性の向上にも有利であり、また、所望とするガス透気度等の特性の制御を容易とする。
なお、このときのプレス加圧における温度や成形圧力は、炭素繊維11の劣化、破壊、脱落等や、ガス透過性を考慮して設定され、冷間プレス加圧、ホットプレス加圧のいずれを採用しても良い。例えば、ホットプレス加圧の場合、加熱温度、ワークの温度が100〜450℃、好ましくは、100〜300℃の範囲内とされる。成形圧力は、最終的なガス拡散層基材1の厚みが、例えば、100μm〜300μmの範囲内となるように、最終厚みを考慮して設定され、例えば、0.01〜10MPaの範囲内とされる。このときの加熱条件によっても、フェノール樹脂等の炭素前駆体樹脂41や樹脂繊維22の樹脂分を硬化させることもできる。また、有機繊維としてのパルプ繊維21や樹脂繊維22の一部或いは全体が焼失されることもある。
【0094】
本発明を実施する場合、このようなプレス工程(ステップS40)は、乾燥工程(ステップ30)の後ではなく、炭化・黒鉛化工程(ステップS50)の後に実施することも可能である。また、このようなプレス工程(ステップS40)は、必要に応じて、乾燥工程(ステップS30)と炭化・黒鉛化工程(ステップS50)の間と、更に、炭化・黒鉛化工程(ステップS50)後との2回実施してもよい。
特に、炭化・黒鉛化工程(ステップS50)後には、互いに絡み合った炭素繊維11と、炭素繊維11を結着する炭化物と、炭素繊維11間に保持された所定粒径の球状黒鉛31及び/または人造黒鉛32とからなる集積体が形成され、後述するように、厚み方向で炭素繊維11間を所定粒径の球状黒鉛31及び/または人造黒鉛32が支持している構成及び炭素繊維11を炭化物で結着している構成によって、高い強度及び弾力性を獲得するから、炭化・黒鉛化工程(ステップS50)後のプレス工程(ステップ40)の実施によって、カーボン繊維11及び炭化物の損傷、折損を生じさせることなく、即ち、集積体の厚みを大きく減少させることなく、平滑性や強度の向上、透気度の調節を可能とする。
【0095】
続いて、こうして乾燥工程(ステップS30)にて乾燥され、また、必要に応じて、乾燥工程(ステップS30)後にプレス工程(ステップS40)にてプレス加圧された集積体は、炭化・黒鉛化工程(ステップS50)にて、非酸化性雰囲気下で高温焼成処理される。
この炭化・黒鉛化工程(ステップS50)では、集積体が不活性処理(不活性ガス)等の非酸化性雰囲気下にて、また、炉の温度が、例えば、1000〜3000℃の範囲内の温度下で、1分間〜1時間の加熱焼成処理が行われる。このときの加熱焼成処理時の最高温度が低すぎると、強度や導電性向上の発現が少なく、加熱焼成処理時の最高温度が高すぎると、炭素繊維11の繊維強度や黒鉛の強度の劣化が起こり、微粉末等が発生する恐れがある。そこで、好ましくは、炉の温度が1200〜2500℃、更に好ましくは、1600〜2400℃の範囲内の温度下で加熱焼成される。これにより、形成されるガス拡散層基材1の不純物を少なくして、強度を損なうことなく、導電性等の電気的特性(比抵抗等)や耐食性を向上させることが可能である。このとき最高温度での加熱処理時間は0.5〜20分が好ましい。なお、不活性処理(不活性ガス)雰囲気下での加熱処理は、例えば、300〜800℃の加熱処理(前処理;仮焼成、前炭素化)と、例えば、1000〜3000℃の加熱処理(本処理;後炭素化、黒鉛化)といった多段階で行うことも可能である。炭素繊維11や炭素前駆体樹脂41の種類、ガス拡散層基材1の所望とする特性(導電性等)等に応じて、加熱焼成条件が設定され、炭素前駆体樹脂41等の炭化、黒鉛化の区別は問わない。
【0096】
なお、不活性雰囲気は加熱炉内に窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスを流通させることによって得ることができる。場合によっては、真空下、二酸化炭素ガス等の雰囲気下での加熱焼成処理とすることも可能である。
また、炭化・黒鉛化処理は、バッチ式の炭化炉や連続炭化炉を使用でき、連続して加熱焼成処理(集積体を連続的に走行)を行ってもよい。連続式であると高い生産性及び低コストでガス拡散層基材1が得られる。更に、長尺なガス拡散層基材1が得られると、燃料電池を作製する際、その後の工程(例えば、マイクロポーラス層の形成、触媒層との接合、膜−電極接合体の製造)でも連続的な処理が可能となり、高い生産性で燃料電池を製造することができ、コストの低減化を図ることができる。
【0097】
このような窒素雰囲気下、アルゴン雰囲気下等の非酸化性雰囲気での高温の加熱焼成により、集積体に含まれていたフェノール樹脂等の炭素前駆体樹脂41が炭化・黒鉛化され樹脂炭化物となり、バインダ機能を発揮して炭素繊維11や黒鉛を結着し、また、炭素繊維11間に存在する所定粒径の球状黒鉛31及び/または人造黒鉛32の保持性を高めることができる。更に、このときの加熱処理によってパルプ繊維21や樹脂繊維22が焼失され、その焼失跡が水分やガスの透過を許容する空孔となる。上述したように、パルプ繊維21や樹脂繊維22が繊維状であるから、焼失跡である空孔は基本的にはパルプ繊維21や樹脂繊維22の担持形態に対応する形状となり、水分やガスの透過性が良好な連続孔(ガス拡散通路、水流路)となる。更に、パルプ繊維21や樹脂繊維22の種類によっては、その一部が炭化・黒鉛化され、炭化物(黒鉛化物を含む)となって残存し、炭素繊維11間を結着するものとなる。特に、本実施の形態では、このように非酸化性雰囲気での加熱処理工程を設けていることで、有機繊維が熱分解性の低いものでも、その残滓が炭化・黒鉛化され、電気抵抗値が低い炭化物にすることができる。なお、所定粒径の球状黒鉛31や人造黒鉛32は熱膨張係数も小さく、耐熱性もあるから、このときの高温の加熱焼成によって、昇華したり集積体から脱落したりすることなく、樹脂炭化物によって炭素繊維11間に強固に保持される。
【0098】
こうして、本実施の形態においては、炭素繊維11と、有機繊維としてのパルプ繊維21及び樹脂繊維22と、所定粒径の球状黒鉛31及び/または人造黒鉛32とを共に抄紙してシート状の抄紙体からなる集積体を形成する抄紙工程(ステップS10)を実施し、その次に、ステップS10の抄紙工程で得られたシート状の集積体にフェノール樹脂等の炭素前駆体樹脂41を含浸させる樹脂含浸工程(ステップS20)を実施し、その後、集積体の乾燥により所定の温度で樹脂の含浸に用いた溶媒分(分散媒、水分)を除去する乾燥工程(ステップS30)を実施し、必要に応じてプレス工程(ステップS40)で集積体をプレス加圧し、そして、非酸化性雰囲気下で高温の加熱焼成をする炭化・黒鉛化工程(ステップS50)を実施することによりガス拡散層基材1が製造される。
【0099】
このような製造方法によって製造された本実施の形態のガス拡散層基材1は、集積され絡み合った炭素繊維11と、炭素前駆体樹脂41が炭化・黒鉛化されてなり、炭素繊維11間を結着する樹脂炭化物と、炭素繊維11間に保持、担持された所定粒径の球状黒鉛31及び/または人造黒鉛32とからなる多孔質の集積体である。
【0100】
このガス拡散層基材1によれば、有機繊維としてのパルプ繊維21及び樹脂繊維22の焼失跡が空孔となることで、所定の高い空隙率や大きな空孔容積(空孔径)が確保され、水分やガスの高い透過性が得られる。
【0101】
また、このガス拡散層基材1によれば、電気抵抗値が低く、高い導電性が得られる。これは、電気伝導率の高い炭化物によって炭素繊維11が結着されていると共に、集積体の厚み方向で炭素繊維11間に所定粒径の球状黒鉛及び/または人造黒鉛による通電パスが形成されているためである。特に、本実施の形態のガス拡散層基材1の製造方法によれば、炭素繊維11、パルプ繊維21及び樹脂繊維22と共に、所定粒径の球状黒鉛31及び/または人造黒鉛32を抄紙したことによって、厚み方向で炭素繊維11間に所定粒径の球状黒鉛及び/または人造黒鉛が介在する形態で、炭素繊維11が集積される。つまり、厚み方向で炭素繊維11間に所定粒径の球状黒鉛31及び/または人造黒鉛32が保持、挟持される形態となる。このとき、球状黒鉛31及び/または人造黒鉛32は、電気伝導率の高いものであり、また、所定の大きな粒径の球状またはブロック状であるから、厚み方向で炭素繊維11間を繋いで炭素繊維11の接合点を高めることができる。つまり、集積体の厚み方向で炭素繊維11間に所定粒径の球状黒鉛31及び/または人造黒鉛32による通電パスが形成され、炭素繊維11が高い導電性を有する球状黒鉛21及び/または人造黒鉛32によって2次元的、3次元的に繋げられ、導電の接触点、接触面積が増大されるから、電気抵抗値が低くなり、高い導電性が得られる。特に、球状黒鉛31や人造黒鉛32は等方性に近い特性でもあり、導電性の向上に有利である。
【0102】
こうして、本実施の形態1のガス拡散層基材1においては、厚み方向で炭素繊維11間に所定粒径の球状黒鉛31及び/または人造黒鉛32による導電パスが形成されていることで厚み方向で高い導電性が得られるため、有機繊維としてのパルプ繊維21及び樹脂繊維22を多く増やして炭素繊維11からなる集積体の空隙率を高めても、導電性を損なうことなくガス拡散性を高めることができ、高い導電性とガス拡散性が得られる。即ち、ガス拡散性及び導電性の両立を可能とする。
【0103】
更に、このガス拡散層基材1によれば、圧力を加えた時に寸法が変化するも、圧力の開放後には厚みが回復し、加圧前後で厚み変化が少ないものとなり、所定圧力の加圧によっても、炭素繊維11や炭化物が損傷、破損、破壊され難い。これは、炭化物によって炭素繊維11が結着されていると共に、集積体の厚み方向で炭素繊維11間に所定粒径の球状黒鉛31及び/または人造黒鉛32が挟まれていて所定粒径の球状黒鉛31及び/または人造黒鉛32による強固なパスが形成されているためである。特に、球状黒鉛及び/または人造黒鉛は、所定の大きな粒径の球状またはブロック状であるから、炭素繊維11を2次元的、3次元的に繋ぐことができると共に、その強度によってそれが厚み方向の支柱となって炭素繊維11や炭素繊維11間を結着する炭化物を支持する構成となっている。つまり、炭素繊維11間に保持、担持されている所定粒径の球状黒鉛31及び/または人造黒鉛32が支点として機能する。そして、この所定粒径の球造黒鉛32が支点として機能することで、炭素繊維11の弾力性が引き出され、外力を吸収できる構造である。これより、集積体が厚み方向に加圧されときでも、炭素繊維11が折れ難く、炭素繊維11や炭化物の損傷、破損、破壊が防止される。加えて、加圧された際には寸法変化が起こるも、その圧力が解放されると、集積体は元の厚みに回復し、加圧前後で厚み変化の少ないものとなる。即ち、本実施の形態のガス拡散層基材1は、適度な強度及び弾力性(クッション性)を有するものである。更に、焼成、炭化・黒鉛化を行っているも適度な可とう性、柔軟性を有する。
【0104】
特に、このような所定粒径の球状黒鉛31及び/または人造黒鉛32による炭素繊維11や炭化物の損傷、破損、破壊の防止は、炭素繊維11間を樹脂等で強固に固めて剛性を高めることによるものではなく、集積体の厚み方向で炭素繊維11間に大きな球状黒鉛31及び/または人造黒鉛32を保持することによって、炭素繊維11間に強固なパスが形成されて所定の強度及び弾力性が高められたことによるものである。そして、このように炭素繊維11、パルプ繊維21及び樹脂繊維22と共に、所定粒径の球状黒鉛31及び/または人造黒鉛32を抄紙したことによって、厚み方向で炭素繊維11間に所定粒径の球状黒鉛及び/または人造黒鉛が保持、担持され、それが支点として機能することで、強度が確保されると共に、炭素繊維11の弾力性が良好に引き出されて弾力性が確保されるから、加圧の際に寸法変化が起こるも、圧力が解放された際には、集積体は元の厚みに回復し、加圧前後で厚みの変化が少ないものとなる。こうして、本実施の形態のガス拡散層基材1では、所定の強度と共に所定の弾力性を有するから、後述するように、燃料電池に組み込んだ際でも周辺の層に追従させることでき、燃料電池の性能維持の向上を可能とする。更に、加圧したときでも炭素繊維11の折損が起こり難くなることから、燃料電池に組み込んだ際に、燃料電池を形成する高分子膜への炭素繊維11の突き刺さりによる発電性能の低下を防止できる。
【0105】
また、本実施の形態のガス拡散層基材1によれば、このように厚み方向で炭素繊維11間に所定粒径の球状黒鉛及び/または人造黒鉛が保持、担持されたことで、加圧したときでも、炭素繊維11や炭素繊維11を結着している炭化物の損傷、破損、破壊が抑制されるから、加圧時の繊維等の損傷による導電性の低下も抑制され、高い導電性が発揮される。
【0106】
特に、本実施の形態1のガス拡散層基材1では、ステップS10の抄紙工程において、炭素繊維11と球状黒鉛31及び/または人造黒鉛32と共に、有機繊維としてのパルプ繊維21及び樹脂繊維22を抄紙したことで、パルプ繊維21及び樹脂繊維22によって、炭素繊維11の捕獲性(シートへの移行性)、絡み合い性、集積体の強度が高められ、集積した炭素繊維11の接触性、緻密性が高められていることでも、高い強度及び導電性が発揮される。また、パルプ繊維21及び樹脂繊維22によって、炭素繊維11の接触性が高められたことで、炭素繊維11間における所定粒径の球状黒鉛及び/または人造黒鉛の保持性、定着性も高められ、所定粒径の球状黒鉛及び/または人造黒鉛による厚み方向の導電性向上効果、更には、強度及び弾力性の向上効果が高められ、炭素繊維11や炭化物の破壊防止効果も高いものとなっている。
【0107】
そして、本実施の形態のガス拡散層基材1によれば、このように高い強度及び弾力性を有するから、ガス拡散電極の厚みの薄肉化を可能とし、低コスト化を可能とする。
【0108】
なお、本発明者らの実験研究によれば、ステップS10の抄紙工程で所定粒径の球状黒鉛31及び/または人造黒鉛32を添加することなく、例えば、ステップS20の炭素前駆体樹脂41の含浸工程において、炭素前駆体樹脂41の樹脂液に、所定粒径の球状黒鉛31及び/または人造黒鉛32を添加して、炭素繊維11の集積体に球状黒鉛31及び/または人造黒鉛32を含ませようようとしても、集積体に十分に定着させることができず、得られたガス拡散層基材は、所望とする高い導電性を確保できず、また、加圧による厚み変化も大きかった。これより、ステップS10の抄紙工程で炭素繊維11等と共に所定粒径の球状黒鉛31及び/または人造黒鉛32を抄紙することで、それら黒鉛を炭素繊維11間に多く保持、担持させ、十分な量の黒鉛を炭素繊維11に定着させることができるものである。
【0109】
そして、このようにして得られた本実施の形態1のガス拡散層基材1は、そのままガス拡散層用電極に適用することもできるが、必要に応じ、フッ素系樹脂等の含浸による撥水処理が施され、また、導電性を付与するためのカーボン粒子等の導電性材料及び撥水性を付与するためのポリテトラフルオロエチレン(以下、「PTFE」とも略する。)等の撥水性樹脂を主成分として含有するペーストを厚み方向の片面側に塗工して、マイクロポーラス層を形成したものがガス拡散層用電極に適用される。
【0110】
ここで、上述のようにして得られた燃料電池用のガス拡散層基材1が組み込まれる固体高分子形燃料電池(単セル)の構造について、
図2の概略構成図を参照しながら説明する。なお、図中、アノード側をA、カソード側をKとする。
【0111】
図2に示したように、燃料電池用のガス拡散層100(カソード側ガス拡散層100K,アノード側ガス拡散層100A)は、触媒層120(カソード側触媒層120K,アノード側触媒層120A)と接合して、一体となって電極130(カソード電極130K,アノード電極130A)を構成し、特定イオンを選択的に透過する高分子電解質膜160(単セルの芯)の両面に触媒層120と共に配設されて、膜/電極接合体(MEGA)150を構成する。
そして、この膜/電極接合体150は、カソード側ガス拡散層100Kの外側において酸化剤となる酸化ガスを供給する酸化ガス流路141Kを設けたカソード側セパレータ140K、及び、アノード側ガス拡散層100Aの外側において燃料ガスを供給する燃料ガス流路141Aを設けたアノード側セパレータ140Aに挟持され、燃料電池200の単セル(single cell)を形成している。
【0112】
即ち、燃料電池200の単セルは、電解質膜160の一方の表面に酸素ガス等の酸化ガスが反応するカソード側触媒層120K及びカソード側ガス拡散層100Kにより構成されるカソード電極130Kを配設し、他方の表面に水素ガス等の燃料ガスが反応するアノード側触媒層120A及びアノード側ガス拡散層100Aにより構成されるアノード電極130Aを配設して発電部を構成する膜/電極接合体150と、膜/電極接合体150のカソード電極130Kの表面に配置されるカソード側セパレータ140K及び膜/電極接合体150のアノード電極130Aの表面に配置されるアノード側セパレータ140Aとから構成される。
【0113】
ここで、イオン交換基となる高分子膜からなる電解質膜160は、特定のイオンと強固に結合し、陽イオンまたは陰イオンを選択的に透過する性質を有するものである。
また、触媒層120(カソード側触媒層120K,アノード側触媒層120A)は白金、金、パラジウム等の貴金属触媒をカーボンで担持した触媒担持カーボン及びイオン交換樹脂からなり、酸化ガスまたは燃料ガスを反応させるものである。
【0114】
図2において、ガス拡散層基材1(カソード側基材1K,アノード側基材1A)は、その片面側(触媒層120側)にマイクロポーラス層(微多孔質層)110(カソード側マイクロポーラス層110K,アノード側マイクロポーラス層110A)が形成されて、燃料電池用ガス拡散層100(カソード側ガス拡散層100K,アノード側ガス拡散層100A)として組み込まれている。このとき、マイクロポーラス層110側が触媒層120側に配設され、ガス拡散層基材1側がセパレータ140側に配設するように組み込まれる。なお、マイクロポーラス層110は適宜省略することができる。
【0115】
このような構成によって、外部より酸化ガスがカソード側セパレータ140Kの酸化ガス流路141Kに供給されると、酸化ガス流路141Kに沿って流れる酸化ガスのうち、一部がカソード側ガス拡散層100Kのガス拡散層基材1K側表面より内部へ浸入する。なお、その他の未反応の酸化ガスは、酸化ガス流路141Kに沿って流れ、燃料電池200の外部へ排出される。
同様に、外部より燃料ガスがアノード側セパレータ140Aの燃料ガス流路141Aに供給されると、燃料ガス流路141Aに沿って流れる燃料ガスのうち、一部がアノード側ガス拡散層100Aのガス拡散層基材1A側表面より内部へ浸入する。その他の未反応の燃料ガスは、そのまま燃料ガス流路141Aに沿って流れ、燃料電池200の外部へ排出される。
そして、酸化ガス及び燃料ガスが反応することにより、カソード側セパレータ140Kとアノード側セパレータ140Aとの間で電力が取り出されることになる。
勿論、
図2の単セル構造に限定されず、複数の単セルが厚み方向に積層されたスタック構造にも適用される。
【0116】
このとき、ガス拡散層100を構成する本実施の形態のガス拡散層基材1によれば、上述したように、適度に高い強度及び弾力性を有するから、燃料電池1に組み込む際のスタック時のセパレータ140の挟圧等によって外力が加えられたときでも、また、発電運転時に電解質膜160の膨張等によって外力が加えられることがあっても、炭素繊維11及び炭化物の損傷、破損、破壊され難い。更に、このように炭素繊維11や炭化物が損傷等され難く、また、炭化物によって炭素繊維11間に存在する所定粒径の球状黒鉛31及び/または人造黒鉛32の保持性も高められていることから、黒鉛の脱落が生じることもない。よって、破損した炭素繊維11の電解質膜160への突き刺さりによる発電性能の低下が防止され、また、燃料電池200の使用時に炭素繊維11や炭化物の破損物、脱落した黒鉛により接触抵抗の増加や短絡(ショート)等が生じて発電性能が低下する事態も防止される。
【0117】
更に、燃料電池200にガス拡散層基材1を組み込んだときにガス拡散層基材1がセパレータ140で挟圧されても、ガス拡散層基材1中の空孔が圧潰され難い。そして、本実施の形態のガス拡散層基材1は、上述したように適度に高い弾力性を有するから、外力が解放された後には、厚みが回復し、加圧前後で厚みの変化が少なく、加圧されても所定のガス拡散性、導電性等の特性が維持される。
【0118】
したがって、本実施の形態のガス拡散層基材1によれば、信頼性及び耐久性が高く、安定して所定の高いガス拡散性能、導電性能、撥水性能等を発揮できる。よって、電池性能の向上を可能とする。特に、外力を受けても、炭素繊維11や炭化物が破損し、それが流されてガス拡散層基材1の空孔やガス流路141を塞いでしまうこともなく、出力低下を招く目詰りを生じさせることもない。故に、燃料電池200の性能を安定して維持できる。
【0119】
そして、本実施の形態のガス拡散層基材1によれば、上述したように、適度に高い弾力性を有し、厚みの変化を許容するもの、即ち、加圧により寸法変化を生じさせるものであるから、燃料電池200の電極として組み入れた際でも、周囲層に対する寸法吸収性が高く、例えば、発電運転時に電解質膜160が膨張または収縮したときでもそれに対する追従性が高いものである。よって、燃料電池200の発電性能の低下を抑制し、良好な発電性能を維持することができる。
【0120】
即ち、燃料電池200の膜/電極接合体150においては、電解質膜160が触媒層120を介してカソード側ガス拡散層100Kとアノード側ガス拡散層100Aで挟持される構成であるところ、燃料電池200の発電運転に伴い、電解質膜160の膨張及び収縮が生じたときに、電解質膜160を挟持する電極間の追従性が低いと、燃料電池200の本来の発電性能が維持できなくなる。なお、電解質膜160は、例えば、発電反応に伴い生成された水、加湿された反応流体、発生した熱の吸収等によって膨張し、また、発電運転の停止に伴い、それらの吸収された水分が乾燥したり熱が放散したりすることで収縮することがある。
【0121】
これに対し、本実施の形態のガス拡散層基材1によれば、上述したように、適度な弾力性を有するから、電解質膜160が膨張または収縮したときでも、それに追従する変形を可能とし、周囲層との接合性、密着性が維持される。よって、燃料電池200の使用時に接触抵抗の増加や短絡等が生じるのが防止され、燃料電池200の本来の発電性能を維持可能とする。特に、電解質膜160の下流領域と上流領域とで水分バランスが一様でなくバラつきがあるときでも、その電解質膜160の寸法変化に対応できるから、高い発電性能の維持を可能とする。更に、そのような弾力性、寸法吸収性によって、ガス拡散層100に隣接する触媒層120やセパレータ140に対しても追従性が高く、それらに対する密着性、接合性を高くできるから、効率よく反応流体を通過、拡散させることができる。また、接触抵抗の低減を可能として効率よく電子を移動させることができ、集電にも有利である。更に、余分な水分の排除を効率良くできる。故に、発電性能の向上を可能とする。
【0122】
次に、本発明の実施の形態に係るガス拡散層基材1について、実施例を挙げて説明する。
本実施例に係るガス拡散層基材1は、下記の表1に示した原料の配合(質量部)で作製されたものである。
実施例1乃至実施例4では、まず、炭素繊維11(帝人(株)製 HT C137−3)と、有機繊維としてのパルプ繊維(Hamac Agent社製 製紙用針葉樹パルプ(NBKP))21及び樹脂繊維22(ビニロン、(株)クラレ製 VPB107−1)と、球状黒鉛31または人造黒鉛32とを分散媒としての水に混合し(通常、混合液全体を100質量%に対し、原料固形分を約1質量%、水分を約99質量%とし、原料固形分が約1%程度の濃度になるよう水で薄める)、原料固形分を分散させた。なお、このとき必要に応じ、適当な抄紙試薬を用いることも可能である。続いて、これら原料が混合された混合液(スラリー)を円網抄紙機にて抄紙処理(連続抄紙)した。このような抄紙工程(ステップS10)の実施により、抄紙体である集積体を作製した。
【0123】
こうした抄紙工程(ステップS10)の実施により得られた集積体は、炭素繊維11と、パルプ繊維21と、樹脂繊維22と、球状黒鉛31または人造黒鉛32とからなるシート状の集積体である。この集積体は、例えば、目付(秤量)45〜90g/cm
2 、平均厚みが200〜300μmのシート状である。特に、本実施例では、有機繊維としてパルプ繊維21及び樹脂繊維22を用いたことで、炭素繊維11の絡み合い性、繊維同士の結び付きが高められるから、湿式連続抄紙装置による連続抄紙に耐え得る強度及び形状保持性を有し、また、耐引張り性も高く、ハンドリング性、取扱性が良好である。このため、本実施例では、湿式連続抄紙装置を用いた連続抄紙により、長尺状の集積体のシートを作製した。なお、円網抄紙機によって集積体はロール状に巻回された状態で得ることができ、ロール搬送を可能とする。
【0124】
続いて、ステップS10の抄紙工程によって得られたシート状の集積体に対し、フェノール樹脂41液(ディスパージョン)(住友ベークライト(株)製 スミライトレジンPR−53473(液状ノボラックレジン)不揮発分67%)を含浸させることで、樹脂含浸工程(ステップS20)を実施した。なお、このときのフェノール樹脂液(不揮発分67%)の含浸は、シート状の集積体を100質量部に対し、25質量部とした。
【0125】
その後、フェノール樹脂41が含浸されたシート状の集積体を温風乾燥機によって大気下で120℃の乾燥温度で乾燥する乾燥工程(ステップS30)を実施した。このステップS30の乾燥工程によって、集積体からフェノール樹脂41液中の溶媒分、水分を蒸発させた。
【0126】
そして、本実施例では、ステップS30の乾燥工程で乾燥させたシート状の集積体をダブルベルトプレス装置により250℃、1分の条件で加圧(0.3MPa)するプレス工程(ステップS40)を実施した。このステップS40のプレス工程によって、集積体の厚みを250μmとした。
【0127】
続いて、プレス後の集積体を加熱焼成炉の窒素ガス雰囲気下において2000℃で1分間加熱焼成処理を行う炭化・黒鉛化工程(ステップS50)を実施した。なお、本実施例では窒素ガスを流通させたバッチ式加熱炉内において加熱焼成を行った。
このようにして、実施例1乃至実施例4に係るガス拡散層基材1を得た。
【0128】
ここで、実施例1及び実施例2は、球状黒鉛31を用いた例であり、実施例1では、平均粒径(商品表示)が50μmの球状黒鉛31(日本黒鉛工業(株)製 CGB-50)を用い、実施例2では、平均粒径(商品表示)が100μmの球状黒鉛31(日本黒鉛工業(株)製 CGB-100)を用いた。また、実施例3及び実施例4は、人造黒鉛32を用いた例であり、実施例3では、平均粒径(商品表示)が50μmの人造黒鉛32(伊藤黒鉛工業(株)製、AGB-604)を用い、実施例4では、平均粒径(商品表示)が80〜120μmの人造黒鉛32(伊藤黒鉛工業(株)製、AGB-130)を用いた。
【0129】
次に、比較のために作製した比較例1乃至比較例5について説明する。比較例に係る配合も、下記の表1に示した通りである。
比較例1は、球状黒鉛31及び人造黒鉛32の何れも使用しなかった例である。それ以外は実施例と同じ原料を用い、実施例と同様の条件、工程手順で作製したものである。
【0130】
また、比較例2及び比較例3は、実施例1及び実施例2のときと同様に、球状黒鉛31を使用するも、比較例2では、実施例1及び実施例2よりも粒径が小さい平均粒径(商品表示)が5μmの球状黒鉛31(日本黒鉛工業(株)製 CGB-5)を用い、比較例3では、実施例1及び実施例2よりも粒径が大きい平均粒径(商品表示)が150μmの球状黒鉛31(日本黒鉛工業(株)製 CGB-150)を用いたものである。それ以外は実施例と同じ原料を用い、実施例と同様の条件、工程手順としたものである。
【0131】
更に、比較例4及び比較例5は、実施例3及び実施例4のときと同様に、人造黒鉛32を使用するも、比較例4では、実施例3及び実施例4よりも粒径が大きい平均粒径(商品表示)が200μm〜300μmの人造黒鉛32(伊藤黒鉛工業(株)製、AGB-32)を用い、比較例5では、実施例1及び実施例2よりも粒径が小さい平均粒径(商品表示)が25μmの球状黒鉛31(伊藤黒鉛工業(株)製、AGB-60)を用いたものである。それ以外は実施例と同じ原料を用い、実施例と同様の条件、工程手順としたものである。
【0132】
ここで、上述のようにして作製した実施例及び比較例の各ガス拡散層基材1について、導電性と強度・弾力性の評価試験を行った。
導電性の評価試験では、1対の金メッキされた銅板間に、上述のようにして作製したシート状のガス拡散層基材1を厚み方向の両側から挟み、0.8Mpaの荷重を架けた状態で、ガス拡散層基材1の単位面積当たりの厚み方向の接触抵抗(電気抵抗)を測定した。
【0133】
また、強度・弾力性の評価試験では、上述のようにして作製したシート状のガス拡散層基材1に対し、プレスによって複数回に分けて所定の圧力で加圧を行った。具体的には、0MPa、2.0MPa、0MPa、2MPa、1.7MPa、0.6MPaの順で圧力を変化させた加圧試験を行った。これは、膜/電極接合体150を作成する際におけるプレス圧を考慮し、また、燃料電池200の発電運転、停止時に基づいて電解質膜160が膨張、収縮するときのガス拡散層基材1に繰り返し加えられる荷重、加圧を想定したものである。そして、1.7MPaの加圧時に測定したガス拡散層基材1の厚みをt
1、0.6MPaの加圧時に測定したガス拡散層基材1の厚みをt
2とし、それらの差(t
2−t
1)を求めた。このときの差(t
2−t
1)が大きいほど、炭素繊維11及び炭化物の破損が少なく、また、厚みの回復力が高くて、強度及び弾力性に優れていることになる。
【0134】
実施例及び比較例についての原料の組成と上記評価試験の結果とを併せて表1に示す。
【0136】
表1に示すように、球状黒鉛31及び人造黒鉛32の何れも含まれていない比較例1のガス拡散層基材では、接触抵抗が7.5[mΩ・cm
2]であり、所定圧力に加圧したときの厚みの回復が6.3μmであった。
【0137】
また、比較例2は、球状黒鉛31を含むもその粒径が平均粒径(商品表示)で5μmであるものである。この比較例2のガス拡散層基材では、接触抵抗が6.5[mΩ・cm
2]で、所定圧力に加圧したときの厚みの回復が6.3μmであり、比較例1と比較して導電性が少し向上するも不十分であり、強度及び弾力性については比較例1と同等であった。
【0138】
比較例3は、球状黒鉛31を含むもその粒径が平均粒径(商品表示)で150μmであるものである。この比較例3では、ステップS10の抄紙工程の際に、球状黒鉛31が炭素繊維11、パルプ繊維21及び樹脂繊維22からなる集積体に定着せず、球状黒鉛31を炭素繊維11等と共に抄紙することが不可能であった。このため、球状黒鉛31を含むガス拡散層基材1が得られなかった。
【0139】
比較例4は、人造黒鉛32を含むもその粒径が平均粒径(商品表示)で200μm〜300μmであるものである。この比較例4についても、ステップS10の抄紙工程の際に、人造黒鉛32が炭素繊維11、パルプ繊維21及び樹脂繊維22からなる集積体に定着せず、人造黒鉛32を炭素繊維11等と共に抄紙することが不可能であった。このため、人造黒鉛32を含むガス拡散層基材1が得られなかった。
【0140】
比較例5は、人造黒鉛32を含むもその粒径が平均粒径(商品表示)で25μmであるものである。この比較例5のガス拡散層基材では、接触抵抗が6.5[mΩ・cm
2]、所定圧力に加圧したときの厚みの回復が5.9μmであった。即ち、比較例1と比較して導電性が少し向上するも不十分であり、また、強度及び弾力性については比較例1と略同等以下で極めて低いものであった。
【0141】
これに対し、粒径が平均粒径(商品表示)で50μmの球状黒鉛31が含まれた実施例1のガス拡散層基材1、粒径が平均粒径(商品表示)で100μmの球状黒鉛31が含まれた実施例2のガス拡散層基材1、粒径が平均粒径(商品表示)で50μmの人造黒鉛32が含まれた実施例3のガス拡散層基材1、及び、粒径が平均粒径(商品表示)で80〜120μmの人造黒鉛32が含まれた実施例4のガス拡散層基材1は、何れも、接触抵抗が5.7[mΩ・cm
2]以下であり、比較例よりも接触抵抗値が極めて低かった。即ち、実施例1乃至実施例4のガス拡散層基材1は、何れも、比較例と比較して、導電性が向上し、導電性が極めて高いものであった。
【0142】
また、実施例1乃至実施例4のガス拡散層基材1は、何れも、所定圧力に加圧したときの厚みの回復が12.0μm以上であり、強度及び弾力性に優れるものであった。なお、実施例1乃至実施例4の比較から、球状黒鉛31または人造黒鉛32の粒径が平均粒径(商品表示)で50〜120μmの範囲内では、粒径が大きい程、所定圧力に加圧したときの厚みの回復が大きく、弾力性及び強度が高くなる傾向にあった。
【0143】
このように実施例1乃至実施例4に係るガス拡散層基材1は、所定粒径の球状黒鉛31または人造黒鉛32の含有により、比較例と比較して導電性が向上し、優れた導電性を有するものである。よって、導電性を確保しつつ、空隙率を高めてガス拡散性を向上させることが可能となる。
また、実施例1乃至実施例4に係るガス拡散層基材1は、強度及び弾力性に優れるから燃料電池200の作製時や運転時等で圧力、外力が加えられたときでも、炭素繊維11及び樹脂炭化物が破損、破壊され難く、加圧前後で厚みの変化が少ないものである。よって、所定のガス拡散性、排水性、導電性等の特性を維持できる。特に、弾力性、寸法吸収性に優れることで、燃料電池200の運転時における電解質膜160等の周囲層の膨張及び収縮に対する追従性も高く、周囲層との高い接合性を維持でき、発電性能の低下を防止し良好な発電性能の維持を可能とする。
【0144】
更に、実施例1乃至実施例4をみると、球状黒鉛31や人造黒鉛32の粒径によって、導電性や、強度及び弾力性が変化していることから、ガス拡散層基材1の目的とする特性、燃料電池200の用途、運転条件等の使用条件に合わせ、球状黒鉛31や人造黒鉛32の粒径の選択によって導電性や、強度及び弾力性を制御することも可能である。
【0145】
勿論、パルプ繊維21及び樹脂繊維22の配合量や大きさ等によっても、空隙率や空孔容積(空孔径)の調節が容易であり、ガス拡散層基材1の水分やガスの透過性を容易に制御することが可能である。そして、燃料電池200の用途、運転条件等の使用条件等に応じて適度な透過性の調節を容易とするから、水の保持または排出を行う水分管理性(含水率の調整)の調節、それによるプトロン伝導度の調節を容易とする。
【0146】
なお、本実施例によれば、このように所定の強度及び弾力性を有するも、その表面は、樹脂の炭化物によって炭素繊維11が結着していることで、適度な硬さを有することから、上述のセパレータ140によって厚み方向に強く挟み込まれて圧着されても、セパレータ140のガス流路141にガス拡散層基材1が膨出する度合いが小さく抑えられる。よって、ガス流路141の流路面積の減少、即ち、反応流体の分配性の低下による電池性能の低下を招く恐れはない。
【0147】
ところで、上記実施例では、球状黒鉛31や人造黒鉛32の粒径が平均粒径(商品表示)で50〜120μmのものを使用した事例で説明したが、本発明者らの実験研究によれば、中位径で40μm以上、好ましくは、50μm以上のものであれば、実用的な導電性と弾力性及び強度とを確保できることを確認している。また、中位径で120μm以下、好ましくは、100μm以下であれば十分な量を炭素繊維11の集積体に定着でき、導電性と弾力性及び強度とを確保できることを確認している。
【0148】
更に、本発明者らは、原料の配合について、炭素繊維11を100質量部に対し、所定粒径の球状黒鉛31や人造黒鉛32が、好ましくは、40質量部以上、より好ましくは、50質量部以上であれば、最適な配合となり、導電性と弾力性及び強度とを確保できることを確認している。また、炭素繊維11を100質量部に対し、所定粒径の球状黒鉛31や人造黒鉛32は、好ましくは、80質量部以下、より好ましくは、70質量部以下が集積体に定着することを確認している。
パルプ繊維21及び樹脂繊維22からなる有機繊維についても、炭素繊維11を100質量部に対し、パルプ繊維21及び樹脂繊維22からなる有機繊維の合計量が、好ましくは、20質量部以上、より好ましくは、30質量部以上であれば、最適な配合となり、所望のガス拡散性を確保できることを確認している。一方で、炭素繊維11を100質量部に対し、パルプ繊維21及び樹脂繊維22からなる有機繊維の合計量は、好ましくは、80質量部以下、より好ましくは、40質量部以下とすることで、強度や導電性が損なわれないことを確認している。
【0149】
以上説明してきたように、上記実施の形態に係るガス拡散層基材1は、炭素繊維11が互いに絡み合った炭素繊維集積体からなり、炭素繊維集積体の炭素繊維11を結着する炭化物と、炭素繊維集積体の炭素繊維11間に保持された中位径が40μm〜120μmの範囲内にある球状黒鉛31及び/または人造黒鉛32とを含み、多孔質であるものである。
【0150】
また、上記実施の形態に係るガス拡散層基材1の製造方法は、ベースとなる炭素繊維11と、後の加熱処理で焼失される有機繊維としてのパルプ繊維21及び樹脂繊維22と、中位径が40μm〜120μmの範囲内にある球状黒鉛31及び/または人造黒鉛32とを共に抄紙することによって集積体を形成する抄紙工程(ステップS10)と、抄紙工程(ステップS10)で形成された集積体に、フェノール樹脂等の炭素前駆体樹脂41を含浸させる樹脂含浸工程(ステップS20)と、炭素前駆体樹脂41が含浸された集積体を乾燥させる乾燥工程(ステップS30)と、前記乾燥工程(ステップS30)で乾燥された集積体を非酸化性雰囲気で加熱焼成する炭化・黒鉛化工程(ステップS50)とを具備するものである。
【0151】
上記実施の形態のガス拡散層基材1の製造方法によって製造されたガス拡散層基材1によれば、炭素繊維11間に中位径が40μm〜120μmの範囲内にある球状黒鉛31及び/または人造黒鉛32が保持されていることで、その所定粒径の球状黒鉛31及び/または人造黒鉛32によって炭素繊維集積体の厚み方向で炭素繊維11間に通電パスが形成される。特に、球状黒鉛31及び/または人造黒鉛32は、電気伝導率が高い特性を有する。更に、導電性を有する炭化物によって炭素繊維11が結着されている。このため、厚み方向の炭素繊維11の接触点が多く、電気抵抗が極めて小さいものとなる。したがって、炭素繊維集積体の空隙率を高めても、所定粒径の球状黒鉛31及び/または人造黒鉛32による炭素繊維11間の通電パスの構成、人造黒鉛32及び/または人造黒鉛32の高い電気伝導率によって、更に、炭素繊維11を炭化物が結着する構成によって、厚み方向の高い導電性を確保できる。よって、高いガス拡散性及び導電性が両立する。
【0152】
加えて、このように炭素繊維11間に粒径が中位径40μm〜120μmの範囲内である球状黒鉛31及び/または人造黒鉛32が保持され、炭素繊維集積体の厚み方向で炭素繊維11間に所定粒径の球状黒鉛31及び/または人造黒鉛32による強固なパスが形成されているから、所定粒径の球状黒鉛31及び/または人造黒鉛32が支点、支柱として機能し、外力を吸収できる構造であり、炭素繊維11の弾力性を引き出すことができる。また、炭素繊維11は炭化物によっても結着されている。特に、炭素前駆体樹脂41として、炭化率(残炭率)が高いフェノール樹脂を用いると、炭素繊維11を結着する結着力も高いものとなる。
よって、高い強度及び弾力性が発揮される。したがって、加圧による炭素繊維11や炭化物の破損、破壊が防止され、加圧前後で厚み変化が少ないものとなるから、圧力、外力が加えられても所定のガス拡散性、導電性等の特性を維持できる。また、弾力性、寸法吸収性が高いことで、周囲層との接合性も高く、燃料電池200の発電運転時に電解質膜160が膨張、収縮したときでも、それに追従し、高い接合性を維持するから、燃料電池200の本来の電池性能を維持することができる。
【0153】
ここで、本発明者らの実験研究によれば、球状黒鉛31及び/または人造黒鉛32の中位径が40μm未満のものでは、導電性の向上効果が少なく、また、加圧によって厚みが少なくなり炭素繊維11や炭化物の破壊防止効果が得られなかった。これは、球状黒鉛31及び/または人造黒鉛32の粒子径が小さすぎると、炭素繊維集積体の厚み方向で炭素繊維11間に球状黒鉛31及び/または人造黒鉛32による強固なパスを形成できないためである。一方、球状黒鉛31及び/または人造黒鉛32の中位径が120μmを超えるのものでは、炭素繊維集積体に黒鉛を定着させることができなかった。
よって、中位径が40μm〜120μmの範囲内にある球状黒鉛31及び/または人造黒鉛32であれば、炭素繊維集積体の厚み方向で炭素繊維11間に球状黒鉛31及び/または人造黒鉛32による強固なパスを形成できることで、高い導電性を確保できると共に、加圧による厚みの低下を抑制できる強度及び弾力性を確保できる。
【0154】
このとき、球状黒鉛31及び/または人造黒鉛32は、炭素繊維11を100質量部に対し、好ましくは、40質量部〜80質量部の範囲内、より好ましくは、50質量部〜70質量部以下の範囲内であれば、ガス拡散性及び導電性に優れ、かつ、強度及び弾力性にも優れる。
【0155】
また、上記実施の形態では、抄紙工程(ステップS10)において炭素繊維11、球状黒鉛31及び/または人造黒鉛32と共に、有機繊維としてのパルプ繊維21及び樹脂繊維22を抄紙するも、これらパルプ繊維21及び樹脂繊維22は乾燥工程(ステップS30)、プレス工程(ステップS40)または炭化・黒鉛化工程(ステップS50)における加熱処理で焼失されるものであり、その焼失跡が空孔となるものである。よって、これらパルプ繊維21及び樹脂繊維22の配合によって、水分やガスの透過性を高めることができ、ガス拡散性、水分の排水性が高いものとなる。加えて、炭素繊維11とは特性を異にする有機繊維としてのパルプ繊維21及び樹脂繊維22を炭素繊維11、球状黒鉛31及び/または人造黒鉛32と共に抄紙することで、有機繊維としてのパルプ繊維21及び樹脂繊維22の特性によって炭素繊維11の捕捉性、絡み合い性、集積体の強度が高められる。これより、導電性及び強度が向上し、球状黒鉛31や人造黒鉛32の保持性も高いものとなる。そして、球状黒鉛31や人造黒鉛32の保持性が高められることで、球状黒鉛31や人造黒鉛32による導電性、強度及び弾力性の向上を可能とする。
【0156】
特に、パルプ繊維21によれば、抄紙時にカーボン繊維11の捕捉性、絡み合い性を高めることができる。よって、強度及び導電性を高めることができ、更に、球状黒鉛31や人造黒鉛32の保持率を高めることができる。また、樹脂繊維22によっても、その強度により集積体を補強して強度、特に引張り強度を高めることができる。そして、パルプ繊維21と樹脂繊維22を併用することで、パルプ繊維21の品質(繊維長、繊維径、材質)のばらつきによる集積体の特性のばらつきが抑えられ、信頼性が高まる。即ち、ガス拡散層基材1の特性の安定化を図ることができる。
【0157】
このとき、有機繊維としてのパルプ繊維21及び樹脂繊維22は、炭素繊維11を100質量部に対し、好ましくは、20質量部〜80質量部の範囲内、より好ましくは、30〜40質量部の範囲内であれば、強度を損なうことなく、高いガス拡散性が得られ、強度及びガス拡散性を両立させることができる。
【0158】
このようにして、ガス拡散性及び導電性を両立させ、かつ、加圧前後での厚み変化を少なくできる強度及び弾力性を有するガス拡散層基材1及びその製造方法となる。
【0159】
そして、このようなガス拡散層基材1によれば、炭化物による炭素繊維11の結着及び厚み方向で炭素繊維11間の所定粒径の球状黒鉛31及び/または人造黒鉛32による強固なパスの形成によって、高い強度及び弾力性を有するので、燃料電池200に組み込んだ際に、燃料電池200の発電運転や運転停止時等に起因して、電解質膜160が膨張または収縮したときでも、その電解質膜160の寸法変形に対する寸法吸収性が高く、高い追従性を発揮できる。更に、高い強度及び弾力性によって、基材の成形時や燃料電池の作成時、例えば、電極として燃料電池200に組み込む際のセパレータ140で挟持する加圧締結時の加圧等、燃料電池200に適用した際に圧力が加えられたときでも炭素繊維11及び炭化物の破損、破壊が防止され、圧力解放後には厚みが回復し、加圧前後で厚みの変化が少ないから、ガス拡散性、導電性等の特性も良好に維持できる。また、炭素繊維11及び炭化物の破損、破壊が防止されることで、炭素繊維11の破損物による電解質膜160への突き刺さりも防止される。更に、短絡の原因となる炭素繊維11の脱落、剥離も防止される。よって、電池性能の維持、耐久性の向上を可能とする。
【0160】
加えて、上記実施の形態のガス拡散層基材1は、炭化物による炭素繊維11の結着及び厚み方向で炭素繊維11間を結ぶ所定粒径の球状黒鉛31及び/または人造黒鉛32による導電経路によって高い導電性を有するから、このガス拡散層基材1を燃料電池用電極として用いた場合、電気抵抗を低減させ、集電性の向上を図り、燃料電池の性能を向上させることが可能となる。
【0161】
また、上記実施の形態のガス拡散層基材1は、所定粒径の球状黒鉛31及び/または人造黒鉛32を含むから、ガス拡散層基材1の目的とする特性、燃料電池200の用途、運転条件、使用条件等に応じ、球状黒鉛31や人造黒鉛32の粒径の選択によって導電性や、強度及び弾力性を制御することが可能である。
更に、上記実施の形態では、パルプ繊維21及び樹脂繊維22の配合量や大きさ等によっても、空隙率や空孔容積(空孔径)の調節が容易であり、ガス拡散層基材1の水分やガスの透過性の制御が容易に可能である。
【0162】
したがって、本実施の形態のガス拡散層基材1によれば、燃料電池200の用途、運転条件等の使用条件等に応じて適度な透過性の調節が容易であるから、適度な水の保持または排出を行う水分管理性(含水率の調整)の調節、例えば、フラッディングやドライアップへの対応、プトロン伝導度の調節等も容易に可能となり、燃料電池200の出力の調節がし易くなる。
【0163】
更に、上記実施の形態では、炭素繊維11、所定粒径の球状黒鉛31及び/または人造黒鉛32と共に、パルプ繊維21及び樹脂繊維22を抄紙しているため、炭素繊維11、所定粒径の球状黒鉛31及び/または人造黒鉛32、パルプ繊維21及び樹脂繊維22が抄紙されてなる抄紙体からなる集積体の強度、形状保持性が良好で、連続抄紙にも耐え得る強度である。また、抄紙段階からシート状の集積体に厚みを付して形成することもできる。即ち、ガス拡散層基材1を構成するのに複数のシートを積層して調整しなくとも、抄紙後の一枚のシートを樹脂含浸工程(ステップS20)、乾燥・加熱工程(ステップS30)、プレス工程(ステップS40)及び炭化・黒鉛化工程(ステップS50)に供することが可能である。このようにガス拡散層基材1を一枚のシートで形成できると、積層しないから層状剥離の恐れもなく、積層するための熱圧着処理工程等を特に必要としないので、安価に製造できる。また、連続抄紙による長尺状の集積体の巻き取りが可能でハンドリング性や取扱性も高く、高い生産性及び低コストでガス拡散層基材1を得ることができる。
しかし、本発明を実施する場合には、抄紙段階で抄紙体を薄くし、シート状の集積体に炭素前駆体樹脂41を含浸させ、乾燥した後、その複数枚を積層し加熱加圧して接合してから、炭化・黒鉛化工程(ステップS50)に供してもよい。これによれば、抄紙成分の種類等により性状の異なる抄紙体同士を積層することが可能となる。
【0164】
そして、本実施の形態では、有機繊維としてパルプ繊維21及び樹脂繊維22を用いていることで、これらを単独で用いた場合と比較して、炭素繊維11の絡み合い性を向上させ強度を高めることが可能となる。特に、パルプ繊維21のみの場合、品質のばらつきが多くなり、一方、樹脂繊維22のみの場合、所定の強度を確保しようとすると、空隙や空隙率が少ないものとなり、高いガス拡散性の確保が困難となる。しかしながら、パルプ繊維21及び樹脂繊維22を併用すると、所定の強度を確保しつつ、高いガス拡散性を得ることができ、また、ガス拡散性及び強度等の特性も安定的となり、信頼性の高いものとなる。更に、パルプ繊維21及び樹脂繊維22の取り合わせによって、通路の多様な方向性を獲得できるから、ガスや水分を逃がし易い方向に透過させるのに有利となり、ガスや水分の透過性を高めることも可能である。
【0165】
ところで、上記実施の形態では、炭素繊維11と、所定粒径の球状黒鉛31及び/または人造黒鉛32と共に抄紙する有機繊維としてのパルプ繊維21及び樹脂繊維22は、乾燥工程(ステップS30)やプレス工程(ステップS40)や炭化・黒鉛化工程(ステップS50)における加熱処理によって焼失される説明としたが、本発明を実施する場合には、抄紙工程(ステップS10)後であって、樹脂含浸工程(ステップS20)の前に、有機繊維としてのパルプ繊維21及び樹脂繊維22を焼失させるための加熱工程を別途設けて、そこでパルプ繊維21及び樹脂繊維22を焼失させてもよい。
【0166】
炭素前駆体樹脂41を含浸させる前にパルプ繊維21及び樹脂繊維22を焼失させることで、炭素前駆体樹脂41によるパルプ繊維21や樹脂繊維22への付着・吸着を回避できるから、パルプ繊維21や樹脂繊維22の焼失跡の空隙(空孔)に炭素前駆体樹脂41由来の樹脂炭化物が多く残留、分布する事態が防止される。即ち、パルプ繊維21及び樹脂繊維22の焼失跡の空隙への炭素前駆体樹脂41の分布の集中を防止し、炭素前駆体樹脂41由来の樹脂炭化物がパルプ繊維21及び樹脂繊維22の焼失跡の空隙を塞いだり埋めてしまったりする事態が回避される。これにより、空孔容積の減少を防止できる。故に、所定の高い空孔率や大きな空孔容積(空孔径)が確保され、ガス拡散性や排水性を向上させることが可能となる。特に、燃料電池200に適用した際のフラッディングの抑制にも有利であり、燃料電池200の出力の向上も期待できる。また、パルプ繊維21及び樹脂繊維22の焼失跡の空隙が炭素前駆体樹脂41由来の樹脂炭化物によって埋められる事態を回避できると、空孔の分布も均一にできることから、燃料電池200に適用した際に、ガス拡散層100内を透過して反応部に拡散する反応ガスの拡散量が均一になり、結果として触媒と反応ガスの接触効率を向上させ、電池性能を向上させることも期待できる。
【0167】
更に、このように炭素前駆体樹脂41を含浸させる前にパルプ繊維21及び樹脂繊維22を焼失させると、樹脂含浸工程(ステップS20)での炭素前駆体樹脂41の含浸効率がよく、均一に炭素前駆体樹脂41を集積体に含浸させることが可能であり、また、少ない樹脂量で集積体の内部にまで均一に含ませることができ、コスト低減を図ることができる。更に、炭化・黒鉛化後は炭素前駆体樹脂41由来の樹脂炭化物がガス拡散層基材1に均一に分布される。加えて、樹脂炭化物の分布が均一になることで、表面平滑性を高くでき、燃料電池200に適用した際に触媒層との接触面積を良くして、接触抵抗を小さくできる。そして、表面平滑性が高まると、触媒層120等の周囲層の接合界面に加湿ガスや反応によって生じた過剰な水が溜まるのが防止され、フラッディングを抑制できる。
加えて、炭化・黒鉛化工程(ステップS50)において、炭素前駆体樹脂41の分解によるガスや硬化の際に生じる縮合水が、その焼失跡の空孔から抜け易くて外部に排出され易くなるため、加熱による変形や亀裂の発生等を防止できる。そして、このようにガスが抜けやすいことで、加熱の昇温速度を大きしてもガス等が溜まって変形や亀裂を生じさせる恐れが少なくなる。故に、生産性を高めることも可能である。
【0168】
なお、上記実施の形態のガス拡散層基材1は、自動車等に用いられる固体高分子形燃料電池の電極を形成するガス拡散層用電極基材として最適に使用できるが、電磁シールド材、導電性シート、炭素質クッション材、高温真空炉用炉壁断熱材等の用途に利用することも可能である。
また、本発明を実施するに際しては、ガス拡散層基材1のその他の部分の構成、組成、成分、配合量、材質、その他の製造工程について、上記実施の形態に限定されるものではない。
更に、本発明の実施の形態及び実施例で上げている数値は、臨界値を示すものではなく、実施に好適な適正値を示すものであるから、上記数値を若干変更しても実施を否定するものではない。