(58)【調査した分野】(Int.Cl.,DB名)
前記画像内の肌合いを決定するステップを更に含み、前記第1の変更画像を作成することは、統計的な民族的肌合いモデルを使用して、肌の動き、シワの存在、及び前記シワの範囲のうちの少なくとも1つを変更することを含むことを特徴とする請求項1に記載の方法。
前記画像の色を決定するステップを更に含み、前記第1の変更画像を作成することは、統計的民族色モデルを使用して、顔の色、毛髪の色、眉の色、眼の色、眼の下の暗い円の暗色化、可視的なシミの存在、及び可視的なシミの範囲のうちの少なくとも1つを変更することを含むことを特徴とする請求項1に記載の方法。
前記消費者の第2の所望のシミュレーションされた年齢を決定するステップと、統計的民族モデルを使用して、前記消費者の前記第2の所望のシミュレーションされた年齢を表す第2の変更画像を作成するステップと、前記第1及び第2の変更画像を使用して、前記消費者のエイジング又はディエイジングを表すアニメーションを作成するステップと、
を更に含むことを特徴とする請求項1に記載の方法。
前記アニメーションは、形状及び肌合いの変化を円滑に表す、前記第1及び第2の所望のシミュレーション年齢間の中間の年齢を含むビデオとして提示されることを特徴とする請求項4に記載の方法。
前記消費者の前記決定された年齢に影響を及ぼす前記消費者が受ける治療を決定するステップと、前記消費者が前記治療を受けた結果を表すように前記画像を変更するステップと、
を更に含むことを特徴とする請求項1に記載の方法。
拡張空間又は仮想現実空間においてリアルタイムでユーザのエージング後のバージョンを、前記ユーザが観察し及び相互作用することができるように、前記第1の変更画像は拡張現実体験又は仮想現実体験として前記ユーザに提供されることを特徴とする請求項1に記載の方法。
【発明を実施するための形態】
【0012】
「消費者」は、本明細書における年齢容姿予測方法及びシステムを美容(すなわち、非医学的)目的のために使用する人物を指す。
【0013】
本明細書における「美容」とは、人体の部位に所望の視覚的効果を与える非医学的方法を意味する。視覚的な美容効果は、一時的、半永久的、又は永久的なものであってもよい。
【0014】
「化粧料」とは、美容効果(例えば、クレンジング、美化、魅力促進及び/又は容姿変更)をもたらすために哺乳動物の身体又はその任意の部分に擦り込む、注ぐ、振りかける、噴霧する、導入する、又は他の方法で塗布することを目的とした任意の物質及びその任意の成分を意味する。美容物質は、アメリカ食品医薬品局によって「一般的に安全と認められる」(Generally Recognized as Safe)(GRAS)物質及び食品添加物を含み得る。
【0015】
「化粧品製品」は、化粧料(例えば、肌保湿剤、ローション、香水、口紅、爪磨き、眼及び顔用メークアップ用前処理、クレンジングシャンプー、ヘアカラー、剃毛準備、及び脱臭剤)を含む製品である。
【0016】
「患者」とは、本明細書における年齢容姿予測方法及びシステムを医療又は医学的に関連する目的のために使用する人物を指す。
【0017】
「スキンケア」は、肌状態を調節及び/又は改善することを意味する。いくつかの非限定的な例としては、より滑らかで、より均一な外観及び/若しくは感触を与えることによって肌の外観及び/又は手触りを改善すること、肌の1つ以上の層の厚さを厚くすること、肌の弾性又は弾力性を改善すること、肌のハリを改善すること、肌の脂っぽい、てかてかした、かつ/若しくはくすんだ外観を緩和し、肌の水和状態若しくは保湿を改善し、小ジワ及び/若しくはシワの外観を改善し、肌剥脱若しくは落屑を改善し、肌を膨化させ、肌バリア特性を改善し、肌色を改善し、赤み、にきび、酒さ若しくは肌の大きなシミの外観を緩和し、かつ/又は肌の明るさ、つや、若しくは透明感を改善することが挙げられる。
【0018】
「スキンケア活性物質」は、肌に塗布すると、肌又は肌の中に通常見られる細胞の一種に急性の効能及び/又は慢性の効能をもたらす、化粧料を意味する。スキンケア活性物質は、肌又はそれに関連する細胞を調節及び/又は改善する(例えば、肌の弾性、肌水分量、肌のバリア機能、及び/又は細胞代謝を改善する)ことができる。
【0019】
「スキンケア組成物」は、スキンケア活性物質を含み、肌の状態を調節及び/又は改善する組成物を意味する。
【0020】
「治療」は、製品、スキンケア計画、又は肌の処置の適用を含む、任意の化粧品又は医療用スキンケアを指す。
【0021】
本明細書における年齢容姿シミュレーションのためのシステム及び方法を、エイジング及び/又はディエイジング予測及び/又はシミュレーション体験をユーザに提供するように構成することができる。いくつかの例では、ユーザは、性別、民族性、及び/又は年齢情報と共に自身の画像を提供し、これにより、ユーザがどのようにエイジングするかを視覚的に伝えるために、経験的/統計的、年齢による顔の形状及び顔色(肌合い及び/又は色)データモデルと組み合わせることができる。このような見通しにより、ユーザは、スキンケア治療及び/又は処置について選択を行い、自身が所望する肌の容姿効能をもたらすことができる。追加的に又は代替的に、これらのモデルは、臨床に基づく有効性データと組み合わせたとき、予想される結果(平均レスポンダー、最良レスポンダーなど)をシミュレーションするために使用することができ、それにより、ユーザが好適な治療に対して見識のある選択を行うのを支援することができる。用語「シミュレーション」は、本明細書に記載するような、2D及び3D空間の両方における機能性、並びに画像の投影(2D投影など)の予測性を含む。
【0022】
統計的民族モデルを、少なくとも1つの顔の特徴、少なくとも1つの年齢特徴、及び/又は形状に適用し、個人のエイジング/ディエイジングをシミュレーションしてもよい。治療のシミュレーション適用後、個人の新たなシミュレーションされた容姿を示すユーザの画像を提供することができる。このプロセスはまた、時間の経過のシミュレーション(例えば、ある人が治療の有無によって今から10年でどのように見えるか)と併せて行われてもよい。
【0023】
図1は、年齢容姿シミュレーションのための例示的なコンピューティング環境を示す。
図1に示すように、ネットワーク100は、ユーザコンピューティング装置102及びリモートコンピューティング装置104に連結されている。ネットワーク100は、有線及び/又は無線部分の任意の組み合わせを有する任意の広域ネットワーク、ローカルネットワークなどを含んでもよい。一例として、ネットワーク100は、インターネット、公衆スイッチ電話ネットワーク、セルラーネットワーク(3G、4G、LTEなど)を含んでもよい。同様に、ネットワーク100は、ローカルエリアネットワーク、Wi−Fi、Bluetoothネットワーク、Zigbee、近距離通信、これらの組み合わせなどのローカルネットワークを含んでもよい。
【0024】
ユーザコンピューティング装置102は、画像を捕捉する、リモートコンピューティング装置104と通信する、かつ/又は1つ以上のユーザインターフェースをユーザに提供するのに好適な任意のコンピューティング装置として構成されてもよい。例えば、ユーザコンピューティング装置102は、スマートフォン、パーソナルコンピュータ、ラップトップ、タブレット、又はキオスクであってもよい。
図1にモバイル装置として示されているが、ユーザコンピューティング装置102はそのように限定されない。例えば、ユーザコンピューティング装置102は、本明細書に記載する解析及びデータを提供する、並びに製品、印刷処理を施す、かつ/又は他の有形物を提供する、並びに、有形物の引き換えに支払いを受信するように構成されてもよい。
【0025】
ユーザコンピューティング装置102は、デジタル画像を捕捉するための画像捕捉装置106を含んでもよい。以下により詳細に記載するように、捕捉された画像は、3D及び/又は2D画像を含んでもよい。このため、画像捕捉装置106は、所望のデータを捕捉するための1つ以上の画像センサ及び/又はレンズを含んでもよい。
【0026】
リモートコンピューティング装置104は、ネットワーク100を介してユーザコンピューティング装置102と通信するように構成されてもよい。このため、リモートコンピューティング装置104は、サーバ、パーソナルコンピュータ、スマートフォン、ラップトップ、ノートブック、キオスク、タブレット、拡張/仮想現実ヘッドセットなどを含んでもよい。リモートコンピューティング装置104は、例えば、
図1に示すようなメモリ構成要素140及び他の構成要素を含んでもよく、それは、年齢シミュレーションロジック144a、インターフェースロジック144b、及び民族エイジングモデルロジック144cを記憶する。以下により詳細に記載するように、年齢シミュレーションロジック144aは、個人の画像を解析し、年齢、容姿、又は民族性予測を実行するように構成されてもよい。インターフェースロジック144bは、ユーザコンピューティング装置102に提供される1つ以上のユーザインターフェースを作成するように構成されてもよい。民族エイジングモデルロジック144cは、本明細書に記載する民族モデルのうちの1つ以上を実行するように構成されてもよい。いくつかの例では、年齢シミュレーションロジック144a、インターフェースロジック144b、及び/又は民族エイジングモデルロジック144cは、ユーザコンピューティング装置自体102及び/又は
図1に示されていない別のコンピューティング装置の記載された機能の一部又は全部を実行してもよい。
【0027】
本明細書に記載するシステム及び方法は、化粧品の分野(例えば、スキンケア用)の消費者又は医療分野の患者に利用され得る。集合的に、患者及び/又は消費者は、本明細書において「個人(単数又は複数)」と呼ばれる場合がある。医療分野に関連する実施形態は、医療専門家による操作を必要とする製品及び処置などの、医学的状態の治療又は医学的に関連する審美的治療のための製品及び/又はそれに関連する方法を含み、例えば、ヘルスケア従事者による手術を必要とする製品及び処置と、医療診断の過程でヘルスケア従事者が使用する製品と、ヘルスケア従事者による治療を必要とする疾患又は他の医学的状態の治療に使用される製品と、処方薬で販売されている製品と、美容/整形外科医、皮膚科医、一般的な医師、医療用スパスタッフ、及び製薬会社の活動と、である。
【0028】
図2は、年齢容姿シミュレーションを提供するための例示的なユーザインターフェース230を示す。図示するように、ユーザインターフェース230は、年齢予測器オプション232、年齢シミュレータオプション234、製品オプション236、及び治療オプション238を含んでもよい。年齢予測器オプション232の選択に応じて、モデルは、より詳細に記載するように、年齢容姿予測を提供するように構成され得る。年齢シミュレータオプション234の選択に応じて、個人のエイジングをシミュレーションするための1つ以上のユーザインターフェースが提供され得る。製品オプション236の選択に応じて、個人用の1つ以上の製品がユーザに推奨され得る。治療オプション238の選択に応じて、個人用の1つ以上の治療がユーザに推奨され得る。いくつかの例では、ユーザインターフェース230は、民族性予測器オプション(図示せず)を含んでもよく、これにより、ユーザは、民族的容姿予測を選択することができる。
【0029】
本明細書に記載する方法は、個人の画像を捕捉するステップと、個人の年齢シミュレーションを提供するステップと、ユーザと相互作用するステップと、を含み得ることを理解されたい。したがって、個人は、画像が捕捉され、かつ/又はエイジングシミュレーションが実行される任意の人物を含み得る。ユーザは、ユーザコンピューティング装置102の任意のユーザを含んでもよい。いくつかの例では、個人及びユーザは同一人物であるが、必ずしもそうである必要はない。
【0030】
図3は、年齢容姿シミュレーションのための個人の画像を表示するための例示的なユーザインターフェース330を示す。図示するように、ユーザは、ユーザインターフェース330に表示され得る個人の画像を捕捉及び/又は受信することができる。画像使用オプション332は、年齢シミュレーション、年齢予測、及び/又は民族性予測のための画像を利用するために提供され得る。画像は、画像捕捉装置106(
図1)を介して捕捉されてもよく、かつ/又は電子通信などを介してダウンロードされ、受信されてもよい。
【0031】
いくつかの例では、画像は、個人の顔の3D画像として構成されてもよい。例えば、個人の画像は、3次元システム(ユーザコンピューティング装置102の一部であってもなくてもよい)で捕捉されてもよい。ユーザコンピューティング装置102、リモートコンピューティング装置104及び/又は他の装置は、必要に応じて、捕捉された画像の前処理を実行してもよい。2D画像又は3D画像の前処理は、捕捉された画像から外部物体を除去することと、顔の特徴が予め決められたモデルと整合するように画像の向きを変えることと、画像の顔の特徴をランドマークすることと、ランドマークを複数の個人のための実質的に一致した位置に調整することと、を含んでもよい。
【0032】
いくつかの例では、例えば、3次元画像からの1つ以上のランドマークを正面図及び/又は側面図の2次元に投影することによって、個人の3D画像を2次元表現に変換することができる。画像が2D画像に変換される(又はそれとして捕捉されると)、かつ/又は他の方法で前処理されると、画像を、顔の1つ以上の領域内のシワ領域及び他の年齢特徴について解析することができる。例えば、顔の眼窩周囲領域のシワを決定し、サイズに応じて分類することができる。画像はまた、画像の標準及び/又は交差偏光バージョンでの可視的なシミなどの他の年齢特徴についても解析することができる。同様に、他の特徴(細孔、肌合い/色、にきび、酒さなど)を、平行偏光又は他の撮像モダリティを使用して検出することができる。
【0033】
図4は、民族性オプション432、性別オプション434、及び現在の年齢オプション436を含む例示的なユーザインターフェース430を示す。より少ない又はより多くの基準がユーザにより入力されてもよいことを理解されたい。民族性オプション432の選択に応じて、ユーザは個人の民族性を入力することができる。いくつかの例では、インターフェース430は、ユーザに様々な別々の民族群の割合として民族性を入力させることができる。この場合、各民族群について統計的エイジングモデルによって生成される予想される変化(以下に説明する形状、色、及び/又は肌合い)は、入力した民族性に比例する加重平均を使用して合成されることになる。次いで、この多民族の予想される変化を入力画像のシミュレーションに使用することができる。性別オプション434の選択に応じて、ユーザは個人の性別を入力することができる。現在の年齢オプション436の選択に応じて、ユーザは個人の現在の年齢を入力することができる。いくつかの例では、ユーザ入力のための1つ以上のオプションは、過去のユーザアクション、画像解析などからシステムによって自動的に決定されてもよい。
【0034】
図5は、年齢予測及び年齢容姿予測/シミュレーションを提供するための例示的なユーザインターフェース530を示す。図示するように、ユーザインターフェース530は、個人のシミュレーションエイジング/ディエイジングを提供することができる。具体的には、リモートコンピューティング装置104及び/又はユーザコンピューティング装置102によって実行され得る、統計的民族モデル(例えば、統計的民族形状モデル、統計的民族肌合いモデル、及び/又は統計的民族色モデル)を使用して、個人の画像をエイジング及び/又はディエイジングすることができる。
【0035】
ユーザインターフェース530は、製品オプション532、治療オプション534、及び/又はホームオプション536を含むことができる。製品オプション532の選択に応じて、予想されるエイジングの変化を治療するために1つ以上の製品が提供され得る。治療オプション534の選択に応じて、1つ以上の治療計画が提供され得る。ホームオプション536の選択に応じて、インターフェースは、ユーザインターフェース230に戻り、新たな捕捉及び解析を開始することができる。
【0036】
ユーザインターフェース530はまた、画像の解析に基づいて個人の予測年齢又は見かけ年齢を表示してもよい。例えば、対応する左右のランドマーク(眼、耳、頬など)は、画像上の中心縦軸を中心として平均され得る(この例では、個人が実質的な顔面対称性を有すると仮定されている)。この例を続けると、個人の見かけ年齢を決定するために、シワ及びシミなどの年齢特徴、顔の特徴間の距離、距離に関連する比率などを決定及び収集することができる。いくつかの例では、ランドマークの各組の点間の垂直距離及び/又は水平距離を測定することができ、距離の間の比率を計算することができる。個人の選択された年齢特徴、比率、距離及び民族性に基づいて、リモートコンピューティング装置104及び/又はユーザコンピューティング装置102は、見かけ年齢を決定することができる。
【0037】
人々はエイジングにより、顔に対する形状変化を受け、年齢特徴を作成し、そのうちの少なくとも一部は、その民族性に固有である。例えば、顔の特徴(眼、頬、及び耳など)間の距離、顔の特徴の大きさなどは、個人の民族性に照らして個人の年齢を示す場合がある。比率及び距離を、複数の様々な年齢の当該民族性の平均的な人と比較することによって、リモートコンピューティング装置104及び/又はユーザコンピューティング装置102は、見かけ年齢を決定することができる。また、検出した年齢特徴を利用して見かけ年齢を更に決定してもよい。シミ解析スコア、シワ解析スコア、ランドマーク距離、ランドマーク比、及び絶対ランドマーク座標を組み合わせて、1つ以上の年齢予測/シミュレーションモデル(例えば、形状及び肌合い/色モデル)で使用される個人の顔を表す完全な特徴セットを形成することができる。各特徴は、例えば、民族母集団におけるその最大値と最小値に基づいて、例えば[0、1]の間で正規化されてもよい。
【0038】
好適な年齢予測モデルを構築するには、モデルへの特徴入力の数を減らしてモデルを簡略化し、かつ/又は過剰適合を回避してもよい。いくつかの例では、全ての可能なシワスコアから、年齢に対して1つの最も相関の高いシワ特徴のみを保持してもよい。また、所定の閾値未満の相関を有する任意の特徴を取り除いてもよい。いくつかの例では、閾値は約0.5になるように選択されてもよい。いくつかの例では、1つ以上の民族群は、アフリカ民族群に対して約0.4といった、異なる閾値を有してもよい。更に、残りの特徴を、相関ベースの特徴選択(CFS:Correlation-based Feature Selection)アルゴリズムに入力し、年齢と相関が高く、互いに相関しない特徴を見出すことができる。これらのステップは、依然として年齢と良好な相関性を維持しつつ、民族群に応じて、8又は9個まで特徴数を減らす。最適に選択されたサブセットの特徴を線形回帰分類器に入力し、次の形態などの年齢の線形予測モデルを開発することができる。
【0039】
【数1】
式中nはモデル内の特徴数であり、w
i及びf
iはそれぞれi番目の特徴に対するモデル重み及び特徴値であり、cは定数である。任意の新しい個人(すなわち、これまでモデルの一部ではなかった誰か)の年齢を予測するには、関連するサブセットの特徴を計算し、次いで、上記の等式に入力して予測年齢を計算してもよい。
【0040】
本明細書における予測モデルは、単純線形回帰モデルのみに限定される必要はなく、多項式モデル、他の非線形モデル(平滑化スプライン、多変量適応回帰スプライン(MARS)など)、ニューラルネットワークなどの年齢の範囲にわたって特徴の軌跡をより適切に表現する一層高度なモデルであってもよい。同様に、当該個人の民族性を決定するために、同様の測定及び予測モデルを作製することができ、それにより、単一の民族群予測又は多民族群のいくつかの組み合わせのいずれかとなってもよい。
【0041】
図6は、捕捉された画像内に検出された顔のランドマークをマッピングし、個人の顔の特徴の予測された軌跡を提供するための例示的なインターフェース630を示す。
図6に示す例では、矢印は個人がエイジングにつれて顔のランドマークの予想される移動を示す。各矢印の方向及び大きさは、同じ民族性の他の個人の母集団の統計解析に基づいて、民族形状モデルから決定され得る。一例として、個人の下顎領域に対応する矢印632は、個人の下顎領域の予想される経時的な移動を示す。この例では、矢印632の尾部は第1の年齢における下顎領域の位置を示し、矢印632の頭部は同じ年齢及び民族性の平均的な人の形状エイジングモデルに基づいて、下顎領域の所定年数後の予測される場所を示す。同様に、矢印634及び矢印636は、モデルによって予測される、個人の予想される顎の輪郭の経時的な移動を示す。この例では、矢印640及び矢印642は、モデルによって予測される、個人の耳の予想される移動を示す。矢印638は、モデルによって予測される、個人の額のランドマークの予測された動きを示す。
【0042】
矢印632、634、636、640及び642は、年齢によりこれらの顔の特徴の位置が変化することが予想される様々な顔のランドマークに対応することを理解されたい。矢印は予想される移動の大きさ及び方向を示す。したがって、例えば額の矢印638は比較的短く見えるのは、年齢が、示された民族性モデルに対して顔の当該部分に劇的に影響を及ぼすと予想されないためである。
【0043】
リモートコンピューティング装置104は、顔の特徴間の距離、比、及び/又は個人の顔の特徴の位置を比較し、当該データをその民族性の分布と比較することができる。この比較に基づいて、個人の見かけ年齢及び/又は民族性を決定することができる。また、リモートコンピューティング装置104は、統計的民族形状、肌合い及び/又は色モデルを使用して、当該民族性の平均的な人の特徴と実質的に一致するように、個人の顔の形状を変更する(及び本明細書に記載する他の調整を行う)ことによって、画像を所望のシミュレーションされた年齢に変更することができる。
【0044】
3D及び/又は2D空間内の個人間の共通点を特定する顔のランドマークを、例えば、画像上の適切な位置を選択することによって、手動で捕捉された画像上に配置することができる。追加的に又は代替的に、顔のランドマークは、ASM(Active Shape Models)、CLM(Constrained Local Models)、カスケード分類器、テンプレートマッチングなどの既知の方法によって自動的に検出されてもよい。自動的に検出されたランドマークは、ユーザがランドマークをそれらの所望の位置に相互能動的に移動させることをできるインターフェースを介して、精度のために更に手動で調整されてもよい。
【0045】
図6のインターフェース630(並びに、
図7〜10の、それぞれインターフェース730、830、930及び/又は1030)がユーザに提供されても、提供されなくてもよいことを理解されたい。いくつかの例では、これらのインターフェースは、メンテナンス及び/又はトラブルシューティングのための管理者にのみ提供されてもよい。いくつかの例では、インターフェース630、730、830、930、及び/又は1030は、ユーザがアクセス可能でなくてもよい。このため、これらの管理者インターフェースは、記載する機能を提供するために利用され得るプロセスを示すために、本明細書で提供される。
【0046】
図7は、年齢容姿シミュレーションモデルに基づいて顔の特徴の形状変化を適用するための例示的なインターフェース730を示す。図示するように、インターフェース730は、所望のシミュレーションされた年齢及び統計的民族形状モデルに基づいて、個人の画像の描写に形状の修正を行うことができる。具体的には、
図6に示す例示的なランドマーク配置の変更を利用すると、
図6の画像は
図7の結果を生成するように修正され得る。一例として、インターフェース730内の修正された(エイジングされた)画像は、口元が広くなり、目が垂れ下がり、かつ鼻が広くなり、その範囲はモデルによって決定される。
【0047】
いくつかの例では、形状モデル、色モデル、及び肌合いモデルなどの複数のモデルを作成することができる。いくつかの例では、形状モデルは、ランドマーク点が年齢に応じた移動の仕方を表すことができ、それは、体重増加、肌又は他の顔の特徴など弛みのような変化を表すものである。いくつかの例では、色モデルは、各画素の強度値の年齢に応じた平均的な変化の仕方を表すことができ、それは、眼の下の黒い円、全体的な色素沈着変化、眼の色変化などの影響を表すものである。いくつかの例では、肌合いモデルは、各画素の強度値が、シワ及び微細線、高色素及び低色素のシミ、並びに日光損傷などの、肌の比較的微細な肌合いの細部に関して各画素の強度値の変化の仕方を表すことができる。形状、色及び肌合いモデルは、所定の年齢に対して、予想されるランドマーク位置及び画素値をそれぞれ戻す。いくつかの例では、捕捉された画像が3D画像である場合のように、これらの形状、色及び肌合いモデルは、3Dの変化を表し、例えば、3D形状モデルは、顔形状又はトポロジーの3Dの変化がどのように生じるかを示すことができる。3D色又は肌合いモデルは、3D三角形メッシュ内の各三角形に対する色又は肌合いがどのように変化するかを示すことができる。
【0048】
いくつかの例では、形状モデルは、対称的に平均化され、GPA(Generalized Procrustes Analysis)を介して整合されたランドマーク点上で線形回帰によって構築され得る。ランドマークは、個人間の回転及び/又はシフトを考慮するように、民族群母集団にわたって整合され得る。いくつかの例では、平均垂直眼座標が個人とモデルとの間で共通となるように眼の垂直位置に基づいて画像を更に整合してもよい。額の上部又は首の底部などの他のランドマークを検出して、追加のランドマークを母集団及び画像に追加してもよい。各ランドマークX及びY座標について、線形回帰直線を、独立変数を次の形式で年齢と適合することができる。
P=M
sh*年齢+B
sh
式中pは所与の年齢における予測される点を表し、M
sh及びB
shは回帰モデル重み及び係数である。もちろん、この形状モデルは、線形回帰モデルに限定される必要はなく、多項式モデル、平滑化スプライン、MARS、ニューラルネットワークなどの多くの他の線形及び/又は非線形予測モデルで実装することができる。更にまた、3D画像捕捉の場合、この形状モデルは、3D空間、すなわちX座標、Y座標、及びZ座標におけるランドマーク座標を使用して構築されてもよい。
【0049】
いくつかの例では、色モデルは、画像画素色値に線形回帰を実行することによって構築されてもよい。しかし、モデルを構築するために使用される母集団画像を整合することができる。これは、母集団の平均顔を決定することを含む。GPA整合ランドマークは、母集団の平均ランドマーク位置を生成するために共に平均化されてもよい。次いで、個人の画像ごとに、ランドマーク位置をアンカーとして使用し、それらを元の位置から母集団平均の位置まで移動させることによって、薄板スプライン(TPS)のワーピングを使用して画像を歪ませることができる。TPSワーピングは、中間点をアンカーに補間するために放射基底関数を使用する非剛性変換技法であり、これは次に画素色値にマッピングされる。全ての個人の全ての画像を平均顔形状に歪ませると、画素を整合できるように、各画素の線形回帰モデルを計算することができる。この肌合い回帰モデルは、以下の形式を有し得る。
I=M
tx*年齢+B
tx
画像I及び回帰パラメータM
tx及びB
txは、3チャネルRGB画像(幅×高さ×3)の大きさに等しいサイズの行列である。この色モデルは、所与の年齢に対する顔の画像を構成する画素値を予測する。
【0050】
新しい画像のエイジング又はディエイジングをシミュレーションするには、形状及び色モデルの両方を現実感のために適用することができる。色モデルは、母集団の平均ランドマーク位置、すなわち「平均顔形状」に対して構築されていることを理解されたい。したがって、色モデルから予測される画像を、母集団平均ランドマーク点から、エイジング/ディエイジングした個人の所望のランドマーク点まで歪ませることができる。
【0051】
形状モデルを適用する1つの方法は、所望の年齢における予想されるランドマーク座標と、個人の実際の年齢における予想されるランドマーク座標との間のデルタを(共に形状モデルに従って)計算し、次いでこのデルタを個人の実際のランドマーク座標に追加し、それによって、所望の年齢における個人の予測されるランドマーク座標を生成することである。また、TPSは、実際の座標を予測座標の位置に移動させることによって、個人の画像を歪ませるように使用することができる。理解されるように、TPSだけでなく、画像ワーピングの他の方法を使用してもよく、この他の方法としては、アフィン又は透視変換、弾性変形、又は他のパラメトリック若しくはノンパラメトリック方法が挙げられるが、これらに限定されない。
【0052】
同様に、デルタは、所望の年齢における予想される色と個人の実際の年齢における予想される色との間で色モデルを使用して計算することができる。このデルタは、同様に、予測画像を生成するために画像に追加することができる。デルタの追加前に、デルタ画像を、形状モデルからの個人の画像の歪みと整列するように予測されるランドマーク点まで歪ませなければならないことを理解されたい。
【0053】
図8は、年齢容姿シミュレーションのために、捕捉された画像に適用される色モデルを閲覧するための例示的なインターフェース830を示す。
図8に示すように、インターフェース830は、所望のシミュレーションされた年齢に対する決定された民族性の平均的な人の平均的な色を表してもよい。したがって、更なる修正のために、色のマッピングを
図7の画像に適用することができる。
【0054】
図9は、年齢容姿シミュレーションのために、画像への色変化を閲覧するための例示的なインターフェース930を示す。図示するように、
図8の色マップを
図7の画像に適用し、顔の特徴の形状変化と顔の色変化の両方が組み込まれた更なる修正画像を提供することができる。上記したように、画像内の画素を、平均的な人の画像内の画素と比較することができる。画素の比較に基づいて、画像内の画素を、
図8の画像の少なくとも一部と実質的に一致するように変更することができる。一例として、いくつかの実施形態は、形状変化及び/又は所定のランドマークエリアを経験するエリアなどの、対象エリアの色を比較するだけでよい。
【0055】
いくつかの例では、本明細書におけるエイジング又はディエイジングシミュレーションは、ウェーブレットドメイン内でより高度な肌合いモデルを介して改善し、色モデル方法で可能である肌合い特徴を超えて、肌合い特徴を強化することができる。例えば、個人の画像を歪ませて、平滑化ウェーブレットのピラミッドに分解してもよい。次いで、各ウェーブレットピラミッドレベルで複数の画素の集団にわたって線形回帰を実行して、個人の年齢に対するウェーブレット強度を予測するようにモデルを構築することができる。所望のシミュレーションされた年齢に対するウェーブレットピラミッドは、ウェーブレットピラミッド回帰モデルを使用して予測することができる。所望のシミュレーションされた年齢の肌合いは、所望のシミュレーションされた年齢に対する予測されるウェーブレットを利用して強化することができる。
【0056】
元の年齢と所望のシミュレーションされた年齢との間の予想されるデルタ形状の変化は、形状回帰モデルを使用して見出すことができる。このデルタは、画像内の個人の顔の実際の形状に追加されて、個人のエイジング後の形状を見出すことができる。画像から修正された個人の画像及び他の画像を、エイジング後の形状の画像と実質的に一致するように歪ませることができる。同様に、元の年齢と所望のシミュレーションされた年齢との間の色差を、歪ませた画像に追加して、色デルタでエイジング後の画像を生成することができる。色デルタ画像の肌合いは、予測されるウェーブレットのピラミッドを使用して強化することができる。
【0057】
図10は、年齢容姿シミュレーションのためにウェーブレットドメイン内に複数のマルチレベルのモデル肌合いを提供するための例示的なインターフェース1030を示す。
図10に示すように、インターフェース1030は、画像1032,1034,1036に肌合いの変更を付与して、様々な年齢における特定の民族性の平均的な人の変化を示すように構成されてもよい。この特徴を利用して、シワと他の年齢特徴をシミュレーションしてもよい。
【0058】
図11は、年齢容姿シミュレーションのために画像に肌合いの変更をするための例示的なユーザインターフェース1130を示す。
図2の年齢シミュレータオプション234の選択に応じて、ユーザインターフェース1130が提供され得る。図示するように、ユーザインターフェース1130はユーザに提示されてもよく、所定の将来の年齢における個人のシミュレーションされた画像を提供し得る。ユーザインターフェース1130に提供される画像は、
図9の画像に肌合い変更(並びに、形状の変更及び/又は色の変更)を適用した結果であってもよい。ユーザインターフェース1130は、製品オプション1132及び/又は治療オプション1134を含んでもよい。以下により詳細に記載するように、製品オプション1132の選択に応じて、予想されるエイジング変化を治療するために1つ以上の製品が推奨され得る。治療オプション1134の選択に応じて、1つ以上の治療計画が推奨され得る。
【0059】
図12は、エイジングする肌の容姿の改善に役立つ製品を購入するための例示的なユーザインターフェース1230を示す。
図11の製品オプション1132(及び/又は
図2の製品オプション236)の選択に応じて、ユーザインターフェース1230が提供され得る。民族性、現在の年齢容姿、予想されるエイジング及び/又は他の基準に基づいて、1つ以上の製品がユーザに推奨されてもよい。また、推奨される製品のうち1つ以上を購入するための購入オプション1232、1234、1236も提供される。いくつかの例では、ユーザインターフェース1230は、推奨される製品の全てを単一選択(例えば、「全ての購入」オプション)で購入するオプションを含んでもよい。
【0060】
図13は、予測されたエイジングの影響に対抗するために、医療処置のための製品又は提案の推奨される適用などの治療を提供するための例示的なユーザインターフェース1330を示す。
図11の治療オプション1134(及び/又は
図2の治療オプション238)の選択に応じて、ユーザインターフェース1330が提供され得る。個人の実際の年齢、年齢の進行及び/又は他の要因に基づいて、1つ以上の治療をユーザに推奨することができる。また、追跡進捗オプション1332、シミュレーション治療オプション1334及びホームオプション1336も提供される。追跡進行オプション1332の選択に応じて、ユーザは、個人の追加画像を捕捉し、経時的な年齢特徴及び年齢容姿の進行を追跡することができる。これにより、ユーザに治療の効果を示すことができる。シミュレーション治療オプション1334の選択に応じて、ユーザコンピューティング装置102は、個人への選択された治療を経時的に使用した結果をシミュレーションすることができる。いくつかの例では、これは、例えば、臨床試験の文脈内の製品又は処置などの、選択された治療(単数又は複数)を使用した、あるいはその治療(単数又は複数)が提供された、個人のみの母集団を使用して、特定の形状、色、及び/又は肌合いエイジングモデルを構築することによって実施されてもよい。次いで、治療の効果を示す年齢シミュレーションされた画像を、これらの治療エイジングモデルを使用して作成することができる。治療を使用しない場合の年齢シミュレーションされた画像も、標準母集団モデルを使用して作成してもよい。これらの2つの画像は、治療の有無によるエイジングのシミュレーションを見るために、ユーザに比較されてもよい。別の例では、1組の形状、色及び/又は肌合いモデルが、年齢に対する更なる独立変数として含まれる治療期間(又は同様の製品使用頻度測定)で構築されてもよい。このようにして、モデルは、年齢及び治療使用法に関する視覚的変化を本質的に表す。治療の有無により、又は更に治療レベルを変え、このようなモデルを使用して、ユーザによる比較のために、シミュレーションされた画像を作成してもよい。
【0061】
本明細書におけるシステム及び方法は、内因性及び外因性エイジング/ディエイジングをシミュレーションするために利用される場合があることを理解されたい。例えば、本システム及びモデルは、喫煙、体重増加、体重減少などの特定のユーザアクションに関連する外因性エイジング効果をシミュレーションするために利用されてもよい。エイジング及び/又はディエイジングシミュレーションは、所定の範囲内で複数年間適用されると、結果として得られる画像のコレクション(例えば、個人の元の捕捉画像、第1の所望のシミュレーションされた年齢を表す第1の変更画像、第2の所望のシミュレーションされた年齢を表す第2の変更画像など)をアニメーションに組み合わせることができる。これは、個人のエイジング及び/又はディエイジングの予測を示すためのスライドショー又はビデオとして利用することができる。複数の年齢を通じた滑らかなアニメーションのために、本明細書における統計的民族モデルに従って複数の中間の年を生成することが望ましい場合がある。本システム及び方法は、形状、色、及び肌合いの滑らかで連続的なモデルを開発し、これにより、いかなる経年変化の解明が所望されても(すなわち、ビデオアニメーションの後続のフレーム間の年齢デルタ)、開始年齢から任意のかつ全ての中間年齢を通って最終年齢まで個人を円滑にエイジングさせる/ディエイジングさせる連続的なシミュレーションの作成を可能にする。
【0062】
また、経年変化された肌合いは、滑らかな連続的肌合いモデルを用いずに適用され得ることも理解されたい。例えば、形状モデルを使用して、元の年齢と所望のシミュレーションされた年齢との間の予測されるデルタを見出すことができる。これを個人の顔の本物の形状に追加して、目標の顔の形状を見出すことができる。例示的な標的となる個人が選択されてもよく、その年齢特徴が抽出され、ソースの個人に追加される。標的となる個人の高周波成分を抽出してもよい。また、これらの構成要素を、目標形状に歪ませ、歪んだ画像に適用し、経年変化したシミュレーションされた画像を生成することができる。
【0063】
図14は、例示的な年齢容姿シミュレーションのフローチャートを示す。ブロック1450に示すように、個人の顔を含む個人の画像を受信することができる。ブロック1452では、個人の民族性を決定することができる。ブロック1454では、個人の年齢を決定することができる。理解されるように、年齢、民族性、及び/又は他の特徴を決定することは、画像からデータを処理して年齢(又は「見かけ年齢」)又は他の特徴を推定することを含んでもよい。いくつかの例では、年齢、民族性、及び/又は他の特徴を決定することは、ユーザから個人の実際の年齢を受信するなど、対応するデータを特定するためユーザから入力を受信することを含んでもよい。ブロック1456では、ユーザ入力を介して所望のシミュレーションされた年齢を受信するなどによって、個人の所望のシミュレーションされた年齢を決定することができる。ブロック1458では、ブロック1450からの個人の画像を変更することによって個人の所望のシミュレーションされた年齢を表すように変更画像を作成することができる。画像を変更することは、顔の形状を変更すること、顔の色を変更すること、及び顔の肌合いを変更すること、のうちの少なくとも1つを含んでもよい。ブロック1460では、変更画像が、表示するためにユーザに提供されてもよい。
【0064】
図15は、年齢容姿シミュレーションのためのリモートコンピューティング装置104を示す。図示するように、リモートコンピューティング装置104は、プロセッサ1530、入力/出力ハードウェア1532、ネットワークインターフェースハードウェア1534、データストレージ構成要素1536(それはユーザデータ1538a、エイジングデータ1538b、及び/又は他のデータを格納する)、及びメモリ構成要素140を含む。メモリ構成要素140は、揮発性及び/又は不揮発性メモリ等として構成されてもよく、そのため、それは、ランダムアクセスメモリ(SRAM、DRAM、及び/又は他の種類のRAM)、フラッシュメモリ、セキュアデジタル(SD)メモリ、レジスタ、コンパクトディスク(CD)、デジタル多用途ディスク(DVD)、及び/又は他の種類の非一時的コンピュータ読み取り可能媒体を含んでもよい。特定の実施形態に応じて、これらの非一時的コンピュータ読み取り可能媒体は、リモートコンピューティング装置104内部、及び/又はリモートコンピューティング装置104の外部に存在してもよい。
【0065】
メモリ構成要素140は、動作ロジック1542、年齢シミュレーションロジック144a、インターフェースロジック144b、及び民族エイジングモデルロジック144cを記憶することができる。年齢シミュレーションロジック144a、インターフェースロジック144b及び民族エイジングモデルロジック144cは、それぞれ、複数の異なるロジックの断片を含み、ロジックの断片のそれぞれは、一例として、コンピュータプログラム、ファームウェア、及び/又はハードウェアとして具体化され得る。ローカルインターフェース1546は、
図15にも含まれ、リモートコンピューティング装置104の構成要素間の通信を促進するための、バス又は他の通信インターフェースとして実装されてもよい。
【0066】
プロセッサ1530は、(データストレージ構成要素1536及び/又はメモリ構成要素140等から)命令を受信及び実行するように動作可能な、任意の処理構成要素を含んでもよい。入出力ハードウェア1532は、マイクロフォン、スピーカ、ディスプレイ、及び/又は他のハードウェアを含んでもよく、かつ/又はそれらとインターフェースするように構成されてもよい。
【0067】
ネットワークインターフェースハードウェア1534は、アンテナ、モデム、LANポート、ワイヤレスフィディリティ(Wi−Fi)カード、WiMaxカード、Bluetoothチップ、USBカード、移動通信ハードウェア、並びに/又は他のネットワーク及び/若しくは装置と通信するための他のハードウェアを含む、任意の有線又は無線ネットワークハードウェアを含んでもよく、かつ/又はそれらと通信するように構成されてもよい。この接続により、リモートコンピューティング装置104と、ユーザコンピューティング装置102のような他のコンピューティング装置との間の通信を促進することができる。
【0068】
動作ロジック1542は、リモートコンピューティング装置104の構成要素を管理するためのオペレーティングシステム及び/又は他のソフトウェアを含んでもよい。また上記にも論じたように、年齢シミュレーションロジック144aは、メモリ構成要素140内に存在してもよく、プロセッサ1530に、個人の年齢容姿及び/又は年齢進行シミュレーションを決定するように構成されてもよい。同様に、インターフェースロジック144bは、本明細書に記載するように、ユーザインターフェースを提供するために利用されてもよい。民族エイジングモデルロジック144cは、本明細書に記載する民族エイジングモデルのうちの1つ以上を提供するために利用されてもよい。
【0069】
図15の構成要素は、リモートコンピューティング装置104内部に存在するものとして図示されているが、これは一例に過ぎないことを理解されたい。いくつかの実施形態では、構成要素のうちの1つ以上がリモートコンピューティング装置104の外部に存在してもよい。リモートコンピューティング装置104は単一の装置として図示されているが、これもまた単なる一例に過ぎないことも理解されたい。いくつかの例では、年齢シミュレーションロジック144a、インターフェースロジック144b、及び民族エイジングモデルロジック144cは、異なるコンピューティング装置上に存在してもよい。一例として、本明細書に記載する機能及び/又は構成要素のうちの1つ以上が、リモートコンピューティング装置104及び/又はユーザコンピューティング装置102によって提供されてもよく、ユーザコンピューティング装置は、ネットワーク100を介してリモートコンピューティング装置104に連結され得る。
【0070】
また、リモートコンピューティング装置104は、年齢シミュレーションロジック144a、インターフェースロジック144b及び民族エイジングモデルロジック144cが別々のロジック的構成要素として図示されているが、これもまた一例に過ぎない。いくつかの実施形態では、単一のロジックの断片によって、リモートコンピューティング装置104に、記載する機能を提供させてもよい。
【0071】
いくつかの例では、本方法は、例えば、拡張又は仮想現実のヘッドセット(例えば、Microsoft(商標)HoloLens(商標)、Oculus Rift(商標)など)を用いて、拡張又は仮想現実体験を介して実施されてもよい。拡張又は仮想現実体験では、個人は、エイジング/ディエイジングシミュレーション後に、それら自体の仮想3Dモデルを閲覧及び相互作用することができる。例えば、個人の3D画像を捕捉することができ、次いで、本明細書における形状、色、及び/又は肌合いモデルを適用して、所望の年数だけエイジング又はディエイジングをシミュレーションすることができる。同様に、製品有効性モデルを別々に、あるいはエイジングシミュレーションと併せて適用してもよい。最後に、個人のシミュレーションされた3D画像を、個人の3D拡張又は仮想空間に投影して、個人が閲覧及び/又は相互作用することができる。
【0072】
同様の方法で、エイジング/ディエイジングシミュレーションを、個人のビデオフィードにリアルタイムで適用することができ、これはその後、鏡状の様式で個人に表示される。捕捉されたビデオは、個人の仮想3Dモデルを構成するために使用され、このモデルは次にシミュレーションされ、いくつかの表示様式で個人に投影される。このようにして、個人は動き回って、まるでミラーを見ているように、自身のシミュレーションされたバージョンを検査することができる。
【0073】
組み合わせ/実施例
A.消費者の年齢容姿シミュレーションのための方法であって、
(i)消費者の画像を受信するステップであって、画像は消費者の顔を含む、受信するステップと、
(ii)消費者の民族性を決定するステップと、
(iii)消費者の見かけ年齢を決定するステップと、
(iv)消費者の第1の所望のシミュレーションされた年齢を決定するステップと、
(v)消費者の第1のシミュレーションされた年齢を表すように画像を変更するステップであって、画像を変更するステップは、コンピューティング装置のメモリ構成要素に記憶されたエイジングモデルロジックを使用して、顔の形状、顔の色、及び顔の肌合いのうちの少なくとも1つを変更して、第1の変更画像を作成することを含む、変更するステップと、
(vi)インターフェース装置上に第1の変更画像を表示するステップと、を含むことを特徴とする方法。
【0074】
B.顔のランドマークを使用して、画像内の形状を決定するステップを更に含み、画像を変更するステップは、コンピューティング装置のメモリ構成要素に記憶された統計的民族形状モデルロジックを使用して、少なくとも1つの顔のランドマークの位置を変更することを含むことを特徴とするパラグラフAに記載の方法。
【0075】
C.顔のランドマークの位置を変更することは、消費者と同じ民族性の個人の母集団の統計解析に基づいて顔のランドマークの方向及び大きさのうちの少なくとも1つを変更することを含むことを特徴とするパラグラフBに記載の方法。
【0076】
D.画像内の肌合いを決定するステップを更に含み、第1の変更画像を作成することは、統計的な民族肌合いモデルを使用して、肌の動き、シワの存在、及びシワの範囲のうちの少なくとも1つを変更することを含むことを特徴とするパラグラフAないしCのいずれか1つに記載の方法。
【0077】
E.画像の色を決定するステップを更に含み、第1の変更画像を作成することは、統計的民族色モデルを使用して、顔の色、毛髪の色、眉の色、眼の色、眼の下の暗い円の暗色化、可視的なシミの存在、及び可視的なシミの範囲のうちの少なくとも1つを変更することを含むことを特徴とするパラグラフAないしDのいずれか1つに記載の方法。
【0078】
F.消費者の第2の所望のシミュレーションされた年齢を決定するステップと、統計的民族モデルを使用して、消費者の第2の所望のシミュレーションされた年齢を表す第2の変更画像を作成するステップと、第1及び第2の変更画像を使用して消費者のエイジング又はディエイジングを表すアニメーションを作成するステップと、を更に含むことを特徴とするパラグラフAないしEのいずれか1つに記載の方法。
【0079】
G.アニメーションは、形状、色及び/又は肌合いの変化を円滑に表す、第1及び第2の所望のシミュレーション年齢間の中間の年齢含むビデオとして提示されることを特徴とするパラグラフFに記載の方法。
【0080】
H.消費者の決定された年齢に影響を及ぼす消費者が受ける治療を決定するステップと、消費者が治療を受けた結果を表すように画像を変更するステップと、を更に含むことを特徴とするパラグラフAないしGのいずれか1つに記載の方法。
【0081】
I.民族性は複数の民族群の組み合わせ又は比率としてユーザによって指定され、統計的民族モデルはこの組み合わせ又は比率によって同様に組み合わされることを特徴とするパラグラフAないしHのいずれか1つに記載の方法。
【0082】
J.将来の予測精度を増加させるために、画像及び第1の変更画像を記憶するステップを更に含むことを特徴とするパラグラフAないしIのいずれか1つに記載の方法。
【0083】
K.拡張空間又は仮想現実空間においてリアルタイムでユーザのエイジング後のバージョンを、ユーザが観察し及びそれと相互作用することができるように、第1の変更画像は拡張現実体験又は仮想現実体験としてユーザに提供されることを特徴とするパラグラフAないしJのいずれか1つに記載の方法。
【0084】
L.消費者の見かけ年齢を決定するステップは、コンピューティング装置に記憶されたロジックを使用して、画像上の別の位置からの顔のランドマークの距離、及び画像上の別の位置からの顔のランドマークの距離に関連する比率、のうちの少なくとも1つを決定することと、距離又は比率を消費者と同じ民族性の人の平均と比較することと、を含むことを特徴とするパラグラフAないしKのいずれか1つに記載の方法。
【0085】
M.消費者の画像は、コンピューティング装置に連結された画像捕捉装置によって捕捉されることを特徴とするパラグラフAないしLのいずれか1つに記載の方法。
【0086】
N.コンピューティング装置、インターフェース装置、及び画像捕捉装置が、一体型装置の一部であることを特徴とするパラグラフMに記載の方法。
【0087】
O.画像は、外部オブジェクトを除去するように前処理されることを特徴とするパラグラフAないしNのいずれか1つに記載の方法。
【0088】
P.民族エイジングモデルロジックは、消費者と同じ性別の個人の統計解析に基づくことを特徴とするパラグラフAないしOのいずれか1つに記載の方法。
【0089】
Q.3次元画像を3次元画像の2元投影に変換して、消費者の画像を提供するステップを更に含むことを特徴とする請求項1に記載の方法。
【0090】
R.コンピューティング装置及びインターフェース装置は、互いから遠隔に位置することを特徴とするパラグラフAないしM又はOないしQのいずれか1つに記載の方法。
【0091】
本明細書における特定の実施例及び実施形態は、顔の特徴及びランドマークに関して説明したが、そのようなモデル及び技法はまた、肩、肘、手、指、膝、足などの身体の残りの部分全体にわたる他のランドマークまで拡張されてもよいことを理解されたい。このような方法では、いくつかの拡張又は仮想現実の実施形態で所望されるように、形状、色、及び/又は肌合いの変化を全身シミュレーションのために身体全体に適用することができる。
【0092】
本明細書に記載する全ての数値範囲は、より狭い範囲を含み、区切られた上下の範囲制限は、明示的に区切られていない更なる範囲を作る上で互換性がある。本明細書に記載する実施形態は、本明細書に記載の必須構成要素並びに任意成分を含み得る、それらから本質的になり得る、又はそれらからなり得る。本明細書及び添付の特許請求の範囲において使用される単数形「a」、「an」、及び「the」は、文脈が明らかに他の意味を示さない限り、複数形も含むものとする。
【0093】
本明細書にて開示された寸法及び値は、列挙された正確な数値に厳密に限定されるものとして理解されるべきではない。その代わりに、特に指示がない限り、このような寸法はそれぞれ、列挙された値とその値を囲む機能的に同等な範囲との両方を意味することが意図されている。例えば、「40mm」として開示される寸法は、「約40mm」を意味することが意図される。
【0094】
相互参照されるか又は関連する全ての特許又は特許出願、及び本願が優先権又はその利益を主張する任意の特許出願又は特許を含む、本明細書に引用される全ての文書は、明示的に除外されるか、又は別途制限されない限り、参照によりその全体が本明細書に組み込まれる。いかなる文献の引用も、本明細書中で開示又は特許請求される任意の発明に対する先行技術であるとはみなされず、あるいはそれを単独で又は他の任意の参考文献と組み合わせたときに、そのような任意の発明を教示、示唆、又は開示するとはみなされない。更に、本文書における用語の任意の意味又は定義が、参照することによって組み込まれた文書内の同じ用語の意味又は定義と矛盾する場合、本文書におけるその用語に与えられた意味又は定義が適用されるものとする。
【0095】
本発明の特定の実施形態を例示及び説明してきたが、本発明の趣旨及び範囲から逸脱することなく他の様々な変更及び修正を行うことができる点は当業者には明白であろう。したがって、本発明の範囲内に含まれるそのような全ての変更及び修正は、添付の特許請求の範囲にて網羅することを意図したものである。