特許第6985793号(P6985793)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ボーイング・カンパニーの特許一覧

<>
  • 特許6985793-可変分解能光レーダーシステム 図000002
  • 特許6985793-可変分解能光レーダーシステム 図000003
  • 特許6985793-可変分解能光レーダーシステム 図000004
  • 特許6985793-可変分解能光レーダーシステム 図000005
  • 特許6985793-可変分解能光レーダーシステム 図000006
  • 特許6985793-可変分解能光レーダーシステム 図000007
  • 特許6985793-可変分解能光レーダーシステム 図000008
  • 特許6985793-可変分解能光レーダーシステム 図000009
  • 特許6985793-可変分解能光レーダーシステム 図000010
  • 特許6985793-可変分解能光レーダーシステム 図000011
  • 特許6985793-可変分解能光レーダーシステム 図000012
  • 特許6985793-可変分解能光レーダーシステム 図000013
  • 特許6985793-可変分解能光レーダーシステム 図000014
  • 特許6985793-可変分解能光レーダーシステム 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6985793
(24)【登録日】2021年11月30日
(45)【発行日】2021年12月22日
(54)【発明の名称】可変分解能光レーダーシステム
(51)【国際特許分類】
   G01S 7/481 20060101AFI20211213BHJP
   G01S 17/42 20060101ALI20211213BHJP
   G01S 17/89 20200101ALI20211213BHJP
   G02B 26/10 20060101ALI20211213BHJP
【FI】
   G01S7/481 A
   G01S17/42
   G01S17/89
   G02B26/10 108
【請求項の数】15
【外国語出願】
【全頁数】28
(21)【出願番号】特願2016-248595(P2016-248595)
(22)【出願日】2016年12月22日
(65)【公開番号】特開2017-161500(P2017-161500A)
(43)【公開日】2017年9月14日
【審査請求日】2019年12月18日
(31)【優先権主張番号】14/982,416
(32)【優先日】2015年12月29日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】100086380
【弁理士】
【氏名又は名称】吉田 稔
(74)【代理人】
【識別番号】100103078
【弁理士】
【氏名又は名称】田中 達也
(74)【代理人】
【識別番号】100130650
【弁理士】
【氏名又は名称】鈴木 泰光
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100161274
【弁理士】
【氏名又は名称】土居 史明
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(74)【代理人】
【識別番号】100168099
【弁理士】
【氏名又は名称】鈴木 伸太郎
(72)【発明者】
【氏名】ダグラス アール.ジャングワース
(72)【発明者】
【氏名】アントン エム.ブッカート
【審査官】 藤田 都志行
(56)【参考文献】
【文献】 特開平08−261753(JP,A)
【文献】 国際公開第2015/098130(WO,A1)
【文献】 特開平05−113481(JP,A)
【文献】 米国特許出願公開第2009/0195790(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48− 7/51
G01S 17/00−17/95
G01C 3/06
G02B 26/10−26/12
(57)【特許請求の範囲】
【請求項1】
動作中に、レーザービームを出射する光源と、
前記レーザービームを対象領域へ誘導するとともに、前記対象領域の走査中、前記レーザービームの走査角を設定する走査システムと、
前記対象領域の走査中、前記レーザービームの発散度を設定する焦点システムと、を含む装置であって、
前記焦点システムは、
光軸上に設けられ、前記光軸に沿って前記レーザービームを通過させる第1レンズと、
前記光軸上で可動である第2レンズと、を含み、前記レーザービームは、前記第1レンズを通過した後に前記第2レンズを通過し、前記対象領域に誘導される前記レーザービームの発散度は、前記光軸に沿って前記第2レンズを動かすことにより変更されるものであり、
前記対象領域の走査中、前記走査角の変化量及び前記レーザービームの発散度の両方を変化させることにより、前記対象領域内での分解能が変化するようになっており、
前記走査システム及び前記焦点システムは、前記対象領域に対する1回の走査において、前記対象領域内における異なる部位を異なる分解能にて走査するともに、前記レーザービームの走査角の変化量及び発散度が減少すると前記対象領域内の中央部分における分解能が向上し、前記レーザービームの走査角の変化量及び発散度が増加すると前記対象領域内の周囲部分における分解能が低下するように構成されている、装置。
【請求項2】
前記走査システムは、前記対象領域内における部位に前記レーザービームを誘導し、前記装置は、さらに、
前記対象領域内の前記部位に誘導された前記レーザービームに対する応答を検出するディテクタを含み、前記対象領域内の前記部位までの距離は、前記応答を用いて特定される、請求項に記載の装置。
【請求項3】
前記第2レンズは、集束レンズ及び発散レンズから選択される、請求項1又は2に記載の装置。
【請求項4】
前記焦点システムは、
異なる部分において異なるレベルの発散度を有する発散レンズを含み、前記対象領域における部位に到達する前記レーザービームの発散度は、前記レーザービームが、前記発散レンズの異なる部分のうちのどの部分を通過するかに基づいて、設定される、請求項1〜のいずれかに記載の装置。
【請求項5】
前記走査システムは、所定数の軸を中心として可動な所定数のミラーを含む、請求項1〜のいずれかに記載の装置。
【請求項6】
前記走査システムは、軸を中心として回転可能なドーブプリズムを含む、請求項1〜のいずれかに記載の装置。
【請求項7】
前記レーザービームは、約10nmから約700nmの範囲から選択された波長を有する、請求項1〜のいずれかに記載の装置。
【請求項8】
前記光源、前記走査システム、及び前記焦点システムは、測定システムを形成し、前記装置は、
プラットフォームをさらに含み、前記測定システムは、前記プラットフォームと関連付けられており、前記プラットフォームは、可動式プラットフォーム、固定プラットフォー
ム、陸上ベースの構造体、水上ベースの構造体、宇宙ベースの構造体、移動ロボット、輸送機、自動運転車、航空機、無人航空機、水上艦、戦車、軍用人員運搬車、宇宙船、宇宙ステーション、携帯用デバイス、ウェアラブルデバイス、及び衛星のうちから選択された1つである、請求項1〜のいずれかに記載の装置。
【請求項9】
対象領域を走査するための方法であって、
光軸に沿ってレーザービームを、光軸上にある第1レンズに続いて第2レンズに通過させるとともに、前記光軸に沿って前記第2レンズを動かして、前記対象領域に誘導される前記レーザービームの発散度を変更することにより、前記対象領域の走査中に前記レーザービームの発散度を設定することと、
所与の走査角で、前記対象領域において互いに異なる部位に前記レーザービームを誘導することと、
前記レーザービームが前記互いに異なる部位に誘導される際、前記レーザービームの前記走査角を設定するにあたり、前記対象領域の走査中、前記発散度及び前記走査角の変化量の両方を変化させて、前記対象領域に対する分解能を変化させることと、
前記対象領域に対する1回の走査において、前記対象領域内における異なる部位を異なる分解能にて走査することと、を含み、前記レーザービームの走査角の変化量及び発散度が減少すると前記対象領域内の中央部分における分解能が向上し、前記レーザービームの走査角の変化量及び発散度が増加すると前記対象領域内の周囲部分における分解能が低下するようにした、方法。
【請求項10】
さらに、前記対象領域において前記互いに異なる部位に誘導された前記レーザービームに対する応答を検出することを含む、請求項に記載の方法。
【請求項11】
前記応答は、前記対象領域の画像を生成すること、前記対象領域における対象物までの距離を特定すること、前記対象領域における対象物を特定すること、又はプラットフォームの動きを制御すること、のうちから選択される所定数の工程を実行するために用いられる、請求項10に記載の方法。
【請求項12】
前記レーザービームは、所定数の軸を中心として可動な所定数のミラー、又は、ドーブプリズムのうちの少なくとも一方を含む走査システムにより前記対象領域に誘導される、請求項9〜11のいずかに記載の方法。
【請求項13】
前記対象領域の走査中、前記レーザービームの発散度を設定するに際して、
発散レンズの異なる部分を通るように前記レーザービームを誘導することにより、前記レーザービームが前記発散レンズのどの部分を通るかに基づいて前記レーザービームの発散度が変化するようにする、請求項9〜12のいずれかに記載の方法。
【請求項14】
実質的にコヒーレントな光ビームを出射する光源と、
前記光ビームを対象領域に誘導するとともに、前記光ビームの走査角を設定する走査システムと、
前記対象領域の走査中、前記光ビームの発散度を設定する焦点システムと、を含む測定システムであって、
前記焦点システムは、
光軸上に設けられ、前記光軸に沿って前記光ビームを通過させる第1レンズと、
前記光軸上で可動である第2レンズと、を含み、前記光ビームは、前記第1レンズを通過した後に前記第2レンズを通過し、前記対象領域に誘導される前記光ビームの発散度は、前記光軸に沿って前記第2レンズを動かすことにより変更されるものであり、
前記対象領域の走査中、前記走査角の変化量及び前記光ビームの発散度の両方を変化させることにより、前記対象領域内での分解能が変化するようになっており、
前記走査システム及び前記焦点システムは、前記対象領域に対する1回の走査において、前記対象領域内における異なる部位を異なる分解能にて走査するともに、前記光ビームの走査角の変化量及び発散度が減少すると前記対象領域内の中央部分における分解能が向上し、前記光ビームの走査角の変化量及び発散度が増加すると前記対象領域内の周囲部分における分解能が低下するように構成されている、測定システム。
【請求項15】
動作中に、レーザービームを出射する光源と、
前記レーザービームを対象領域へ誘導するとともに、前記対象領域の走査中、前記レーザービームの走査角を設定する走査システムと、
前記対象領域の走査中、前記レーザービームの発散度を設定する焦点システムと、を含む装置であって、
前記焦点システムは、
光軸上に設けられ、前記光軸に沿って前記レーザービームを通過させる第1レンズと、
前記光軸上で可動である第2レンズと、を含み、前記レーザービームは、前記第1レンズを通過した後に前記第2レンズを通過し、前記対象領域に誘導される前記レーザービームの発散度は、前記光軸に沿って前記第2レンズを動かすことにより変更されるものであり、
前記対象領域の走査中、前記走査角の変化量又は前記レーザービームの発散度のうちの少なくとも一方を変化させることにより、前記対象領域内での分解能が変化するようになっており、
前記走査システム及び前記焦点システムは、前記対象領域に対する1回の走査において、前記対象領域内における異なる部位を異なる分解能にて走査するともに、前記レーザービームの走査角の変化量及び発散度が減少すると分解能が向上し、前記レーザービームの走査角の変化量及び発散度が増加すると分解能が低下するように構成されており、
前記焦点システムは、
異なる部分において異なるレベルの発散度を有する発散レンズを含み、前記対象領域における部位に到達する前記レーザービームの発散度は、前記レーザービームが、前記発散レンズの異なる部分のうちのどの部分を通過するかに基づいて、設定される、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、測定システムに関し、特に、光を用いる測定システムに関する。より具体的には、本開示は、光レーダー(Lidar)システムを用いて測定情報を生成するレーダーシステムのための方法及び装置に関する。
【背景技術】
【0002】
Lidarは、対象物にレーザーを照射して、対象物の照射に対する応答を分析することにより距離を測定するセンシング技術である。「Lidar」は、頭字語ではなく、「laser(レーザー)」と「radar(レーダー)」とを組み合わせてなる混成語である。
【0003】
Lidarシステムは、多くの様々な用途に用いられる。例えば、Lidarシステムは、地震学、ポイントクラウド生成(point cloud generation)、マッピング、等高線マッピング(contour mapping)、画像生成、ナビゲーションなどの用途に用いられる。
【0004】
ナビゲーションに関しては、Lidarシステムは、ある環境において可動プラットフォームをナビゲートする際の障害物の検出及び回避に用いることができる。例えば、Lidarシステムは、障害物が存在する場所を特定するための情報である、環境のポイントクラウドを生成することができる。可動式プラットフォームは、例えば、ロボット、自動運転車、又は、他の種類のビークルである。
【0005】
現在用いられているLidarシステムは、レーザービームを用いて対象領域におけるパターンを生成するが、このレーザービームは、当該対象領域において実質的に均一なビーム発散度(beam divergence)を有する。すなわち、レーザービームは、Lidarシステムからの距離が同じであれば同じ直径を有する。
【0006】
しかしながら、これらのタイプのLidarシステムは、走査全体に亘って1つの分解能しか提供することができない。また、対象領域は、Lidarシステムのパルスレート及び出力により制限される場合がある。対象領域のサイズを大きくすると、分解能が低下してしまう。結果として、所望のサイズの対象領域に対して、所望の分解能を用いることができない可能性がある。
【0007】
したがって、上述した問題のうちの少なくともいくつかと、その他の考えられる問題を考慮にいれた方法及び装置を有することが望ましい。例えば、所望の分解能を用いて対象領域の情報を取得することについての技術的課題を克服する方法及び装置を有することが望ましい。
【発明の概要】
【0008】
本開示の実施形態においては、光源と、走査システムと、焦点システムとを含む装置が提供される。光源は、当該光源の動作中にレーザービームを出射する。走査システムは、レーザービームを対象領域へ誘導するとともに、対象領域の走査中、レーザービームの走査角を設定する。焦点システムは、対象領域の走査中、レーザービームの発散度を設定する。対象領域の走査中、走査角の変化量又はレーザービームの発散度のうちの少なくとも一方を変化させると、対象領域内での分解能が変化する。
【0009】
本開示のさらなる例示的な実施形態においては、対象領域を走査する方法が提供される。対象領域の走査中において、レーザービームの発散度が設定される。レーザービームは、ある走査角で、対象領域において互いに異なる部位に誘導される。レーザービームが互いに異なる部位に誘導される際、レーザービームの走査角が設定される。対象領域の走査中、発散度又は走査角の変化量のうちの少なくとも一方を変化させると、対象領域に対する分解能が変化する。
【0010】
本開示のさらなる例示的な実施形態においては、光源と、走査システムと、焦点システムとを含む測定システムが提供される。光源は、実質的にコヒーレントな光ビームを出射する。走査システムは、実質的にコヒーレントな光ビームを対象領域に誘導するとともに、実質的にコヒーレントな光ビームの走査角を設定する。焦点システムは、対象領域の走査中、実質的にコヒーレントな光ビームの発散度を調節する。対象領域の走査中、走査角の変化量又はコヒーレントな光ビームの発散度のうちの少なくとも一方を変化させると、対象領域内での分解能が変化する。
【0011】
上記特徴及び機能は、本開示の様々な実施形態において個別に達成可能であり、また、他の実施形態との組み合わせも可能である。この詳細については、以下の記載と図面から明らかになるであろう。
【図面の簡単な説明】
【0012】
例示的な実施形態に特有のものと考えられる新規な特徴は、添付の特許請求の範囲に記載されている。しかしながら、例示的な実施形態、並びに、好ましい使用形態、更にその目的及び特徴は、添付の図面と共に、以下に示す本開示の例示的な実施形態の詳細な説明を参照することにより最もよく理解されるであろう。
【0013】
図1】例示的な実施形態による、測定環境を示す図である。
図2】例示的な実施形態による、測定環境を示すブロック図である。
図3】例示的な実施形態による、焦点システムを示すブロック図である。
図4】例示的な実施形態による、走査システムを示すブロック図である。
図5】例示的な実施形態による測定システムを示す図である。
図6】例示的な実施形態による測定システムを示す図である。
図7】例示的な実施形態による測定システムを示す図である。
図8】例示的な実施形態による測定システムを示す図である。
図9】例示的な実施形態による、対象領域を走査するためのプロセスを示すフローチャートである。
図10】例示的な実施形態による、対象領域の走査から情報を生成するためのプロセスを示すフローチャートである。
図11】例示的な実施形態による、プラットフォームを操作するためのプロセスを示すフローチャートである。
図12】例示的な実施形態による、測定システムのコンポーネントを選択するためのプロセスを示すフローチャートである。
図13】例示的な実施形態による、測定システムのコンポーネントを選択するためのプロセスを示すフローチャートである。
図14】例示的な実施形態による、レンズについて所望の入射角度と出射角度との関係をプロットしたグラフである。
【発明を実施するための形態】
【0014】
例示的な実施形態においては、1つ又は複数の異なる事項が認識及び考慮されている。例えば、例示的な実施形態においては、用途によって、走査の対象領域の異なる部分に対して、異なる分解能が望まれることが認識及び考慮されている。
【0015】
例えば、ロボットなどの自律移動プラットフォームをナビゲートする場合、経路上におけるロボットの移動方向については高い分解能が望ましい一方で、経路の周辺については低い分解能が適切である。したがって、第1のLidarシステムを高い分解能で用いる一方で、第2のLidarシステムを低い分解能で用いてもよい。
【0016】
例示的な実施形態においては、分解能のために複数のLidarシステムが必要であり、この場合、1つのLidarシステムと比べて、電力の増大、コスト高、及び、複雑性の増大の可能性があることが認識及び考慮されている。例えば、例示的な実施形態においては、自律移動ロボットを用いる場合、電力は、節約すべき貴重な資源であることが認識及び考慮されている。自律移動ロボットは、バッテリシステムの形態の電源を含みうる。バッテリシステムを用いると、自律移動ロボットを操作するために使用可能な電力量が制限される。したがって、複数のLidarシステム、又は、毎分より多くのパルスを出射可能な1つのLidarシステムを用いることにより電力の消費が大きくなると、自律移動ロボットの動作時間が短くなってしまう。
【0017】
例示的な実施形態においては、さらに、フレームレートを変えずに、対象領域において異なる分解能を提供可能なLidarシステムを有するのが望ましいことが認識及び考慮されている。フレームレートとは、ある期間に行われる対象領域の走査回数である。例えば、フレームレートは、毎秒30フレーム、毎秒60フレーム、又は、これら以外のレートであってもよい。
【0018】
Lidarシステムのフレームレートは、当該Lidarシステムのレーザーがどれだけ速くパルスを生成できるかにより制限されうる。分解能が高くなると、より多くの部位が走査されるが、これは、同じフレームレートで対象領域を走査するには、同じ時間内により多くのパルスを出射する必要があるということを意味する。
【0019】
例示的な実施形態においては、いくつかの領域では低い分解能を用いる一方で、他の領域では高い分解能を用いることにより、高い分解能のみを用いて対象領域を走査する場合と比べて、少ないレーザー出射回数で対象領域を走査できることが認識及び考慮されている。さらに、例示的な実施形態においては、均一の分解能を用いた走査が、対象領域において物体を見落とす可能性があることも認識及び考慮されている。すなわち、レーザービームの発散によって、対象領域においてレーザーでカバーされる部位間に間隙が生じる場合には、均一な分解能では死角が生じることがある。したがって、例示的な実施形態においては、死角を減らすために、対象領域の異なる部分において分解能を異ならせることが望ましいことが認識及び考慮されている。
【0020】
したがって、例示的な実施形態では、対象領域の走査中、走査角の変化量又はレーザービームの発散度のうちの少なくともいずれか一方を変化させる方法及び装置が提供される。対象領域の走査により、フレームが得られる。
【0021】
本明細書において、「少なくとも1つの」という語句がアイテムのリストについて用いられる時は、リストアップされたアイテムの1つ又は複数の様々な組み合わせを使用してもよいということであり、リストのアイテムの1つだけを必要とする場合もあることを意味する。すなわち、「少なくとも1つの」とは、あらゆる組み合わせのアイテム及びあらゆる数のアイテムをリストから使用してもよいが、リスト上の全てのアイテムを必要とするわけではないということを意味する。アイテムとは、ある特定の対象、物、又はカテゴリーであってもよい。
【0022】
例えば、限定するものではないが、「アイテムA、アイテムB、又はアイテムCのうちの少なくとも1つ」は、アイテムA、アイテムAとアイテムB、又はアイテムBを含みうる。また、この例では、アイテムAとアイテムBとアイテムC、又は、アイテムBとアイテムCを含む場合もある。勿論、これらのアイテムのあらゆる組み合わせが存在する。いくつかの例において、「少なくとも1つ」は、例えば、限定するものではないが、2個のアイテムAと、1個のアイテムBと、10個のアイテムC;4個のアイテムBと7個のアイテムC;又は、他の適切な組み合わせであってもよい。
【0023】
例示的な実施形態においては、異なる分解能を用いて対象領域を走査する方法及び装置が提供される。例えば、同一の走査において、対象領域内の1つ又は複数の走査部位では高い分解能が用いられ、同対象領域内の他の部位では低い分解能が用いられる。一例において、測定システムは、コヒーレントな光源と、走査システムと、焦点システムとを含む。
【0024】
走査システムは、レーザービームを対象領域へ誘導するとともに、対象領域の走査中、レーザービームの走査角を設定する。焦点システムは、対象領域の走査中、レーザービームの発散度を設定する。対象領域の走査中、走査角の変化量又はレーザービームの発散度のうちの少なくとも一方を変化させると、対象領域内での分解能が変化する。
【0025】
図面、特に、図1を参照すると、例示的な実施形態による測定環境を示す説明図が示されている。この図示例において、測定環境100は、自律移動ロボット104が動作する製造設備102を含む。この例において、自律移動ロボット104は、経路106に沿って移動する。経路106は、製造設備102のフロア112上のストライプ108及びストライプ110によって画定される。ストライプ108及びストライプ110は、ペイント、テープ又は他の材料を用いて形成され、製造設備102を通るようにナビゲートするために自律移動ロボット104により利用される。
【0026】
図示のように、自律移動ロボット104は、移動プラットフォーム114と、ロボットアーム116と、Lidarシステム118と、コントローラ120とを含む。移動プラットフォーム114は、自律移動ロボット104を移動させる。ロボットアーム116は、製造設備102において製造作業を実行するために用いられる。Lidarシステム118は、自律移動ロボット104の周囲の環境についての情報を生成する。コントローラ120は、自律移動ロボット104の動作を制御する。
【0027】
この例においては、Lidarシステム118は、対象領域122を走査する。図示のように、対象領域122の中央部分124は、自律移動ロボット104のちょうど前方にあって、自律移動ロボット104の移動方向にある。周囲部分126は、中央部分124の外側の部位を含む。中央部分124は、対象領域122の周囲部分126と比較すると、分解能が高い。
【0028】
中央部分124の分解能が高いため、コントローラ120は、経路106を塞ぐ物体128を特定することができる。周囲部分126における分解能は低いが、自律移動ロボット104の真正面以外に存在しうる物体を検出するには十分である。このようにして、コントローラ120は、経路106上の物体128などの障害物を避けて自律移動ロボット104をナビゲートする。
【0029】
次に、図2を参照すると、例示的な実施形態による、測定環境のブロック図が示されている。測定環境100は、図2のブロック図に示す測定環境200の一実施例である。
【0030】
この例において、測定環境200は、測定システム202を含む。図示のように、測定システム202は、光源204と、走査システム206と、焦点システム208と、ディテクタ210と、コントローラ212とを含む。
【0031】
光源204は、実質的にコヒーレントな光ビーム214を出射する。この例において、光源204は、当該光源204の動作中、レーザービーム216の形態で、実質的にコヒーレントな光ビーム214を出射する。
【0032】
一例において、レーザービーム216は、約10nmから約700nmの範囲から選択された波長を有する。実施形態に応じて、他の波長範囲も用いることができる。例えば、波長は、いくつかの実施態様においては、約250nmから約1000nmの範囲であってもよい。
【0033】
また、光源204は、レーザービーム216を、連続レーザービーム及びパルスレーザービームのいずれか一方の形態で出射する。レーザービーム216が連続レーザービームである場合、レーザービーム216は、周波数変調連続波(frequency modulated continuous wave:FMCW)レーザービームなどのように、変調される。
【0034】
図示のように、走査システム206は、レーザービーム216を対象領域218に誘導する。具体的には、走査システム206は、レーザービーム216を、対象領域218における部位220に誘導する。
【0035】
対象領域218とは、情報222が求められる領域のことである。対象領域は、様々な形状を有しうる。例えば、対象領域218は、円形、方形、矩形、台形、楕円形、多角形、五角形、六角形、ひし形、正多角形、不規則多角形、規則的形状、不規則形状、又は他の適切な形状から選択された形状を有する。
【0036】
図示のように、走査システム206は、対象領域218の走査中、レーザービーム216の走査角226を設定するように動作する。走査角226は、レーザービームの角度測定に用いられる基準に対するレーザービーム216の角度である。レーザービーム216の走査角226は、走査システム206から対象領域218へ向かって測定される。
【0037】
レーザービーム216が到達する複数の部位220の各々は、複数の部位220における他の部位の走査角に対する相対的な走査角を有する。レーザービーム216の走査角226は、レーザービーム216が複数の部位220のある部位から他の部位に移動すると変化する。
【0038】
例えば、走査角226は、レーザービーム216を第1の部位から第2の部位に移動させるために、1度だけ増やすことができる。走査角226の1度の増加は、走査角226の変化量である。
【0039】
ある部位から他の部位への走査角226の変化量が変化すると、結果として、対象領域218に関する情報222についての角度分解能228が変化する。角度分解能228は、異なる物体を見分ける能力に対する角度についての尺度である。例えば、角度分解能228は、同じ領域にある2つの均等な対象物が互いに識別できる最小の分離角度である。
【0040】
走査角226の変化量が増加すると、角度分解能228は低下する。走査角226の変化量が低減すると、角度分解能228は向上する。
【0041】
例えば、0.5度だけ走査角が大きくなるように、走査角226を変化させてもよい。また、走査角が1度大きくなるように、走査角226を変化させてもよい。走査角226が1度変化すると、走査角226が0.5度変化した場合に比べて、角度分解能は低下する。
【0042】
図示例において、焦点システム208は、対象領域218の走査中、レーザービーム216の発散度を設定する。レーザービーム216の発散度230を変化させると、情報222の空間分解能232が変化する。発散度230が増加すると、空間分解能232が低下し、発散度230が低下すると、空間分解能232が向上する。
【0043】
空間分解能228は、細密度(measure of detail)であり、対象領域218の情報222を表すものとして存在する画素233の数として表すことができる。この尺度は、1ライン当たりの画素数、1インチ当たりのドット数、又は、他の尺度であってもよい。図示のように、発散度230は、1ライン当たりの画素数及び1インチ当たりのドット数に影響を与える。
【0044】
ディテクタ210は、対象領域218の部位220に誘導されるレーザービーム216に対する応答234を検出する。対象領域218の部位220に対する距離236は、応答234を用いて特定されるものであって、情報222の一部である。
【0045】
この図示例において、コントローラ212は、光源204、走査システム206、焦点システム208、及びディテクタ210などの、測定システム202の動作コンポーネントを制御する。例えば、コントローラ212は、レーザービーム216の走査角226又は発散度230のうちの少なくとも一方を設定するために、走査システム206及び焦点システム208を制御する。
【0046】
図示のように、コントローラ212は、ディテクタ210と通信している。コントローラ212は、ディテクタ210によって検出された応答234に基づいて、対象領域218についての情報222を特定する。
【0047】
例えば、コントローラ212は、部位220までの距離236を特定する。また、対象領域218における部位220までの距離236は、飛行時間(time-of-flight:TOS)、応答234の強度、又は応答234を用いた他の情報のうちの少なくとも1つを用いることによって特定するこができる。
【0048】
対象領域218の走査から得られる距離236は、画像238を生成するために用いることができる。画像238における画素233は、部位220に対応する。
【0049】
図示のように、対象領域218の走査により画像238が生成される速度は、フレームレートとして測定される。フレームレートは、1秒当たりのフレーム数(FPS)である。
【0050】
対象領域218の走査中の走査角226の変化量又は発散度230が変化すると、対象領域218内の分解能240が変化する。分解能240は、角度分解能228又は空間分解能232のうちの少なくとも一方を含む。走査角226の変化量及び角度分解能228のうちの少なくとも一方を変化させることにより、対象領域218に異なる分解能が存在する状態になる。この結果、異なる分解能が、画像238に存在することになる。
【0051】
レーザービーム216の出射速度により対象領域218のフレームレートが制限される場合、所望のフレームレートを維持するために、対象領域218内において、高い分解能と低い分解能とが選択される。例えば、光源204は、最大で毎秒1000パルスしか出射できない場合もある。この出射率の場合、光源204は、毎秒1フレームのフレームレートを用いた対象領域218の走査において、1000の部位を含むことができる。
【0052】
対象領域218に対して1000の部位が、選択された発散度及び走査角226の変化量で所望の範囲をカバーするには不十分である場合、他の部位を部位220に追加してもよい。しかしながら、部位220への追加は、フレームレートを低減させることになる。
【0053】
測定システム202において、走査システム206は、レーザービーム216の走査角226及び焦点システム208を制御して、対象領域218の走査中、走査角226の変化量又はレーザービーム216の発散度230のうちの少なくとも一方を変化させる。対象領域218の走査中、走査角226の変化量又はレーザービーム216の発散度230のうちの少なくとも一方を変化させると、分解能240が変化する。図示のように、分解能240は、角度分解能228又は空間分解能232のうちの少なくともいずれか一方を含む。
【0054】
対象領域218の走査中の分解能240の変化により、部位220の数を増やすことなく、レーザービーム216を部位220に誘導することができる。上記変化により、フレームレートを低減させることなく、部位220の走査を行うこともできる。
【0055】
コントローラ212は、ソフトウェア、ハードウェア、ファームウェア、又は、これらの組み合わせにより実現可能である。ソフトウェアを用いる場合、コントローラ212により実行される動作は、プロセッサユニットなどの、ハードウェア上で実行されるプログラムコードで実現可能である。ファームウェアを用いる場合、コントローラ212により実行される動作は、プログラムコード及びデータで実現可能であり、永続性メモリに保存されて、プロセッサユニット上で実行される。ハードウェアを用いる場合、ハードウェアは、制御部212の動作を実行するように機能する回路を含みうる。
【0056】
実施例では、ハードウェアは、回路システム、集積回路、特定用途向け集積回路(ASIC)、プログラマブルロジックデバイス、又は、所定数の処理を行うように構成された他の適切なタイプのハードウェアの形態であってもよい。プログラマブルロジックデバイスを用いる場合、当該デバイスは、所定数の処理を行うように構成してもよい。このデバイスは、後に構成を変更してもよいし、所定数の処理を行うように恒久的な構成としてもよい。プログラマブルロジックデバイスの例としては、プログラマブルロジックアレイ、プログラマブルアレイロジック、フィールドプログラマブルロジックアレイ、フィールドプログラマブルゲートアレイ、及び、他の適切なハードウェアデバイスが挙げられる。また、プロセスは、無機要素と組み合わされた有機要素によって実施してもよいし、人間を除く有機要素によって全体を構成してもよい。例えば、プロセスは、有機半導体の回路として実現してもよい。
【0057】
したがって、測定システム202は、可変分解能光レーダー(Lidar)システムとして動作する。図示例において、測定システム202は、プラットフォーム242と関連付けられている。1つのコンポーネントが他のコンポーネントと「物理的に関連付けられている」場合、この関連付けは、物理的関連付けである。例えば、第1コンポーネントである測定システム202は、第2コンポーネントであるプラットフォーム242に対する固定、接合、搭載、溶接、締結、及び/又は、他の適切な方法での接続のうちの少なくとも1つにより、当該第2コンポーネントに物理的に関連付けられていると看做すことができる。また、第1コンポーネントは、第3コンポーネントを用いて、第2コンポーネントに接続されてもよい。また、第1コンポーネントは、第2コンポーネントの一部、第2コンポーネントの延長部、又は、これら両方として形成することにより、第2コンポーネントと物理的に関連付けられると看做してもよい。
【0058】
図示のように、プラットフォーム242は、様々な形態をとることができる。例えば、プラットフォーム242は、可動式プラットフォーム、固定プラットフォーム、陸上ベースの構造体、水上ベースの構造体、宇宙ベースの構造体、自律移動ロボット、輸送機、自動運転車、航空機、無人航空機、水上艦、戦車、軍用人員運搬車、宇宙船、宇宙ステーション、携帯用デバイス、ウェアラブルデバイス、衛星、又は、他の適切なプラットフォームのうちから選択された1つであってもよい。
【0059】
プラットフォーム242が移動ロボットである場合、対象領域218は、当該移動ロボットの移動方向にあってもよい。図示のように、コントローラ212は、さらに、プラットフォーム242の動作を制御する。情報222は、コントローラ212が、移動ロボットの移動を制御して障害物を回避しながら目的地に到達するために、当該コントローラにより用いられる。
【0060】
他の例において、対象領域218は、ワークピースが存在する領域であってもよい。情報222は、移動ロボットが、穿孔、シーラントの塗布、留め具の設置、又は他の適切な動作などの、ワークピースに対する製造作業を行うために用いられる。
【0061】
さらに他の例において、プラットフォーム242は、自動運転車であってもよく、対象領域218は、自動運転車の前方の道路であってもよい。情報222は、例えば、道路上の他の車などの障害物や、道路の脇の出口、標識、及び他の物体の位置を特定するために用いられる。距離についての情報222を用いて、自動運転車は、目的地までのナビゲート、道路の車線における当該自動運転車の位置の維持、又は、これら以外の作業を行う。
【0062】
したがって、実施例では、所望の分解能で対象領域についての情報を取得するという技術課題に対する1つ又は複数の技術的解決法が提供される。対象領域内で分解能を変化させることにより、対象領域における1つ又は複数の関心部分では高い分解能を得ることができる。対象領域の他の部分では低い分解能を用いることができる。したがって、1つ又は複数の技術的解決法の技術的効果は、対象領域の全体が高い分解能で走査される際に光源によりレートが制限される場合に、対象領域の走査を行うレートを維持することができるということである。
【0063】
次に、図3を参照すると、例示的な実施形態による、焦点システムのブロック図が示されている。実施例においては、複数の図面で同じ参照符号が用いられる場合がある。異なる図面において再度用いられている参照符号は、異なる図面における同一の要素を示している。実施例において、焦点システム208は、所定数の異なる構成を有する。
【0064】
例えば、焦点システム208は、光軸304上に整列した第1レンズ300及び第2レンズ302を含む。第1レンズ300及び第2レンズ302は、可変焦点レンズシステムを形成する。光軸304は、第1レンズ300及び第2レンズ302の中央を通っている。
【0065】
図示のように、第2レンズ302は、光軸304上で、第1レンズ300に対して可動である。この図示例においては、第2レンズ302として、集束レンズ及び発散レンズのうちの一方が選択される。
【0066】
レーザービーム216は、光軸304に沿って第1レンズ300を通過する。レーザービーム216は、第1レンズ300を通った後、第2レンズ302を通過する。レーザービーム216の発散度230は、第2レンズ302を、光軸304に沿って、第1レンズ300に対して動かすことにより変化させることができる。
【0067】
他の例においては、焦点システム208は、第1レンズ300及び第2レンズ302に加えて、又はこれらに代えて、発散レンズ306を含んでもよい。図示のように、発散レンズ306は、当該発散レンズ306の異なる部分310において、異なるレベルの発散度308を有する。
【0068】
対象領域218における部位に対するレーザービーム216の発散度230は、レーザービーム216が、発散レンズ306の異なる部分310のうちのどの部分を通過するかに基づいて、設定される。例えば、走査システム206は、レーザービーム216を、発散レンズ306の異なる部分310に誘導することにより、レーザービーム216が、図2に示す対象領域218の部位220に誘導されるとともに、レーザービーム216の発散度230が変化するようにする。すなわち、レーザービーム216は発散レンズ306の異なる部分310を通り、その際、レーザービーム216が発散レンズ306のどの部分を通るかに基づいて、レーザービーム216の発散度230が変化するようにする。
【0069】
発散レンズ306は、様々なタイプのレンズを用いて実現することができる。例えば、発散レンズ306は、球面レンズ、円柱レンズ、非球面レンズ、又は、他の適切なタイプから選択された1つのレンズである。
【0070】
次に、図4を参照すると、例示的な実施形態による、走査システムのブロック図が示されている。実施例において、走査システム206は、所定数の異なる要素を有する。
【0071】
一例において、走査システム206は、所定数の軸402を中心として可動である所定数のミラー400を含む。本明細書において、「所定数の」アイテムは、1つ又は複数のアイテムを意味する。例えば、所定数のミラー400は、1つ又は複数のミラー400である。
【0072】
一例において、所定数のミラー400は、第1軸406及び第2軸408を中心として回転するミラー404であってもよい。このように、レーザービーム216は、対象領域218の部位220を走査するように誘導される。
【0073】
他の実施例において、ミラー404は、第1ミラー410であり、走査システム206は、第2ミラー412を含む。第1ミラー410は、第1軸406を中心として回転し、第2ミラーは、第2軸408を中心として回転する。
【0074】
さらに他の例において、走査システム206は、ドーブプリズム(dove prism)414を含む。ドーブプリズム414は、第2ミラー412の代わりに用いることができ、当該ドーブプリズムは、レーザービーム216を誘導するために第2軸408を中心として回転する。
【0075】
測定環境200の説明及び図2図4に示す様々なコンポーネントは、例示的な実施形態を実施する態様に対して物理的又は構造的な限定を加えるものではない。図示のコンポーネントに加えて、又はこれらに代えて、他のコンポーネントを用いることもできる。いくつかのコンポーネントは、必要としない場合もある。また、図中のブロックは、機能コンポーネントを示す。これらのブロックのうち1つ又は複数は、例示的な実施形態において実施する際には、組み合わせたり、分割したり、組み合わせてから異なるブロックに分割したりすることができる。
【0076】
例えば、測定システム202は、さらに、電力供給源、又は、電源に対する接続部を含みうる。他の例として、コントローラ212は、測定システム202とは別個のコンポーネントとして示される。
【0077】
いくつかの例において、コントローラ212は、測定システム202の一部であってもよい。さらに、コントローラ212は、複数の物理的な部位に分散されてもよい。例えば、コントローラ212の第1部分は、測定システム202内に設けられて当該測定システム202を制御する一方で、コントローラ212の第2部分は、測定システム202及びプラットフォーム242の外部に設けられてもよい。例えば、コントローラ212の第2部分は、プラットフォーム242と関連付けられてもよいし、測定システム202及びプラットフォーム242に対して遠隔な位置に設けられてもよい。
【0078】
他の例として、図3に示す焦点システム208は、さらに、光軸304に沿って第2レンズ302を動かすためのモータシステム又はアクチュエータシステムを含んでもよい。これに加えて、図4に示すような走査システム206は、さらに、第1ミラー410、第2ミラー412、及びドーブプリズム418を回転させるモータシステムを含んでもよい。
【0079】
次に図5を参照すると、例示的な実施形態による、測定システムが示されている。この例において、測定システム500は、図2にブロック形式で示す測定システム202の一実施例である。
【0080】
図示のように、測定システム500は、レーザー502と、焦点システム504と、走査システム506と、ディテクタ508とを含む。レーザー502は、光源204の例であり、焦点システム504は、焦点システム208の例であり、走査システム506は、走査システム206の例であり、ディテクタ508は、ディテクタ210の例である。
【0081】
この図示例において、焦点システム504は、第1レンズ510と第2レンズ512とを含む。第1レンズ510及び第2レンズ512は、光軸514上に配置されている。図示のように、第1レンズ510は固定されており、第2レンズ512は、光軸514に沿って矢印515の方向に可動である。
【0082】
図示のように、走査システム506は、走査ミラー516を含む。この図示例において、走査ミラー516は、2つの軸を中心として回転可能である。
【0083】
ディテクタ508は、所定数の異なるコンポーネントを含む。図示のように、ディテクタ508は、マジックミラー518と光検出ユニット520とを含む。
【0084】
動作中、レーザー502は、パルス状にレーザービーム522を出射する。レーザービーム522のパルスは、マジックミラー518を通った後、経路519上の第1レンズ510及び第2レンズ512を通る。第2レンズ512は、レーザービーム522の発散度を変化させるように動かすことができる。
【0085】
その後、レーザービーム522は、走査ミラー516に到達する。走査ミラー516は、回転して、レーザービーム522を経路519上の対象領域524に誘導する。図示のように、対象領域524は、矩形状である。走査ミラー516を回転させてレーザービーム522の走査角を変化させることにより、レーザービーム522が、対象領域524の複数の部位526における互いに異なる部位に到達する。
【0086】
レーザー502を制御してパルスのタイミングを合わせることにより、レーザービーム522の各パルスが、複数の部位526における異なる部位に到達するようにする。レーザービーム522の走査角を変化させることにより、対象領域524の走査中、複数の部位526における互いに異なる部位に到達するように経路519が変更される。
【0087】
この例において、複数の領域526及び対象領域524がレーザービーム522により走査されると、応答(不図示)が、走査ミラー516に戻り、経路519に沿って第1レンズ510及び第2レンズ512を通り、マジックミラー518へ誘導される。マジックミラー518は、当該応答を光検出ユニット520へ誘導する。
【0088】
図示のように、対象領域524の一回の走査により、対象領域524についての距離情報が得られる。さらに、対象領域524の走査中、走査ミラー516により、各部位間における角度の変化量が変更される。
【0089】
この変更により、対象領域524への経路519を変更する角度分解能が変化する。対象領域524の一回の走査から得られる情報は、画像を形成するために用いられる。この画像は、対象領域524の一回の走査から得られる1フレームである。
【0090】
さらに、対象領域524の走査中、レーザービーム522の発散度を変化させる。この変化は、第1レンズ510に対して第2レンズ512を動かすことにより実行される。レーザービーム522の発散度の変化により、焦点システム504からの特定の距離において、レーザービーム502の直径が変更される。発散度の変化により、空間分解能が変化する。この例において、レーザービーム522の走査角の変化又は発散度のうちの少なくとも一方の設定は、対象領域524における複数の部位526のうち、ある部位から他の部位への走査角の度数の変化が、発散度の度数とほぼ等しくなるように行われる。
【0091】
図示のように、対象領域524の複数の部位526における各部位は、測定システム500からの特定の距離におけるビーム径を表している。ビーム径は、焦点システム504により制御されるレーザービーム522の発散度により設定される。この例に示すように、走査角の変化が増大すると、レーザービーム522の発散度も増大し、レーザービーム522の直径も大きくなる。すなわち、発散度の変化は、走査角の変化に基づいている。
【0092】
このように、レーザービーム522の直径を制御して、対象物が、対象領域524においてビーム径間の死角に存在する確率を減らすように、対象領域524をカバーする。対象領域524における部位526についての分解能は、対象領域524の同一の走査過程において変化しうる。
【0093】
図示のように、対象領域524における部位526は、対象領域524の区画528内で最も高い走査密度を有する。すなわち、この区画において、部位526の密度は最も高く、レーザービーム522の直径は最も小さい。区画528は、対象領域524において最も高い分解能を有する。レーザービーム522の走査角の変化量及び発散度は、対象領域524における区画528の部位526が、当該領域の他の部分と比べて最も小さい。
【0094】
区画530及び区画532における部位526は、レーザービーム522について、その次に小さい走査角の変化量、及び、その次に小さい発散量を有する。区画530及び区画532における部位526の密度は、区画528よりも低い。また、区画530及び区画532の分解能は、区画528に比べて低い。
【0095】
この例において、区画534及び区画536における部位526は、区画530及び区画532における部位526に比べて、走査角の変化及び発散度が大きい。区画534及び区画536は、区画530及び区画532に比べて分解能が低い。
【0096】
図示のように、区画538及び区画540における部位526は、レーザービーム522の走査角の変化が最も大きく、発散度も最も大きい。結果として、区画538及び区画540は、対象領域524において最も低い分解能を有する。
【0097】
このように、部位526からのレーザービーム522に対する応答は、区画528に示す走査角及び発散度を用いた走査に比べてより少ない数の部位526を用いることにより、対象領域524を所望レベルでカバーすることができる。すなわち、部位526の密度が対象領域524の全域に亘って区画528と同じである場合は比較的多い出射回数でレーザービーム522を用いるのに比べて、より少ない出射回数でレーザービーム522を用いて実質的に対象領域524をカバーすることができる。
【0098】
対象領域524の全域に亘って高密度の走査を用いれば、高分解能の情報を得ることができる。しかしながら、レーザー502がレーザービーム522のパルスを出射可能な速度によっては、フレームレートが下がるおそれがある。
【0099】
区画528の外側の領域において、レーザービーム522の発散度を高くしてより低い密度で走査を行うことにより、対象領域524を走査するために必要なレーザー502によるレーザービーム522の出射回数を低くしつつ、対象領域524を所望の態様でカバーすることができる。結果として、対象領域524の全域に亘って高い分解能を維持する場合に比べて、フレームレートの低下を回避することができる。
【0100】
対象領域524において高い分解能を有する区画及び低い分解能を有する区画は、対象領域524を走査する特定の理由に基づいて選択される。例えば、対象物として地球の水平線を走査する場合、区画528は、水平線に位置させる。高い分解能であれば、対象物の検出及び特定の両方が可能である。区画528から遠く離れて分解能が低い場合、対象領域524において対象物の存在又は動きを特定することはできても、対象物が何であるかの特定はできないかもしれない。他の例として、高分解能に選択される対象領域524の区画は、道路又は経路であってもよい。
【0101】
図6を参照すると、例示的な実施形態による測定システムが示されている。この例において、測定システム500は、図2にブロック形式で示す測定システム202の他の一実施例である。
【0102】
この例においては、走査システム504は、さらにレンズ600を含む。図示のように、レンズ600は、この例においては、走査ミラー516によるレーザービーム522の偏向を増大又は低減するために用いられる。
【0103】
この例において、レーザービーム522は、対象領域603における部位602に誘導される。図示のように、対象領域603は、図5に示す矩形状の対象領域524と比較して、円形状を有している。この例において、走査密度は、対象領域603の中心604から離れるにつれて低くなる。
【0104】
図示のように、区画605は、最も高い走査密度を有しており、部位602の密度が高い。レーザービーム522の走査角の変化及び発散度は、区画605において最も小さい。この区画は、対象領域603において最も高い分解能を有する。
【0105】
区画606は、区画605と比べて、部位602の密度が低い。この区画の分解能は、対象領域603において次に高い分解能を有する。区画608は、区画606と比べて、部位602の密度が低い。すなわち、走査角の変化及び発散度は、区画606と比べて大きい。
【0106】
区画610は、区画608と比べて、走査密度が低い。区画610における分解能は、区画608よりも低い。区画610は、対象領域603において、走査密度及び部位602の密度が最も低い。
【0107】
次に図7を参照すると、例示的な実施形態による測定システムが示されている。この例において、測定システム500は、図2にブロック形式で示す測定システム202のさらに他の一実施例である。
【0108】
この例においては、走査システム504は、さらにドーブプリズム700を含む。ドーブプリズム700は、1つの軸を中心として回転する。図示のように、走査ミラー516は、2つの軸ではなく、1つの軸を中心として回転する。この例においては、ドーブプリズム700は、走査ミラー516とは異なる軸を中心として回転する。
【0109】
ドーブプリズム700の回転により、レーザービーム522が対象領域603に円形パターンに出射される。走査ミラー516の回転の変化により、レーザービーム522の走査角が、対象領域603の中心604から径方向に変化する。
【0110】
図8を参照すると、例示的な実施形態による測定システムが示されている。この例において、測定システム500は、図2にブロック形式で示す測定システム202の他の一実施例である。
【0111】
この例において、レンズ800及び発散レンズ802は、走査システム506の一部である。また、レンズ800及び発散レンズ802は、焦点システム504の一部でもある。
【0112】
走査ミラー516は、2つの軸を中心として回転することにより、レーザービーム522が発散レンズ802の異なる部分を通るように当該レーザービームを誘導する。発散レンズ802は、当該発散レンズの異なる部分において、異なるレベルの発散度を有する。
【0113】
結果として、レーザービーム522の発散は、レーザービーム522が、発散レンズ802を通過する際に通る特定の部分に基づいて設定される。さらに、発散レンズ802の異なる部分は、レーザービーム522を偏向させて、当該レーザービーム522を、対象領域603における複数の部位602のうちの1つの部位に誘導する。
【0114】
したがって、図示のような、対象領域603の複数の部位602のための異なる走査密度は、レーザービーム522が発散レンズ802を通過する際に通る特定の部分に基づいて決まる。例えば、発散レンズ802の中心は、発散レンズ802の周縁部と比べて、発散度が低い。
【0115】
図5図8に示す測定システム500のための様々な構成は、図2にブロック形式で示す測定システム202の実施例であるが、測定システム500の他の例における実施態様を制限するものではない。例えば、測定システム500の他の例ではレンズ800を省いてもよい。さらに他の例においては、対象領域は、対象領域524の矩形状および対象領域603の円形状以外の形状を有していてもよい。対象領域の形状は、例えば、不規則形状、四辺形、五角形、又は他の適切な形状であってもよい。
【0116】
これに加えて、異なる分解能についての複数の区画の他の構成を、対象領域524及び対象領域603のために図示された構成に加えて、又はこれらに代えて用いてもよい。例えば、対象領域は、レーザービーム522の走査角の変化及び発散度が最も小さい2つの別々のエリアを有していてもよい。例えば、対象領域には、最も高い分解能を有する2つの不連続領域が存在していてもよい。
【0117】
さらに他の例において、所定の分解能を有する形状、大きさ、及び区画は、走査過程毎に異なっていてもよい。例えば、分解能が最も高い部分は、円形の対象領域における中央部であってもよい。対象物の動きが対象領域の周縁部において特定された場合、走査角の変化及び発散度は、対象物の動きが検出された周縁部において最も小さくなるようにしてもよい。
【0118】
このようにして、分解能は、対象領域の走査過程毎に、動的に変化してもよい。さらに、対象領域自体が、異なる形状又は異なる大きさのうちの少なくとも一方を有するように変更されてもよい。
【0119】
次に図9を参照すると、例示的な実施形態による、対象領域を走査するためのプロセスが示されている。図9に示すプロセスは、図2に示される測定環境200において実施することができる。例えば、上記プロセスは、図2に示す対象領域218を走査するために、測定システム202において実施されてもよい。
【0120】
プロセスは、対象領域の走査中、レーザービームの発散度を設定することにより開始される(工程900)。工程900における発散度の設定は、無発散(no divergence)、正の発散(positive divergence)、又は負の発散(negative divergence)を含む。このようにして、レーザービームが対象領域に到達する際の当該レーザービームの直径が制御される。この例において、対象領域は、測定システムから所定の距離だけ離れた領域である。
【0121】
当該プロセスにおいては、ある走査角で、対象領域において互いに異なる部位にレーザービームを誘導する(工程902)。また、当該プロセスにおいて、レーザービームが互いに異なる部位に誘導される際、レーザービームの走査角を設定する(工程904)。工程904において、走査角は、レーザービームのパルス毎に変更される。
【0122】
対象領域の走査中、走査角の変化量又は発散度のうちの少なくとも一方を変化させると、対象領域に対する分解能が変化する。走査角の変化量及び発散度の設定は、発散度が、走査角の変化量に基づくか、或いは、走査角の変化量が発散度に基づくように行われる。この例において、走査角の変化量又は発散度のうちの少なくとも一方の設定は、走査角の度数の変化が、発散度の度数とほぼ等しくなるように行われる。
【0123】
この例において、工程900、工程902、及び工程904は、特定の順序を表すものではない。これらの動作は、実質的に同時に行われてもよい。さらに、これらの動作のうちいくつかは同時に行い、この前後に他の動作を行ってもよいし、これ以外の順序で動作を行ってもよい。
【0124】
当該プロセスにおいて、対象領域において互いに異なる部位に誘導されたレーザービームに対する応答を検出し(工程906)、その後プロセスを終了する。これらの工程は、対象領域の一回の走査を構成している。これらの工程を繰り返すことにより、さらに追加して対象領域の走査を行うことができる。
【0125】
工程906で検出された応答は、所定数の工程を行うために用いられる。所定数の工程としては、対象領域の画像を生成すること、対象領域における対象物までの距離を特定すること、対象領域における対象物を特定すること、プラットフォームの動きを制御すること、対象物を移動させること、対象領域で検出された対象物を操作すること、又は、これら以外の適切な工程のうちの少なくとも1つが選択される。
【0126】
次に図10を参照すると、例示的な実施形態による、対象領域の走査から情報を生成するためのプロセスのフローチャートが示されている。図10に示すプロセスは、測定環境200において実施することができる。例えば、様々な工程は、コントローラ212で実施することができる。他の例においては、コンピュータ又は他のデータ処理システムが、測定システムから情報を受信して、当該情報を処理してもよい。
【0127】
プロセスは、対象領域を走査することにより開始される(工程1000)。工程1000は、対象領域についての情報を生成するために、図9に示す様々な工程を用いて実行される。この例において、工程1000は、対象領域の画像に用いられる情報を生成するために実行される。
【0128】
次に、当該プロセスにおいて、測定システムのディテクタが受信した応答から、対象領域の部位までの距離を特定する(工程1002)。工程1002において、応答が生成されるレーザービームを出射した時点から応答を受信した時点に基づく飛行時間(TOF)を特定してもよい。また、距離を特定するために、応答の強度をさらに用いてもよい。これらの距離は、応答から得られる対象領域に関する情報である。
【0129】
次に、距離情報を用いて、所定数の画像のための画像を生成し(工程1004)、その後、プロセスは、工程1000に戻る。工程1004において、特定された各距離は、対象領域における部位に対応する画素を形成する。画像は、当該画像の異なる部分においては、異なる分解能を有しうる。この画像もまた、応答から生成される情報と看做される。
【0130】
次に図11を参照すると、例示的な実施形態による、プラットフォームを操作するためのプロセスのフローチャートが示されている。図11に示すプロセスは、測定環境200において実施することができる。例えば、当該プロセスは、測定システム202を用いるプラットフォーム242において実施することができる。コントローラ212は、プラットフォーム242の操作を制御してもよいし、このフローチャートに示される様々な工程を行ってもよい。他の例においては、別個のコントローラ、又はプラットフォームの操作を制御するために存在する他の種類の装置が、これらの工程を行ってもよい。
【0131】
プロセスは、対象領域の画像において1つ又は複数の対象物を特定することにより開始される(工程1100)。次に、画像において特定された1つ又は複数の対象物と、当該1つ又は複数の対象物までの距離とに基づいて、プラットフォームの操作を制御し(工程1102)、その後プロセスを終了する。
【0132】
例えば、プラットフォームが、製造施設の移動ロボットである場合、上記工程は、目的地までロボットのナビゲーションを制御すること、ワークピースに穿孔すること、留め具を取り付けること、部品を検査すること、又は、他の適切な動作を行うことである。他の例として、プラットフォームが自動運転車である場合、上記工程は、他の車との車間距離を保つこと、車線を変更すること、又は、他の適切な動作を行うことである。
【0133】
図12を参照すると、例示的な実施形態による、測定システムのコンポーネントを選択するためのプロセスのフローチャートが示されている。図12に示すプロセスは、図2図4に示す走査システム206及び焦点システム208におけるコンポーネントのパラメータを特定するために用いられてもよい。例えば、このプロセスは、球面レンズが焦点システム208で用いられる場合にパラメータを特定するために用いられてもよい。より具体的には、このプロセスは、球面レンズを用いて実施される第1レンズ300及び第2レンズ302を含む焦点システム208において用いられてもよい。
【0134】
プロセスは、測定システムの出力に必要な2次元の角度パターンを特定することにより開始される(工程1200)。この2次元の角度パターンは、対象領域における平面上の部位のパターンである。例えば、図5に示す対象領域524における部位526のパターン、及び、図6に示す対象領域603における部位602のパターンは、2次元の角度パターンの例である。
【0135】
次に、対象領域における部位毎に、対象領域の平面から走査ミラーに戻る経路を特定する(工程1202)。この経路は、さらに、対象領域の部位と走査ミラーとの間に設置可能なレンズなどの、任意の要素を含んでもよい。一例においては、走査ミラーは、1軸又は2軸においてレーザービームを偏向する第1要素である。走査ミラーに向かってレーザービームを通過させるレンズは、レーザービームの発散度を変化させるが、この例においては、レーザービームを偏向するために用いられていない。偏向により、所望の方向にレーザービームが誘導される。
【0136】
光軸からレーザービームを偏向させるのに、回転ドーブプリズムをさらに用いてもよい。この偏向は、例えば、ドーブプリズムを傾斜させるか、或いはレーザービームがドーブプリズムに到達する前に走査ミラーを用いてビームを偏向させるかの何れかを行って実現させることができる。走査ミラー及びドーブプリズムは、その両方が回転することにより、走査に必要な回転軸が1つだけとなるようにしてもよい。
【0137】
当該プロセスでは、次に、レーザービームが対象領域における平面上の各部位に到達するために必要な走査角を特定する(工程1204)。次に、対象領域における平面上の部位に必要な走査角の各々について、走査ミラーの位置を特定する(工程1206)。
【0138】
当該プロセスでは、対象領域における対象平面上の部位の各々について、所望の直径を得るために必要なレーザービームの発散度を特定する(工程1208)。工程1208においては、所望の直径を得るために必要とされるレーザービームの発散度に対する変化を特定する。次に、各部位における所望の直径に対して所望の発散度を得るために、可変焦点レンズシステムの設定を特定し(工程1210)、その後プロセスを終了する。
【0139】
このプロセスにより、走査角及び発散度のためのパラメータが特定される。これらのパラメータは、図2に示す測定システム202を走査して、対象領域218における部位220の所望のパターンを得るために用いられてもよい。このパターンは、さらに、対象領域218における平面に到達するレーザービームの所望の直径を含む。例えば、これらのパラメータは、図3にブロック形式で示す焦点システム208における第2レンズ302などのレンズの動きを制御するために用いられてもよい。
【0140】
図13を参照すると、例示的な実施形態による、測定システムのコンポーネントを選択するためのプロセスのフローチャートが示されている。図13に示すプロセスは、図2図4に示す走査システム206及び焦点システム208におけるコンポーネントのパラメータを特定するために用いられてもよい。このプロセスは、さらに、任意のレンズが用いられた場合にパラメータを特定するために用いられてもよい。任意のレンズは、より複雑なパターン又は非円形パターンが望まれる場合に用いられる。
【0141】
プロセスは、走査ミラーにより生成された各入射角についての、所望の出射走査角を特定することにより開始される(工程1300)。所望の出射走査角は、レーザービームを対象領域における部位に誘導するために用いられる角度である。
【0142】
次に、プロセスにおいて、所望の出射走査角を得るために必要なレンズ表面の「局部傾斜」を特定する(工程1302)。「局部傾斜」とは、光ビームの中央光線と、光線が光学素子から出射する「局部」ポイントにおける光学素子の接線面(tangential surface)との間の角度である。工程1302は、スネルの法則(Snell's Law)などの現時点で公知の光線追跡技術を用いて行ってもよい。
【0143】
当該プロセスにおいて、レンズの2つの表面を特定するために表面ステッチング技術(surface stitching techniques)を用いる(工程1304)。2つの表面とは、レンズの各側面である。表面ステッチング技術は、例えば、バイキュービックスプライン近似(bi-cubic spline approximations)であってもよい。
【0144】
当該プロセスにおいて、対象領域における部位の各々について、レンズにより出射されるレーザービームの発散度を特定する(工程1306)。当該プロセスにおいては、対象領域における対象平面上の部位の各々について、所望の直径を得るために必要なレーザービームの発散度を特定する(工程1308)。
【0145】
次に、所望の発散度に対するレンズ設計の発散度の比較に基づいて各部位における所望の直径に対する所望の発散度を得るために、可変焦点レンズシステムの設定を特定し(工程1310)、その後プロセスを終了する。これらのパラメータは、図3にブロック形式で示す焦点システム208における第2レンズ302などのレンズの動きを設定するために用いられてもよい。
【0146】
図示された様々な実施形態のフローチャート及びブロック図は、例示的な実施形態における装置及び方法のいくつかの考えられる実施態様の構造、機能、及び動作を示すものである。この点では、フローチャート又はブロック図における各ブロックは、モジュール、セグメント、機能、又は、動作若しくはステップの一部のうちの少なくとも1つを表す。例えば、これらのブロックのうち1つ又は複数は、プログラムコードとして実現されてもよいし、ハードウェアで実現されてもよいし、プログラムコード及びハードウェアの組み合わせで実現されてもよい。ハードウェアにおいて実現する場合、当該ハードウェアは、例えば、フローチャート又はブロック図における1つ又は複数の工程を実行するように製造又は構成された集積回路の形態をとりうる。プログラムコードとハードウェアの組み合わせとして実現する場合、ファームウェアの形態で実現されうる。
【0147】
例示的な実施形態のいくつかの代替の態様において、ブロックで述べられている1つ又は複数の機能は、図で述べられている順序とは異なる順序で実行してもよい。例えば、いくつかのケースにおいては、関連する機能に応じて、連続して示されている2つのブロックは実質的に同時に実行されてもよいし、逆の順序で実行されてもよい。また、フローチャート又はブロック図に示されたブロックに対して、さらに他のブロックを追加してもよい。
【0148】
次に、図14を参照すると、例示的な実施形態による、レンズについて所望の入射角度と出射角度との関係をプロットしたグラフが示されている。この例においては、グラフ1400において、x軸1402は、レンズに入射する入射レーザービーム角を度数で表し、y軸1404は、レンズから出射する出射レーザービーム角を度数で表す。出射レーザービーム角は、レーザービームの走査角である。
【0149】
ライン1406は、負レンズと正レンズとの間の区切りを表す。セクション1408は、負レンズを示し、セクション1410は、正レンズを示し、セクション1412は、負レンズを示し、セクション1414は、正レンズを示す。正レンズ又は負レンズの指標は、特定の入射レーザービーム及び出射レーザービームに必要なタイプのレンズの指標である。レンズの配置については、ビーム角が光軸に対して大きくなるにつれて、ビームの発散が大きくなるように配置される。この例において説明されているレンズには、光学望遠鏡の一般的な説明が当てはまり、その機能が得られるようにレンズが選択される。レーザー走査パターン、パルス間の間隔は、当該間隔が、ビームの可変発散度に合致するように選択される。
【0150】
レンズの形状を計算する際、現在知られている標準の光線追跡プログラムを用いて、レンズの表面を生成してもよい。当該プログラムは、例えば、Synopsis社から入手可能なCode V(登録商標)であってもよい。「Code V」は、Synopsis社の登録商標である。使用可能な光線追跡プログラムの別の例としては、Zemax社から入手可能なZemax Optical Studioがある。入力には、供給源の位置からの角度、光学素子の配置、及び、各入射角に依存する出射角などがある。これに加えて、ABCD行列解析(ABCD matrix analysis)やスネルの法則を用いて、基本の光学的原理からレンズの表面形状をさらに計算してもよい。
【0151】
図示のように、ライン1416は、入射レーザービーム角および出射レーザービーム角に基づく走査パターンである。ライン1416は、必要とされるレンズの種類および必要とされる出射角を示す。
【0152】
したがって、例示的な実施形態においては、対象領域についての情報を取得するための方法および装置が提供される。一例においては、レーザービームの形態でのコヒーレントな光ビームは、対象領域の走査を行うために当該対象領域において互いに異なる部位に誘導される。
【0153】
走査に対する応答は、対象領域についての情報を取得するために用いられる。例えば、2つの異なる部位の距離を用いて、対象領域に対象物が存在するか否かを特定することができる。様々な対象物の存在は、製造施設における移動ロボット、街の自動運転車、陸地を調査する無人航空機などのプラットフォーム、又は他のプラットフォームの動作を管理するために用いられる。
【0154】
レーザーの走査角の変化量又は発散度のうちの少なくとも一方を変化させることにより、対象領域に対して異なる分解能を得ることができる。異なる分解能を用いて対象領域を走査するので、対象領域の全域を高い分解能で走査する現行のLidarシステムと比べて、フレームレートの維持が可能となる。また、異なる分解能を用いるので、処理する情報量が低減する。結果として、画像生成の高速化、対象物の特定、及びこれら以外の処理が可能となる。
【0155】
様々な例において、動作や作業を行うコンポーネントが説明されている。例示的な実施形態において、コンポーネントは、説明されている動作や作業を行うように構成されていてもよい。例えば、コンポーネントは、実施例において当該コンポーネントにより実行されると説明されている動作や作業を行うことができるような構成又は設計を有している。
【0156】
様々な例示的な実施形態の説明は、例示及び説明のために提示したものであり、全てを網羅することや、開示した形態での実施に限定することを意図するものではない。多くの改変又は変形が当業者には明らかであろう。
【0157】
さらに、本開示は、以下の付記に基づく実施形態を含む。
【0158】
付記1.動作中に、レーザービームを出射する光源と、
前記レーザービームを前記対象領域へ誘導するとともに、対象領域の走査中、前記レーザービームの走査角を設定する走査システムと、
前記対象領域の走査中、前記レーザービームの発散度を設定する焦点システムと、を含み、前記対象領域の走査中、前記走査角の変化量又は前記レーザービームの発散度のうちの少なくとも一方を変化させることにより、前記対象領域内での分解能が変化する、装置。
【0159】
付記2.前記走査角の変化量及び前記発散度の設定は、前記発散度が、前記走査角の変化量に基づくか、或いは、前記走査角の変化量が前記発散度に基づくように行われる、付記1に記載の装置。
【0160】
付記3.前記走査角の変化量又は前記発散度のうちの少なくとも一方の設定は、前記対象領域におけるある部位から他の部位への前記走査角の度数の変化が、前記発散度の度数とほぼ等しくなるように行われる、付記1又は2に記載の装置。
【0161】
付記4.前記走査システムは、前記対象領域内における部位に前記レーザービームを誘導し、前記装置は、さらに、
前記対象領域内の前記部位に誘導された前記レーザービームに対する応答を検出するディテクタを含み、前記対象領域内の前記部位までの距離は、前記応答を用いて特定される、付記1〜3のいずれかに記載の装置。
【0162】
付記5.前記焦点システムは、
光軸上に設けられ、前記光軸に沿って前記レーザービームを通過させる第1レンズと、
前記光軸上で可動である第2レンズと、を含み、前記レーザービームは、前記第1レンズを通過した後に前記第2レンズを通過し、前記対象領域に誘導される前記レーザービームの発散度は、前記光軸に沿って前記第2レンズを動かすことにより変更される、付記1〜4のいずれかに記載の装置。
【0163】
付記6.前記第2レンズは、集束レンズ及び発散レンズから選択された一方のレンズである、付記5に記載の装置。
【0164】
付記7.前記焦点システムは、
異なる部分において異なるレベルの発散度を有する発散レンズを含み、前記対象領域における部位に到達する前記レーザービームの発散度は、前記レーザービームが、前記発散レンズの異なる部分のうちのどの部分を通過するかに基づいて、設定される、付記1〜6のいずれかに記載の装置。
【0165】
付記8.前記走査システムは、前記発散レンズの前記異なる部分に前記レーザービームを誘導する、付記7に記載の装置。
【0166】
付記9.前記走査システムは、所定数の軸を中心として可動な所定数のミラーを含む、付記1〜8のいずれかに記載の装置。
【0167】
付記10.前記走査システムは、軸を中心として回転可能なドーブプリズムを含む、付記1〜9のいずれかに記載の装置。
【0168】
付記11.前記レーザービームは、約10nmから約700nmの範囲から選択された波長を有する、付記1〜10のいずれかに記載の装置。
【0169】
付記12.前記光源、前記走査システム、及び前記焦点システムは、測定システムを形成し、前記装置は、
プラットフォームをさらに含み、前記測定システムは、前記プラットフォームと関連付けられており、前記プラットフォームは、可動式プラットフォーム、固定プラットフォーム、陸上ベースの構造体、水上ベースの構造体、宇宙ベースの構造体、移動ロボット、輸送機、自動運転車、航空機、無人航空機、水上艦、戦車、軍用人員運搬車、宇宙船、宇宙ステーション、携帯用デバイス、ウェアラブルデバイス、及び衛星のうちから選択された1つである、付記1〜11のいずれかに記載の装置。
【0170】
付記13.対象領域を走査するための方法であって、
前記対象領域の走査中、レーザービームの発散度を設定し、
ある走査角で、前記対象領域において互いに異なる部位に前記レーザービームを誘導し、
前記レーザービームが前記互いに異なる部位に誘導される際、前記レーザービームの前記走査角を設定する、ことを含み、前記対象領域の走査中、前記発散度又は前記走査角の変化量のうちの少なくとも一方を変化させると、前記対象領域に対する分解能が変化する、方法。
【0171】
付記14.さらに、前記対象領域において前記互いに異なる部位に誘導された前記レーザービームに対する応答を検出することを含む、付記13に記載の方法。
【0172】
付記15.前記応答は、前記対象領域の画像を生成すること、前記対象領域における対象物までの距離を特定すること、前記対象領域における対象物を特定すること、又はプラットフォームの動きを制御すること、のうちから選択される所定数の工程を実行するために用いられる、付記14に記載の方法。
【0173】
付記16.前記対象領域の走査中、前記レーザーの発散度を設定するに際して、
光軸に沿って第1レンズを通った後に前記光軸上の第2レンズを通るように前記レーザービームを送出し、
前記光軸に沿って前記第2レンズを動かして、前記対象領域に誘導された前記レーザービームの発散度を変化させる、付記13〜15のいずかに記載の方法。
【0174】
付記17.前記対象領域の走査中、前記レーザーの発散度を設定するに際して、
発散レンズの異なる部分を通るように前記レーザービームを誘導することにより、前記レーザービームが前記発散レンズのどの部分を通るかに基づいて前記レーザービームの発散度が変化するようにする、付記13〜16のいずれかに記載の方法。
【0175】
付記18.発散レンズは、球面レンズ、円柱レンズ、及び非球面レンズから選択された1つである、付記16又は17に記載の方法。
【0176】
付記19.光は、所定数の軸を中心として可動な所定数のミラー、又は、ドーブプリズムのうちの少なくとも一方を含む走査システムにより前記対象領域に誘導される、付記13〜18のいずれかに記載の方法。
【0177】
付記20.前記レーザービームは、約10nmから約700nmの範囲から選択された波長を有する、付記13〜19のいずれかに記載の方法。
【0178】
付記21.実質的にコヒーレントな光ビームを出射する光源と、
実質的にコヒーレントな前記光ビームを対象領域に誘導するとともに、実質的にコヒーレントな前記光ビームの走査角を設定する走査システムと、
前記対象領域の走査中、実質的にコヒーレントな前記光ビームの発散度を調節する焦点システムと、を含み、前記対象領域の走査中、前記走査角の変化量又はコヒーレントな前記光ビームの発散度のうちの少なくとも一方を変化させることにより、前記対象領域内での分解能が変化する、測定システム。
【0179】
付記22.さらに、前記対象領域内の部位に誘導された実質的にコヒーレントな前記光ビームに対する応答を検出するディテクタを含み、前記対象領域内の部位までの距離は、前記応答を用いて特定される、付記21に記載の測定システム。
【0180】
付記23.前記走査角又は前記発散度のうちの少なくとも一方の設定は、前記対象領域におけるある部位から他の部位への前記走査角の度数の変化が、前記発散度の度数とほぼ等しくなるように行われる、付記21又は22に記載の測定システム。
【0181】
付記24.さらに、前記応答を用いて、前記対象領域の前記部位までの前記距離を特定するとともに、前記対象領域の画像を生成すること、前記対象領域における対象物までの距離を特定すること、前記対象領域における対象物を特定すること、又は前記対象領域に対するプラットフォームの動きを指示すること、のうちから選択される所定数の工程を実行するコントローラを含む、付記22又は23に記載の測定システム。
【0182】
さらに、様々な例示的な実施形態は、他の望ましい実施形態とは異なる特徴をもたらす場合がある。選択した実施形態は、実施形態の原理及び実際の用途を最も的確に説明するために、且つ、当業者が、想定した特定の用途に適した種々の改変を加えた様々な実施形態のための開示を理解できるようにするために、選択且つ記載したものである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14