特許第6985813号(P6985813)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

<>
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000002
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000003
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000004
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000005
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000006
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000007
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000008
  • 特許6985813-蓄電池運用装置及び蓄電池運用方法 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6985813
(24)【登録日】2021年11月30日
(45)【発行日】2021年12月22日
(54)【発明の名称】蓄電池運用装置及び蓄電池運用方法
(51)【国際特許分類】
   H02J 3/00 20060101AFI20211213BHJP
   H02J 3/32 20060101ALI20211213BHJP
   H02J 3/38 20060101ALI20211213BHJP
   H02J 3/14 20060101ALI20211213BHJP
   H02J 13/00 20060101ALI20211213BHJP
   G06Q 50/06 20120101ALI20211213BHJP
【FI】
   H02J3/00 170
   H02J3/32
   H02J3/38 110
   H02J3/38 130
   H02J3/14
   H02J13/00 311T
   G06Q50/06
【請求項の数】7
【全頁数】19
(21)【出願番号】特願2017-92167(P2017-92167)
(22)【出願日】2017年5月8日
(65)【公開番号】特開2018-191434(P2018-191434A)
(43)【公開日】2018年11月29日
【審査請求日】2019年12月20日
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000925
【氏名又は名称】特許業務法人信友国際特許事務所
(72)【発明者】
【氏名】横田 登志美
(72)【発明者】
【氏名】石井 良和
(72)【発明者】
【氏名】高橋 宏文
(72)【発明者】
【氏名】冨田 泰志
【審査官】 寺谷 大亮
(56)【参考文献】
【文献】 特開2012−147621(JP,A)
【文献】 特許第5834227(JP,B2)
【文献】 特開2015−069545(JP,A)
【文献】 特開2017−070159(JP,A)
【文献】 中国特許出願公開第101563828(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/00
H02J 3/32
H02J 3/38
H02J 3/14
H02J 13/00
G06Q 50/06
(57)【特許請求の範囲】
【請求項1】
蓄電池毎の第一電力供給先のある時点で停電した場合に停電から復旧するまでに要する停電復旧時間を、時間の経過とともに変化する状況を監視して得られる監視データから予測する停電復旧時間予測部と、
前記停電復旧時間の予測情報と蓄電池毎の第一電力供給先のある時点の需要予測値とから、蓄電池毎のある時点の必要蓄電量を計算する必要蓄電量計算部と、
前記必要蓄電量から蓄電池毎の第一電力供給先以外へのある時点の放電可能量を計算する放電可能量計算部と、を備え、
前記監視データは、少なくとも、復旧作業を行う保守員の位置、前記保守員の位置から当該蓄電池の位置までの経路の道路渋滞情報、電力系統についての系統監視データ、天候情報を含み、
前記停電復旧時間予測部は、
蓄電池の位置への呼び出しがかかってから前記保守員が到着するまでの時間である保守員到着時間と、前記保守員到着時間に影響を与える要因の値と、を含む保守員到着履歴の情報と、前記監視データとに基いて、前記保守員到着時間を分析する保守員到着時間分析部と、
前記監視データと、前記保守員到着時間分析部の分析結果とに基づいて、前記保守員到着時間を予測する保守員到着時間予測部と、
天候情報と系統監視データとを含む復旧時間履歴の情報に基づいて、前記保守員が到着してから復旧までに要する作業時間である復旧作業時間を分析する復旧作業時間分析部と、
前記監視データと、前記復旧作業時間分析部の分析結果とに基づいて、前記復旧作業時間を予測する復旧作業時間予測部と、
前記保守員到着時間と前記復旧作業時間とを合わせて前記停電復旧時間として計算する総合時間算出部と、を有する
蓄電池運用装置。
【請求項2】
放電可能量の利用者のある時点の必要放電量を受けて、前記放電可能量計算部にて計算した蓄電池毎の第一電力供給先以外に供給するある時点の放電可能量を、前記放電可能量の利用者のある時点の必要放電量に割り当て蓄電池毎の充放電計画を策定する蓄電池充放電計画策定部と、
前記蓄電池充放電計画策定部が策定する充放電計画に従い、蓄電池の充放電を制御する蓄電池制御部と、を備える
請求項1に記載の蓄電池運用装置。
【請求項3】
蓄電池毎の充放電速度情報を用いて、前記必要蓄電量計算部が計算した蓄電池毎のある時点の必要蓄電量を満足する制約における、前記放電可能量を利用できる時間、及び、充電のための料金を計算し、計算結果を前記蓄電池充放電計画策定部へ出力する実質利用時間・充電料金計算部、を備える
請求項2に記載の蓄電池運用装置。
【請求項4】
前記蓄電池充放電計画策定部は、前記実質利用時間・充電料金計算部から前記計算結果を受け取り、複数の前記充放電計画の中から、前記放電可能量を実質的に利用できる時間が長く、充電のための料金を安く実行できる充放電計画を選択して、当該充放電計画を前記蓄電池制御部へ出力する
請求項3に記載の蓄電池運用装置。
【請求項5】
前記停電復旧時間予測部は、蓄電池の所有者の建物内における事業負荷を第一電力供給先とする蓄電池の停電復旧時間を予測し、
前記必要蓄電量計算部は、前記予測した停電復旧時間と、前記事業負荷のある時点の需要予測値から、前記蓄電池のある時点の必要蓄電量を計算し、
前記放電可能量計算部は、ある時点の放電可能量を計算し、
前記放電可能量が前記建物のピークカットに使用されて対価が前記蓄電池の所有者に支払われる
請求項1に記載の蓄電池運用装置。
【請求項6】
前記蓄電池の所有者は、当該蓄電池を日常的に使用しない者である
請求項1に記載の蓄電池運用装置。
【請求項7】
蓄電池運用装置により実行される蓄電池運用方法であって、
停電復旧時間予測部により、蓄電池毎の第一電力供給先のある時点の停電復旧時間を、時間の経過とともに変化する状況を監視して得られる監視データから予測する処理と、
必要蓄電量計算部により、蓄電池毎の第一電力供給先のある時点の需要予測値から、蓄電池毎のある時点の必要蓄電量を計算する処理と、
放電可能量計算部により、前記必要蓄電量から蓄電池毎の第一電力供給先以外へのある時点の放電可能量を計算する処理と、を備え、
前記監視データは、少なくとも、復旧作業を行う保守員の位置、前記保守員の位置から当該蓄電池の位置までの経路の道路渋滞情報、電力系統についての系統監視データ、天候情報を含み、
前記停電復旧時間を予測する処理において、
蓄電池の位置への呼び出しがかかってから前記保守員が到着するまでの時間である保守員到着時間と、前記保守員到着時間に影響を与える要因の値と、を含む保守員到着履歴の情報と、前記監視データとに基いて、前記保守員到着時間を分析し、
前記監視データと、前記保守員到着時間の分析結果とに基づいて、前記保守員到着時間を予測し、
天候情報と系統監視データとを含む復旧時間履歴の情報に基づいて、前記保守員が到着してから復旧までに要する作業時間である復旧作業時間を分析し、
前記監視データと、前記復旧作業時間の分析結果とに基づいて、前記復旧作業時間を予測し、
前記保守員到着時間と前記復旧作業時間とを合わせて前記停電復旧時間として計算する
蓄電池運用方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バックアップ用蓄電池などの蓄電池を利用する蓄電池運用装置及び蓄電池運用方法に関する。
【背景技術】
【0002】
現在の社会はデジタル化社会と呼ばれ、デジタルデータ化された様々な情報がネットワークを介して端末装置間でやり取りされる。このような社会では、停電などにより本来の電源が失われてもシステムなどが使用できる状態を維持し続ける能力(可用性)が要求され、バックアップ用蓄電池の導入量が増大している。このような流れの中で、稼働率が低い蓄電池の余力を活用しようという動きがある。コンピューターなどの情報・通信機器だけでなく、世の中に存在する様々な物体に通信機能を持たせ、インターネットに接続して相互に通信したりすることにより、自動認識や自動制御、遠隔計測などを行うIoT(Internet of Things)により、時々刻々と変化する様々な情報を入手することが可能となった。
【0003】
例えば、特許文献1には、常時作動する所定の設備に設けられる蓄電装置を利用することで、電力需給を安定化できるようにする技術が記載されている。この特許文献1に記載の技術は、予測した電力需要WEと電力供給量WPとの差(WE−WP)が所定の閾値Th1以上なら蓄電装置ESS43を放電させ、閾値Th2未満なら蓄電装置ESS43を充電するよう制御する(段落[0076]〜[0079]参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2016−63548号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
一般に、バックアップ用蓄電池は、各時刻において必要とする蓄電量の最大値等から容量を定めて設置される。しかし、各時刻において必要とする蓄電量は、様々な条件によって時々刻々と変化するものである。つまり、特許文献1に記載の技術は、蓄電池の余力が時間とともに変化することに対応しておらず、当初見積もった余力より実際は大きかったとしても、活用することができない。
【0006】
上記の状況から、バックアップ用蓄電池の他用途へ利用可能な蓄電池余力(放電可能量)を精度よく推定し、他用途への利用可能量を増やす手法が要望されていた。
【課題を解決するための手段】
【0007】
本発明の一態様の蓄電池運用装置は、蓄電池毎の第一電力供給先の時刻毎の停電復旧時間を、時間の経過とともに変化する状況を監視して得られる監視データから予測する停電復旧時間予測部と、蓄電池毎の第一電力供給先の時刻毎の需要予測値から、蓄電池毎の時刻毎の必要蓄電量を計算する必要蓄電量計算部と、必要蓄電量から蓄電池毎の第一電力供給先以外への時刻毎の放電可能量を計算する放電可能量計算部と、を備える。
【発明の効果】
【0008】
本発明の少なくとも一態様によれば、時々刻々と変化する蓄電池の放電可能量(蓄電池余力)を高い精度で推定できるため、多くの蓄電池余力を得ることができる。そのため、例えばデマンドレスポンスやピークシフトへの活用範囲が広がる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0009】
図1】本発明の第1の実施形態に蓄電池運用装置を含む蓄電池運用システムの概略を示す全体構成図である。
図2】本発明の第1の実施形態に係る仮想電池放電可能量計算部の内部構成例を示すブロック図である。
図3】本発明の第1の実施形態に係る停電復旧時間予測部の内部構成例を示すブロック図である。
図4】本発明の第1の実施形態に係る蓄電池運用装置を利用したビジネスモデルを示す説明図である。
図5図1又は図4に示した蓄電池運用を実施するためのシステム構成例を示す説明図である。
図6】本発明の第1の実施形態に係る仮想電池放電可能量計算部において計算した時刻ごとの放電可能量(必要蓄電量)の一例を示すグラフである。
図7図6の蓄電池の時刻ごとの放電可能量(余力)を元に、蓄電池充放電計画策定部で計算した蓄電池の充放電計画の一例を示すグラフである。
図8】本発明の第1の実施形態に係る各装置が備えるコンピューターのハードウェア構成例を示すブロック図である。
【発明を実施するための形態】
【0010】
以下、本発明を実施するための形態の例について、添付図面を参照しながら説明する。添付図面において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。なお、添付図面は本発明の原理に則った具体的な実施形態と実装例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
【0011】
<1.第1の実施形態>
[蓄電池運用装置を含むシステム]
図1は、本発明の第1の実施形態に蓄電池運用装置を含む蓄電池運用システムの概略を示す。蓄電池運用システム1は、蓄電池所有者201−1,201−2が所有する蓄電池301−1,301−2と、蓄電池運用装置100と、蓄電池利用者401−1,401−2が所有する電気機器4114102から構成される。
【0012】
なお、本明細書において、蓄電池所有者201−1,201−2を区別しない場合には、「蓄電池所有者201」と称し、また、蓄電池利用者401−1,401−2を区別しない場合には、「蓄電池利用者401」と称する。同様に、電気機器4114102については「電気機器410」と称し、端末装置420−1,420−2については「端末装置420」と称する。
【0013】
図1では、二人の蓄電池所有者201(蓄電池301)及び二人の蓄電池利用者401(電気機器410)の場合の例を示したが、蓄電池所有者201(蓄電池301)及び蓄電池利用者401(電気機器410)は、この人数に限定されない。
【0014】
蓄電池所有者201は、停電バックアップ用など本来の目的のために蓄電池301を所有している。以降、蓄電池に蓄電した電力の本来の目的の供給先を、その蓄電池の「第一電力供給先」と呼ぶ。蓄電池利用者401は、蓄電池301の第一電力供給先以外であって、蓄電池運用装置100を介して蓄電池301の蓄電機能(蓄電電力)を使用する。蓄電池利用者401は、複数の蓄電池301−1,301−2をまとめて一つの仮想電池300として見ることができる。本明細書では、この仮想電池300(蓄電池群)をSDES(Software Defined Energy Storage)とも呼ぶ。
【0015】
本実施形態では、蓄電池301の本来の目的は停電バックアップ用であるが、その他の用途であっても同様に蓄電池301を仮想電池300として活用できる。例えば、その他の用途の例としては、余剰分の再生可能エネルギーの蓄電用やデマンドレスポンス用などがある。デマンドレスポンスは、需要家が需要量を変動させて電力の需給バランスを一致させる仕組みのことである。
【0016】
蓄電池運用装置100は、仮想電池放電可能量計算部101と、蓄電池充放電計画策定部102と、実質利用時間・充電料金計算部103と、蓄電池制御部104を備える。蓄電池運用装置100の各部の機能は、後述するCPU801が、ROM802に格納された制御プログラムを読み込んで実行することにより実現される。図1の蓄電池運用装置100のブロック構成は、蓄電池運用装置100の各部による処理の流れもわかるようになっている。
【0017】
仮想電池放電可能量計算部101は、蓄電池301−1からの蓄電池データBD1及び/又は蓄電池301−2からの蓄電池データBD2を受けて、時刻毎の仮想電池放電可能量を計算する。放電可能量は、蓄電池に充電された蓄電量(電力量)のうち必要電力量を超えている分の蓄電量である。蓄電池301は、第一電力供給先に電力を供給するために必要な蓄電量を満たす必要があり、その蓄電量の計算に用いられる情報が蓄電池データBD1,BD2である。蓄電池データに含まれる情報の一例を以下に示す(後述する図2参照)。本明細書において、蓄電池データBD1,BD2を区別しない場合には、「蓄電池データBD」(監視データの一例)と称することがある。なお、蓄電池データの各情報は、互いに重複する内容を含んでいる場合がある。
【0018】
蓄電池データ例1:
・蓄電池毎、時刻毎の
-保守員位置
-道路渋滞情報
-保守員到着履歴
-復旧時間履歴
-系統監視データ
-天候情報
-需要予測量
・蓄電池毎の充電速度
【0019】
「保守員位置」、「道路渋滞情報」、「系統監視データ」、及び「天候情報」は、時間の経過とともに変化する状況を監視して得られる情報(データ)であり、少なくとも蓄電池データにはこれらの情報が含まれることが望ましい。系統監視データは、電力線ELを含む電力系統についての監視データである。蓄電池データが仮想電池放電可能量計算部101へ入力されるまでのタイムラグ(時間のずれ)はあってもよいが、小さいほど望ましい。蓄電池データを用いた時刻毎の仮想電池放電可能量の計算については、後述する図2を参照して詳述する。
【0020】
蓄電池充放電計画策定部102は、放電可能量の利用者の時刻毎の必要放電量を受けて、放電可能量計算部113にて計算した蓄電池301毎の第一電力供給先以外に供給する時刻毎の放電可能量を、放電可能量の利用者の時刻毎の必要放電量に割り当て蓄電池301毎の充放電計画を策定する。即ち蓄電池充放電計画策定部102は、仮想電池放電可能量計算部101から時刻毎の仮想電池放電可能量を受け、また、蓄電池利用者401が所有する端末装置420からアプリデータを受け、蓄電池充放電計画(後述する図6図7参照)を策定する。アプリデータとは、蓄電池運用システム1において蓄電池利用者401に提供されるアプリケーションソフトウェア(以下「アプリケーション」と略称する)が出力するデータである。アプリデータには、仮想電池300の蓄電量に余力が発生する時間帯や利用料、仮想電池300の電力線EL上の位置などの情報が含まれる。図1では、蓄電池利用者401−1の端末装置420−1から蓄電池運用装置100にアプリデータAD1が入力され、蓄電池利用者401−2の端末装置420−2から蓄電池運用装置100にアプリデータAD2が入力されている。アプリデータAD1,AD2を区別しない場合には、「アプリデータAD」と称することがある。
【0021】
また、蓄電池充放電計画策定部102は、前回計算時に決定した蓄電池301についての蓄電池充放電計画に対し、蓄電池データBD又はアプリデータADに変更がある場合をトリガーとして、更新処理を実行する。ここでは、蓄電池充放電計画策定部102は、変更後の蓄電池データBD又はアプリデータADの内容に合わせて、蓄電池301の充放電計画を策定する。そして、蓄電池充放電計画策定部102は、各アプリケーションに必要な充放電量を各蓄電池301にどう割り付けるかを示す候補充放電計画を複数抽出し、それらの候補充放電計画を実質利用時間・充電料金計算部103に渡す。
【0022】
実質利用時間・充電料金計算部103は、蓄電池301毎の充放電速度情報を用いて、必要蓄電量計算部112が計算した蓄電池301毎の時刻毎の必要蓄電量を満足する制約における、放電可能量を利用できる時間、及び、充電のための料金を計算する。即ち実質利用時間・充電料金計算部103は、蓄電池充放電計画策定部102から受け取った各候補充放電計画について、上記放電可能量を実質的に利用できる時間(実質利用時間)、及び、充電を行うのにかかる料金(充電料金)を計算し、計算結果を蓄電池充放電計画策定部102に返信する。
【0023】
蓄電池充放電計画策定部102は、実質利用時間・充電料金計算部103から実質利用時間と充電料金の計算結果を受け取る。そして、蓄電池充放電計画策定部102は、候補充放電計画の中から実質利用時間は長く、充電料金は安く実行できる充放電計画を選択する。また、蓄電池充放電計画策定部102は、選択した充放電計画を蓄電池制御部104に渡す。蓄電池利用者401は、蓄電池301の放電可能な電力の利用者であり、時刻毎の必要放電量又は充電量がアプリデータADとして、蓄電池充放電計画策定部102に入力される。
【0024】
例えば、アプリデータが18時から21時までのデマンドレスポンスであり、利用可能な蓄電池301−1と蓄電池301−2が存在し、蓄電池301−1の蓄電予定量は22時に蓄電量100%、蓄電池301−2の蓄電予定量は翌朝6時に蓄電量100%にする場合を想定する。蓄電池301−1は22時に蓄電量100%にしなければならないため、蓄電池301−1の充電速度により1時間で蓄電量100%にできる範囲でしか利用できない。1時間で充電できる蓄電量が25%であれば、21時に蓄電量75%までしか利用できない。あるいは、満蓄電量の50%を利用するならば、利用時間は20時までである。蓄電池301−1は、充電速度より、20時以降は、充電し続けなければならないからである。蓄電池301−2は、翌朝6時に蓄電量が100%になればよいため、時間的に余裕がある。また、充電時間となる21時から22時までの間の電気料金がそれ以降の電気料金と比較して高いのであれば、利用した分の蓄電量を戻すために、安い時間に充電できる蓄電池301−2に割り当てる方が、充電料金が安く済む。
【0025】
利用時間と充電料金のどちらを優先させるかは、蓄電池運用装置100の運用者が重みづけにより評価点を算出して決定するようにすれば、アプリケーション(デマンドレスポンス)に適した蓄電池充放電計画を策定できる。
【0026】
ここで、アプリデータの一例を以下に示す。アプリデータ例1は、蓄電池利用者401が充電機能も放電機能も利用する場合の一例であり、蓄電量kWh,開始時SOC,終了時SOC,充放電速度を指定する。SOC(State Of Charge)は、充電率であり、満充電時の蓄電量に対する現在の蓄電量の割合を表す。また、バックアップ電源等に用いる場合は、蓄電池301(のPCS303(後述する図5参照))と電力線ELにて接続される必要があるため、当該電気機器410の電力線EL上(図1)の位置を指定する。アプリデータ例2は、蓄電池利用者401が放電機能として利用する場合の一例である。
【0027】
アプリデータ例1:
開始時刻・終了時刻
蓄電量kWh,開始時SOC,終了時SOC,充放電速度,利用料,
電力線EL上の位置
【0028】
アプリデータ例2:
開始時刻・終了時刻
放電量kWh,放電速度,利用料,
電力線EL上の位置
【0029】
蓄電池利用者401がアプリケーション(蓄電池余力提供サービス)利用の対価として支払う料金を予め指定し、その料金に従って蓄電池充放電計画を策定する構成としてもよい。このような構成は、アプリケーション(即ち電気使用料金)の利用料金が安いときのみサービスを利用したい蓄電池利用者401にとって便利である。
【0030】
蓄電池制御部104は、蓄電池充放電計画策定部102より充放電計画を受け取り、充放電計画に従い該当する蓄電池301の充放電を制御する。
【0031】
[仮想電池放電可能量計算部]
以下、蓄電池運用装置100の仮想電池放電可能量計算部101について図2を用いて詳細に説明する。
【0032】
図2は、仮想電池放電可能量計算部101の内部構成例を示す。仮想電池放電可能量計算部101は、停電復旧時間予測部111と、必要蓄電量計算部112と、時刻毎の放電可能量計算部113と、集計部114を備える。
【0033】
本実施形態において、蓄電池運用装置100への入力(蓄電池データ)と、出力は以下の通りである。
[入力]
・蓄電池毎、時刻毎の
-保守員位置
-道路渋滞情報
-保守員到着履歴
-復旧時間履歴
-系統監視データ
-天候情報
-需要予測量
・蓄電池毎の充電速度
[出力]
時刻毎の仮想電池放電可能量
【0034】
停電復旧時間予測部111は、下記の情報を受けて蓄電池i毎、時刻tに停電した場合に停電から復旧するまでに要する停電復旧時間R(t)の予測を行う。その処理の詳細は後述する図3を用いて説明する。
【0035】
・蓄電池毎、時刻毎の
-保守員位置
-道路渋滞情報
-保守員到着履歴
-復旧時間履歴
-系統監視データ
-天候情報
【0036】
必要蓄電量計算部112は、停電復旧時間予測部111より蓄電池i毎、時刻t毎の停電復旧時間R(i,t)の予測情報を受け、また、蓄電池i毎、時刻t毎の需要予測量(i,t)を受け、蓄電池i毎の時刻t毎の必要蓄電量(i,t)を計算する。蓄電池毎、時刻毎の需要予測量は、バックアップ用蓄電池の場合、停電時にバックアップすべき電力量(復旧するまでに必要な電力量)に相当する。必要蓄電量計算部112は、需要予測量を図示していない需要予測機能(パーソナルコンピューター又はネットワーク等)より受ける。需要予測機能は、天候や時刻などの条件によって電力需要を分析し、その結果を用いて電力需要を予測する。
【0037】
蓄電池iの時刻tにおける必要蓄電量は、以下の式(1)により計算する。すなわち、時刻tに停電した際に復旧までR(t)時間かかる間、時刻tから時間(t+R(t))までの間の各時刻に必要な需要予測量(i,t)の総和である。
【0038】
t+R(i,t)
必要蓄電量(i,t)=Σ需要予測量(i,t) ・・・式(1)
t=t
【0039】
時刻毎の放電可能量計算部113は、蓄電池iの時刻t毎の必要蓄電量(i,t)を受け、蓄電池i毎の充電速度(i)を受け、蓄電池i毎の時刻t毎の放電可能量D(i,t)を計算する。この放電可能量D(i,t)は、以下の式(2)により計算する。放電可能量
【0040】
放電可能量D(i,t)=蓄電池容量(i)− 必要蓄電量(i,t) ・・・式(2)
【0041】
集計部114は、蓄電池i毎の時刻t毎の放電可能量D(i,t)を受け、時刻t毎の仮想電池放電可能量D_SDES(t)を、以下の式(3)により計算して、出力する。
【0042】
蓄電池数I
仮想電池放電可能量D_SDES(t)=Σ放電可能量D(i,t) ・・・式(3)
i=0
【0043】
[停電復旧時間予測部]
以下、仮想電池放電可能量計算部101の停電復旧時間予測部111について図3を用いて説明する。
【0044】
図3は、停電復旧時間予測部111の内部構成例を示す。停電復旧時間予測部111は、保守員到着時間分析部121と、保守員到着時間予測部122と、復旧作業時間分析部123と、復旧作業時間予測部124と、総合時間算出部125と、保守員到着時間分析結果データベース126と、復旧作業時間分析結果データベース127を備える。
【0045】
保守員到着時間分析部121は、以下に示す保守員到着履歴の情報を受けて、保守員到着時間を分析し、分析結果を保守員到着時間分析結果データベース126に登録する。
【0046】
蓄電池i毎、時刻t毎の保守員到着履歴
−保守員位置
−道路渋滞情報
−天候情報
−到着まで要した時間
−該当蓄電池位置への呼び出しがかかった時刻(呼び出し時刻)
【0047】
保守員到着履歴は、該当蓄電池位置への呼び出しがかかってから到着するまでの時間と、その時の保守員位置、道路渋滞情報、天候情報、呼び出し時刻など、到着時間に影響を与える要因の値である。
【0048】
道路渋滞情報は、呼び出し時刻におけるその時の保守員位置から該当蓄電池位置までの経路とその混雑具合を示す情報(例えば、ここでは経路を通過するのに要する時間として説明する)である。呼び出しがかかってから途中に可動式蓄電池もしくは発電機を取りに行く場合は、その経路の道路渋滞情報を入力する。これらすべての要因を用いずとも、一部だけ(例えば、呼び出しがかかってから到着するまでの時間など)を用いてもよい。
【0049】
天候情報は、晴れや曇りなどの質的変数であるので、適宜道路渋滞への影響を反映する数値変数に直すなどして扱う。または、道路渋滞の要因を条件としてサンプルデータを分類し、条件別の保守員到着時間arrival(i,t)を得てもよい。例えば、同じ晴れの日でも、過ごしやすい気温のグループと極寒のグループでは交通量が大きく異なると考えられる。
【0050】
なお、上記の蓄電池i毎、時刻t毎の保守員到着履歴に記載していないが、イベントカレンダー情報を用いてもよい。例えば保守員位置から該当蓄電池位置までの経路において何らかのイベントが開催されていた場合には、経路上で道路渋滞が発生し、保守員の到着までにより多くの時間を要する。よって、イベントカレンダー情報を、保守員の到着時間に影響を与える要因として用いることで、より正確な到着時刻を予測することが可能となる。
【0051】
実際には、該当蓄電池位置への呼び出しがかかることはまれであるので、時刻毎に履歴を分類するのではなく、蓄電池毎に履歴を分類し、該当蓄電池位置への呼び出しがかかった時刻を要因として入力してもよい。
【0052】
また、該当蓄電池位置への呼び出し履歴だけでは、サンプル数が少なく統計解析等の手法を適用できないなどの場合は、複数の蓄電池の呼び出し履歴に対し統計解析等の手法を適用して分析する。例えば、道路渋滞情報から該当蓄電池位置を計算するための到着に要する推定時間と、実際に到着までに要した時間の誤差を目的変数、その他の要因である保守員位置、蓄電池位置、天候情報、該当蓄電池位置への呼び出しがかかった時刻を説明変数として回帰分析を行い、誤差について回帰モデルや各要因の係数を算出する。回帰分析であれば、保守員到着時間誤差r(t)は下記の式(4)に示すモデルで表され、係数k1,k2,k3を得ることができる。
【0053】
保守員到着時間誤差r(i,t)=r(t,保守員位置,蓄電池i位置,天候情報,該当蓄電池位置への呼び出しがかかった時刻)
=k1*道路渋滞情報(保守員位置,蓄電池i位置)+k2*G1(天候情報)+k3*G2(呼び出し時刻) ・・・式(4)
【0054】
また、保守員到着時間arrival(i,t)は、道路渋滞情報から計算される到着に要する推定時間に、各種要因から算出した誤差を足して計算する。
【0055】
保守員到着時間arrival(i,t)
=道路渋滞情報(保守員位置,蓄電池i位置)+保守員到着時間誤差r(i,t)
・・・式(5)
【0056】
保守員到着時間誤差r(i,t)が閾値よりも小さければ、道路渋滞情報から計算される到着に要する推定時間を、保守員到着時間分析結果データベース126に登録してもよい。分析手法は、回帰分析以外の手法を用いてモデル化してもよい。各種要因から保守員到着時間arrival(i,t)を導出するためのモデルが既にあるのであれば、該当モデルを保守員到着時間分析結果データベース126に登録し、保守員到着時間分析部121を設けなくてもよい。
【0057】
保守員到着時間予測部122は、以下に示す復旧時間履歴の情報を入力し、保守員到着時間分析結果データベース126を参照して、蓄電池i毎、時刻t毎の蓄電池保守員到着時間arrival(i,t)を予測する。予測結果を総合時間算出部125に渡す。
【0058】
復旧作業時間分析部123は、以下に示す復旧時間履歴の情報を受けて、保守員が到着後に停電が復旧するまでの時間を分析し、結果を復旧作業時間分析結果データベース127に登録する。
【0059】
−復旧時間履歴
−天候情報
−系統監視データ
【0060】
復旧作業時間分析部123による復旧作業時間分析は、保守員到着時間分析部121と同様に行われる。回帰分析を用いて分析したならば、下記式(6)のようにモデル化して、係数を算出できる。例えば天候情報に関しては、雨の日には、晴れの日よりも作業の進行が遅くなる場合がある。また、呼び出し時刻に関して言えば、呼び出しの時間帯によっては熟練作業者が不在のため熟練度の低い作業者が担当し、復旧作業時間がかかる場合等がある。蓄電池i,天候情報,該当蓄電池位置への呼び出しがかかった時刻は、復旧作業時間への影響を反映する数値に変換して用いる。または、復旧作業時間の要因を条件としてサンプルデータを分類し、条件別の復旧作業時間w(i,t)を得てもよい。
【0061】
復旧作業時間w(i,t)=w(t,蓄電池i,天候情報,呼び出し時刻)
=m1*F1(蓄電池i)+m2*F2(天候情報)+m3*F3(呼び出し時刻)
・・・式(6)
【0062】
各種要因から復旧作業時間w(i,t)を導出するためのモデルが既にあるのであれば、該当モデルを復旧作業時間分析結果データベース127に登録し、復旧作業時間分析部123を設けなくてもよい。
【0063】
復旧作業時間予測部124は、天候情報及び系統監視データの情報を受け取り、復旧作業時間分析結果データベース127を参照して、蓄電池i毎、時刻t毎の復旧作業時間w(i,t)を予測する。そして、復旧作業時間予測部124は、予測結果を総合時間算出部125に渡す。
【0064】
総合時間算出部125は、蓄電池i毎、時刻t毎の保守員到着時間arrival(i,t)及び復旧作業時間w(i,t)を受けて、これらを総和して時刻tに停電になった場合に、復旧までにかかる時間を計算する。図3では、復旧までにかかる時間を、保守員到着時間と復旧作業時間に分けて見積もったが、復旧までに他に実施すべきことがあれば、その時間も見積もって復旧までにかかる時間に算入する。
【0065】
上述のように構成された第1の実施形態によれば、蓄電池運用装置100は、時々刻々と変化する蓄電池余力を高い精度で推定できる。そのため、仮想電池300から多くの蓄電池余力を得ることができる。また、蓄電池運用装置100を用いた蓄電池運用システム1は、デマンドレスポンスやピークシフトへの活用範囲が広がる。また、これにより蓄電池の所有者は、蓄電池余力による収入が増えることが期待できる。
【0066】
[蓄電池運用装置を利用したビジネスモデル]
次に、あるビル(建物)内において蓄電池運用装置100を利用したビジネスモデルの一例を説明する。
【0067】
図4は、蓄電池運用装置100を利用したビジネスモデルの一例を示す。蓄電池運用装置100を含む蓄電池運用システム1を用いて構築されるビジネスモデルには、一例として、蓄電池運用者600、ビル入居者A、ビル入居者B、ビル管理者C、及び電力会社もしくはアグリゲーターDが登場する。
【0068】
蓄電池運用者600は、蓄電池運用装置100を用いて蓄電池301の運用を行う。
ビル入居者Aは、蓄電池所有者201であり、蓄電池運用装置100を利用した蓄電池運用事業におけるバックアップ用の蓄電池301を所有している。
ビル入居者B、ビル管理者C、及び電力会社もしくはアグリゲーターDは、それぞれ蓄電池利用者401−1、蓄電池利用者401−2、及び蓄電池利用者401−3である。アグリゲーターは、ネガワットを集める事業者である。ビル入居者B、ビル管理者C、及び電力会社もしくはアグリゲーターDは、蓄電池運用装置100により、蓄電池301の蓄電池余力を利用する。
【0069】
蓄電池運用者600は、蓄電池所有者201及び蓄電池利用者401に、蓄電池運用装置100のサービスを利用してもらうための環境として、電池、SDESアプリケーション、SS保守(劣化診断)、EMS(Energy Management System)等のサービスを提供する。蓄電池所有者201及び蓄電池利用者401が仮想電池300の利用によりそれぞれにメリットを得たならば、蓄電池運用者600はそのメリットの一部を利用料として受け取る。
【0070】
ビル入居者Bは、停電時に、ビル入居者Aの蓄電池301の電力(余力)をバックアップ用として利用する。ビル入居者Bは、蓄電池301の電力の対価が反映された管理費をビル管理者Cに支払う。実際に停電した際には所定の金額を支払うほか、停電しなかった場合も停電した際に供給を受ける権利に対する金額を支払う。
【0071】
ビル管理者Cは、ビル入居者Bから対価が反映された管理費を受け取り、対価をビル入居者Aと分け合う。またビル管理者Cは、ビル入居者Aから管理費を受け取る。管理費には、ビル700の共用部等の維持・管理にかかる費用も含まれる。ビル管理者Cは、停電時にビル入居者Bが蓄電池301を利用できるよう、配電安定化のための電力設備を備えておく必要がある。事業継続に必要なバックアップ用の蓄電池301を備えていることで、ビル700の入居率を向上したり家賃を高く設定したりできる。また、ビル管理者Cは、蓄電池301を自己所有していないため、ビル入居者Bが停電時のバックアップを必要としない場合には、蓄電池301の費用はかからない。
【0072】
ビル管理者Cは、例えばビル700の屋上に太陽光電池PVを設置してビル700全体の電力使用料金コストを下げるなどの営業努力をしているが、発電量が不安定である。ビル管理者Cは、蓄電池301の蓄電池余力を購入することで、ビル700全体の電力使用料金を下げるためのピークカットを行い、ビル700全体の電力使用料金コストを低減できる。また、ビル管理者Cは、電力会社もしくはアグリゲーターDからネガワット要請を受けた際に、蓄電池301を放電してビル700の需要を下げてネガワットとして利益(対価)を得る。また、ビル入居者Bにバックアップ機能を提供できることで、ビル700の入居率を向上したり、家賃を高く設定したりすることができ、収益をあげられる。
【0073】
電力会社もしくはアグリゲーターDは、電力の需給バランスの調整に、蓄電池301の蓄電池余力を利用することができる。
【0074】
上述したように、停電復旧時間予測部111は、ビル700の入居者Aのビル700内における事業負荷を第一電力供給先とする蓄電池301の停電復旧時間を予測する。次いで、必要蓄電量計算部112は、その予測した停電復旧時間と、上記事業負荷の時刻毎の需要予測値から、蓄電池301の時刻毎の必要蓄電量を計算する。そして、時刻毎との放電可能量計算部113は、時刻毎の放電可能量を計算し、放電可能量をビル700のピークカットに使用して対価をビル700の入居者Aに支払う。
【0075】
上述した蓄電池301として、例えば移動体通信の基地局に設置されたバックアップ用の蓄電池を適用することができる。移動体通信の基地局は、需要家(蓄電池利用者)の存在するところには必ずと言っていいほど設置されており、全国各地域を網羅している。さらに基地局は、保守点検時を除いて24時間365日の連続稼働するものであり、かつ、通信機能をユーザーへ提供するために種々の電気的負荷を作動させている。移動体通信は、昼間と夜間で必要電力量(電力需要)が異なる。一般的に、昼間に経済活動(労働)が行われるため、移動体通信は、夜間よりも昼間の時間帯の必要電力量が多い。夜間の時間帯は、蓄電池の容量に対して必要電力量が小さいために、夜間に比べて蓄電池に余力(放電可能な電力量)が生じやすい。この蓄電池の余力を本来の用途(移動体通信用)と異なる用途に利用することで、これまで見過ごされてきた移動体通信の基地局に設けられた蓄電池を有効活用できる。
【0076】
[ビジネスモデルに対応したシステム構成]
次に、図1又は図4に示した蓄電池運用を実施するためのシステム構成例を説明する。
【0077】
図5は、図1又は図4に示した蓄電池運用を実施するためのシステム構成例を示す。ビル700内には、蓄電池301(PCS303と蓄電池本体302に分けて図示)、蓄電池運用装置100、及びビル700全体の電力を管理するEMS(Energy Management System)702が設置され、相互に電力線ELで接続されている。
【0078】
蓄電池301は、蓄電池運用装置100と通信線(通信網)で接続されており、蓄電池301内のPCS303は、太陽光電池PVや蓄電池本体302の直流電力を、交流電力に変換する機能等を有し、蓄電池運用装置100より受ける制御信号に従って蓄電池本体302の充放電を制御する。ビル入居者Bは、端末装置420−1により蓄電池運用装置100へアプリデータADを送り、停電時には蓄電池301より蓄電池余力を受ける。EMS702は、ビル管理者Cの端末装置420による設定及び蓄電池運用装置100より受ける制御信号に基づいて、ピークシフトを制御したり、停電時の系統運用ルールに従って停電時にはビル入居者Bに電力を供給したりする。
【0079】
EMS702や蓄電池運用装置100は、ビル700外に設置されていてもよい。ビル700外には、PV503、WF504、発電機505、SVR501、DMS502などの機器が電力網上に設置され、ビル700内の変圧器701と接続されている。蓄電池利用者401−3である電力会社は、不図示の端末装置420により、ネットワークNを介して蓄電池運用装置100にネガワット要請等を行う。
【0080】
[時刻ごとの放電可能量(蓄電池余力)]
図6は、仮想電池放電可能量計算部101(図2参照)において計算したある蓄電池301の時刻ごとの放電可能量(必要蓄電量)の一例を示すグラフである。図6の横軸は時刻、縦軸は必要蓄電量[Wh]を表す。蓄電池301の時刻ごとの必要蓄電量と放電可能量(余力)が棒グラフで表示される。また、グラフの下方には、「余力の発生が開始する時刻」、「その時の余力(Wh)」及び「SOC値(充電率)」、並びに、「余力の発生が終了する時刻」と、「その時の余力(Wh)」及び「SOC値(充電率)」を文字列により示している。本例の場合、余力の発生が開始する時刻は13:00、余力(放電可能量)はaWh、SOCは100%(フル充電に相当)であり、余力の発生が終了する時刻は17:00、余力(放電可能量)はaWh、SOCは100%(フル充電に相当)である。即ち、SOC100%のときの蓄電量と必要蓄電量との差分であるaWhを、余力として4時間にわたって放電することが可能である。なお、充放電速度の制約からaWhの余力を4時間にわたってずっと利用できるわけではないことに注意する必要がある。この充放電速度の制約については、後述する図7を用いて詳述する。
【0081】
図6に示したようなグラフを、例えば蓄電池運用者600(図4参照)が管理する蓄電池運用装置100の表示部805(図8参照)に表示する。それにより、蓄電池運用者600は蓄電池301の余力が発生する時間帯と余力(放電可能量)を確認することができる。なお、集計部114で集計した時刻毎の仮想電池放電可能量も同様の形態で表示することができる。なお、上記グラフを蓄電池利用者401の端末装置420に表示するようにしてもよい。
【0082】
なお、図6では1時間ごとに余力を示したが他の単位時間でもよく、例えば30分単位でデータマーカー(柱状部)を表示することにより、蓄電池301の余力をより詳細に把握することができる。
【0083】
[充放電計画結果]
図7は、図6の蓄電池301の時刻ごとの放電可能量(余力)を元に、蓄電池充放電計画策定部102(図1)で計算した蓄電池301の充放電計画の一例を示すグラフである。図7の横軸は時刻、縦軸は余力(放電可能量)[Wh]を表す。グラフの右下がりの部分は蓄電池301の放電を示し、右上がりの部分は蓄電池301の充電を示す。グラフの傾きが、放電速度又は充電速度を表している。図7では、図6の余力発生の開始時刻13:00に合わせて利用開始時刻13:00を設定するとともに、余力発生の終了時刻17:00に合わせて利用終了時刻17:00を設定する
【0084】
利用開始時刻13:00の蓄電量(図7ではSOC100%)と利用終了時刻17:00の蓄電量(図7ではSOC100%)を設定すると、蓄電池301の充放電速度から実際に利用できる余力に制約が生じる。即ち、利用開始時刻の13:00から利用終了時刻の17:00までの4時間を通して蓄電池301を充放電できるわけではない。充電を例にとると、仮に蓄電池301の1時間当たりの充電蓄電量がa[Wh]である場合、充電速度bはa[Wh]/[h]である。この充電速度bは、充電時のグラフの傾きに相当する。図7の利用終了時刻17:00の時点でSOC100%を満たすためには、16:00の時点ならば余力0まで放電してよい。あるいは、16:30の時点ならば少なくともa/2[Wh]の余力を残しておけばよい。
【0085】
なお、夜中などの電気使用料金が低く設定されている時間帯に充電をしたい場合には、充電余力(空き容量)を作る必要がある。その場合には、安い時間帯になったときに蓄電池301の余力が0となるよう放電可能量に相当するaWhの放電を行い、計画的に放電すればよい。
【0086】
例えば、一般に鉛蓄電池は充放電速度がゆっくりであり、リチウムイオン電池は鉛蓄電池と比較すると充放電速度が速い。
【0087】
図7に示したようなグラフを、例えば蓄電池運用者600が管理する蓄電池運用装置100の表示部805に表示する。それにより、蓄電池運用者600は蓄電池301のある時間帯の充放電計画(余力)を確認することができる。なお、上記グラフを蓄電池利用者401の端末装置420に表示するようにしてもよい。
【0088】
[各装置のハードウェア構成例]
図8は、蓄電池運用システム1を構成する各装置が備えるコンピューターのハードウェア構成例を示す。
【0089】
ここでは、上述した蓄電池運用システム1に示された蓄電池運用装置100(図1)、PCS303(図5)、端末装置420(図1)が備えるコンピューター800のハードウェア構成例を説明する。なお、各装置の機能、使用目的に合わせてコンピューター800の各部は取捨選択される。
【0090】
コンピューター800は、バス804にそれぞれ接続されたCPU(Central Processing Unit)801、ROM(Read Only Memory)802、RAM(Random Access Memory)803を備える。さらに、コンピューター800は、表示部805、操作部806、不揮発性ストレージ807、通信インターフェース808を備える。
【0091】
CPU801は、制御部の一例であり、本実施形態に係る各機能を実現するソフトウェアのプログラムコードをROM802から読み出して実行する。このROM802には、蓄電池運用装置100及びアプリケーション利用者ごとに対応する制御プログラムが格納される。なお、コンピューター800は、CPU801の代わりに、MPU(Micro-Processing Unit)等の処理装置を備えるようにしてもよい。RAM803には、演算処理の途中に発生した変数やパラメータ等が一時的に書き込まれる。
【0092】
表示部805は、例えば、液晶ディスプレイモニタであり、コンピューター800で行われる処理の結果等を表示する。操作部806には、例えば、キーボード、マウス又はタッチパネル等が用いられ、ユーザーが所定の操作入力、指示を行うことが可能である。端末装置420−1がスマートフォンなどのモバイル端末である場合、操作部806にはタッチパネルが用いられる。
【0093】
不揮発性ストレージ807としては、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フレキシブルディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード等が用いられる。この不揮発性ストレージ807には、OS(Operating System)や各種のパラメータの他に、コンピューター800を機能させるためのプログラムが記録されていてもよい。例えば不揮発性ストレージ807には、保守員到着時間分析結果データベース126、及び、復旧作業時間分析結果データベース127が格納される。
【0094】
通信インターフェース808には、例えば、NIC(Network Interface Card)等が用いられ、LAN等のネットワークNを介して各装置間で各種のデータを送受信することが可能である。
【0095】
<2.第2の実施形態>
第2の実施形態として、蓄電必要量を蓄電池運用装置100が計算せず、蓄電池301の演算装置で計算した結果を蓄電池運用装置100へデータとして渡す方法がある。この場合は、図2の停電復旧時間予測部111、必要蓄電量計算部112、及び時刻毎の放電可能量計算部113を蓄電池301側(例えばPCS303)に備える。本実施形態の場合、図1における蓄電池データは、例えば以下の蓄電池データ例2や蓄電池データ例3のようになる。蓄電池301側で必要な蓄電量と余力発生時刻を計算し、蓄電池ID(識別情報)、仮想電池300に対する利用開始時刻、利用終了時刻、開始時SOC、及び終了時SOC等を含む蓄電池データBDとして、蓄電池運用装置100に送る。蓄電池運用装置100は、これらの制約内で、アプリケーション(デマンドレスポンス)の割り当てを実施する。
【0096】
なお、本実施形態では、蓄電池データに最小利用料を設定している。蓄電池データに最小利用料を設定しているのは、アプリケーションがバックアップ用の場合に、実際には停電が無く充放電されなかった場合にも、予約を受け付けて蓄電池301の容量を空けて準備することへの対価を得るためである。
【0097】
蓄電池データ例2:
蓄電池ID、仮想電池に対する利用開始時刻・利用終了時刻、
容量kWh、開始時SOC、終了時SOC、充放電速度、
充放電単価、最小利用料
【0098】
蓄電池データ例3:
蓄電池ID、時刻毎の仮想電池に対する提供可能容量(容量kWh、又は、放電量など)、
充放電単価、最小利用料
【0099】
上述の第2の実施形態によれば、蓄電池301側で演算装置により時刻毎の放電可能量を計算し、蓄電池301側で計算した放電可能量に基づき、仮想電池300の充放電計画を策定し、該当する蓄電池301の充放電を制御することができる。第2の実施形態は、その他は第1の実施形態と同様の効果を奏する。
【0100】
<3.第3の実施形態>
第1の実施形態及び第2の実施形態では、蓄電池301には第一電力供給先が設定されている前提で説明したが、例えばバックアップなどの用途(第一電力供給先)が決まっていない場合には、特定の供給先が存在しないこともあり得る。例えば、蓄電池所有者201が投資家の場合には、投資家自らは蓄電池301を日常的に使用していない。このような蓄電池所有者201が投資家であるような場合、蓄電池利用者401に蓄電池余力を貸し出すビジネスにおいては、第一電力供給先はない。しかし、既に何らかの目的で貸し出すことが決定している供給先を第一電力供給先として、同様に本発明を実施することができる。
【0101】
第3の実施形態では、以下のような構成をとる。停電復旧時間予測部111は、蓄電池301毎の決定済み供給先の時刻毎の停電復旧時間を時間の経過とともに変化する状況を監視して得られる監視データから予測する。また、必要蓄電量計算部112は、蓄電池301毎の決定済み供給先の時刻毎の需要予測値から、蓄電池301毎の時刻毎の必要蓄電量を計算する。そして、時刻毎の放電可能量計算部113は、その必要蓄電量から蓄電池301毎の決定済み供給先以外に供給する時刻毎の放電可能量を計算する。
【0102】
さらに、本発明は上述した各実施形態例に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。
【0103】
例えば、上述した実施形態例は本発明を分かりやすく説明するために装置及びシステムの構成を詳細且つ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることは可能である。また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
【0104】
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。
【0105】
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
【0106】
また、本明細書において、時系列的な処理を記述する処理ステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)をも含むものである。
【符号の説明】
【0107】
1…蓄電池運用システム、
100…蓄電池運用装置、 101…仮想電池放電可能量計算部、 102…蓄電池充放電計画策定部、 103…実質利用時間・料金計算部、 104…蓄電池制御部、 111…停電復旧時間予測部、 112…必要蓄電量の計算部、 113…時刻毎の放電可能量計算部、 114…集計部、 121…保守員到着時間分析部、 122…保守員到着時間予測部、 123…復旧作業時間分析部、 124…復旧作業時間予測部、 125…総合時間算出部、 126…保守員到着時間分析結果データベース、 127…復旧作業時間分析結果データベース、 201−1,201−2…蓄電池所有者、 301−1,301−2…蓄電池、 302…蓄電池本体、 401−1,401−2,401−3…蓄電池利用者、 4114102…電気機器、 420−1,420−2…端末装置、 600…蓄電池運用者
図1
図2
図3
図4
図5
図6
図7
図8