(58)【調査した分野】(Int.Cl.,DB名)
基板上に光を照射したときに高電子濃度を生成する領域が形成されており、該領域の上に光を透過する絶縁膜が形成されており、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極が形成されており、該フィンガー電極を介して前記電子が外部に取り出される太陽電池であって、
前記絶縁膜の上に形成された前記領域から電子を取り出すフィンガー電極と直交方向に一定の幅bで、当該フィンガー電極のある部分と、当該フィンガー電極の無い前記絶縁膜の部分に非導電性のガラスペーストを塗布・焼成して形成された非導電性のバスバー電極と、に渡ってハンダで取出線がハンダ付けされており、当該フィンガー電極からの電子が取出線により外部に取り出され、該取出線が前記非導電性のバスバー電極を介して前記基板に固定されていることを特徴とする太陽電池。
前記フィンガー電極と直交方向に一定の幅bでハンダで取出線のハンダ付けは、当該フィンガー電極のハンダ付けする部分の該フィンガー電極の幅を幅cに広く予め形成したことを特徴とする請求項1に記載の太陽電池。
基板上に光を照射したときに高電子濃度を生成する領域を形成すると共に該領域の上に光を透過する絶縁膜を形成し、該絶縁膜の上に前記領域から電子を取り出す取出口であるフィンガー電極を形成して該フィンガー電極を介して前記電子を外部に取り出す太陽電池の製造方法において、
前記絶縁膜の上に形成された前記領域から電子を取り出すフィンガー電極と直交方向に一定の幅bで、当該フィンガー電極のある部分と、当該フィンガー電極の無い前記絶縁膜の部分に非導電性のガラスペーストを塗布・焼成して形成した非導電性のバスバー電極と、に渡ってハンダで取出線をハンダ付けし、当該フィンガー電極からの電子を取出線により外部に取り出すと共に該取出線を前記非導電性のバスバー電極を介して前記基板に固定することを特徴とする太陽電池の製造方法。
【実施例1】
【0035】
図1は本発明の要部構成例を示す。
【0036】
図1の(a)はいわゆるABS技法ー0の要部構成の1例を示し、
図1の(a−1)はその表面、裏面の要部構成の詳細例を示す。
【0037】
図1の(b)はいわゆるABS技法ー1の要部構成の1例を示し、
図1の(b−1)はその表面、裏面の要部構成の詳細例を示す。
【0038】
図1の(c)はいわゆるABS技法ー2の要部構成の1例を示し、
図1の(c−1)はその表面、裏面の要部構成の詳細例を示す。
【0039】
図1において、シリコン基板1は、太陽電池を形成しようとするシリコンの基板(単結晶、多結晶)である。
【0040】
窒化膜(絶縁膜)2は、シリコン基板1の上に例えば高濃度電子領域(上方から太陽光などを照射したときに高濃度の電子領域を生成する領域)(公知)を作成した上に、透明(太陽光などを透過する透明)の膜であって、高濃度電子領域の上に強固に形成される薄い透明な絶縁膜である(公知)。
【0041】
フィンガー電極3は、窒化膜2の上に銀および鉛ガラスを含むペーストをスクリーン印刷し、溶剤加熱乾燥、焼結して下層の窒化膜2に鉛ガラスのファイヤリング現象により、高濃度電子領域と電気的に接続する経路を形成したものであって、当該フィンガー電極3から高濃度電子領域に発生した電子を窒化膜(絶縁膜)2の上の方向に取り出すものである(公知)。
【0042】
バスバー電極4は、
図1の(a)に示すように、フィンガー電極3と直交する方向、かつフィンガー電極3の無い部分にのみ一定幅のガラスを塗布、溶剤加熱乾燥、焼結して窒化膜2に強固に固定したものである。このバスバー電極4は、ここでは、導電性である必要はなく窒化膜2に強固に固定かつ取出線をハンダ付け可能であればよい(後述する)。例えば非導電性のABSペースト(バナジウム、バリウム、(錫または亜鉛または両者(またはこれらの酸化物))のガラスペースト)を本実験では用いた。
【0043】
リボン(リード線)5は、フィンガー電極3に直接にハンダ付けする取出線であって、高濃度電子領域に発生した電子をフィンガー電極3に直接にハンダ付けした当該リボン5で外部に取り出すものである。
【0044】
ハンダ6は、リボン5をフィンガー電極3およびバスバー電極4(
図1の(a))、窒化膜2(
図1の(b),
図1の(c))にハンダ付けするハンダである。
【0045】
アルミ電極7は、シリコン基板1の裏面に形成するアルミ電極である。
【0046】
ハンダ8は、
図1の(a)および
図1の(b)ではシリコン基板1の裏面の全面に形成されたアルミ電極7の上に、表面のリボン5をハンダ6でハンダ付けした部分に対応する裏面の部分にリボン9をハンダ付けするものである。本発明で使用するハンダ8は、錫、あるいは錫に亜鉛を数%から数十%添加、銅や銀などを0.数%ないし十数%添加したものがよい。これ以上の割合や他の金属などを必要に応じて添加してもよい(以下同様)。
【0047】
また、ハンダ8は、
図1の(c)ではシリコン基板1の裏面の一部に穴の形成されたアルミ電極7の上の当該穴の部分および当該穴以外のアルミ部分に、表面のリボン5をハンダ6でハンダ付けした部分に対応する裏面の部分にリボン9をハンダ付けするものである。
【0048】
リボン(リード線)9は、ハンダ8でシリコン基板1の裏面に形成されたアルミ電極7、該アルミ電極7の穴の開いた部分はその下のシリコン基板1にハンダ付けし、電子を流入させるものである。
【0049】
以下各構成を
図1の(a−1),(b−1)、(c−1)に従い詳細に説明する。
【0050】
図1の(a−1)のABS技法ー0について:
・表面:表面(
図1の(a)のシリコン基板1の上側の表面)では、図示のバスバー電極4はABSペーストを塗布、溶剤加熱乾燥、焼結し、当該ABS(バナジン酸塩を主成分としたガラスであって、ハンダ付け可能なガラス)を従来のバスバー電極(銀)に代えたものである。この状態では、シリコン基板1の高濃度電子領域に発生した電子は、フィンガー電極3を介して直接にハンダ6でハンダ付けされたリボン5によって外部に取り出される。このため、従来の光電子濃度領域ーフィンガー電極3−銀のバスバー電極ーリボン5という経路のうち、銀のバスバー電極の部分を省略して直接にフィンガー電極3からリボン5に電子を流して外部に取り出すことができ、抵抗を小さくして損失を低減、更に、従来のバスバー電極からの電子の漏洩を無くすことが可能となる。
【0051】
・裏面:裏面(
図1の(a)のシリコン基板1の下側の面)では、図示のシリコン基板1の全面に形成したアルミ電極7の上に、表面のバスバー電極(ABSペースト)4に対応する部分にリボン9を直接にハンダ付けする。
【0052】
以上の構成により、表面ではシリコン基板1の高濃度電子領域に発生した電子を、フィンガー電極3−リボン5を介して直接に外部に取り出すことが可能となると共に、リボン5はバスバー電極(非導電性であってもよく、例えばABSペースト)4に対応する部分でハンダ6で直接に強固にシリコン基板1にハンダ付けして固定することが可能となる。裏面では従来のアルミ電極7の上に銀ペーストを焼結してこれにリボンをハンダ付けしていた手間を省略し、アルミ電極7の上に本発明によりリボンを直接にハンダ付けして強固に固定することが可能となる。
【0053】
図1の(b−1)のABS技法ー1について:
・表面:表面(
図1の(b)のシリコン基板1の上側の表面)では、図示のリボン5をハンダ6で直接にフィンガー電極3および窒化膜2の部分に一定幅bでハンダ付けしたものである(
図4など参照)。この状態では、シリコン基板1の高濃度電子領域に発生した電子は、フィンガー電極3を介して直接にハンダ6でハンダ付けされたリボン5によって外部に取り出されると共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。このため、従来のバスバー電極がなく、光電子濃度領域ーフィンガー電極3−リボン5という経路で電子を外部に直接に取り出すと共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。
【0054】
・裏面:
図1の(a−1)と同様である。
【0055】
以上の構成により、表面ではシリコン基板1の高濃度電子領域に発生した電子を、フィンガー電極3−リボン5を介して直接に外部に取り出すことが可能となると共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。裏面では
図1の(a)と同様に、従来のアルミ電極7の上に銀ペーストを焼結してこれにリボンをハンダ付けしていた手間を省略し、アルミ電極7の上に本発明によりリボンを直接にハンダ付けして強固に固定することが可能となる。
【0056】
図1の(c−1)のABS技法ー2について:
・表面:
図1の(b−1)と同様である。
【0057】
・裏面:裏面(
図1の(c)のシリコン基板1の下側の面)では、図示のシリコン基板1に形成したアルミ電極7に穴を設け、この穴の部分および該穴の部分以外の部分であって、表面のリボン5をハンダ付けした部分に対応する当該裏面の部分にリボン9をハンダ付けする。これにより、リボン9が穴の部分でシリコン基板1に直接にハンダ8でハンダ付けされ強固にシリコン基板1に固定することが可能となると共に、抵抗成分を小さくすることが可能となる。
【0058】
以上の構成により、表面ではシリコン基板1の高濃度電子領域に発生した電子を、フィンガー電極3−リボン5を介して直接に外部に取り出すことが可能となると共に、リボン5を窒化膜2を介してシリコン基板1に強固に固定することが可能となる。裏面では本発明によりアルミ電極7の穴を介してリボン9を直接にシリコン基板1にハンダ8でハンダ付けして強固に固定することが可能となる。
【0059】
次に、
図2および
図3の順番に従い、
図1の構成の製造方法を詳細に説明する。
【0060】
図2および
図3は、本発明の製造方法説明フローチャートを示す。
【0061】
図2において、S1は、基板を準備する。これは、既述した
図1の太陽電池を形成しようとするシリコン基板1として、例えば右側に記載したように、P型の単結晶あるいは多結晶のシリコン基板1を準備する。
【0062】
S2は、窒化膜を形成する。これは、既述した
図1のシリコン基板1の表面に窒化膜(絶縁膜)2を形成する。窒化膜2の膜厚は例えば60−90nm程度が良い。
【0063】
S3は、裏面にアルミペーストを塗布する。これは、右側に記載したように、
図1のシリコン基板1の裏面にアルミペーストをスクリーン印刷して塗布する。この塗布は、
図1の(a−1),
図1の(b−1)は裏面の全面に塗布する。
図1の(c−1)では表面のフィンガー電極3のパターンに直交する方向に、裏面にスペース有あるいはスペース無しにアルミペーストを塗布し、裏面のシリコン基板1の上に帯状のパターンあるいは飛び飛びの帯状のアルミペーストで塗布する(塗布されない部分はアルミ電極7の無い穴の部分となる)。
【0064】
S4は、溶剤飛ばしを行う。これは、S3で塗布したアルミペーストを加熱乾燥(例えば80から120℃で、30分から60分の加熱乾燥)を行い、溶剤を無くす。
【0065】
S5は、表面にフィンガー電極を印刷する。これは、
図1の窒化膜2の上に、例えば右側に記載した銀と鉛ガラスフリットを含むペーストを用いスクリーン印刷する。
【0066】
S6は、溶剤飛ばしを行う。これは、S5で塗布したペーストを加熱乾燥(例えば80から120℃で、30分から60分の加熱乾燥)を行い、溶剤を無くす。
【0067】
図3において、
図1の(a)の場合には、S7、S8を行う。S7、S8は、S5、S6のフィンガー電極の印刷・溶剤飛ばしと同時に行っても良い。
【0068】
S7は、バスバー電極を印刷する。これは、
図1のバスバー電極4をABSペーストでスクリーン印刷する。
【0069】
S8は、溶剤飛ばしを行う。これらS7、S8は、ABSペースト(バナジウム、バリウム、(錫または亜鉛または両者(またはこれらの酸化物))のガラスペースト)を用いて
図1の(a)のようにバスバー電極をスクリーン印刷、溶剤飛ばしを行う。
【0070】
S9は、焼結する。これは、S3とS4、S5とS6、更にS7とS8で印刷・溶剤飛ばしした裏面のアルミ電極7、フィンガー電極3、更に必要に応じてバスバー電極4をまとめて一括焼結する。尚、個別に焼結してもよい。焼結は、右側に記載したように、例えば750から820℃、1秒から60秒の範囲内が望ましく、赤外線を照射して行う。
【0071】
S10は、表面に超音波ハンダ付けを行う。これは、
図1で既述したように、表面の取出線(リボン5)を直接にフィンガー電極6にハンダ付けする。尚、既述したように、ハンダ付けされる部分が予め予備ハンダ(超音波予備ハンダあるいは超音波なし予備ハンダ)されている場合には、超音波なしのハンダ付けでよい。また、超音波ハンダ付け(超音波なしのハンダ付けも)は、ハンダ付けされる部分(できればハンダ付けする部分も)の温度をハンダが溶解する温度以下(溶解する温度以下、室温以上)に予備加熱した状態でハンダ付けすることにより、本発明のハンダを確実にハンダ付けすることが可能となる(他の部分の超音波ハンダ付け(超音波なしハンダ付け)も同様である)。
【0072】
S11は、裏面に超音波ハンダ付け行う。これは、
図1で既述したように、取出線(リボン9)を直接にアルミ電極7にハンダ付けしたり、アルミ電極7の穴の内部のシリコン基板1に直接にハンダ付けしたりする。尚、既述したように、ハンダ付けされる部分が予め予備ハンダ(超音波予備ハンダあるいは超音波なし予備ハンダ)されている場合には、超音波なしのハンダ付けでよい。
【0073】
以上のように、
図1のシリコン基板1の表面に窒化膜(絶縁膜)2を形成した後、裏面にアルミ電極7を形成するアルミペーストを塗布・溶剤飛ばしし、表面にフィンガー電極3を形成する銀・鉛ガラスフリットを塗布・溶剤飛ばしし、必要に応じてバスバー電極4を形成するABSペーストを塗布・溶剤飛ばしし、これらアルミ電極7、フィンガー電極3、必要に応じてバスバー電極4を一括焼結し、裏面のアルミ電極7、表面のフィンガー電極3、必要に応じてABSのバスバー電極4を形成することが可能となる。そして、表面のフィンガー電極3と露出している窒化膜2の両者に直接にリボン5をハンダ6でハンダ付けしたり(
図1の(b)、
図1の(c))、フィンガー電極3とバスバー電極4の両者に直接にリボン5をハンダ6でハンダ付けしたり(
図1の(a))し、更に、裏面のアルミ電極7とリボン5をハンダ8で直接にハンダ付けしたり(
図1の(a),
図1の(b))、リボン8をアルミ電極7の穴を介してシリコン基板1に直接にハンダ8でハンダ付けおよびアルミ電極7の穴のない部分にリボン8を直接にハンダ8でハンダ付けする(
図1の(c))ことにより、リボン9を強固にシリコン基板1に固定およびリボン9からシリコン基板1への抵抗を小さくすることが可能となる。
【0074】
図4は、本発明の説明図(表面ーその1)を示す。
【0075】
図4の(a)はフィンガー電極3のパターン例を示し、
図4の(b)は
図4の(a)の拡大図を示す。
【0076】
図4において、フィンガー電極3のパターン例は、
図1のフィンガー電極3に直交する方向に幅bのリボン5をハンダ6でハンダ付けする領域(図示のバスバー領域41と同じ領域)の幅を幅cに広げた例を示す。この幅cにフィンガー電極3の幅を広げたことにより、リボン5とフィンガー電極3との間のハンダ付け面積(接触面積)を増大して接触抵抗を小さくすることが可能となる。一方、幅cを広げすぎると、広げた部分からの電子の漏洩(再結合)が多くなってリーク電流が増大する傾向にあるので、最適値に実験で決める必要がある。
【0077】
また、
図4の(b)に示すように、バスバー領域41の幅b(リボン5の幅)を広げた状態でハンダ付けする場合、バスバー領域41の隣のものとの間隔aが、超音波ハンダコテ先の長さよりも小さくし、ハンダコテ先が直接に下方の窒化膜2に触れて当該窒化膜2を破壊したりなどの影響を与えないようにする必要があった。例えばハンダコテ先の長が2mmの場合には、間隔aは約1mm程度が実験の結果、窒化膜2に悪影響を与えないことが判明した。
【0078】
また、直接にハンダ付けした場合、下地の窒化膜2のハンダ材料は錫、亜鉛がしっかり密着し、通常のハンダ材料(錫、鉛)では得られない5N以上の密着力が得られた。
【0079】
図5は、本発明の説明図(表面ーその2)を示す。これは、既述した
図1の(b).(c)の表面の拡大詳細図を示す。
【0080】
図5において、シリコン基板1の表面に窒化膜(絶縁膜)2を形成し、この上にフィンガー電極3のパターンを銀と鉛ガラスのペーストを塗布して焼結して図示のフィンガー電極3を形成する(窒化膜2に穴を開けて内部を銀としたフィンガー電極3を形成する)。
【0081】
本発明では、窒化膜2の上に飛び出しているフィンガー電極3に直接にハンダ6でリボン5をハンダ付けすると共に、同時に、窒化膜2の部分にハンダ6をリボン5をハンダ付けする。この際、フィンガー電極3の幅を既述した
図4に示すように広く(リボン5の幅に相当する部分を広く)しておくことにより、フィンガー電極3とリボン6との間の接触面積を増大して接触抵抗を小さくできると共に、間隔をハンダコテ先の長よりも小さくしてハンダコテ先が下地の窒化膜2に直接に接触しないようにして該窒化膜2の破壊などの悪影響がでないように工夫する(
図4の説明参照)。
【0082】
これらにより、高濃度電子領域からの電子をフィンガー電極3を介してリボン5に直接に取り出すおよびフィンガー電極3とリボン5との接触抵抗を小さくして高効率にすることが可能となると共に、リボン5を窒化膜2に直接にハンダ6でハンダ付けして強固に固定することが可能となる。
【0083】
図6は、本発明の説明図(裏面ーその1)を示す。
【0084】
図6の(a)は、従来の裏面の構成例を示す。従来は、シリコン基板の裏面に、一部に穴を形成したアルミ電極を形成し、この穴の部分に銀ペーストを塗布・焼結して銀電極を形成し、この銀電極にハンダ(鉛ハンダ)でリボンをハンダ付けし、リボンを規定以上の力でシリコン基板に固定するようにしていた。
【0085】
図6の(b)は、本発明の直接ハンダの1例を示す。
【0086】
図6の(b−1)はシリコン基板1の裏面の全面にアルミ電極7を形成し、これにハンダ8でリボン9をハンダ付けする例を示す(
図1の(a).
図1の(b)と同じ)。本発明では、ハンダ(錫、亜鉛)8を用いて超音波半田コテでアルミ電極7に直接にリボン9を超音波ハンダ付け可能である。尚、アルミ電極7に予備ハンダした場合には、超音波なしのハンダ付けで可能である。
【0087】
図6の(b−2)はシリコン基板1の裏面に、一部に穴の開いたアルミ電極7を形成し、この穴の部分およびそれ以外の両者の部分にハンダ8でリボン9をハンダ付けする例を示す(
図1の(c)と同じ)。本発明では、ハンダ(錫、亜鉛)8を用いて超音波半田コテでアルミ電極7の穴の部分のシリコン基板1および穴以外のアルミ電極7に直接にリボン9を超音波ハンダ付け可能である。尚、予備ハンダした場合には、超音波なしのハンダ付けで可能である。
【0088】
図7は、本発明の説明図(その1)を示す。これは、超音波ハンダ条件の1例を示す。
【0089】
図7において、既述した
図1などでリボン5、9をハンダ6,8で超音波を印加した超音波ハンダ付けする場合、超音波の出力が強すぎると、
図1の窒化膜2を破壊などして悪影響を与えてしまい、超音波の出力が弱すぎると、リボン5.9をハンダ付けできないという事態が発生した。超音波ハンダ付けするには最適な超音波出力があり、特にフィンガー電極3の超音波ハンダ付けする部分(領域)のサイズに依存する。本実験では3W以上の超音波出力では素子劣化(窒化膜2が破壊などされて悪影響がでた)、0.5W以下ではハンダ付け不良がでた。この実験では、3W以下、0.5W以上の範囲が良好な超音波ハンダ付け可能な範囲であった。
【0090】
図8は、本発明の説明図(その2)を示す。これは、既述した
図1の(b)のABS技法−1,
図1の(c)のABS技法−2、
図12の従来技術の比較例を示す。
【0091】
・ABS技法ー1(
図1の(b):裏面はアルミ電極7に直接にリボン9をハンダ付け。表面はフィンガー電極3にリボン5を直接にハンダ付けおよびリボン5を窒化膜2に直接にハンダ付け。これにより、1.裏面の密着力はABS技法ー2より少し劣るが規格には充分である。2.従来の銀を削減できる。3.電気特性良好である。
【0092】
・ABS技法ー2(
図1の(c)):裏面はアルミ電極7の穴の下のシリコン基板1に直接にリボン9をハンダ付けおよび穴以外の部分のアルミ電極7に直接にハンダ付け。表面はABS技法ー1と同じ。これにより、1.裏面のリボンの強い密着力。2.従来の銀を削減できる。3.電気特性良好である。
【0093】
・従来技法(
図12):裏面はアルミ電極7の上に銀焼結しこれにリボン9を鉛ハンダ付け、あるいはアルミ電極7の穴の部分に銀焼結してシリコン基板1に接続しこの銀にリボン9を鉛ハンダ付け。表面はフィンガー電極3、銀のバスバー電極を介してリボンを鉛ハンダ付け。これにより、1.表面の銀のバスバー電極が必要。2.裏面に銀電極が必要。
【0094】
図9は、本発明の説明図(その3)を示す。
【0095】
図9において、ABS技法ー0、ABS技法ー1、ABS技法ー2は、
図1のABS技法ー0、ABS技法ー1、ABS技法ー2にそれぞれ対応する。
【0096】
結晶は、多結晶、単結晶のシリコン基板1の種類である。
【0097】
電気的特性中のV(v)は、後述する
図10の開放電圧である。
【0098】
電気的特性中のI(mA/cm2)は、後述する
図10の短絡電流である。
【0099】
電気的特性中のFFは、後述する
図10の最適動作点である(最大の電力が得られる点である)。
【0100】
電気的特性中のEFFは下の(式1)で表される変換効率である。
【0101】
EFF=Jsc×Voc×FF・・・・・・(式1)
Refは、相対的に比較するための標準値(従来例の標準値)、ここでは100(電気的特性)、1(密着力、銀)、0(製造工程数)とした。
【0102】
以上の
図9に図示の実験結果より、
・電気的特性中のV(V)(開放電圧)は本発明はいずれも100.7から101.7にあり若干大きい電圧値であった。
【0103】
・短絡電流Iは100.0から101.5の範囲にあり、Refに比較して十分な性能を有している。
【0104】
・最適動作点FFは、ABS技法はいずれもRefに比較して優位性を示している。
【0105】
・変換効率EFFは、ABS技法ではRefに比較して優位性を示している。
【0106】
・リボンのシリコン基板1への密着力は、表面は2となり標準値の2倍あり、極めて強固に固定されることが判明し、裏面もほぼ同じか、ABS技法ー2の直接にシリコン基板1にハンダ付けした場合には2倍あり、強固に固定されることが判明した。
【0107】
・銀の表面の使用量は、本発明は0.1から0.5の範囲内で半分以下に削減できた。裏面については、本発明は銀の使用量を100%削減できた。
【0108】
・製造工程数は、ABS技法ー1、ABS技法ー2(
図1の(b)、
図1の(c))は、それぞれ2工程削減できた(表面の銀のバスバー電極の形成が不要となり工数−1、および裏面の銀の電極形成が不要となり工数ー1の計2工程削減できた)。
【0109】
図10は、本発明の説明図(その4)を示す。これは、既述した
図9の太陽電池の電気特性を分かり易く説明した図である。横軸を太陽電池から取り出した電圧、縦軸がそのときの電流を表す。
【0110】
図10において、開放電圧をVoc(
図9のV)という。
【0111】
短絡電流をJsc(
図9のI)という、
最適動作点FFは太陽電池から取り出した電圧・電流の特性曲線中のその積が最大となる図示の位置の値である。
【0112】
変換効率はJsc×Voc×FFの式で求められる値である。
【0113】
図11は、本発明の説明図(その5)を示す。
【0114】
図11の(a)は、
図1の(a)のABS技法ー0のバスバー電極にABSガラスを用いた太陽電池の表面、裏面の写真の1例を示す。
【0115】
図11の(a−1)は、表面の横方向にフィンガー電極3を形成し、その上にABSガラスを用いたバスバー電極を形成した太陽電池の写真の例を示す。ABSガラスは、フィンガー電極3のない部分にのみ形成し、このフィンガー電極3およびABSガラスで形成したバスバー電極の部分(非導電性であり、本発明のハンダでリボンを超音波ハンダ付け可能)にリボンをハンダ付けした状態の写真を示す。
【0116】
図11の(a−2)は、
図11の(a−1)の裏面であって、全面にアルミ電極を形成した状態の写真の1例を示す。
【0117】
図11の(b)は、
図1の(c)のABS技法ー2の太陽電池の表面、裏面の写真の1例を示す。
【0118】
図11の(b−1)は、表面の横方向にフィンガー電極3として、リボンをハンダ付けする部分の幅を広げて当該フィンガー電極3(
図4参照)を形成した状態の写真の1例を示す。ここでは、縦方向のリボンをハンダ付けする部分のフィンガー電極3の幅が広くなっている様子が判明する。
【0119】
図11の(b−2)は、裏面の縦方向に、リボンを下地のシリコン基板1に直接にハンダ付けする縦方向に穴の開いたアルミ電極7を形成した1例を示す。
【0120】
図11の(b−3)は、
図11の(b−1)および
図11の(b−2)の上からリボンをハンダ付けした後の写真の1例を示す。
【0121】
図11の(b−3)の左側は、
図11の(b−1)の表面のフィンガー電極の幅が広くなった部分に、縦方向にリボンをハンダ付けした後の写真の1例を示す。
【0122】
図11の(b−3)の右側は、
図11の(b−2)の裏面のアルミ電極の縦方向に当該アルミがない穴(長い穴)に、リボンを縦方向にハンダ付けした後の写真の1例を示す。