(58)【調査した分野】(Int.Cl.,DB名)
押出素管の捻り加工材であるアルミニウム製の伝熱管であって、内周面に周方向に沿って並び長さ方向に沿って螺旋状に形成された複数のフィンを有し、前記フィンは、先端幅が底幅以上の大きさであり、
前記伝熱管の内周における周方向に沿う表面長さである濡れ淵長さ(E)と外周長(D) の比[E/D]が、1.9以上、2.3以下であり、
前記フィン同士の間に位置する溝の底部の占める長さ(F)と前記濡れ淵長さ(E)の比[F/E]が、0.20以上、0.31以下であり、
前記フィンの底部の弧長が、0.13mm以上であり、前記フィンのリード角が、15°以上45°未満である
伝熱管。
内周面に長さ方向に沿って直線的に延びる複数のフィンを有し、外周面に長さ方向に沿って直線的に延びるダイスマークを有するアルミニウム製の素管を押出により成形する押出成形工程と、
前記素管に引抜きとともに捻り角が15 °以上の捻りを付与する捻り引抜き工程と、
前記引抜き工程の後に縮径率が10%以上の引抜きを行う空引き工程と、を含み、
内周面に周方向に沿って並び長さ方向に沿って螺旋状に形成された複数のフィンを有し、前記フィンは、先端幅が底幅以上の大きさであり、
前記伝熱管の内周における周方向に沿う表面長さである濡れ淵長さ(E)と外周長(D) の比[E/D]が、1.9以上、2.3以下であり、
前記フィン同士の間に位置する溝の底部の占める長さ(F)と前記濡れ淵長さ(E)の比[F/E]が、0.20以上、0.31以下であり、
前記フィンの底部の弧長が、0.13mm以上であり、前記フィンのリード角が、15°以上45°未満である伝熱管を得ることを特徴とする、
伝熱管の製造方法。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面を参照しながら説明する。
なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
【0017】
[熱交換器]
図1および
図2は、実施形態の熱交換器80の概略図である。
熱交換器80は、冷媒を通過させるチューブとして伝熱管81を蛇行させて設け、この伝熱管81の周囲に複数のアルミニウム製の放熱板82を平行に配設した構造である。伝熱管81は、平行に配設した放熱板82を貫通するように設けた複数の挿通孔を通過するように設けられている。
【0018】
熱交換器80において伝熱管81は、放熱板82を直線状に貫通する複数のU字状の主管81Aと、隣接する主管81Aの隣り合う端部開口同士をU字形のエルボ管81Bで接続してなる。U字状の主管81Aおよびエルボ管81Bは、後段に説明する伝熱管10をU字状に屈曲して形成される。また、放熱板82を貫通している伝熱管81の一方の端部側に冷媒の入口部87aが形成され、伝熱管81の他方の端部側に冷媒の出口部87bが形成されることで熱交換器80が構成されている。
【0019】
[伝熱管]
次に上述の熱交換器80の製造に用いられる拡管前の伝熱管10について具体的に説明する。
図3は実施形態の伝熱管10の横断面図であり、
図4は、
図3の一部分を拡大した図である。
図5は、伝熱管10の縦断面図である。
図6は、伝熱管10の側面図であり外周面10aのダイスマークDMを模式的に示す図である。
【0020】
本実施形態の伝熱管10は、押出素管の捻り加工材である。伝熱管10は、アルミニウム又はアルミニウム合金からなるものを用いることができる。伝熱管10にアルミニウム合金を用いる場合は、そのアルミニウム合金に特に制限はなく、JISで規定される1050、1100、1200等の純アルミニウム系、あるいは、これらにMnを添加した3003に代表される3000系のアルミニウム合金等を適用できる。また、これら以外にJISに規定されている5000系〜7000系のアルミニウム合金のいずれかを用いて伝熱管10を構成しても良い。なお、本明細書において「アルミニウム」とは、アルミニウム合金および純アルミニウムからなるものを包含する概念とする。
【0021】
伝熱管10は、横断面の外形状が円形の管材である。伝熱管10の外周面10aの直径は、4mm以上15mm以下である。伝熱管10の内周面10bには、長さ方向に沿って螺旋状に形成された複数のフィン3が設けられている。フィン3の間には、螺旋溝4が形成されている。
【0022】
内周面10bに螺旋状のフィン3を形成することにより、伝熱管10とその内部を流れる冷媒液との熱交換効率を高めることができる。螺旋状のフィン3を備えた伝熱管10は、押出加工により長さ方向に直線状に延びるフィンを形成した素管10Bに引き抜きながら捻りを付与することで形成できる。
【0023】
本実施形態において、フィン3は、例えば30個〜60個設けられている。フィン3の高さ(すなわち半径方向の寸法)は、0.1mm以上0.3mm以下である。また、伝熱管10の平均底肉厚β(すなわち、螺旋溝4の底部に対応する伝熱管10の厚さの平均値)は、0.2mm以上0.8mm以下である。
【0024】
図4に示すように、フィン3は、内周側に位置する先端部3aと、外周側に位置する底部3bと、先端部3aと底部3bの間に位置する一対の側壁部3cを有する。底部3bは、伝熱管10の内周面に位置し、内周面と連続している。側壁部3cは、径方向に沿って直線的に延びる。
【0025】
フィン3の先端部3aの幅すなわち先端幅d2は、底部3bの幅すなわち底幅d1以上の大きさである。したがって、フィン3同士の間に位置する螺旋溝4は、径方向内側を向く開口4bが底側と比較して狭くなっている、又は溝幅が開口4bから底側まで一様である。フィン3の先端幅d2を底幅d1以上の大きさとすることで、伝熱管10の内周面における表面積を大きくすることができ、伝熱管10の熱特性を向上できる。さらに、本実施形態のフィン3の形状によれば、乱流効果の促進、冷媒の膜厚の抑制等により、高い蒸発熱伝達率および高い凝縮熱伝達率を得ることを期待できる。
【0026】
本実施形態において、フィン3の底部3bの弧長が0.13mm以上であることが好ましい。フィン3の底部3bの弧長を0.13mm未満とすると、フィン3の安定性が低下する結果として、伝熱管10の内部に拡管プラグ(拡管治具)を挿入して伝熱管10を拡管する工程において、フィン3に倒れが生じやすくなる。フィン3の底部3bの弧長を0.13mm以上とすることで、フィン3の倒れを十分に抑制できる。
【0027】
本実施形態において、一対の側壁部3dは、先端側から底側に向かうに従い互いに近づく。したがって、本実施形態において、一対の側壁部3d同士の角度、すなわちフィン頂角γは、従来の先細り形状のフィンのフィン頂角と比較すると反対側に傾斜する負の角度となる。
【0028】
フィン頂角γは、0°以上、35°以下とすることが好ましい。また、フィン頂角γは、0°より大きく35°以下とすることがより好ましい。
フィン頂角γを0°以上とすることで、伝熱管10の表面積増大の効果を得ることができる。また、フィン頂角γを0°より大きくすることで、伝熱管10の表面積増大の効果をさらに高めることができる。
また、フィン頂角γが35°を超えると、伝熱管10の内部に拡管プラグを挿入して伝熱管10を拡管する工程において、フィン3に倒れが生じやすくなる。フィン頂角γを35°以下とすることで、フィン3の倒れを十分に抑制できる。さらに、フィン頂角γが、35°よりも大きくなると、溝4の径方向内側の開口4bが狭くなりすぎて、溝4内に冷媒が入りづらくなってしまい、熱伝達性が悪化する虞がある。加えて、冷媒の圧力損失が大きくなってしまうという問題がある。フィン頂角γを35°以下とすることで溝4の開口4bを十分に大きくして、冷媒への熱伝達性を高めるとともに、冷媒の流れをスムーズにすることができる。
【0029】
本実施形態の伝熱管10は、上述したようにフィン3の先端幅d2が底幅d1以上の奇異さとされていることに伴い、内周の表面積が大きくなっている。伝熱管10の内周における周方向に沿う表面長さを濡れ淵長さ(E)と呼ぶ。濡れ淵長さ(E)と伝熱管10の長手方向の長さとの積が、伝熱管10の内周の表面積となる。
【0030】
従来は銅系、アルミニウム合金系の伝熱管ともに溝転造法と呼ばれる製造方法で、螺旋状の溝が形成されていた。溝転造法は、管内面の溝付プラグに管外周から転造ボールで押付け、溝付プラグの谷部に塑性流動で溝を形成する製造方法である。そのため、溝部はフィンの頂点側(管中心側)の間口が底部側より大きくなっていた。一方、本実施形態では、後段において説明するように、押出し素管に捻りを付与して螺旋状のフィン3および螺旋溝4を形成するため、溝転造法では不可能であったフィン3および螺旋溝4の形状を形成できるようになった。その結果、熱伝達性に大きな影響を及ぼす濡れ淵長さの割合を従来の伝熱管よりも大きくすることが可能となった。
【0031】
本実施形態において、濡れ淵長さ(E)と外周長(D)の比[E/D]が、1.3以上、3.0以下とすることが好ましい。濡れ淵長さ(E)と外周長(D)の比[E/D]を1.3以上とすることで、伝熱管10の内部を通過する冷媒との熱交換効率を高めることができる。一方で、濡れ淵長さ(E)と外周長(D)の比[E/D]を3.0以下とすることで、伝熱管10の内周形状の複雑化による冷媒の圧力損失が過大となることを抑制できる。
【0032】
また、本実施形態において、濡れ淵長さのうちフィン3同士の間に位置する溝4の底部4aの占める長さ(F)と濡れ淵長さ(E)の比[F/E]が、0.15以上、0.65以下であることが好ましい。
底部4aの占める長さ(F)と濡れ淵長さ(E)の比[F/E]が、0.15未満では熱特性への効果が小さい。一方で、底部4aの占める長さ(F)と濡れ淵長さ(E)の比[F/E]が、0.65を超えるとフィン3の底部3bが短すぎるために、フィン3の安定性が低下し、拡管工程におけるフィン3の倒れが顕著となりやすい。すなわち、底部4aの占める長さ(F)と濡れ淵長さ(E)の比[F/E]を0.15以上、0.65以下とすることにより、熱特性を向上させると共に拡管工程におけるフィン3の倒れを十分に抑制できる。
【0033】
本実施形態において、螺旋状に形成されたフィン3のリード角θ1(捻り角)は、5°以上45°未満である。リード角θ1を、5°以上とすることで、フィン3を螺旋状にすることによる熱特性向上効果を十分に奏することができる。また、フィン3のリード角θ1を45°未満とすることで、製造工程におけるフィン3の倒れを十分に抑制できる。さらに、フィン3のリード角θ1を45°以上とすると、冷媒の圧力損失が過大となる虞がある。リード角θ1を45°未満とすることで、冷媒の流れをスムーズとすることができる。
【0034】
図6に示すように、伝熱管10の外周面10aには、螺旋状のダイスマークDMが形成されている。ダイスマークDMは、押出加工により成形された部材の周面に押出方向に沿って形成される線状の凹部である。ダイスマークDMは、押出金型やベアリング面の傷等の影響により形成される。本実施形態の伝熱管10は、押出加工した素管に引き抜きながら捻りを加えることで製造されている。このため、押出加工により線状に形成されたダイスマークDMは、捻りの付与とともに螺旋状となる。
なお、
図6のダイスマークDMは、分かり易さのために1本のダイスマークDMが連続的に形成されているように図示されている。実際のダイスマークは、
図11(a)および
図12(a)に写真として示すように、長さ方向に沿って間欠的に形成されている。また、伝熱管10の外周面の周方向に沿って複数のダイスマークDMが螺旋状かつ並行に延びている。
なお、本明細書においてダイスマークという用語は、押出工程により形成された凹部のみならず、係る凹部を有する素管に捻りを付与した後の伝熱管の凹部についても用いる。捻りが付与された後の管材の凹部は、厳密にはダイスマークに起因する凹部である。しかしながら、本明細書において分かり易さのため、これらを含む概念をダイスマークと呼ぶ。
【0035】
捻りが付与された後のダイスマークDMの最大深さは、35μm以下である。上述したように、伝熱管10は、熱交換器80(
図1、
図2参照)として使用される際に、ヘアピン状に屈曲される曲げ加工が施される。このような曲げ加工において、ダイスマークDMは、伝熱管10の破損の起点となり易い。本実施形態によれば、ダイスマークDMの最大深さを35μm以下とすることによって、伝熱管10の強度を高め、曲げ加工などの追加加工に対して破損し難い伝熱管10を提供できる。
【0036】
ダイスマーク深さ計測方法について説明する。
ダイスマーク深さ計測は、例えば、株式会社キーエンス製走査型レーザー顕微鏡(VK−X100/X200)を用いて表面形状の測定を行うことができる。また、計測解析では、解析アプリケーション(VK−H1XA)を用いてダイスマーク深さを計測できる。
まず走査型レーザー顕微鏡(VK−X100/X200)のステージに試料を置き、観察倍率50倍のもと、フォーカスを合わせた後に、観察高さ上下限範囲100μmとして、0.5μmピッチで表面形状の測定を行う。
次に解析アプリケーション(VK−H1XA)を用いて得られた画像上のダイスマーク深さを計測する。計測前の前処理として、管表面の円弧を平坦にする傾き補正を行った。前処理を行った表面形状から、管円周方向に平行になるように直線を3点引き、得られた粗さ曲線から、最大谷深さ(Rv)、最大高さ(Rz)を求め、ダイスマーク深さの計測では、最大断面高さ(Rt)として計測を行う。
解析アプリケーションでは「表面粗さの定義」(JISB0601:2001)に基づいて、JISB0601−2001およびJIS 0601−1994で定義されている粗さパラメータで表面粗さ解析を実施した。
図11(b)に、
図11(a)のダイスマークDMの深さ測定結果を示す。同様に、
図12(b)に、
図12(a)のダイスマークDMの深さ測定結果を示す。なお、
図11および
図12に例示するダイスマークDMを有する伝熱管は、本実施形態の伝熱管10の一例である。
【0037】
[製造方法]
以下、本願発明に係る伝熱管10の製造方法の実施形態について図面を参照しながら説明する。伝熱管10の製造方法は、押出成形工程と捻り工程をこの順で含む。
【0038】
<押出成形工程>
まず、押出成形工程について説明する。
図7は、押出成形工程により成形された素管(直線溝付管)10Bの縦断面図であり、
図8は、素管10Bの斜視図である。
アルミニウム材料からなるビレットを押出成形することにより、
図8に示すように、内面に長さ方向に沿う複数の直線溝4Bが周方向に間隔をおいて形成された素管10Bを製造(直線溝付管押出工程)する。押出成型工程により成形された素管10Bには、外周面に長さ方向に沿って直線的に延びるダイスマークDMが形成される。
【0039】
<引抜き捻り工程、空引き工程>
次に、引抜き捻り工程および空引き工程について説明する。
引抜き捻り工程は、引抜きを行いながら上述の素管10Bに捻りを付与することで、ダイスマークDM、フィン3Bおよび直線溝4Bを螺旋状とする工程である。
また、空引き工程は、捻りを付与することなく管材に対して引抜きを行い管材の外径を整える工程である。
【0040】
なお、本明細書において、捻りを付与する前の管材(すなわち上述の素管10B)を「直線溝付管」と呼ぶ。また、捻りを付与した後の管材(すなわち上述の伝熱管10)を「内面螺旋溝付管」と呼ぶ。また、直線溝付管から内面螺旋溝付管に至る過程において、内面螺旋溝付管と比較して半分程度の捻りが付与された中間形成品を「中間捻り管」と呼ぶ。更に、本明細書の「管材」とは、直線溝付管、中間捻り管および内面螺旋溝付管の上位概念であり、製造工程の段階を問わず、加工対象となる管を意味する。
本明細書において、「前段」および「後段」とは、管材の加工順序に沿った前後関係(すなわち、上流および下流)を意味し、装置内の各部位の配置を意味するものではない。
管材は内面螺旋溝付管の製造装置において、前段(上流)側から後段(下流)側に搬送される。前段に配置される部位は、必ずしも前方に配置されるとは限らず、後段に配置される部位は、必ずしも後方に配置されるとは限らない。
【0041】
<引抜き捻り工程および空引き工程を行う製造装置>
図9は、直線溝付管(素管)10Bに2回の捻りを付与して内面螺旋溝付管(伝熱管)10を製造する製造装置Aを示す正面図である。まず、製造装置Aについて説明した後に、製造装置Aを用いた引抜き捻り工程および空引き工程について説明する。
【0042】
製造装置Aは、公転機構30と、浮き枠34と、巻き出しボビン(第1のボビン)11と、第1のガイドキャプスタン18と、第1の引抜きダイス1と、第1の公転キャプスタン21と、公転フライヤ23と、第2の公転キャプスタン22と、第2の引抜きダイス2と、第2のガイドキャプスタン61と、巻き取りボビン(第2のボビン)71と、を備える。
以下、各部の詳細について詳細に説明する。
【0043】
(公転機構)
公転機構30は、前方シャフト35Aおよび後方シャフト35Bを含む回転シャフト35と、駆動部39と、前方スタンド37Aと、後方スタンド37Bと、を有している。
公転機構30は、回転シャフト35並びに、回転シャフト35に固定された第1の公転キャプスタン21、第2の公転キャプスタン22および公転フライヤ23を回転させる。
また、公転機構30は、回転シャフト35と同軸上に位置し回転シャフト35に支持される浮き枠34の静止状態を維持する。これにより、浮き枠34に支持された巻き出しボビン11、第1のガイドキャプスタン18および第1の引抜きダイス1の静止状態を維持する。
【0044】
前方シャフト35Aおよび後方シャフト35Bは、ともに内部が中空の円筒形状を有する。前方シャフト35Aと後方シャフト35Bは、ともに公転回転中心軸C(第1引抜ダイスのパスライン)を中心軸とする同軸上に配置されている。前方シャフト35Aは、前方スタンド37Aに軸受36を介し回転自在に支持され、前方スタンド37Aから後方(後方スタンド37B側)に向かって延びている。同様に、後方シャフト35Bは、後方スタンド37Bに軸受を介し回転自在に支持され、後方スタンド37Bから前方(前方スタンド37A側)に向かって延びている。前方シャフト35Aと後方シャフト35Bとの間には、浮き枠34が架け渡されている。
【0045】
駆動部39は、駆動モータ39cと直動シャフト39fとベルト39a、39d、プーリ39b、39eとを有している。駆動部39は、前方シャフト35Aおよび後方シャフト35Bを回転させる。
駆動モータ39cは、直動シャフト39fを回転させる。直動シャフト39fは、前方スタンド37Aおよび後方スタンド37Bの下部において前後方向に延びている。
前方シャフト35Aの前方の端部35Abは、前方スタンド37Aを貫通した先端にプーリ39bが取り付けられている。プーリ39bは、ベルト39aを介し直動シャフト39fと連動する。同様に、後方シャフト35Bの後方の端部35Bbは、後方スタンド37Bを貫通した先端にプーリ39eが取り付けられ、ベルト39dを介し直動シャフト39fと連動する。これにより、前方シャフト35Aおよび後方シャフト35Bは、公転回転中心軸Cを中心に同期回転する。
【0046】
回転シャフト35(前方シャフト35Aおよび後方シャフト35B)には、第1の公転キャプスタン21、第2の公転キャプスタン22および公転フライヤ23が固定されている。回転シャフト35が回転することで、回転シャフト35に固定されたこれらの部材は、公転回転中心軸Cを中心に公転回転する。
【0047】
(浮き枠)
浮き枠34は、回転シャフト35の前方シャフト35Aおよび後方シャフト35Bの互いに向かい合う端部35Aa、35Baに軸受34aを介し支持されている。また、浮き枠34は、巻き出しボビン11、第1のガイドキャプスタン18および第1の引抜きダイス1を支持する。
【0048】
図10は、
図9における矢印X方向から見た浮き枠34の平面図である。
図9、
図10に示すように、浮き枠34は、上下に開口する箱形状を有する。浮き枠34は、前後に対向する前方壁34bおよび後方壁34cと、左右に対向するとともに前後方向に延びる一対の支持壁34dと、を有する。
【0049】
前方壁34bおよび後方壁34cには貫通孔が設けられ、それぞれ前方シャフト35Aおよび後方シャフト35Bの端部35Aa、35Baが挿入されている。端部35Aa、35Baと前方壁34bおよび後方壁34cの貫通孔との間には、軸受34aが介在する。これにより、浮き枠34には、回転シャフト35(前方シャフト35Aおよび後方シャフト35B)の回転が伝達され難い。浮き枠34は、回転シャフト35が回転状態にあっても地面Gに対する静止状態を保つ。なお、公転回転中心軸Cに対し浮き枠34の重心を偏らせる錘を設けて浮き枠34の静止状態を安定させてもよい。
【0050】
図10に示すように、一対の支持壁34dは、巻き出しボビン11、第1のガイドキャプスタン18および第1の引抜きダイス1を左右方向(
図10紙面中の上下方向)両側に配置されている。一対の支持壁34dは、巻き出しボビン11を保持するボビン支持シャフト12および第1のガイドキャプスタン18の回転軸J18を回転可能に支持する。また、支持壁34dは、図示略のダイス支持体を介し第1の引抜きダイス1を支持する。
【0051】
(巻き出しボビン)
巻き出しボビン11には、直線溝4Bが形成された直線溝付管10B(
図7参照)が巻き付けられている。巻き出しボビン11は、直線溝付管10Bを巻き出して後段に供給する。
巻き出しボビン11は、ボビン支持シャフト12に着脱可能に取り付けられている。
【0052】
図10に示すように、ボビン支持シャフト12は、回転シャフト35と直交する方向に延びている。また、ボビン支持シャフト12は、浮き枠34に自転回転可能に支持されている。なお、ここで自転回転とは、ボビン支持シャフト12自身の中心軸を中心として回転することを意味する。ボビン支持シャフト12は、巻き出しボビン11を保持し、巻き出しボビン11の供給方向に自転回転することで、巻き出しボビン11の管材5の繰り出しを補助する。
【0053】
巻き出しボビン11は、巻き付けられた直線溝付管10Bを全て供給した際に取り外され、他の巻き出しボビンに交換される。取り外された空の巻き出しボビン11は、直線溝付管10Bを形成する押出装置に取り付けられ、再び直線溝付管10Bが巻き付けられる。巻き出しボビン11は、浮き枠34に支持され公転回転しない。したがって、巻き出しボビン11に直線溝付管10Bが乱巻されていても支障なく供給を行うことができ、巻き直しを行うことなく使用できる。また、巻き出しボビン11の重量により製造装置Aにおいて管材5に捻りを付与するための公転回転の回転数は制限されない。したがって、巻き出しボビン11に長尺の管材5が巻き付けることができる。これにより、長尺の管材5に対して、捻りを付与することができ、製造効率を高めることができる。
【0054】
ボビン支持シャフト12には、ブレーキ部15が設けられている。ブレーキ部15は、浮き枠34に対するボビン支持シャフト12の自転回転に制動力を与える。すなわち、ブレーキ部15は、巻き出しボビン11の巻き出し方向の回転を規制する。ブレーキ部15による制動力により、巻き出し方向に搬送される管材5には、後方張力が付加される。ブレーキ部15としては、例えば、制動力としてのトルク調節が可能なパウダーブレーキ又はバンドブレーキを採用できる。
【0055】
(第1のガイドキャプスタン)
第1のガイドキャプスタン18は、円盤形状を有している。第1のガイドキャプスタン18には、巻き出しボビン11から繰り出された管材5が1周巻き掛けられる。第1のガイドキャプスタン18の外周の接線方向は、公転回転中心軸Cと一致する。第1のガイドキャプスタン18は、管材5を第1の方向D1に沿って公転回転中心軸C上に誘導する。
第1のガイドキャプスタン18は、自転回転自在に浮き枠34に支持されている。また第1のガイドキャプスタン18の外周には、自転回転自在のガイドローラ18bが並んで配置されている。本実施形態の第1のガイドキャプスタン18は、自身が自転回転するとともにガイドローラ18bが転動するが、何れか一方が回転すれば、管材5をスムーズに搬送できる。なお、
図10において、ガイドローラ18bの図示は省略されている。
【0056】
図10に示すように、第1のガイドキャプスタン18と巻き出しボビン11との間には、管路誘導部18aが設けられている。管路誘導部18aは、例えば管材5を囲むように配置された複数のガイドローラである。管路誘導部18aは、巻き出しボビン11から供給される管材5を第1のガイドキャプスタン18に誘導する。
【0057】
なお、第1のガイドキャプスタン18に代えて、巻き出しボビン11と第1の引抜きダイス1との間にトラバース機能を有する誘導管を設けてもよい。誘導管を設ける場合には、巻き出しボビン11と第1の引抜きダイス1との距離を短くすることができ、工場内のスペースを有効活用できる。
【0058】
(第1の引抜きダイス)
第1の引抜きダイス1は、管材5(直線溝付管10B)を縮径する。第1の引抜きダイス1は、浮き枠34に固定されている。第1の引抜きダイス1は、第1の方向D1を引抜き方向とする。第1の引抜きダイス1の中心は、回転シャフト35の公転回転中心軸Cと一致する。また、第1の方向D1は、公転回転中心軸Cと平行である。
第1の引抜きダイス1には、浮き枠34に固定された潤滑油供給装置9Aにより潤滑油が供給される。これにより第1の引抜きダイス1における引抜力を軽減できる。
第1の引抜きダイス1を通過した管材5は、浮き枠34の前方壁34bに設けられた貫通孔を介して、前方シャフト35Aの内部に導入される。
【0059】
(第1の公転キャプスタン)
第1の公転キャプスタン21は、円盤形状を有している。第1の公転キャプスタン21は、中空の前方シャフト35Aの内外を径方向に貫通する横孔35Acに配置されている。第1の公転キャプスタン21は、円盤の中心を回転軸J21として、回転シャフト35(前方シャフト35A)の外周部に固定された支持体21aに自転回転が自在な状態で支持されている。
【0060】
第1の公転キャプスタン21は、外周の接線の1つが公転回転中心軸Cと略一致する。
第1の公転キャプスタン21には、公転回転中心軸C上の第1の方向D1に搬送される管材5が一周以上、巻き掛けられる。第1の公転キャプスタン21は、管材5を巻き掛けて前方シャフト35Aの内部から外部に引き出して公転フライヤ23に誘導する。
【0061】
第1の公転キャプスタン21は、公転回転中心軸Cの周りを前方シャフト35Aとともに公転回転する。公転回転中心軸Cは、第1の公転キャプスタン21の自転回転の回転軸J21と直交する方向に延びている。管材5は、第1の公転キャプスタン21と第1の引抜きダイス1との間で捻りが付与される。これにより、管材5は、直線溝付管10Bから中間捻り管10Cとなる。
【0062】
第1の公転キャプスタン21とともに、前方シャフト35Aには駆動モータ20が設けられている。駆動モータ20は、第1の公転キャプスタン21を管材5の巻き掛け方向(搬送方向)に駆動回転する。これにより、第1の公転キャプスタン21は、管材5に第1の引抜きダイス1を通過するための前方張力を付与する。
【0063】
第1の公転キャプスタン21および駆動モータ20は、前方シャフト35Aの公転回転中心軸Cに重心が位置するように公転回転中心軸Cに対して互いに対称の位置に配置されることが好ましい。これにより、前方シャフト35Aの回転のバランスを安定させることができる。なお、第1の公転キャプスタン21と駆動モータ20の重量差が大きい場合は、錘を設けて重心を安定させてもよい。
【0064】
(公転フライヤ)
公転フライヤ23は、第1の引抜きダイス1と第2の引抜きダイス2との間で、管材5の管路を反転させる。公転フライヤ23は、第1の引抜きダイス1の引抜き方向である第1の方向D1に搬送される管材5を反転させ、搬送方向を第2の引抜きダイス2の引抜き方向である第2の方向D2に向ける。より具体的には、公転フライヤ23は、第1の公転キャプスタン21から第2の公転キャプスタン22に管材5を誘導する。
【0065】
公転フライヤ23は、複数のガイドローラ23aとガイドローラ23aを支持するガイドローラ支持体(図示略)とを有する。ここでは、煩雑さを解消するためガイドローラ支持体の図示を省略するが、ガイドローラ支持体は、回転シャフト35に支持されている。ただし、フライヤの構造についてガイドローラは必須ではなく、単に管が通過するための板状の構造で、それに通過させるためのリングを取り付けた形状のものでも良い。このリングは板形状の部材に設けられても良い。このリングの一部はこの板形状の部材の一部で構成されてもよい。板形状の部材はガイドローラ支持体と同様に回転シャフト35に支持されてもよい。
ガイドローラ23aは、公転回転中心軸Cに対し外側に湾曲する弓形状を形成して並んでいる。ガイドローラ23a自身が転動して管材5をスムーズに搬送する。公転フライヤ23は、公転回転中心軸Cを中心として、浮き枠34並びに浮き枠34内に支持された第1の引抜きダイス1および巻き出しボビン11の周りを回転する。
【0066】
公転フライヤ23の一端は、公転回転中心軸Cに対し第1の公転キャプスタン21の外側に位置している。また、公転フライヤ23の他端は、中空の後方シャフト35Bの内外を径方向に貫通する横孔35Bcを通過して後方シャフト35Bの内部に延びている。公転フライヤ23は、第1の公転キャプスタン21に巻き掛けられて外側に繰り出された管材5を後方シャフト35B側に誘導する。また、公転フライヤ23は、管材5を後方シャフト35Bの内部において、第2の方向D2に沿って公転回転中心軸C上に繰り出す。
【0067】
なお、本実施形態の公転フライヤ23は、ガイドローラ23aにより管材5を搬送するものであるとして説明した。しかしながら公転フライヤ23を、弓状に形成した帯板から形成して、管材5を帯板の一面を滑動させて搬送してもよい。
また、
図9において、管材5がガイドローラ23aの外側を通過する場合を例示した。
しかしながら、公転フライヤ23の回転速度が速い場合には、管材5が遠心力により公転フライヤから脱線するおそれがある。このような場合は、管材5の外側に更にガイドローラ23aを設けることが好ましい。
公転フライヤ23と同等の重量を有し前方シャフト35Aから後方シャフト35Bに延びて公転フライヤ23と同期回転するダミーフライヤを複数設けてもよい。これにより、回転シャフト35の回転を安定させることができる。
【0068】
(第2の公転キャプスタン)
第2の公転キャプスタン22は、第1の公転キャプスタン21と同様に、円盤形状を有する。第2の公転キャプスタン22は、後方シャフト35Bの端部35Bbの先端に設けられた支持体22aに自転回転が自在な状態で支持されている。また、第2の公転キャプスタン22の外周には、自転回転自在のガイドローラ22cが並んで配置されている。本実施形態の第2の公転キャプスタン22は、自身が自転回転するとともにガイドローラ22cが転動するが、何れか一方が回転すれば、管材5をスムーズに搬送できる。
【0069】
第2の公転キャプスタン22は、外周の接線の1つが公転回転中心軸Cと略一致する。
第2の公転キャプスタン22には、公転回転中心軸C上の第2の方向D2に搬送される管材5が一周以上、巻き掛けられる。第2の公転キャプスタン22は、巻き掛けられた管材を公転回転中心軸C上の第2の方向D2に繰り出す。
【0070】
第2の公転キャプスタン22は、公転回転中心軸Cの周りを後方シャフト35Bとともに公転回転する。公転回転中心軸Cは、第2の公転キャプスタン22の自転回転の回転軸J22と直交する方向に延びている。第2の公転キャプスタン22から繰り出された管材5は、第2の引抜きダイス2において縮径される。第2の引抜きダイス2は、地面Gに対し静止しているため、第2の公転キャプスタン22と第2の引抜きダイス2との間で、管材5に捻りを付与できる。これにより、管材5は、中間捻り管10Cから内面螺旋溝付管10となる。
【0071】
第2の公転キャプスタン22を支持する支持体22aは、公転回転中心軸Cに対し第2の公転キャプスタン22と対称の位置に錘22bを支持する。錘22bは、後方シャフト35Bの回転のバランスを安定させる。
【0072】
(第2の引抜きダイス)
第2の引抜きダイス2は、第2の公転キャプスタン22の後段に配置される。第2の引抜きダイス2は、反対の第2の方向D2を引抜き方向とする。第2の方向D2は、公転回転中心軸Cと平行な方向である。第2の方向D2は、第1の引抜きダイス1の引抜き方向である第1の方向D1と反対である。管材5は、第2の方向D2に沿って第2の引抜きダイス2を通過する。第2の引抜きダイス2は、第2の引抜きダイス2は、地面Gに対して静止している。第2の引抜きダイス2の中心は、回転シャフト35の公転回転中心軸Cと一致する。
【0073】
第2の引抜きダイス2は、例えば図示略のダイス支持体を介して架台62に支持されている。また、第2の引抜きダイス2には、架台62に取り付けられた潤滑油供給装置9Bにより潤滑油が供給される。これにより第2の引抜きダイス2における引抜力を軽減できる。
第2の引抜きダイス2における縮径および捻り付与により、管材5は、中間捻り管10Cから内面螺旋溝付管10となる。
【0074】
(第2のガイドキャプスタン)
第2のガイドキャプスタン61は、円盤形状を有している。第2のガイドキャプスタン61の外周の接線方向は、公転回転中心軸Cと一致する。第2のガイドキャプスタン61には、公転回転中心軸C上の第2の方向D2に搬送される管材5が一周以上、巻き掛けられる。
【0075】
第2のガイドキャプスタン61は、回転軸J61を中心に架台62に回転可能に支持されている。また、第2のガイドキャプスタン61の回転軸J61は、駆動モータ63と駆動ベルト等を介し接続されている。第2のガイドキャプスタン61は、駆動モータ63により、管材5の巻き掛け方向(搬送方向)に駆動回転する。なお、駆動モータ63は、トルク制御可能なトルクモータを用いることが好ましい。
【0076】
第2のガイドキャプスタン61が駆動することによって管材5には、前方張力が付与される。これにより管材5は、第2の引抜きダイス2における加工に必要な引抜き応力が付与され前方に搬送される。
【0077】
<仕上げ引抜きダイス>
仕上げ引抜きダイス7は、第2のガイドキャプスタン61と巻き取りボビン71との間に位置する。仕上げ引抜きダイス7は、管材5を仕上げ整形する。仕上げ引抜きダイス7は、第1および第2の引抜きダイス1、2を通過した管材5のスキンパス用に設けられる。仕上げ引抜きダイス7による空引き工程(仕上げ引抜き工程)では、引抜きによる断面の変化は少なく、表面および寸法が仕上げ整形されるとともに管材5の真円度を回復する。また、空引き工程では、管材5の底肉厚の不均一さを低減させる。
なお、仕上げ引抜きダイス7は、第2の引抜きダイス2と巻き取りボビン71との間であれば、何れの位置に設けられていてもよい。
【0078】
(巻き取りボビン)
巻き取りボビン71は、管材5の管路の終端に設けられ、管材5を回収する。巻き取りボビン71の前段には、誘導部72が設けられている。誘導部72は、トラバース機能を有し管材5を巻き取りボビン71に整列巻きさせる。
【0079】
巻き取りボビン71は、ボビン支持シャフト73に着脱可能に取り付けられている。ボビン支持シャフト73は、架台75に支持され、駆動モータ74に駆動ベルト等を介し接続されている。巻き取りボビン71は、駆動モータ74により駆動回転され、管材5を弛ませることなく巻き取る。巻き取りボビン71は、管材5が十分に巻き付けられた場合に取り外され、他の巻き取りボビン71に付け替えられる。
【0080】
<引抜き捻り工程>
上述した内面螺旋溝付管の製造装置Aを用いて、内面螺旋溝付管10を製造する方法について説明する。
まず、予備工程として、直線溝付管10Bを巻き出しボビン11にコイル状に巻き付ける。更に、巻き出しボビン11を製造装置Aの浮き枠34にセットする。また、巻き出しボビン11から管材5(直線溝付管10B)を繰り出して、予め直線溝付管10Bの管路をセットする。具体的には、管材5を、第1のガイドキャプスタン18、第1の引抜きダイス1、第1の公転キャプスタン21、公転フライヤ23、第2の公転キャプスタン22、第2の引抜きダイス2、第2のガイドキャプスタン61、巻き取りボビン71の順に、通過させて、セットする。
【0081】
内面螺旋溝付管10の製造工程において、管材の搬送経路に沿って説明する。
まず、巻き出しボビン11から管材5を順次繰り出していく。
次に、巻き出しボビン11から繰り出された管材5を、第1のガイドキャプスタン18に巻き掛ける。第1のガイドキャプスタン18は、管材5を公転回転中心軸C上に位置する第1の引抜きダイス1のダイス孔に誘導する(第1の誘導工程)。
【0082】
次に、管材5を第1の引抜きダイス1に通過させる。更に、第1の引抜きダイス1の後段で管材5を第1の公転キャプスタン21に巻き掛けて前記回転軸の周りを回転させる。
これにより、管材5を縮径するとともに捻りを付与する(第1の捻り引抜き工程)。
【0083】
第1の捻り引抜き工程において、管材5には第1の公転キャプスタン21を駆動する駆動モータ20により、前方張力が付与される。また、同時に管材5には巻き出しボビン11のブレーキ部15により後方張力が付与される。このため、管材5に適度な張力を付与することが可能となり、管材5に座屈・破断を生じさせることなく安定した捻り角を付与できる。
【0084】
管材5は、第1の引抜きダイス1に通された後に、公転回転する第1の公転キャプスタン21に巻き掛けられる。管材5は、第1の引抜きダイス1により縮径されるとともに、第1の公転キャプスタン21により捻りを付与される。これにより、管材5(直線溝付管10B)の内面の直線溝4B(
図7参照)に捻りが付与され内面に螺旋溝4が形成される。第1の捻り引抜き工程により直線溝付管10Bは、中間捻り管10Cとなる。中間捻り管10Cは、内面螺旋溝付管10の製造工程における中間段階の管材であり、内面螺旋溝付管10の螺旋溝4より浅い捻り角の螺旋溝が形成された状態である。
【0085】
第1の捻り引抜き工程において、管材5には、捻りが付与されると同時に引抜きダイスによる縮径が行われる。すなわち、管材5は、捻りと縮径との同時加工による複合応力が付与させる。複合応力下においては、捻り加工のみを行う場合と比較して管材5の降伏応力が小さくなり、管材5の座屈応力に達する前に、管材5に大きな捻りを付与できる。これにより、管材5の座屈の発生を抑制しつつ大きな捻りを付与できる。
【0086】
第1の引抜きダイス1の前段には、第1のガイドキャプスタン18が設けられており管材5の回転が規制されている。すなわち、管材5は、第1の引抜きダイス1の前段で、捻り方向の変形が拘束されている。管材5には、第1の引抜きダイス1と第1の公転キャプスタン21との間で捻りが付与される。すなわち、第1の捻り引抜き工程において、管材5に捻りが付与される領域(加工域)は、第1の引抜きダイス1と第1の公転キャプスタン21との間に制限される。
加工域の長さと、限界捻り角(座屈を生じないで捻ることができる最大捻り角)の関係には、相関関係があり、加工域を短くすることで、大きな捻り角を付与しても座屈が生じにくい。第1のガイドキャプスタン18を設けることで、第1の引抜きダイス1の前段で捻りが付与されることがなく、加工域を短く設定できる。また、第1の引抜きダイス1と第1の公転キャプスタン21との距離を近づけることで加工域を短く設定し、座屈を生じさせずに管材5に大きな捻りを付与できる。
【0087】
第1の引抜きダイス1による管材5の縮径率は、2%以上とすることが好ましい。限界捻り角と縮径率の間には相関が認められ、引抜き時の縮径率を大きくするにつれて限界捻り角が大きくなる傾向が認められる。すなわち、縮径率が小さ過ぎる場合は引抜きによる効果が乏しく、大きな捻り角を得ることが難しいので、2%以上とするのが好ましい。なお、同様の理由から縮径率を5%以上とすることがより好ましい。
一方で、縮径率が大きくなり過ぎると加工限界で破断を生じ易くなるので、25%以下とするのが好ましい。
【0088】
次に、公転フライヤ23に管材5を巻き掛けて、管材5の搬送方向を公転回転中心軸C上の第2の方向D2に向ける。更に、第2の公転キャプスタン22に管材5を巻き掛けて、管材5を第2の引抜きダイス2に導入する(第2の誘導工程)。これにより、管材5の搬送方向は、第1の方向D1から第2の方向D2に反転し、第2の引抜きダイス2の中心に合わせられる。公転フライヤ23は、浮き枠34の周りを公転回転中心軸Cを中心として回転する。なお、第1の公転キャプスタン21、公転フライヤ23および第2の公転キャプスタン22は、公転回転中心軸Cを中心として同期回転する。したがって、第1の公転キャプスタン21から第2の公転キャプスタン22の間で、管材5は相対的に回転せず捻りが付与されない。
【0089】
次に、第2の公転キャプスタン22とともに回転する管材5を第2の引抜きダイス2に通過させる。これにより、管材5を縮径するとともに捻りを付与し、螺旋溝4の捻り角を更に大きくする(第2の捻り引抜き工程)。第2の捻り引抜き工程により中間捻り管10Cは、内面螺旋溝付管10となる。
【0090】
第2の捻り引抜き工程において、管材5には第2のガイドキャプスタン61を駆動する駆動モータ63により、前方張力が付与される。駆動モータ63としては、トルク制御可能なトルクモータを用いた場合、第2のガイドキャプスタン61は、管材5に付与する前方張力を調整できる。第2のガイドキャプスタン61により前方張力を調整することで、第2の捻り引抜き工程において管材5に適度な張力を付与することが可能となる。これにより、管材5に座屈・破断を生じさせることなく安定した捻り角を付与できる。
【0091】
管材5は、公転回転する第2の公転キャプスタン22に巻き掛けられた後に第2の引抜きダイス2を通過する。管材5は、第2の引抜きダイス2により縮径されるとともに、第2の公転キャプスタン22により管材5に捻りを付与される。これにより、管材5の内面の螺旋溝4に更に大きな捻りが付与され、螺旋溝4の捻り角が大きくなる。第2の捻り引抜き工程により中間捻り管10Cは、内面螺旋溝付管10となる。
【0092】
第2の引抜きダイス2の前段では、第2の公転キャプスタン22に管材5が巻き掛けられている。第2の引抜きダイス2の後段では、第2のガイドキャプスタン61が設けられ管材5の回転が規制されている。すなわち、管材5は第2の引抜きダイス2の前後で、捻り方向の変形が拘束されており、第2の公転キャプスタン22と第2のガイドキャプスタン61との間で、管材5に捻りが付与される。すなわち、第2の捻り引抜き工程において、管材5に捻りが付与される領域(加工域)は、第2の公転キャプスタン22と第2の引抜きダイス2との間に制限される。上述したように、加工域を短くすることで、大きな捻り角を付与しても座屈が生じにくい。第2のガイドキャプスタン61を設けることで、第2の引抜きダイス2の後段で捻りが付与されることがなく、加工域を短く設定できる。
【0093】
なお、本実施形態において、第2の公転キャプスタン22は、後方スタンド37Bの後方(第2の引抜きダイス2側)に設けられているが、第2の公転キャプスタン22は、前方スタンド37Aと後方スタンド37Bとの間に位置していてもよい。しかしながら、第2の公転キャプスタン22を、後方スタンド37Bに対し後方に配置して第2の引抜きダイス2に近づけることで、第2の捻り引抜き工程における加工域を短くすることができる。これにより、座屈の発生をより効果的に抑制できる。
【0094】
第2の捻り引抜き工程において、第1の捻り引抜き工程と同様に、捻りと縮径とが行われて、管材5には複合応力が付与させる。これにより、管材5の座屈応力に達する前に、管材に座屈の発生を抑制しつつ大きな捻りを付与できる。
【0095】
第2の引抜きダイス2による管材5の縮径率は、第1の捻り引抜き工程と同様に、2%以上(より好ましくは5%以上)25%以下とすることが好ましい。
なお、第1の引抜きダイス1において、大きな縮径(例えば縮径率30%以上の縮径)を行うと管材5が加工硬化するために、第2の引抜きダイス2での大きな縮径を行うことが困難になる。したがって、第1の引抜きダイス1の縮径率と第2の引抜きダイス2の縮径率との合計は、4%以上50%以下とすることが好ましい。
【0096】
第1および第2の捻り引抜き工程では、合計で5°以上の捻りが付与される。捻り引抜き工程において、引抜きとともに5°以上の捻りを付与することでダイスマークDMが十分に伸張される。これにより、ダイスマークの深さを35μm以下とすることが可能となり、割れやしわの発生なくヘアピン曲げできる伝熱管10を製造できる。
【0097】
<空引き工程>
次に、管材5を仕上げ引抜きダイス7に通過させる(仕上げ引抜き工程)。管材5は、仕上げ引抜きダイス7を通過することで、表面が整形されるとともに底肉厚の偏肉が低減される。また、管材5に若干のつぶれ等の変形が生じていた場合でも、この仕上げ引抜き工程を経ることにより、その変形も修正して、所定の真円度の内面螺旋溝付管10とすることができる。なお、仕上げ引抜きダイス7の引抜き荷重に対して管材5を搬送させる力は、巻き取りボビン71に設けられた駆動モータ74により付与される。
【0098】
また、捻り引抜き工程(第1の捻り引抜き工程および第2の捻り引抜き工程)の後段で、空引き工程を行うことで、表面性状および形状が安定した伝熱管を製造できる。空引き工程における管材5の縮径率は、25%以下とすることが好ましい。さらに、第1の引抜き工程、第2の引抜き工程および空引き工程の縮径率の合計は、30%以上とすることが好ましい。
【0099】
<回収工程>
次に、管材5は、巻き取りボビン71に巻き付けられ回収される。巻き取りボビン71は、駆動モータ74により、管材5の搬送速度と同期して回転することで、管材5を弛みなく巻き取ることができる。
以上の工程を経て、製造装置Aを用いて、内面螺旋溝付管10を製造することができる。
【0100】
<O材化工程>
次に、O材化工程について説明する。
O材化工程は、捻り工程の後に行われる。O材化工程は、管材5に焼きなまし処理を施す熱処理工程である。O材化工程を行うことによって、アルミ材料の歪みを除去し、内部応力を除去できる。
【0101】
<製造方法のまとめ>
押出で製造する素管10Bには、長手方向に伸びる凹のダイスマークが発生しており、その深さは40μm以下であるが局部的に50μm近い深さのマークもあり、経験的にその深さは50μm以下である。素管10Bに対して、捻り引抜き工程と空引き工程とを行なうことで、管は縮径・伸長されるとともに、外周面の凹状のダイスマークDMが浅くなる。更に、複合加工で捻りを付与するため、その螺旋角とともに伸長の程度が増加し、より効果的に凹状のダイスマークを浅くでき、適切な条件で加工することで、管外周の凹の深さは35μm以下に制御可能である。すなわち、本実施形態の引抜き捻り工程によれば複数回の捻りおよび引抜きを繰り返す。これにより、押出成形工程で形成されたダイスマークDMを複数回に亘って伸張させて浅くすることができ、結果として強度が高い伝熱管10を製造できる。
【0102】
本実施形態の製造方法によれば、各工程(第1の引抜き工程、第2の引抜き工程および空引き工程)の合計の縮径率が30%以上である。縮径率を30%以上とすることで、大きな捻りを付与できる。また、本実施形態の製造方法によれば、各工程の縮径率は、25%以下である。各工程の縮径率が25%以下であることで、加工硬化を抑制し後工程での縮径をスムーズに行うことができる。
【0103】
本実施形態の引抜き捻り工程は、上述の工程を経て形成された内面螺旋溝付管10に対して、再び第1の捻り引抜き工程および第2の捻り引抜き工程を行い、更に大きな捻り角を付与してもよい。この場合には、上述の工程を経た内面螺旋溝付管10に対して熱処理(焼きなまし)を行い、O材化する。更に巻き出しボビン11に巻き付けて、この巻き出しボビン11を適当な縮径率を有する第1の引抜きダイスおよび第2の引抜きダイスを有する製造装置Aに取り付ける。更に、製造装置Aにより上述の工程と同様の工程(第1の捻り引抜き工程および第2の捻り引抜き工程)を経ることで、更に大きな捻り角を付与した内面螺旋溝付管を製造できる。
【0104】
本実施形態の引抜き捻り工程によれば、捻りと同時に縮径を行っているため、出発材と最終製品の外径および断面積が異なる。また、管材に捻りと縮径の複合応力を付与する為に、捻り加工に必要なせん断応力を低減させることが可能となり、管材5の座屈応力に達する前に、管材5に大きな捻りを付与できる。したがって、リード角θ1の大きなフィン3を有するとともに、底肉厚が薄い伝熱管を、座屈を生じさせることなく製造することができる。内面螺旋溝付管10は、リード角θ1を大きくすることで熱交換効率を高めることができる。また、内面螺旋溝付管10は、底肉厚を薄くすることで、軽量化するとともに材料費を低減して安価とすることができる。すなわち、本実施形態によれば、軽量、安価かつ熱交換効率の高い内面螺旋溝付管10を製造できる。
【0105】
本実施形態の引抜き捻り工程によれば、直線溝付管10Bに対して捻りを付与するとともに、縮径を行うため、座屈発生を抑制しつつ大きな捻り角を付与できる。なお、本実施形態において、最終品である内面螺旋溝付管10の外径に対し、素材となる直線溝付管10Bの外径は1.1倍以上である。
【0106】
本実施形態の引抜き捻り工程によれば、第1の引抜きダイス1と第2の引抜きダイス2との間で第1の公転キャプスタン21により、管材5に捻りを付与している。更に、第1の引抜きダイス1と第2の引抜きダイス2との引抜き方向が反転している。これにより、第1の捻り引抜き工程と、第2の捻り引抜き工程における、捻り方向を一致させて、管材5に捻りを付与できる。また、管材5の管路の始端である巻き出しボビン11と管路の終端である巻き取りボビン71を公転回転させる必要がない。ラインの速度は、回転速度に依存するため、重量物である巻き出しボビン11又は巻き取りボビン71を回転させない本実施形態の引抜き捻り工程では、回転速度を容易に高めることができる。すなわち、本実施形態によれば容易にライン速度を高速化できる。
更に、本実施形態において、巻き出しボビン11を公転回転させることがないため、巻き出しボビン11に長尺の直線溝付管10B(管材5)を巻き付けることができる。このため、本実施形態の引抜き捻り工程によれば、巻き出しボビン11を付け替えることがなく、一気通貫で長尺の管材5に捻りを付与することができる。すなわち、本実施形態によれば内面螺旋溝付管10の大量生産が容易となる。
【0107】
本実施形態の引抜き捻り工程は、少なくとも2回の捻り引抜き工程を経て管材5に捻りを付与するものである。このため、各段階の捻り引抜き工程で付与する捻り角を積み上げて大きな捻り角を付与することができる。
【0108】
本実施形態の引抜き捻り工程によれば、第1の捻り引抜き工程および前記第2の捻り引抜き工程において、管材5に前方張力と後方張力が付与される。前方張力は、第2のガイドキャプスタン61により管材5に付与され、後方張力は、巻き出しボビン11を制動するブレーキ部15によって管材5に付与される。これにより、加工対象の管材5に適切な張力を安定して付与することができる。管材5の管路に弛みが無く、直線溝付管10Bが芯ずれせずに引抜きダイスに入るため、管材5に座屈・破断を生じさせることなく安定した捻り角を付与できる。
【0109】
本実施形態において、第1の引抜きダイス1および第2の引抜きダイス2ダイス孔の中心は、公転回転中心軸C上に位置している。これにより、ダイス孔を通過する管材5をダイス孔に対して直線的に配置できるため、管材5を均一に縮径して、捻り付与時の座屈を抑制できる。なお、第1の引抜きダイス1および第2の引抜きダイス2において、管材5が正常に縮径できる範囲であれば、公転回転中心軸Cに対するダイス孔の位置ズレは許容される。
【0110】
なお、本実施形態において、巻き出しボビン11が浮き枠34に支持され、巻き取りボビン71が地面Gに設置されているものとして説明した。しかしながら、巻き出しボビン11と巻き取りボビン71のうち何れが浮き枠34に支持されていてもよい。すなわち、
図9において、巻き出しボビン11と巻き取りボビン71とを入れ替えて配置してもよい。この場合には、管材5の搬送経路が反転する。また、第1の引抜きダイス1および第2の引抜きダイス2が入れ替えて配置されるとともに、搬送方向に沿ってそれぞれの引抜きダイス1、2の引抜き方向を反転させて配置する。更に、引抜きダイス1、2の前後に位置するキャプスタンにおいて、引抜きダイスの後段に位置するキャプスタンを管材の巻き掛け方向(搬送方向)に駆動させ、引抜きダイスにおける引抜力に抗する前方張力を与える。
【実施例】
【0111】
((実施例の伝熱管))
JISA3003系アルミニウム合金からなる素管を押出し、内面に直溝を有した押出素管を製造する。次に、その素管に複合加工(引抜+捻り)を施して内面螺旋溝付管を製造した。前記伝熱管は、外径Dが6.00mm、7.00mm、フィン底幅の弧長Wが0.13mm、0.15mm、溝のリード角βが15°、フィンの条数が45、フィンの高さHが0.25mm、フィン頂角αが−5〜−25°の範囲で種々に変量し、底肉厚tは0.50mmである。実施例の伝熱管のフィンの形状は、
図4に示すように先端幅が底幅以上の大きさである。
【0112】
((比較例の伝熱管))
比較例として、底幅が先端幅より大きい従来のフィン形状を有する伝熱管を用意した。比較例の伝熱管も、実施例の伝熱管と同様に、フィンは螺旋状に形成されている。また、比較例の伝熱管の各寸法は、上述の実施例の伝熱管の各寸法と同じとした。
またリード角の影響を確認するために、一部の比較例においては、実施例と同じ形状の伝熱管のリード角を0°、5°、10°と変量し同じ調査を行った。
【0113】
((測定))
得られた実施例および比較例の伝熱管について、管内面の溝およびフィンの形状、伝熱特性、ヘアピン曲げ加工性、拡管後のプラグの焼き付きの有無を調べた。前記溝形状は、伝熱管(長さ300mm)を縦に2分割して管内面のフィンの高さ、底肉厚、底幅の弧長、等を測定して調べた。
【0114】
(伝熱特性)
伝熱特性は、
図15、
図16に示す従来公知の伝熱性能評価装置を用いて、管内熱伝達率(管内凝縮および管内蒸発)を測定して調べた。
図15は、凝縮試験を行う伝熱特性評価装置であり、
図16は、蒸発試験を行う伝熱特性評価装置である。各試験装置において、冷媒質量速度は250kg/m
2・sとした。その他の試験条件は、管内の凝縮側について、冷媒の平均飽和温度を45℃、冷媒入口過熱度を20℃、冷媒出口過冷却度5℃、管入口圧力を2.63MPaとし、管内の蒸発側について、冷媒の平均飽和温度を5℃、冷媒入口乾き度0.2、冷媒出口過熱度を7℃、管出口圧力を0.86MPaとし、測定に使用した伝熱管長さ4m、冷媒R32で評価を行なった。基準には外径7.00mmおよび6.00mmで、底肉厚0.25mm、フィン高さ0.17mm、フィン頂角25°、条数55条、リード角10°の従来の銅製内面溝付伝熱管について管内熱伝達率を上記と同じ方法で測定した。管内熱伝達率は各伝熱管3本について測定し、その平均値をその伝熱管の管内熱伝達率とした。
【0115】
(拡管試験)
図13に、拡管試験で使用した拡管プラグ113Aおよびロッド113を備えた拡管具114を示す。また、
図14に、拡管試験において用いた管保持具130を示す。
拡管具114はハンドルHの先端側にロッド113を有し、その先端に拡管プラグ113Aが形成されている。管保持具130は、上面側にスライド溝134aを有した円盤状の支持台134と、この支持台134のスライド溝134aに装着されるブロック状の第1保持部131と第2保持部132を有する。第1保持部131と第2保持部132はこれらの側面に形成されたねじ孔に螺合される固定ボルト132aによって互いを沿わせた状態で一体化できるように構成されている。また、第1保持部131と第2保持部132の側面中央側にはそれぞれ丸溝131A、132Aが形成されている。
【0116】
まず、
図14(a)、(b)に示すように、第1保持部131と第2保持部132を起立させて重ね合わせてスライド溝134aの上に固定する。これにより、第1保持部131と第2保持部132の境界部に丸溝131A、132Aを重ねることによって孔133が形成される。
次に
図14(c)に示すように、孔133にサンプルの伝熱管Jを挿入する。なお、孔133の内径は、伝熱管Jの外径よりも十分に大きく形成されており、上方から容易に挿入することができ、挿入する伝熱管Jの長さは125mmである。
次に
図14(d)に示すように、
図13の拡管プラグ113Aを取り付けたロッド113を挿入することで、伝熱管Jを拡管する。最後に、固定ボルト132aを取り外し、第1保持部131と第2保持部132を開くことで、拡管された伝熱管Jを取り出すことができる。これを200本連続して実施し、その後の拡管プラグの焼き付きの有無を確認した。焼き付きが生じたものは×、焼き付きが生じなかったものは○とした。
【0117】
なお、今回の拡管試験において用いる拡管プラグ113Aの最外径部の直径は、外径D7.00mmでは5.9mm、外径D6.00mmでは5.4mmであり、超硬合金からなるものを用いた。また、拡管プラグ113Aの挿入速度は、285mm/minとした。
【0118】
(ヘアピン曲げに対する強度測定)
各サンプルの伝熱管を、外径7.0mmは曲率半径(R=15)で、外径6.0mmはR=10でヘアピン状に180°曲げる曲げ加工を行った。各条件n=20で評価し、1つでも伝熱管の外周面に亀裂が観察されたものを×とし、亀裂が観察されなかったものを〇とした。
【0119】
表1、表2に実施例および比較例の各寸法および試験結果を示す。
なお、表1、表2において、「リード角」は、フィン3のリード角θ1を意味する。表1、表2において、頂角は、フィン頂角γを意味する。表1、表2において、「底肉厚周/ぬれ淵長さ」とは、底部4aの占める長さ(F)と濡れ淵長さ(E)の比[F/E]を意味する。表1、表2において、「ぬれ淵長さ/外周」は、濡れ淵長さ(E)と外周長(D)の比[E/D]を意味する。また、表1および表2中の「伝熱特性」の項目は、上記の伝熱特性の評価試験の条件で測定した実施例1の値を100としたときの割合で表示している。
【0120】
【表1】
【0121】
【表2】
【0122】
表1、表2から、各実施例の伝熱管は、各比較例の伝熱管と比較して、いずれも伝熱性および拡管時の焼き付き性に優れていることがわかる。
【0123】
以上に、本願発明の様々な実施形態を説明したが、各実施形態における各構成およびそれらの組み合わせ等は一例であり、本願発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本願発明は実施形態によって限定されることはない。