特許第6987345号(P6987345)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルムヘルスケア株式会社の特許一覧

<>
  • 特許6987345-放射線撮像装置 図000002
  • 特許6987345-放射線撮像装置 図000003
  • 特許6987345-放射線撮像装置 図000004
  • 特許6987345-放射線撮像装置 図000005
  • 特許6987345-放射線撮像装置 図000006
  • 特許6987345-放射線撮像装置 図000007
  • 特許6987345-放射線撮像装置 図000008
  • 特許6987345-放射線撮像装置 図000009
  • 特許6987345-放射線撮像装置 図000010
  • 特許6987345-放射線撮像装置 図000011
  • 特許6987345-放射線撮像装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6987345
(24)【登録日】2021年12月3日
(45)【発行日】2021年12月22日
(54)【発明の名称】放射線撮像装置
(51)【国際特許分類】
   G01T 7/00 20060101AFI20211213BHJP
   A61B 6/06 20060101ALI20211213BHJP
   A61B 6/03 20060101ALI20211213BHJP
【FI】
   G01T7/00 B
   A61B6/06 331
   A61B6/03 320J
【請求項の数】11
【全頁数】12
(21)【出願番号】特願2018-6228(P2018-6228)
(22)【出願日】2018年1月18日
(65)【公開番号】特開2019-124618(P2019-124618A)
(43)【公開日】2019年7月25日
【審査請求日】2020年10月20日
(73)【特許権者】
【識別番号】320011683
【氏名又は名称】富士フイルムヘルスケア株式会社
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール特許業務法人
(72)【発明者】
【氏名】小野内 雅文
【審査官】 大門 清
(56)【参考文献】
【文献】 特開2008−168125(JP,A)
【文献】 特開2007−010559(JP,A)
【文献】 特開2013−140121(JP,A)
【文献】 特開2009−276138(JP,A)
【文献】 特開2003−307570(JP,A)
【文献】 特開2016−007424(JP,A)
【文献】 特開2015−166735(JP,A)
【文献】 米国特許出願公開第2003/0128812(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01T 7/00
A61B 6/06
A61B 6/03
G21K 1/02
(57)【特許請求の範囲】
【請求項1】
放射線源と、前記放射線源の焦点から放射された放射線を検出する放射線検出器と、前記放射線源と前記放射線検出器との間に配置されるコリメータと、を備えた放射線撮像装置であって、
前記コリメータは前記放射線検出器の画素の境界上に前記放射線の入射方向に沿って所定の間隔で配置される隔壁部を有し、最上部の隔壁部の上端部が放射線入射面に一致し、
前記隔壁部の間の間隙部の形状が平行四辺形であることを特徴とする放射線撮像装置。
【請求項2】
請求項に記載の放射線撮像装置であって、
前記平行四辺形の鋭角である内角をφ、前記隔壁部の間の幅をd、前記コリメータの高さをhとしたとき、d/h<tanφ≦1であることを特徴とする放射線撮像装置。
【請求項3】
請求項に記載の放射線撮像装置であって、
tanφ=1であることを特徴とする放射線撮像装置。
【請求項4】
請求項に記載の放射線撮像装置であって、
前記平行四辺形が隣接する前記画素の間で同じ形状であることを特徴とする放射線撮像装置。
【請求項5】
請求項に記載の放射線撮像装置であって、
前記平行四辺形が隣接する前記画素の間で対称形状であることを特徴とする放射線撮像装置。
【請求項6】
請求項1に記載の放射線撮像装置であって、
前記隔壁部は前記放射線の入射方向及び前記画素の配列方向に対してそれぞれ等ピッチで配置され、前記隔壁部の前記放射線の入射方向の高さをb、前記画素の配列方向の厚さをt、前記隔壁部の間隔の前記放射線の入射方向をs、前記画素の配列方向をdとしたとき、s<t・b/dであることを特徴とする放射線撮像装置。
【請求項7】
請求項1に記載の放射線撮像装置であって、
前記放射線の入射方向において前記コリメータがN分割され、各分割位置において前記隔壁部を1/Nピッチずらして配置することを特徴とする放射線撮像装置。
【請求項8】
請求項1に記載の放射線撮像装置であって、
前記隔壁部の間の間隙部の幅が前記放射線源に近い側ほど広いことを特徴とする放射線撮像装置。
【請求項9】
請求項1に記載の放射線撮像装置であって、
前記隔壁部は前記画素の配列方向に対して等ピッチで配置され、前記隔壁部の前記放射線の入射方向の高さをb、前記画素の配列方向の厚さをt、前記放射線の入射方向の位置をy、前記隔壁部の間隔の前記放射線の入射方向をs(y)、前記画素の配列方向をd、前記コリメータの前記放射線の入射方向の高さをhとしたとき、
s(y)=b (y≦h/2)、t・y/d (y>h/2)
または
s(y)=b (y≦b・d/t)、t・y/d (y>b・d/t)
であることを特徴とする放射線撮像装置。
【請求項10】
請求項1に記載の放射線撮像装置であって、
前記放射線の入射方向に沿って配置される前記隔壁部のうち、前記放射線の入射方向における前記コリメータの中間位置に配置される隔壁部の高さが他の隔壁部に比べて高いことを特徴とする放射線撮像装置。
【請求項11】
請求項1に記載の放射線撮像装置であって、
前記隔壁部を支持する柱部が前記放射線検出器の側に台部を有することを特徴とする放射線撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は光子計数型検出器を搭載した放射線撮像装置に係り、散乱線除去のためのコリメータに関する。
【背景技術】
【0002】
近年、フォトンカウンティング方式を採用する検出器(光子計数型検出器)を搭載したフォトンカウンティングCT(Computed Tomography)装置の開発が、様々な機関において進められている。光子計数型検出器は、従来のCT装置で採用されている電荷積分型の検出器と異なり、検出素子である半導体層に入射した放射線光子を個々に計数可能であるので、各放射線光子のエネルギーを計測できる。そのため、フォトンカウンティングCT装置では従来のCT装置に比べてより多くの情報を得ることができる。
【0003】
CT装置に代表される放射線撮像装置では、被写体等で発生した散乱線の検出器への入射を抑制するために、タングステンやモリブデン、タンタル等の重金属で構成されるスリットまたはグリッドであるコリメータが検出器の前段に配置される。各放射線光子のエネルギーを計測するフォトンカウンティングCT装置では、散乱線の遮蔽率をより向上させる必要があるので、コリメータの高さが高くなる傾向にある。重金属で構成されるコリメータの高さが高くなるとコリメータの重量が増加し、CT装置の高速回転を阻害する。
【0004】
特許文献1には、モリブデン等の線材が張設される溝を有する枠体が積層され、線材間のピッチが検出器の画素サイズの2以上の整数倍であって、積層される方向に隣接する枠体間で線材の位置がずれて形成されるコリメータが開示されている。コリメータの軽量化について特許文献1に明確な記載はないものの、コリメータの隔壁となる線材が間引かれる構造となるので、コリメータは軽量化される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007―10559号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に開示されるコリメータでは、放射線が入射する面において、コリメータの隔壁の高さが一様でないので、散乱線の遮蔽率が検出器の検出面内の位置によって異なり不均一となる。散乱線の遮蔽率が不均一であると、放射線光子のエネルギーの計測精度が低下し、得られた医用画像による誤診を招きかねない。
【0007】
そこで、本発明は、コリメータの軽量化を図るとともに散乱線の遮蔽率の一様性を向上できる放射線撮像装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために本発明は、放射線源と、前記放射線源の焦点から放射された放射線を検出する放射線検出器と、前記放射線源と前記放射線検出器との間に配置されるコリメータと、を備えた放射線撮像装置であって、前記コリメータは前記放射線検出器の画素の境界上に前記放射線の入射方向に沿って所定の間隔で配置される隔壁部を有し、最上部の隔壁部の上端部が放射線入射面に一致することを特徴とする。
【発明の効果】
【0009】
本発明によれば、コリメータの軽量化を図るとともに散乱線の遮蔽率の一様性を向上できる放射線撮像装置を提供することができる。
【図面の簡単な説明】
【0010】
図1】本発明が適用されるX線CT装置の全体構成を示す図である。
図2】第一実施形態のコリメータ形状の一例を示す図である。
図3】比較例のコリメータ形状を示す図である。
図4】第一実施形態の隔壁部202の配置例を示す図である。
図5】第二実施形態の隔壁部202の配置例を示す図である。
図6】第三実施形態の隔壁部202の配置例を示す図である。
図7】第四実施形態のコリメータ形状の一例を示す図である。
図8】第四実施形態の間隙部203の内角の適切な範囲を示す図である。
図9】第五実施形態のコリメータ形状の一例を示す図である。
図10】第六実施形態のコリメータ形状の一例を示す図である。
図11】第七実施形態のコリメータ形状の一例を示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照して、本発明の実施形態を説明する。本発明の放射線撮像装置は、放射線源と光子計数型検出器とを備える装置に適用される。以降の説明では、放射線がX線であり、放射線撮像装置がX線CT装置である例について述べる。
【0012】
<第一実施形態>
本実施形態のX線CT装置は、図1に示すように、X線を照射するX線源100と、X線を検出する複数の検出素子を二次元配列したX線検出器101と、検出素子による検出信号に対し補正等の処理を行うとともに装置の制御を行う信号処理部102と、補正後の信号を用いて被写体106の画像を生成する画像生成部103とを備える。X線源100とX線検出器101は対向した位置で回転盤104に固定され、寝台部105に寝かせられた被写体106の周りを相対的に回転するように構成されている。なおX線源100、X線検出器101及び回転盤104を含めスキャナ110ともいう。
【0013】
X線検出器101はX線源100を中心とする円弧状に配列された検出素子モジュール107から構成される。X線の入射方向は紙面縦方向(Y)、チャネル方向は紙面横方向(X)、体軸方向は紙面垂直方向(Z)である。検出素子モジュール107は、光子計数型検出器であり、入射したX線光子に相当する電荷を出力する半導体層109と、コリメータ108と光子計数回路(不図示)と、を備える。コリメータ108は半導体層内に構成される画素間のクロストークや、被写体106等によって発生する散乱線を軽減する。光子計数回路は、半導体層109が出力する電荷を計数し、計数信号を出力する。半導体層109は、従来の半導体層と同様であり、テルル化亜鉛カドミウム(CZT)やテルル化カドミウム(CdTe)等の半導体層からなる。コリメータ、及び、その取り付け部分の具体的な構成は後述する。
【0014】
このような構成のX線CT装置の撮像動作は従来のX線CT装置と同じであり、X線源100とX線検出器101とが対向配置された状態で、被写体106の周囲を回転しながら、X線源100からX線を照射し、被写体106を透過したX線をX線検出器101で検出する。X線検出器101の光子計数回路が出力した計数信号は、信号処理部102において、必要に応じて補正等の処理を施された後、画像生成部103で被写体の断層画像(CT像)を生成する。
【0015】
図2を用いて本実施形態のコリメータ108について説明する。図2(a)はコリメータ108の平面図であり、図2(b)はA-A’断面図、図2(c)はB-B’断面図である。図2(a)では、X線の入射方向(Y)は紙面垂直方向、体軸方向(Z)は紙面縦方向、チャネル方向(X)は紙面横方向である。なお、体軸方向(Z)とチャネル方向(X)とは、半導体層109の画素の配列方向とも呼ぶ。
【0016】
コリメータ108は柱部201と隔壁部202を有する。柱部201はタングステンやモリブデン、タンタル等の重金属で構成され、半導体層109の画素の四隅の直上にX線の入射方向に沿って配置され、隔壁部202を支持する。隔壁部202はタングステンやモリブデン、タンタル等の重金属で構成され、画素の境界上にX線の入射方向に沿って所定の間隔で配置される。すなわち、画素の境界上には複数の隔壁部202が配置され、隔壁部202の間には間隙部203が存在する。隔壁部202の間に間隙部203を存在させることにより、コリメータ108を軽量化できる。
【0017】
またX線の入射方向に沿って配置される複数の隔壁部202の中の最上部に位置する隔壁部、すなわちX線源100に最も近い隔壁部は、その上端部がX線入射面200に一致するように配置される。最上部の隔壁部の上端部をX線入射面200に一致させることにより、画素204の中心からコリメータ108の開口部を見込む角が左右対称、すなわちθ=θとなり、散乱線の遮蔽率の一様性を向上させることができる。
【0018】
図3に比較例である従来構造のコリメータ108を示す。図2と同様に、図3(a)はコリメータ108の平面図であり、図3(b)はA-A’断面図、図3(c)はB-B’断面図である。
【0019】
図3のコリメータ108は、モリブデン等の線材302が張設される溝を有する枠体301が積層され、線材302の間のピッチが検出器の画素サイズの2以上の整数倍であって、積層される方向に隣接する枠体301の間で線材302の位置がずれて形成される。線材302はX線の入射方向において所定の間隔で配置されるのでコリメータ108は軽量化される。しかしながら、X線入射面200において線材302が存在する箇所としない箇所があるため、画素204の中心からコリメータ108の開口部を見込む角が左右非対称、すなわちθ<θとなり、入射角度によって散乱線が除去されるか否かが異なる。その結果、従来構造では散乱線の遮蔽率が不均一となる。そこで本実施形態では、最上部の隔壁部の上端部をX線入射面200に一致させて、散乱線の遮蔽率の一様性を向上させる。
【0020】
次に図2(b)の拡大図である図4を用いて、隔壁部202の配置について説明する。図4では、隔壁部202がチャネル方向(X)に対しても、X線入射方向(Y)に対しても、それぞれ等ピッチで配置される。ここで、隔壁部202のチャネル方向(X)厚さをt、X線入射方向(Y)高さをb、隔壁部202の間隔のチャネル方向(X)をd、X線入射方向(Y)をsとする。最上部の隔壁部202aの上端部の頂点と、最上部の隔壁部202aの下段であって隣接する隔壁部202bの上端部の頂点とを結ぶ経路402と、鉛直線401とがなす角度θ1は(式1)で表せられる。
【0021】
tanθ1=(d+t)/(b+s) …(式1)
また、最上部の隔壁部202aの上端部の頂点と、最上部の隔壁部202aに隣接する隔壁部202cの下端部の頂点とを結ぶ経路403と、鉛直線401とがなす角度θ2は(式2)で表せられる。
【0022】
tanθ2=d/b …(式2)
ここで、隔壁部202bと隔壁部202cとの間を散乱線が通過しないようするには、θ1>θ2であれば良いので、(式1)と(式2)から(式3)が導かれる。
【0023】
s<t・b/d …(式3)
検出素子モジュール107を構成するうえで、隔壁部202の厚さtとチャネル方向(X)の間隔dの変更は好ましくない。そこで、X線入射方向(Y)の隔壁部202の高さbと、隔壁部202の間隔sとが(式3)を満たすように隔壁部202を配置すれば良い。
【0024】
以上説明した隔壁部202の配置により、コリメータ108の軽量化が図れるとともに散乱線の遮蔽率の一様性が向上できる。
【0025】
<第二実施形態>
第一実施形態では、隔壁部202を等ピッチで配置することについて説明した。隔壁部202を等ピッチで配置しながら(式3)を満たさないとき、隔壁部202の間を散乱線が透過する場合がある。そこで本実施形態では、散乱線の透過を防ぐために、X線入射方向(Y)のピッチを途中で変更して隔壁部202を配置することについて説明する。なお、最上部の隔壁部の上端部をX線入射面200に一致させることは第一実施形態と同様である。
【0026】
図5を用いて本実施形態での隔壁部202の配置について説明する。図5では、隔壁部202がチャネル方向(X)では等ピッチで配置され、b=s、d>tであって(式3)を満たさない。またX線入射方向(Y)ではコリメータ108の中間位置において半ピッチずらされて配置される。
【0027】
コリメータ108の中間位置でピッチが変更されることにより、コリメータ108の上半分では隔壁部202bと隔壁部202cの間を透過する経路501が、コリメータ108の下半分では隔壁部202dにより遮蔽される。つまり、隔壁部202を図5に示すような配置とすることで、b=s、d>tであって(式3)を満たさない場合であっても、コリメータ108に任意の角度θで入射する散乱線を遮蔽することができる。また、b=sとすることにより、第一実施形態に比べてコリメータ108を軽量化できる。さらにコリメータ108の中間位置に高さの高い隔壁部202が配置されるので、回転盤104の回転によって生じる遠心力に対する剛性を高くできる。
【0028】
なお、本実施形態では、コリメータ108をX線入射方向(Y)に2分割し、コリメータ108の中間位置において半ピッチずらして隔壁部202を配置したが、ピッチのずらし方はその限りではない。コリメータ108をX線入射方向(Y)に3分割する場合は、コリメータ108が分割された位置において、1/3ピッチずらして隔壁部202を配置すれば良い。さらに一般化すると、コリメータ108をN分割する場合は、各分割位置において1/Nピッチずらして隔壁部202を配置すれば良い。なお、Nは2以上の整数である。
【0029】
<第三実施形態>
第一実施形態及び第二実施形態では、X線入射方向(Y)の隔壁部202の間隔sが等しい場合について説明した。隔壁部202の間隔sはこの限りではないので、本実施形態ではX線入射方向(Y)の位置に応じて間隔sを変えて隔壁部202を配置することについて説明する。なお、最上部の隔壁部の上端部をX線入射面200に一致させることは第一実施形態と同様である。
【0030】
図6を用いて本実施形態での隔壁部202の配置について説明する。図6では、隔壁部202がチャネル方向(X)では等ピッチで配置され、X線入射方向(Y)ではコリメータ108の下半分では等間隔に、上半分ではX線入射方向(Y)の位置が高くなるに従って間隔sが広くなるように配置される。すなわち、間隔sは、X線入射方向(Y)の位置yの関数s(y)として、例えば(式4)で表せられる。なお、コリメータ108の最下部をy=0とする。
【0031】
s(y)=b (y≦h/2)、t・y/d (y>h/2) …(式4)
ここでhはコリメータ108の高さである。
【0032】
また、s(y)は(式5)であっても良い。
【0033】
s(y)=b (y≦b・d/t)、t・y/d (y>b・d/t) …(式5)
b、d、t、hの値に応じて、例えば(式4)または(式5)のいずれかが用いられ、間隔sが最も広くなるように、すなわちコリメータ108を最も軽量化できるように隔壁部202が配置される。
【0034】
(式4)または(式5)を満たすように隔壁部202を配置することにより、散乱線が遮蔽されるとともに、コリメータ108の重心が低くなる。隔壁部202の間隔sが等しいと、X線入射方向(Y)のコリメータ108の重心は中間位置となり、回転盤104が回転するときのコリメータ108の剛性が低下する場合がある。本実施形態では、コリメータ108の上半分においてX線入射方向(Y)の位置が高くなるに従って間隔sが広くなるように配置されるので、コリメータ108の重心が低くなり、回転盤104が回転するときのコリメータ108の剛性を向上できる。
【0035】
<第四実施形態>
第一実施形態では、隔壁部202の間の間隙部203の形状が長方形であることについて説明した。間隙部203の形状が長方形である場合、隔壁部202は水平方向に迫り出す形状となる。しかし、このような形状は3Dプリンタでの造形に適さず、隔壁部202の下面が欠け、寸法精度が悪化する。隔壁部202の下面の寸法精度の悪化は、散乱線の遮蔽率の低下をもたらす。そこで本実施形態では、3Dプリンタでの造形に適した形状のコリメータ108について説明する。なお、最上部の隔壁部の上端部をX線入射面200に一致させることは第一実施形態と同様である。
【0036】
図7を用いて本実施形態のコリメータ108について説明する。図7(a)はコリメータ108の平面図であり、図7(b)はD-D’断面図、図7(c)はE-E’断面図である。本実施形態のコリメータ108は、間隙部203の形状が平行四辺形である点が第一実施形態と異なる。間隙部203の形状が平行四辺形であることにより、隔壁部202は水平方向から所定の角度φを有する方向に迫り出す形状となり、3Dプリンタでコリメータ108を造形した場合であっても、隔壁部202の下面を荒らすことなく、必要な寸法精度を満たすことができる。
【0037】
また本実施形態では、X線入射方向(Y)において隔壁部202が等ピッチで配置され、間隙部203が隣接する画素間で同じ形状であるので、製造後の検証が容易になる。なお隔壁部202は、最上部及び最下部と、それら以外とでは断面形状が異なり、最上部及び最下部では台形、それら以外では平行四辺形となる。
【0038】
次に図8を用いて角度φ、すなわち平行四辺形の鋭角である内角φの適切な範囲について説明する。図8(a)に角度φと散乱線の透過率との関係を、図8(b)に角度φとコリメータ108の剛性との関係をそれぞれ示す。
【0039】
角度φを小さくし過ぎた場合、間隙部203がX線入射面200から半導体層109の表面まで突き抜け、隣接する画素に散乱線が透過する。隣接する画素への散乱線の透過を防ぐため、角度φの下限値φLはtanφL=d/hとなる。また、3Dプリンタでの造形で必要な寸法精度を満たすためには角度φを45度以下であるので、散乱線の遮蔽率の観点から定められる角度φの適切な範囲は(式6)で表せられる。
【0040】
d/h<tanφ≦1 …(式6)
コリメータ108の剛性はφ=45度、すなわちtanφ=1のときが最大であり、φが45度からずれるにつれて低下する。よって、散乱線の透過率とコリメータ108の剛性の双方の観点からtanφ=1が最良であり、少なくとも(式6)を満たすことが望ましい。
【0041】
<第五実施形態>
第四実施形態では、間隙部203の形状が平行四辺形であって、X線入射方向(Y)において隔壁部202が等ピッチで配置されることについて説明した。本実施形態では、第二実施形態と同様に、X線入射方向(Y)のピッチを途中で変更した隔壁部202の配置について説明する。なお、最上部の隔壁部の上端部をX線入射面200に一致させることは第一実施形態と同様である。
【0042】
図9を用いて本実施形態のコリメータ108について説明する。図9では、隔壁部202がチャネル方向(X)では等ピッチで配置され、X線入射方向(Y)ではコリメータ108の中間位置において半ピッチずらされて配置される。コリメータ108の中間位置でピッチが変更されることにより、コリメータ108の上半分では隔壁部202の間を透過する散乱線が、コリメータ108の下半分では隔壁部202により遮蔽される。すなわち、第二実施形態と同様に、散乱線の遮蔽率を向上できるとともに、コリメータ108の剛性を高くできる。
【0043】
<第六実施形態>
第四実施形態及び第五実施形態では、間隙部203の形状が平行四辺形であって隣接する画素間で同じ形状であることについて説明した。本実施形態では、隣接する画素間で間隙部203の向きを変更する。なお、最上部の隔壁部の上端部をX線入射面200に一致させることは第一実施形態と同様である。
【0044】
図10を用いて本実施形態のコリメータ108について説明する。図10(a)はコリメータ108の平面図であり、図10(b)はD-D’断面図、図10(c)はE-E’断面図である。本実施形態のコリメータ108は第四実施形態と異なり、隣接する画素間で間隙部203の向きが逆方向であり、平行四辺形が隣接する画素間で対称形状である。隣接する画素間で対称形状とすることにより、異なる方向からの加重に対しコリメータ108の剛性が向上する。
【0045】
<第七実施形態>
第一実施形態乃至第六実施形態では、X線入射方向(Y)において柱部201が一様な形状である場合について説明した。コリメータ108の剛性を向上させるために、本実施形態では柱部201の形状を変更する。なお、最上部の隔壁部の上端部をX線入射面200に一致させることは第一実施形態と同様である。
【0046】
図11を用いて本実施形態のコリメータ108について説明する。本実施形態の柱部201は茎部1101と台部1102を有する。台部1102は半導体層109側に配置され、台部1102の幅は茎部1101の幅よりも広い。X線入射方向(Y)に沿う柱部201の断面形状は逆T字形状となる。柱部201が図11に示すような形状であることにより、コリメータ108の剛性を向上できる。
【0047】
なお、本発明の放射線撮像装置は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素を適宜組み合わせても良い。さらに、上記実施形態に示される全構成要素からいくつかの構成要素を削除しても良い。例えば第七実施形態の柱部201を、第一実施形態乃至第六実施形態に適用しても良い。
【符号の説明】
【0048】
100:X線源、101:X線検出器、102:信号処理部、103:画像生成部、104:回転盤、105:寝台部、106:被写体、107:検出素子モジュール、108:コリメータ、109:半導体層、110:スキャナ、200:X線入射面、201:柱部、202:隔壁部、202a:隔壁部、202b:隔壁部、202c:隔壁部、202d:隔壁部、203:間隙部、204:画素、301:枠体、302:線材、401:鉛直線、402:経路、403:経路、501:経路、1101:茎部、1102:台部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11