特許第6988079号(P6988079)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウシオ電機株式会社の特許一覧

特許6988079紫外線用グリッド偏光素子及びグリッド偏光素子製造方法
<>
  • 特許6988079-紫外線用グリッド偏光素子及びグリッド偏光素子製造方法 図000002
  • 特許6988079-紫外線用グリッド偏光素子及びグリッド偏光素子製造方法 図000003
  • 特許6988079-紫外線用グリッド偏光素子及びグリッド偏光素子製造方法 図000004
  • 特許6988079-紫外線用グリッド偏光素子及びグリッド偏光素子製造方法 図000005
  • 特許6988079-紫外線用グリッド偏光素子及びグリッド偏光素子製造方法 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6988079
(24)【登録日】2021年12月6日
(45)【発行日】2022年1月5日
(54)【発明の名称】紫外線用グリッド偏光素子及びグリッド偏光素子製造方法
(51)【国際特許分類】
   G02B 5/30 20060101AFI20211220BHJP
【FI】
   G02B5/30
【請求項の数】9
【全頁数】12
(21)【出願番号】特願2016-242783(P2016-242783)
(22)【出願日】2016年12月14日
(65)【公開番号】特開2018-97224(P2018-97224A)
(43)【公開日】2018年6月21日
【審査請求日】2019年9月19日
(73)【特許権者】
【識別番号】000102212
【氏名又は名称】ウシオ電機株式会社
(74)【代理人】
【識別番号】100097548
【弁理士】
【氏名又は名称】保立 浩一
(72)【発明者】
【氏名】西口 英司
(72)【発明者】
【氏名】鶴岡 和之
【審査官】 横川 美穂
(56)【参考文献】
【文献】 特開2009−223222(JP,A)
【文献】 特開2011−059370(JP,A)
【文献】 特開2009−169213(JP,A)
【文献】 特許第4280567(JP,B2)
【文献】 国際公開第2010/005059(WO,A1)
【文献】 特開2011−008172(JP,A)
【文献】 特開2011−039351(JP,A)
【文献】 特開2013−190744(JP,A)
【文献】 特開2015−108845(JP,A)
【文献】 特開2007−041243(JP,A)
【文献】 特開2009−258168(JP,A)
【文献】 特開2010−250289(JP,A)
【文献】 特開2013−200339(JP,A)
【文献】 特開2015−018016(JP,A)
【文献】 特開2015−064426(JP,A)
【文献】 特開2015−125280(JP,A)
【文献】 米国特許出願公開第2015/0002791(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
(57)【特許請求の範囲】
【請求項1】
ガラス製の透明基板と、透明基板上に形成された縞状のグリッドとを備えた紫外線用グリッド偏光素子であって、
グリッドの各線状部は偏光させる紫外線を吸収する貴金属で形成されていて、吸収型のグリッド偏光素子であり、
前記貴金属は、イリジウム又はルテニウムであり、
透明基板とグリッドと間には、透明基板に対する付着性が前記貴金属より高い材料で形成された密着層が設けられており、
前記貴金属は、
密着層の材料は、金属の酸化物、窒化物もしくは酸窒化物、シリコンの酸化物、窒化物もしくは酸窒化物又は半導体であることを特徴とする紫外線用グリッド偏光素子。
【請求項2】
前記密着層の厚さは、当該密着層の厚さとグリッドの高さとを加えたグリッド全高に対して10%以下であることを特徴とする請求項1記載の紫外線用グリッド偏光素子。
【請求項3】
前記密着層の厚さは、1nm以上であることを特徴とする請求項1又は2記載の紫外線用グリッド偏光素子。
【請求項4】
前記密着層の材料は、酸化チタン、窒化チタン、酸化アルミニウム、酸化ハフニウム、窒化シリコン、酸化タンタル又は酸化ジルコニウムであることを特徴とする請求項1乃至3いずれかに記載の紫外線用グリッド偏光素子。
【請求項5】
前記密着層は、前記グリッドの各線状部の間において前記透明基板を覆っていないことを特徴とする請求項1乃至4いずれかに記載の紫外線用グリッド偏光素子。
【請求項6】
前記グリッドの各線状部と前記密着層と界面は、各線状部の幅方向に対して斜めの面となっていることを特徴とする請求項1乃至5いずれかに記載の紫外線用グリッド偏光素子。
【請求項7】
前記透明基板の表面は、前記密着層との界面において、前記グリッドの各線状部の幅方向に対して斜めの面となっていることを特徴とする請求項1乃至6いずれかに記載の紫外線用グリッド偏光素子。
【請求項8】
ガラス製の透明基板に犠牲層用の第一の薄膜を作成する第一の成膜工程と、
第一の成膜工程で作成された第一の薄膜を縞状のパターンでエッチングして縞状の犠牲層を形成する犠牲層形成工程と、
犠牲層の各線状部の側面下端部を含む領域に密着層用の第二の薄膜を原子層堆積法により形成する第二の成膜工程と、
第二の成膜工程の後、犠牲層の各線状部の側方を含む領域にグリッド用の第三の薄膜を原子層堆積法により形成する第三の成膜工程と、
犠牲層を除去して第三の薄膜を縞状に残留させてグリッドを形成するグリッド形成工程とを有しており、
犠牲層形成工程は、第一の薄膜をエッチングする際に透明基板もエッチングする工程であり、透明基板の表面が犠牲層の各線状部の側面下端からテーパ状となるよう透明基板をエッチングする工程であることを特徴とするグリッド偏光素子製造方法。
【請求項9】
前記犠牲層は、レジスト以外の材料で形成されることを特徴とする請求項8記載のグリッド偏光素子製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願の発明は、グリッド偏光素子を用いた偏光技術に関するものである。
【背景技術】
【0002】
偏光光を得る偏光素子は、偏光サングラスのような身近な製品の他、偏光フィルタや偏光フィルム等の光学素子としても各種のものが知られており、液晶ディスプレイ等のディスプレイデバイスでも多用されている。偏光素子には、偏光光を取り出す方式から幾つかのものに分類されるが、その一つにグリッド偏光素子がある。
【0003】
グリッド偏光素子は、透明基板上に金属(導電体)より成る微細な縞状のグリッドを設けた構造のものである。グリッドを形成する各線状部の間隔(ギャップ)を偏光させる光の波長よりも狭くすることで、偏光子として機能する。反射型のものを例にして説明すると、直線偏光光のうち、各線状部の長さ方向に電界成分を持つ偏光光にとってはフラットな金属と等価なので反射する一方、長さ方向に垂直な方向に電界成分を持つ偏光光にとっては透明基板のみがあるのと等価なので、透明基板を透過して出射する。このため、偏光素子からは各線状部の長さ方向に垂直な方向の直線偏光光が専ら出射する。偏光素子の姿勢を制御し、グリッドの各線状部の長さ方向が所望の方向に向くようにすることで、偏光光の軸(電界成分の向き)が所望の方向に向いた偏光光が得られることになる。
【0004】
以下、説明の都合上、電界がグリッドの各線状部の長さ方向に向いている直線偏光光をs偏光光と呼び、長さ方向に垂直な方向に電界が向いている直線偏光光をp偏光光と呼ぶ。通常、入射面(反射面に垂直で入射光線と反射光線を含む面)に対して電界が垂直なものをs波、平行なものをp波と呼ぶが、各線状部の長さ方向が入射面に対し垂直であることを前提とし、このように区別する。
【0005】
このような偏光素子の性能を示す基本的な指標は、消光比ERと透過率Tである。消光比ERは、偏光素子を透過した偏光光の強度のうち、s偏光光の強度(Is)に対するp偏光光の強度(Ip)の比である(Ip/Is)。また、透過率Tは、入射するs偏光光とp偏光光の全エネルギーIinに対する出射p偏光光のエネルギーの比である(T=Ip/Iin)。理想的な偏光素子は、消光比ER=∞、透過率T=50%ということになる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2014−199362号公報
【非特許文献】
【0007】
【非特許文献1】Thomas Weber et al., "Iridium wire grid polarizer fabricated using atomic layer deposition", Nanoscale Research Letters 2011, 6:558
【非特許文献2】Thomas Weber et al., "Broadband iridium wire grid polarizer for UV applications", February 15, 2011/Vol.36, No.4/OPTICS LETTERS 445-447
【発明の概要】
【発明が解決しようとする課題】
【0008】
近年、上記のようなグリッド偏光素子は、光処理の分野でも用いられるようになってきている。この一例として、分子の配列を制御するための膜(配向膜)を偏光光照射により得る光配向の技術が挙げられる。光配向は、高性能の液晶ディスプレイの製造において多く採用されるようになってきた技術である。この技術は、液晶分子を基板に対して一定方向に配列したり、プレチルト角が一定になるように配列したりする配向膜を光処理により得る技術である。液晶基板上に配向膜が作成され、その上に液晶分子層を設けることで液晶分子の配列が制御される。以前は、ラビングと呼ばれる機械的な処理により配向膜を得ていたが、配向精度の向上等のため、配向膜用の材料が光に感応することを利用する光配向が広く採用されるようになってきている。
【0009】
グリッド偏光素子は、比較的広い領域内に比較的均一に偏光光を照射することが可能となるので、光配向のような光処理の分野に適している。光処理の分野では、エネルギー効率が高いことから、紫外域の光が使用される。光配向でも、365nmのような紫外域の光がしばしば使用されており、最近では、より高感度の光配向を行うため、さらに短い250〜300nm程度の波長域(例えば254nm)の光も使用されるようになってきている。
このような紫外域の光の偏光用としては、アルミのような金属製グリッドを採用した反射型の偏光素子では十分な偏光性能が得られない。このため、誘電体製グリッドを採用した吸収型の偏光素子が、本願の出願人によって提案されている(特許文献1)。
【0010】
ここで、254nmのような深紫外領域の光については、光照射によるグリッドの酸化の問題がより顕在化する。この問題は、アルミのような金属をグリッドの材料とする場合、特に深刻である。深紫外領域の光の照射による酸化には、光照射により加熱されることによる酸化の他、深紫外領域の光によりオゾン等の酸素活性種が生成されることによる酸化がある。グリッドが酸化すると、光学定数が変化するため、設計通りの性能が得られなくなったり、動作が不安定になったりする問題が生じ得る。このため、紫外領域、特に深紫外領域の光の偏光用としては、高い耐酸化性を有する材料を選定することが必要である。
【0011】
高い耐酸化性を有する材料として、貴金属材料が挙げられる。発明者の研究によると、貴金属材料は、グリッド材料として使用できる可能性があり、上記紫外領域、特に深紫外領域の光の偏光用に好適に使用できる可能性があることが判ってきた。
しかしながら、貴金属材料は、一般的に光学材料としては殆ど使用されていない材料であり、偏光素子のような光学部品の形成材料として使用する場合、予期できない問題が生じる可能性もある。その一つが、透明基板に対する付着強度である。発明者の研究によると、貴金属材料によりグリッドを形成した場合、透明基板に対する付着強度が低下し、実用に耐えない恐れがあることが判ってきた。
【0012】
本願の発明は、上記のような点を考慮して為されたものであり、深紫外域を含む紫外域の光について安定した偏光性能を発揮し得るグリッド偏光素子であって、グリッドが透明基板に対する十分な強度で付着している実用的なグリッド偏光素子を提供することを解決課題としている。
【課題を解決するための手段】
【0013】
上記課題を解決するため、本願の請求項1記載の発明は、ガラス製の透明基板と、透明基板上に形成された縞状のグリッドとを備えた紫外線用グリッド偏光素子であって、
グリッドの各線状部は偏光させる紫外線を吸収する貴金属で形成されていて、吸収型のグリッド偏光素子であり、
前記貴金属は、イリジウム又はルテニウムであり、
透明基板とグリッドと間には、透明基板に対する付着性が前記貴金属より高い材料で形成された密着層が設けられており、
密着層の材料は、金属の酸化物、窒化物もしくは酸窒化物、シリコンの酸化物、窒化物もしくは酸窒化物又は半導体であるという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、前記請求項1の構成において、前記密着層の厚さは、当該密着層の厚さとグリッドの高さとを加えたグリッド全高に対して10%以下であるという構成を有する。
また、上記課題を解決するため、請求項3記載の発明は、前記請求項1又は2の構成において、前記密着層の厚さは、1nm以上であるという構成を有する。
また、上記課題を解決するため、請求項4記載の発明は、前記請求項1乃至3いずれかの構成において、前記密着層の材料は、酸化チタン、窒化チタン、酸化アルミニウム、酸化ハフニウム、窒化シリコン、酸化タンタル又は酸化ジルコニウムであるという構成を有
する。
また、上記課題を解決するため、請求項5記載の発明は、前記請求項1乃至4いずれかの構成において、前記密着層は、前記グリッドの各線状部の間において前記透明基板を覆っていないという構成を有する。
また、上記課題を解決するため、請求項6記載の発明は、前記請求項1乃至5いずれかの構成において、前記グリッドの各線状部と前記密着層と界面は、各線状部の幅方向に対して斜めの面となっているという構成を有する。
また、上記課題を解決するため、請求項7記載の発明は、前記請求項1乃至6いずれかの構成において、前記グリッドの各線状部と前記密着層と界面は、各線状部の幅方向に対して斜めの面となっているという構成を有する。
また、上記課題を解決するため、請求項8記載の発明は、グリッド偏光素子製造方法の発明であって、ガラス製の透明基板に犠牲層用の第一の薄膜を作成する第一の成膜工程と、
第一の成膜工程で作成された第一の薄膜を縞状のパターンでエッチングして縞状の犠牲層を形成する犠牲層形成工程と、
犠牲層の各線状部の側面下端部を含む領域に密着層用の第二の薄膜を原子層堆積法により形成する第二の成膜工程と、
第二の成膜工程の後、犠牲層の各線状部の側方を含む領域にグリッド用の第三の薄膜を原子層堆積法により形成する第三の成膜工程と、
犠牲層を除去して第三の薄膜を縞状に残留させてグリッドを形成するグリッド形成工程とを有しており、
犠牲層形成工程は、第一の薄膜をエッチングする際に透明基板もエッチングする工程であり、透明基板の表面が犠牲層の各線状部の側面下端からテーパ状となるよう透明基板をエッチングする工程であるという構成を有する。
また、上記課題を解決するため、請求項9記載の発明は、前記請求項8の構成において、前記犠牲層は、レジスト以外の材料で形成されるという構成を有する。
【発明の効果】
【0014】
以下に説明する通り、本願の請求項1記載の発明によれば、グリッドの各線状部が貴金属で形成されているので、紫外域の光の偏光用ではあるが、酸化による劣化がなく、長期間安定した偏光性能が発揮される。また、グリッドの各線状部と透明基板との間には、より付着力の高い密着層が設けられているので、グリッドが透明基板から浮いてしまったり、グリッドが透明基板から剥がれ易くなってしまったりする問題が生じない。
また、請求項2記載の発明によれば、上記効果に加え、グリッドの各線状部の透明基板に対する密着性が確実に高められ、また密着層が不必要に厚くならない。
また、請求項3記載の発明によれば、上記効果に加え、密着層の厚さがグリッド全高の10%以下であるので、密着層が偏光性能に影響を与える問題が回避される。
また、請求項5記載の発明によれば、上記効果に加え、密着層がグリッドを形成する各線状部の間において透明基板を覆っていないので、ギャップ内に密着層の材料が存在することによる偏光性能の低下が防止される。
また、請求項6記載の発明によれば、上記効果に加え、グリッドの各線状部と密着層と界面は各線状部の幅方向に対して斜めの面となっているので、全体としてグリッドの付着強度がより高くなる。
また、請求項7記載の発明によれば、上記効果に加え、透明基板の表面が密着層との界面においてグリッドの各線状部の幅方向に対して斜めの面となっているので、全体としてグリッドの付着強度がより高くなる。
また、請求項8記載の発明によればグリッドの各線状部と透明基板との間により付着力の高い密着層が設けられるので、グリッドが透明基板から浮いてしまったり、グリッドが透明基板から剥がれ易くなってしまったりすることのない実用的なグリッド偏光素子が製造できる。この際、透明基板の表面が密着層との界面においてグリッドの各線状部の幅方向に対して斜めの面となっているので、全体としてグリッドの付着強度がより高くなる。
また、請求項9記載の発明によれば、上記効果を有するグリッド偏光素子をより容易に製造することができる。
【図面の簡単な説明】
【0015】
図1】第一の実施形態に係るグリッド偏光素子の斜視概略図である。
図2】密着層の厚さが偏光性能に与える影響について調べたシミュレーション実験の結果を示す図である。
図3】第二の実施形態のグリッド偏光素子の正面断面概略図である。
図4】実施形態のグリッド偏光素子の製造方法を示した概略図である。
図5】実施形態のグリッド偏光素子の製造方法を示した概略図である。
【発明を実施するための形態】
【0016】
次に、この出願の発明を実施するための形態(実施形態)について説明する。
図1は、第一の実施形態に係るグリッド偏光素子の斜視概略図である。図1に示すグリッド偏光素子は、透明基板1と、透明基板1上に設けられたグリッド2とを備えている。
透明基板1は、対象波長(偏光素子を使用して偏光させる光の波長)に対して十分な透過性を有するという意味で「透明」ということである。この実施形態では、紫外域の波長を対象波長として想定しているので、透明基板1は石英ガラス(例えば合成石英)のようなガラス製となっている。この他、サファイアガラス等で透明基板1が形成される場合もある。透明基板1は、グリッド2を安定して保持する機械的強度や、光学素子としての取り扱いの容易性等を考慮し、適宜の厚さとされる。厚さは、例えば0.5〜10mm程度である。
【0017】
グリッド2は、図1に示すように、平行に延びる多数の線状部3より成る縞状のものである。グリッド偏光素子は、光学定数が異なる領域が交互に且つ平行に配置されることで偏光作用を為すものである。各線状部3の間の空間4はギャップと呼ばれ、各線状部3と各ギャップとで偏光作用が得られる。各線状部3の幅wとギャップの幅gとは、対象波長の光について偏光作用が得られるよう適宜定められる。具体的には、ギャップ幅gは、概ね、対象波長以下とされる。尚、ギャップの媒質は空気であることが多いが、適宜の光学定数を有する媒質がギャップに充填されることもある。また、各線状部3は、完全に連続した直線状である必要はなく、途中で途切れた箇所があっても実用上問題はない。
【0018】
この実施形態のグリッド偏光素子は、吸収型のモデルで動作するものとなっている。即ち、s偏光光についてはグリッド2を形成する各線状部3の誘電率により電界が分断されて各線状部3内に局在して吸収により減衰しながら伝搬する一方、p偏光光については電界の分断、局在化は実質的に生じないので、大きく減衰することなく伝搬する。このため、透明基板1からは専らp偏光光が出射し、偏光作用が得られる。吸収型のグリッド偏光素子の動作モデルについては、特許文献1に詳説されているので、省略する。
【0019】
このような実施形態のグリッド偏光素子において、各線状部3は、貴金属材料であるイリジウムで形成されている。そして、透明基板1とグリッド2と間には、透明基板1に対する付着性がイリジウムより高い材料で形成された密着層4が設けられている。この実施形態では、密着層4は、酸化チタン製となっている。
密着層4の厚さは、1nm以上であることが好ましく、またグリッド2の高さの10%以下であることが好ましい。密着層4の厚さが1nm以下であると、密着層4としての機能が低下する。また、密着層4がグリッド2の高さの10%よりも厚いと、不必要に厚い層となってしまい、全体として偏光性能を低下させることがあり得る。
【0020】
上記密着層4の厚さの上限について、発明者が行ったシミュレーション実験の結果を参照しながらさらに詳しく説明する。図2は、密着層4の厚さが偏光性能に与える影響について調べたシミュレーション実験の結果を示す図である。
シミュレーション実験において、透明基板1は石英ガラス製、グリッド2の各線状部3はイリジウム製とした。各線状部3の幅は30nm、ギャップ幅は90nmとし、密着層4を含めたグリッド2の全体の高さは100〜250nmの範囲で変化させた。グリッド2の全体の高さとは、図1に示すように、グリッド2の高さh+密着層4の厚さtである(以下、グリッド全高という)。そして、各グリッド全高において密着層4の厚さtを0〜100%まで10%きざみで変化させた(グリッド2の高さhは100%→0%)。
【0021】
シミュレーションには、RCWA法が使用され、ソフトウエアとしてはSynopsys社のDiffractModが使用された。偏光させる光の波長は、254nmとした。尚、シミュレーションには光学定数が必要であるが、イリジウムの光学定数は、波長254nmにおいて、n=1.11、k=3.11とした。酸化チタンについてはn=2.27、k=1.18とした。
図2中の(1)は透過率、(2)は消光比を示す。透過率及び消光比は、それぞれ密着層4の厚さ0%の際の値で規格化して示されている。
【0022】
図2(1)に示すように、いずれのグリッド全高においても、密着層4の厚さが10%程度までは透過率は低下しないが、15%前後あたりから透過率は徐々に低下した。また、消光比についても、10〜15%程度を境に急激に低下した。これらの結果は、密着層4の厚さはグリッド全高の10%程度までにしておくと、偏光性能に与える影響を小さくすることができるので好ましいことを示している。
【0023】
次に、より好ましい第二の実施形態のグリッド偏光素子について説明する。図3は、第二の実施形態のグリッド偏光素子の正面断面概略図である。
図3に示す第二の実施形態では、グリッド2の各線状部3と密着層4との界面は、各線状部3の幅方向に対して斜めの面となっている。この点は、グリッド2の各線状部3と密着層4との界面の面積を大きくすることで各線状部3の透明基板1に対する全体としての付着強度を高める意義を有している。
【0024】
密着層4は、透明基板1(ガラス)と比べると貴金属製のグリッド2の付着強度が高い材料で形成されてはいるものの、グリッド2の全体として透明基板1に対する付着強度を高める観点から、接触面積を大きくすることが好ましい。このため、この実施形態では、斜めの界面としている。
そして、密着層4は、その下の透明基板1との間においても斜めの界面を形成している。即ち、透明基板1の表面には斜めの面を含む凹凸が形成されており、凹凸に含まれる斜めの面において密着層4に接している。このため、透明基板1と密着層4との付着強度もより高いものとなっている。
【0025】
次に、各実施形態のグリッド偏光素子の製造方法について説明する。一例として、第二の実施形態のグリッド偏光素子の製造方法について説明する。以下の説明は、グリッド偏光素子製造方法の発明の実施形態の説明でもある。
図4及び図5は、第二の実施形態のグリッド偏光素子の製造方法について示した断面概略図である。図4及び図5に示す製造方法は、最終的には除去してしまう層を製造の過程で形成するプロセスとなっている。以下、この層を犠牲層という。
第二の実施形態のグリッド偏光素子を製造する場合、まず、透明基板1上に犠牲層用の薄膜(第一の薄膜)51を作成する。犠牲層の材料としては、微細加工が可能な材料であれば特に制限なく選定可能であるが、第二の実施形態のグリッド偏光素子を製造する場合、レジスト以外の材料を用いることが好ましい。加工技術が確立している等の理由から、この例ではシリコンを犠牲層の材料として選定している。したがって、まず第一の薄膜51としてシリコン膜を作成する。作成方法としては、スパッタリング、各種CVD等、任意のものを採用し得る。
【0026】
次に、第一の薄膜51にレジストを塗布し、露光、現像を行い、図4(2)に示すようにレジストパターン6を作成する。そして、このレジストパターン6をマスクにして第一の薄膜51をエッチングし、図4(3)に示すように犠牲層7を形成する。尚、レジストパターン6はアッシングして除去される。犠牲層7は縞状であり、紙面垂直方向に長い各線状部より成る。
尚、上記第一の薄膜51のエッチングの際、犠牲層7の各線状部3が互いに完全に分離して縞状となるように、十分にエッチングが行われる。このため、図4(3)に示すように、下地である透明基板1が少しエッチングされて削られた状態となる。
【0027】
この状態で、密着層4用の第二の薄膜52を作成する。この実施形態では、原子層堆積法(Atomic Layer Deposition, ALD)により酸化チタン膜を第二の薄膜52として作成する。例えば、TiClとHOを原料ガス(前駆体ガス)として用い、交互にガス導入とパージを繰り返して酸化チタンより成る第二の薄膜52を作成する。第二の薄膜52は、図4(4)に示すように、犠牲層7の各線状部の両側面のほか、各線状部の上面、各線状部間の透明基板1の露出面に堆積する。
【0028】
次に、連続して、グリッド2用の第三の薄膜53を作成する。この実施形態ではグリッド2はイリジウム製であるので、イリジウム膜を同様にALDで作成する。例えばIr(acac)のようなイリジウム錯体と酸素(O)を原料ガスとして用い、交互にガス導入とパージを繰り返してイリジウム膜を第三の薄膜53として作成する。第三の薄膜53は、図5(1)に示すように、第二の薄膜52を覆う状態で全面に作製される。
【0029】
次に、第二の薄膜52及び第三の薄膜53を異方性エッチングし、密着層4及びグリッド2を形成する。まず最初に第三の薄膜53をエッチングできるエッチャントを使用して透明基板1に対して垂直にバイアス電界を設定してエッチングする。次に、第二の薄膜52をエッチングできるエッチャントを使用して同様に垂直なバイアス電界により異方性エッチングを行う。この結果、図5(2)に示すように、犠牲層7の各線状部の両側面に第二の薄膜52及び第三の薄膜53が残留した状態となる。この時点で、第三の薄膜53はグリッド2の形状にパターン化されている。
【0030】
次に、犠牲層7の除去を行う。この実施形態では犠牲層7はシリコンであるので、シリコンをエッチングできるエッチャントを使用してエッチングし、犠牲層7を除去する。この結果、図5(3)に示すように犠牲層7が除去され、断面L字状の第二の薄膜52の上に第三の薄膜53(グリッド2の各線状部3)が残留した状態となる。
最後に、不必要な第二の薄膜52を除去する。即ち、第二の薄膜52をエッチングできるエッチャントを再び使用し、等方エッチングによりグリッド2の各線状部3の側面に残留する第二の薄膜52を除去する。この結果、図5(4)に示すように第二の薄膜52はグリッド2の各線状部3と透明基板1の間にのみ残留し、実施形態のグリッド偏光素子が得られる。
【0031】
図5(4)に示すように、グリッド2の各線状部3の下側に位置する密着層4は、グリッド2に対する界面も透明基板1に対する界面も斜めの面となっており、接触面積が大きくなっている。このため、グリッド2の透明基板1に対する付着強度が全体として高くなる。尚、双方の界面が斜めになっているとより付着力が高められるため好ましいが、グリッド2の各線状部3と密着層4の界面のみが斜めになっていても良く、また透明基板1と密着層4との界面のみが斜めになっていても良い。
【0032】
また、第一の実施形態のグリッド偏光素子を製造する場合、第一の薄膜(犠牲層)の材料としてレジストを採用する。即ち、透明基板1の上にレジストを直接塗布し、露光、現像により縞状のパターンとして犠牲層とする。そして、レジストより成る犠牲層の側面等に第二の薄膜、第三の薄膜を同様にALDで作成し、エッチングの後、犠牲層を除去する。
犠牲層をレジストで形成した場合、パターン化が現像によって行われるので、透明基板1の表面は犠牲層の各線状部の側面下端に対してほぼ垂直になる(テーパは形成されない)。このため、密着層4の界面はグリッド2の幅方向に対してほぼ平行となる。
【0033】
尚、レジストを使用して犠牲層を形成した場合、犠牲層の形成後、透明基板1を僅かに等方エッチングすることで図4(3)のような構造を得ることは可能であるが、技術的に難しかったり面倒であったりする。従って、レジスト以外の材料で犠牲層を形成する方が製造は容易である。例えば、レジスト以外の材料で犠牲層が形成されている場合、犠牲層を得る際のエッチングにおいて多少オーバーエッチングし、この際(オーバーエッチングの際)、必要に応じてエッチングを等方的にしたりエッチング速度を多少遅くしたりすれば良い。
【0034】
上記製造方法により製造される実施形態のグリッド偏光素子によれば、グリッド2の各線状部3がイリジウムのような貴金属で形成されているので、紫外域の光、特に深紫外域の光の偏光用に使用された場合でも酸化による劣化がなく、長期間安定した偏光性能が発揮される。発明者は、イリジウムでグリッド2の各線状部3を形成したグリッド偏光素子について耐久試験を行ったところ、450時間程度継続して254nmの偏光用に使用した場合でも、透過率は使用開始直後の94%までしか低下せず、消光比も使用開始直後の88%までしか低下しないという結果が確認された。
【0035】
上記性能の長期安定性に加え、実施形態のグリッド偏光素子では、グリッド2の各線状部3と透明基板1との間には、より付着力の高い密着層4が設けられているので、グリッド2が透明基板1から浮いてしまったり、グリッド2が透明基板1から剥がれ易くなってしまったりする問題は生じない。そして、密着層4の厚さがグリッド全高の10%以下であるので、密着層4が偏光性能に影響を与える問題が回避される。
【0036】
上記グリッド偏光素子製造方法において、密着層4用の第二の薄膜52とグリッド2用の第三の薄膜53をALDで作成する際、同一の真空チャンバー内で真空を破らずに連続形成されることが望ましい。その方が、両者の界面に汚染層を形成されにくく、良質なグリッド偏光素子が得られる。第二の薄膜52及び第三の薄膜53をともにALDで形成することは、同一チャンバー内で原料ガスの切り替えによって成膜することを可能にするという意義もある。但し、不活性ガスによるパージ等、真空チャンバー内が汚染されないように配慮しつつ真空を破ることもでき、連続形成することは必須要件ではない。
【0037】
尚、図1等に示すように、密着層4は、グリッド2と同様の形状にパターン化されており、密着層4は、グリッド2の各線状部3と透明基板1との間にのみ介在されている。この構造は、全体として偏光性能をより高くする意義を有する。
密着層4は、透明基板1の全面を覆うように形成されていても良く、この場合もグリッド2の付着強度を高める効果は変わりなく得られる。しかしながら、グリッド偏光素子では、各線状部4とギャップ(空気)が光の波長オーダーの短い周期で交互に存在していることで偏光作用を生じさせており、そのような短い周期で光学定数のコントラストがより高く(鮮明に)存在していることが望ましい。密着層4を透明基板1の全面に形成すると、ギャップを臨む位置にも密着層4が存在することになるので、光学定数のコントラストが低下し易く、結果的に偏光性能が低下し易い。したがって、上記実施形態のように、ギャップを覆う状態で密着層4が形成されていない構造の方が望ましい。
【0038】
尚、図5(4)に示す構造の他、図5(3)に示す状態で最終的な製品とされる場合もあり得る。即ち、密着層4がグリッド2の各線状部3と透明基板1との間及び各線状部3の一方の側面に形成された断面L字状を成している場合もあり得る。この場合、ギャップに密着層4が一部形成されたことになるが、ギャップを覆ってはおらず、密着層4は薄いものであるので、偏光性能の大きな低下はない。その一方、グリッド2の各線状部3を密着層4が擁壁のように支える効果があるので、アスペクト比(各線状部の幅wに対する高さhの比)の高いグリッド2の場合に特に好適な構造となる。より高い消光比を得るため、アスペクト比をより高くする場合があり、この場合に特に好適となる。
【0039】
また、図1図5では、ギャップの幅gが一定であるグリッド2が描かれているが、ギャップの幅gは意図的に不均等にする場合がある。即ち、特許文献1や特開2015−222449号公報等に開示されているように、ギャップの幅gを不均等にすることで偏光性能をより高める構造が採用されることもあり得る。本願発明の実施形態としては、均等なギャップ幅gでもよく、不均等なギャップ幅gでも良い。
上述した各実施形態のグリッド偏光素子は、前述した光配向処理に好適に使用される。この他、プレチルト角の調整のための処理にも使用することができる。
【0040】
上記各実施形態では、グリッド2の各線状部3の材料としてイリジウムが専ら説明されたが、金、白金、ルテニウム等の他の貴金属をグリッド2の各線状部3の材料として採用しても良い。これらの材料についても、紫外領域、深紫外領域において長期間安定して高い偏光性能が得られることが確認されている。
【0041】
また、密着層4の材料としては、金属の酸化物、窒化物もしくは酸窒化物、シリコンの酸化物、窒化物もしくは酸窒化物又は半導体を使用することができる。具体的には、上記酸化チタンの他、窒化チタン、酸化アルミニウム、酸化ハフニウム、窒化シリコン、酸化タンタル又は酸化ジルコニウム等を使用することができる。
【符号の説明】
【0042】
1 透明基板
2 グリッド
3 線状部
4 密着層
51 第一の薄膜
52 第二の薄膜
53 第三の薄膜
7 犠牲層
図1
図2
図3
図4
図5