特許第6989148号(P6989148)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ユニバーシティ・オブ・トレドの特許一覧

特許6989148注射用の生分解性骨セメントとそれを作製及び使用する方法
<>
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000002
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000003
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000004
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000005
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000006
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000007
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000008
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000009
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000010
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000011
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000012
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000013
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000014
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000015
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000016
  • 特許6989148-注射用の生分解性骨セメントとそれを作製及び使用する方法 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6989148
(24)【登録日】2021年12月6日
(45)【発行日】2022年1月5日
(54)【発明の名称】注射用の生分解性骨セメントとそれを作製及び使用する方法
(51)【国際特許分類】
   A61L 24/08 20060101AFI20211220BHJP
   A61L 24/02 20060101ALI20211220BHJP
   A61L 24/00 20060101ALI20211220BHJP
   A61L 24/10 20060101ALI20211220BHJP
   A61L 27/12 20060101ALI20211220BHJP
   A61L 27/20 20060101ALI20211220BHJP
   A61L 27/14 20060101ALI20211220BHJP
   A61L 27/22 20060101ALI20211220BHJP
   A61L 27/44 20060101ALI20211220BHJP
   A61L 27/50 20060101ALI20211220BHJP
   A61L 27/54 20060101ALI20211220BHJP
【FI】
   A61L24/08
   A61L24/02
   A61L24/00 310
   A61L24/10
   A61L24/00 210
   A61L24/00 200
   A61L24/00 240
   A61L27/12
   A61L27/20
   A61L27/14
   A61L27/22
   A61L27/44
   A61L27/50
   A61L27/54
【請求項の数】8
【全頁数】19
(21)【出願番号】特願2019-185865(P2019-185865)
(22)【出願日】2019年10月9日
(62)【分割の表示】特願2017-185831(P2017-185831)の分割
【原出願日】2013年1月31日
(65)【公開番号】特開2020-22773(P2020-22773A)
(43)【公開日】2020年2月13日
【審査請求日】2019年10月9日
(31)【優先権主張番号】61/593,094
(32)【優先日】2012年1月31日
(33)【優先権主張国】US
(31)【優先権主張番号】61/697,059
(32)【優先日】2012年9月5日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】502409721
【氏名又は名称】ザ・ユニバーシティ・オブ・トレド
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【弁理士】
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100135415
【弁理士】
【氏名又は名称】中濱 明子
(72)【発明者】
【氏名】バドゥーリ,サリット・ビー
(72)【発明者】
【氏名】ジョウ,ホワン
(72)【発明者】
【氏名】アガーワル,アナンド・ケイ
(72)【発明者】
【氏名】ゴエル,ヴィジェイ・ケイ
【審査官】 榎本 佳予子
(56)【参考文献】
【文献】 特表2015−505511(JP,A)
【文献】 特表2010−529091(JP,A)
【文献】 特表2002−509766(JP,A)
【文献】 特表2007−534449(JP,A)
【文献】 特表2007−529253(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61L 15/00−33/18
A61L 6/00− 6/10
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
リン酸マグネシウム;
生体適合性ポリマー;および
シリカ
を含有する骨セメント組成物であって、
骨セメント組成物は、発熱せずに硬化塊に固化する注射可能なペーストの形態、または水との接触時に硬化塊に固化するパテの形態であり、注射可能なペーストまたはパテは、粉末成分を固化溶液と混合してリン酸マグネシウムを含有するペーストを生成する工程、該ペーストにマイクロ波を照射してリン酸マグネシウムを含有する乾燥粉末を生成する工程、次いで該乾燥粉末を第二の固化溶液と混合して注射可能なペーストまたはパテを生成する工程を含む製法により作製されたものである、前記骨セメント組成物。
【請求項2】
生体適合性ポリマーがキトサンを含む、請求項1の骨セメント組成物。
【請求項3】
タンパク質、骨誘導および/または骨伝導材料、X線不透過剤、医薬品、支持又は強化フィラー材料、結晶成長調節剤、粘度調整剤、気孔形成剤、抗生物質、防腐剤、増殖因子、化学療法剤、骨吸収阻害剤、変色剤、浸漬液、カルボン酸塩、カルボン酸、α−ヒドロキシル酸、及び金属イオンからなる群より選択される1以上の添加物をさらに含む、請求項1の骨セメント組成物。
【請求項4】
注射可能なペーストが25℃を超える熱を発生することなく硬化塊に固化する、請求項1の骨セメント組成物。
【請求項5】
リン酸マグネシウム;および
シリカ
を含有する骨セメント組成物であって、
骨セメント組成物は、発熱せずに硬化塊に固化する注射可能なペーストの形態、または水との接触時に硬化塊に固化するパテの形態であり、注射可能なペーストまたはパテは、粉末成分を固化溶液と混合してリン酸マグネシウムを含有するペーストを生成する工程、該ペーストにマイクロ波を照射してリン酸マグネシウムを含有する乾燥粉末を生成する工程、次いで該乾燥粉末を第二の固化溶液と混合して注射可能なペーストまたはパテを生成する工程を含む製法により作製されたものである、前記骨セメント組成物。
【請求項6】
タンパク質、骨誘導および/または骨伝導材料、X線不透過剤、医薬品、支持又は強化フィラー材料、結晶成長調節剤、粘度調整剤、気孔形成剤、抗生物質、防腐剤、増殖因子、化学療法剤、骨吸収阻害剤、変色剤、浸漬液、カルボン酸塩、カルボン酸、α−ヒドロキシル酸、及び金属イオンからなる群より選択される1以上の添加物をさらに含む、請求項5の骨セメント組成物。
【請求項7】
注射可能なペーストが25℃を超える熱を発生することなく硬化塊に固化する、請求項5の骨セメント組成物。
【請求項8】
ニューベリーアイトを含むリン酸マグネシウムを含有する骨セメント組成物であり、25℃を超える熱を発生することなく硬化塊に固化する注射可能なペーストの形態、または水との接触時に硬化塊に固化するパテの形態であり、注射可能なペーストまたはパテは、粉末成分を固化溶液と混合してニューベリーアイトを含有するペーストを生成する工程、該ペーストにマイクロ波を照射してニューベリーアイトを含有する乾燥粉末を生成する工程、次いで該乾燥粉末を第二の固化溶液と混合して注射可能なペーストまたはパテを生成する工程を含む製法により作製されたものである、前記骨セメント組成物。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
[0001] 本発明は、米国仮特許出願番号:61/593,094(2012年1月31日出願)及び米国仮特許出願番号:61/697,059(2012年9月5日出願)の利益を特許請求する。上記出願の両方の開示内容は、参照により本明細書に組み込まれる。
【0002】
連邦政府支援研究に関する陳述
[0002] 本発明は、いかなる政府支援も受けずになされたので、政府は、本発明において権利を有さない。
【0003】
技術分野
[0003] 本発明は、概して、骨セメント組成物と、骨セメント組成物を作製する、強化する、及び使用する方法に関する。
【背景技術】
【0004】
[0004] 本節において開示される背景技術が先行技術を合法的に構成するという主張は、承認されない。
[0005] 背部痛に関連した諸症状は、他のどの筋骨格系症状より多くの入院件数を占める。背部は、作業関連障害が最も頻繁に関与する身体部分である。背部痛は、工業化された社会において最も蔓延した医学的障害である。米国人口の75%強がその生涯の経過を通して腰痛に罹病すると推定されている。米国立衛生研究所からの統計によれば、背部痛は、人々が治療を求める、二番目に多い医学的状態であって、年間5000万件以上の医院来診数を占める。腰痛は、50歳より若い人々における障害の主因である。
【0005】
[0006] 背部痛を軽減するために、多くの人々は、外科的介入を受ける。多種類の脊柱手術では、脊椎が一緒に結合して安定性を回復するのを支援するために、埋め込み器具が使用されている。追加的に、プレート、ロッド、及びネジのようなインプラントは、損傷した脊柱要素の除去によって創出される歪みを矯正して間隙を埋めるのに役立つ。臨床状況では、インプラントの適正な固着を可能にするために、骨セメントが所望される。骨セメントは、頭蓋顎顔面骨欠損の修復、歯の詰め物、又は脊椎固定といった多種多様な他の医科及び歯科応用にも使用されている。
【0006】
[0007] 通常使用される骨セメントは、ポリメチルメタクリレート(PMMA)セメントである。PMMAから作られる骨セメントには、いくつかの欠点がある。即ち、メタクリレートとメタクリル酸は、生組織に対する既知の刺激物質である。PMMAベースのセメントは、生体内で(in vivo)フリーラジカルを産生する可能性があり、これが周囲組
織を傷害し得る。PMMAベースのセメントはまた、生分解性でなくて、PMMAが関与する重合反応は、きわめて発熱性であり、硬化するときに、周囲組織に対して傷害を引き起こす可能性がある。
【0007】
[0008] 多くの慣用の骨セメント製剤での別の問題は、2以上の固体粉末成分を混合して保存することの必要性であって、それによりそのバッチごとの再現性と貯蔵寿命が低下する。2種の固形物を均一に混合することは、容易な作業ではない。最適のセメントは、液体媒体において、通常の固化時間の間に、流失せずに固化することが可能であるべきである。このことは、注射可能性(injectability)と付着性(cohesiveness)のために重
要である。ポリマーを固化溶液(setting solution)に取り込むことによって、上記課題の両方がさらに増す可能性がある。しかしながら、2種の固体成分のあるポリマーを含有
するセメント組成物は、2種の固体成分の均一混合が容易でないために、依然として注射可能性が乏しい。
【0008】
[0009] PMMAベースのセメントに対するいくつかのあり得る代替品は、様々なアルカリ土類リン酸塩から作られるセメントである。これらには、リン酸カルシウムセメント、リン酸マグネシウムセメント、及びリン酸ストロンチウムセメントが含まれる。すべてのアルカリ土類リン酸塩の中で、Ca−Pセメント、又はCPCは、最も一般的である。CPCは、CaO−P(Ca−P)二成分系内の様々な化合物に基づく。これらの化合物には、Ca−ヒドロキシアパタイト、Ca10(PO(OH)(又は単に、ヒドロキシアパタイト)が含まれるが、これは、天然の骨ミネラルとのその類似性により最もよく知られている。Ca−P二成分系中の他の化合物には、リン酸四カルシウム(TTCP、Ca(POO)、リン酸三カルシウム[α−TCP、α−Ca(PO、及びβ−TCP、β−Ca(PO]、無水リン酸二カルシウム(DCPA、モネタイト、CaHPO)、リン酸二カルシウム無水物(DCPD、ブルシャイト、CaHPO・2HO)、及びリン酸八カルシウム(OCP、Ca(PO・5HO)が含まれる。CPCは、より大きな展性といった、PMMAベースのセメントに優るいくつかの利点を提供して、そのセメントが欠損の部位及び形状へよりよく適合することを可能にする。CPCはまた、より優れた生体適合性、生理活性、骨伝導性、及び生体吸収性を提供する。
【0009】
[0010] 市販のMg−Pセメント(MPC)は、発熱現象を生じる、酸部分(アンモニア塩)と塩基部分(MgO又はMg(OH))との間の反応より生成されるMgNHPOの組成物に主に基づく。しかしながら、固化の間のアンモニアの放出とMPCの分解は、このセメントの生体適合性を損なうものである。Sr−Pセメント(SPC)は、ストロンチウムを添加したCa−P又はMg−Pセメントである。ストロンチウムは、細胞増殖を促進し得て、放射線不透過性を提供する。
【0010】
[0011] 容易に作製されて、改善された強度、機械特性、及び生理活性を保有する骨セメント組成物を製剤化することは、望ましいであろう。そのような骨セメントの特性によりそれらが外科現場において容易に使用されることが可能になるならば、さらに望ましいであろう。
【発明の概要】
【0011】
[0012] 本発明の第一の側面では、1つの粉末成分、固化溶液(a setting solution)、及び生体適合性ポリマーを混合することより作製される骨セメント組成物を提供する。この粉末成分は、カルシウム、マグネシウム、又はストロンチウムの塩基源を含む。固化溶液は、リン酸を含む。該粉末との混合に先立って、生体適合性ポリマーを固化溶液へ取り込む。ある態様において、生体適合性ポリマーは、キトサンであって、表面リン酸化してから、固化溶液の約0重量%〜約10重量%に及ぶ濃度で固化溶液へ取り込まれる。混合時にペーストを生成するが、これは、(a)該粉末を固化溶液と混合した後の暫くの時間で固体塊へ硬化するか又は(b)電磁放射線を照射されて乾燥粉末を生成してから第二の固化溶液と混合されて、硬化塊へ固化する骨セメントペーストを生成する。ある態様において、このセメントは、約30分〜約60分の固化時間を有する。
【0012】
[0013] 本発明の第二の側面では、骨セメント組成物の発熱性を抑える方法を提供する。この方法は、骨セメントペースト(酸−塩基反応より作製される)に電磁放射線を照射して乾燥粉末を生成する工程、次いでこの乾燥粉末を、水、生理食塩水、又はナノシリカゾルを含んでなる固化溶液と混合して、硬化塊へ固化する骨セメントペーストを生成する工程を含む。この反応はpHを変化させないし、熱を放出しない。本明細書に記載される方法はまた、耐重量性の応用に適した、強化された骨セメント組成物を生成する。
【0013】
[0014] 本明細書でさらに開示するのは、骨セメントを作製する方法である。1つの方法は、単一粉末成分を固化溶液及び生体高分子と混合してペーストを生成する工程、次いでそのペーストを硬化塊へ固化させる工程を含む。別の方法は、骨セメントペーストを酸−塩基反応より生成する工程、この骨セメントペーストに電磁放射線を照射して乾燥粉末を生成する工程、及びこの乾燥粉末を、水、生理食塩水、又はナノシリカゾルを含んでなる固化溶液と混合して、ある時間帯の後で硬化塊へ固化する、放射線補助(radiation-assisted: 放射線により補助される)骨セメントペーストを生成する工程を含む。
【0014】
[0015] 本明細書でさらに開示するのは、極小の発熱特性がある、固化可能なCPC/MPC/SPCを生成する方法である。さらに開示するのは、被験者を治療する、薬物を送達する、チタンインプラントの生体適合性を高める、硫酸カルシウム無水物セメントの強度を高める、歯欠損を充填する、骨中の穴又は腔を充填する、及び弱化又は崩壊した脊椎を置換するか又は治療することのために骨セメントを使用する方法である。
【0015】
[0016] さらに開示するのは、本明細書に記載されるような骨セメント組成物を作製するための様々なキットである。
[0017] 当業者には、好ましい態様に関する以下の詳細な記載より、付帯の図面に照らして読むときに、本発明の様々な側面が明らかになろう。
【0016】
図面の簡単な説明
[0018] 以下の図面は、点線で示される隠れた特徴又は要素を含有する場合があって、一点鎖線で示される様々な成分又は要素の局部透視図が含まれる場合がある。
【図面の簡単な説明】
【0017】
図1】[0019] 図面1は、10分と12時間の間の固化時間で生成されたモネタイトセメントペーストのXRDパターンの比較である。
図2】[0020] 図面2は、変動量のキトサンを含むセメントの流体力学特性を図解する。
図3】[0021] 図面3は、キトサンの様々な含有重量:0%(A)、5%(B)、10%(C)、及び20%(D)を有するキトサン−モネタイト複合物についての形態学的構造の一連のSEM画像である。
図4】[0022] 図面4は、キトサン含有セメントの試験管内(in vitro)反応を図解するSEM画像である。
図5】[0023] 図面5は、モネタイトセメント、市販キトサンを含むモネタイトセメント、及び表面リン酸化キトサンを含むモネタイトセメントの圧縮強度の比較を示すグラフである。
図6】[0024] 図面6は、(a)マイクロ波処理後に生成されるモネタイト前駆体;(b)Ca(OH)とHPOとの直接混合によって生成されるモネタイトセメント、及び(c)マイクロ波処理後の硬化モネタイトセメントのSEM画像を示す。
図7】[0025] 図面7は、セメント中に存在するキトサンのパーセントに基づいたセメントの注射可能性の特性を示すグラフである。
図8】[0026] 図面8は、通常の酸−塩基反応を使用して生成されるモネタイトセメントと、本明細書で開示するマイクロ波補助アプローチを使用して生成されるモネタイトセメントのXRDパターンの比較である。
図9】[0027] 図面9は、播種(seeding)から72時間後のモネタイト−シリカセメント試料上の前骨芽細胞のSEM画像である。その表面の生体適合性は、細胞の広がりによって示される。セメント粒子が骨芽細胞の真下に見られる。このことは、このセメントの生体適合性を示す。
図10】[0028] 図面10は、モネタイト−シリカ、モネタイト、モネタイト(旧型)、Chem-Ostetic、及び Calcibon セメントの圧縮強度値を示す。マイクロ波処理は、Chem-Ostetic のような市販の非耐荷重セメントに匹敵するほどに、モネタイトセメントの圧縮強度を向上させることができる。モネタイトへナノシリカゾルを加えると、その強度が有意に向上して、モネタイト−シリカセメントの耐荷重性を Calcibon(市場で販売されている耐重量性CPC)よりずっと高くする。
図11】[0029] 図面11は、経時的に進行するモネタイト−シリカの圧縮強度値を示すグラフである。
図12】[0030] 図面12は、マイクロ波補助技術の有り無しで作製したモネタイトセメントの混合の間に発生する熱の差異を示す、経時的な温度のグラフである。このグラフから見られるように、マイクロ波補助技術では、有意により少ない熱が発生する。
図13】[0031] 図面13は、マイクロ波処理後に生成されるMg−P前駆体、Mg(OH)とHPOとの直接混合によって生成されるMg−Pセメント、及びマイクロ波処理後の硬化Mg−PセメントのXRDパターンを表示する。
図14】[0032] 図面14は、(a)マイクロ波処理後に生成されるMg−P前駆体;(b)Mg(OH)とHPOとの直接混合によって生成されるMg−Pセメント;及び(c)マイクロ波処理後の硬化Mg−PセメントのSEM画像を示す。
図15】[0033] 図面15は、擬似体液中7日間のインキュベーション後のMg−PセメントのSEM画像である。Mg−Pセメントは、板状結晶とMg2+、Ca2+、Na、及びPO3−イオンのあるアパタイトへ変換された。
図16】[0034] 図面16は、擬似体液中7日間のインキュベーション後のMg−PセメントのXRDパターンである。このパターンは、一部のニューベリーアイト(MgHPO・3HO)がボビエルライト(Mg(PO・8HO)へ変換したことを示す。
【発明を実施するための形態】
【0018】
[0035] 特許請求項が含まれる本明細書全体を通して、「〜を含む」という用語と、「〜を含んでなる」及び「〜を含む(3人称単数)」のようなその用語の変化形、並びに「〜を有する」、「〜を有している」、「〜が含まれる」、及び「〜を含めて」という用語とその変化形は、それにより言及される指定の工程、要素、又は材料が本質的であるが、他の工程、要素、又は材料も加えてよくて、やはり本特許請求項又は開示の範囲内の構築体を形成し得ることを意味する。本発明についての記載と特許請求項において詳述される場合、それは、本発明と特許請求される内容が後述されるものであって、潜在的にはそれ以上のものであるとみなされることを意味する。これらの用語は、特に特許請求項へ適用される場合、包括的又は無制限であって、追加の詳述されない要素も方法工程も排除しない。
【0019】
[0036] 本明細書では、改善された機械特性を有する骨セメントを製造するための組成物及び方法、処方、システム、及び/又は製法の文脈において様々な態様について記載する。当業者は、この態様についての以下の詳細な記載が例示にすぎず、限定的であることを決して意図しないと理解されたい。本開示の利益を享ける当業者には、他の態様が容易に自力で示唆されよう。本明細書での「態様」、「側面」又は「実施例」への言及は、そのように記載される本発明の態様には特定の特徴、構造、又は特性が含まれ得るものの、必ずしもどの態様にも特定の特徴、構造、又は特性が含まれるわけではないことを示す。さらに、「1つの態様において」という句の反復使用は、同一の態様について言及する場合もあるが、必ずしも同一の態様について言及するわけではない。
【0020】
[0037] 明確性のために、本明細書に記載される実行法(implementations)又は手順
の常用的な特徴のすべてを示して記載するわけではない。当然ながら、そのような実際の実行法の開発においては、応用及び事業に関連した制約との合致といった、開発者の具体的な目標を達成するために、数多くの実行特異的な決定がなされること、そして上記の具
体的な目標は、実行法ごとに、そして開発者ごとに異なることが理解されよう。さらに、そのような開発努力は、複雑で時間消費的であっても、それでも、本開示の利益を享ける当業者にとっては常用的な営為となることが理解されよう。
【0021】
[0038] 最高技術水準の骨セメント組成物は、以下の判定基準を満足させるべきである:(1)その組成物は、1種の固体成分を使用するべきであって、それにより容易な混合を可能にする;(2)その組成物は、高温処理を必要としない固形物を使用すべきである;(3)その組成物は、水性の性質の固化溶液を使用すべきである;(4)その硬化(固化)プロセスは、組織壊死が起こらないように、発熱性であってはならない;(5)最終のリン酸塩相(例えば、MgP、SrP、TCP、DCPA、又はDCPD)は、生分解性であるべきで、それにより骨組織の再生を可能にする;(6)その組成物は、骨欠損を充填するために注射可能である(即ち、正確な流体力学特性がある)べきである;(7)その組成物は、硬化が起こる前にそのセメントを注射するのに最適な好機の枠を外科医に与えるのに適した時間枠において硬化すべきである;(8)そのセメントは、患者の耐重量のために10分〜2時間の枠内で小柱骨の強度を高めて、最終的には、術後24時間以内でさらにより高い強度を高めるべきである;(9)そのセメントは、X線による迅速な確認のために放射線不透過性であるべきである;(10)そのセメントは、試験管内検査によって判定されるように、生体適合性で生分解性であるべきである;並びに、(11)このセメントは、上記の特徴を生体内でも維持すべきである。
【0022】
[0039] 上記に従って、本発明で提供するのは、カルシウム、マグネシウム、又はストロンチウムの塩基源を含んでなる単一粉末成分と、HPOを含んでなる固化溶液より作製される骨セメント組成物である。ある態様において、その粉末は、Ca(OH)又はMg(OH)を含んで、その固化溶液は、生体適合性ポリマー、脱イオン水、NaHCOのような緩衝液、及びクエン酸一水和物をさらに含む。粉末がCa(OH)である特別な態様において、生じる骨セメントは、慣用の骨セメント製剤におけるいくつかの問題を免れている、無水リン酸二カルシウム(CaHPO、モネタイト又はDCPAとしても知られる)セメントである。現在市販されているCPCは、アパタイトCPC(α−BSM(登録商標)、BoneSource(登録商標)、Calcibon(登録商標)、及びBiopex(登録商標)のような)又はブルシャイトCPC(ChronOS Inject(登録商標)、Eurobone(登録商標)、及びVitalOS(登録商標)のような)のいずれかである。しかしながら、モネタイトは、DCPDに類似した化学組成及び溶解性を有すること、骨再生を支援する望ましい特性を明示すること、及び生体内でアパタイトへ再沈殿しないことの故に、アパタイト及びDCPDセメントに対する良好な代替品である。
【0023】
[0040] 本明細書で開示するモネタイト骨セメントは、NaHCOをpH緩衝液とする、HPOとCa(OH)の間の酸−塩基反応に基づく。このモネタイトセメントは、単一粉末成分と固化溶液より作製される。この粉末はCa(OH)を含み、これは、市販品より容易に入手可能であって、比較的廉価である。Ca(OH)粉末は、さらなる処理も添加物も無しに使用することができて、合成の間、高温へ処されない。固化溶液は、リン酸(HPO)を含む。ある態様では、該組成物へ付着性を提供するために、固化溶液へ生体適合性ポリマーを取り込む。この生体高分子は、ひび割れの伝播に抗する強靭化機序を提供することによって、該セメントの機械特性をさらに高める。
【0024】
[0041] ある態様において、生体適合性ポリマーは、キトサン[(1−4)−2−アミノ−2−デオキシ−β−D−グルカン]を含んで、全組成物の約0重量%〜約20重量%で存在する。より特別には、このキトサンは、全組成物の約1重量%〜約5重量%で存在する。キトサンは、節足動物の外骨格に主に見出される化合物であって、セメント組成物への取込みに望ましいいくつかの属性を有する。それは、細胞外マトリックス分子である
ヒアルロン酸のそれに類似した、ポリカチオン性の炭水化物構造を有する。キトサンは、カチオン性を有して、それが細胞接着と腔中での流出の予防に適した基質を提供する。キトサンは、生体適合性であるとともに生理活性(例えば、骨誘導性)があるだけでなく、止血性でもある。室温で液体である一方、キトサンは、37℃の生理学的温度のようなより高い温度でゲル化する傾向がある。これらの特性は、セメント組成物の注射可能性、生理活性、付着性、及び改善された機械特性へ貢献する。
【0025】
[0042] ある態様において、キトサンは、固化溶液へ取り込まれるのに先立って、表面リン酸化される。この表面修飾を達成する1つの方法は、キトサンをオルトリン酸、尿素、及びN,N−ジメチルアミドに溶かして、この混合物を加熱して撹拌してから、該混合物を水へ注いでそれを濾過して、表面リン酸化キトサン粒子を回収することによる。リン酸化は、セメントに対するキトサンの接着を向上させる。
【0026】
[0043] 固化溶液は、HPOを含むが、脱イオン水と、水に溶かした重炭酸ナトリウム(NaHCO)のような、固化溶液のpHを高めるのに適した緩衝液、並びに最終ペーストの取扱いを改善するためのクエン酸一水和物(CAM)をさらに含んでよい。いくつかの態様では、この粉末成分を脱イオン水と混合して塩基性溶液を生成してから、これを固化溶液と混合するが、一方、他の態様では、この粉末成分を固化溶液と直接混合する。1つの態様では、この粉末と固化溶液を0.4mLにつき約1gの粉末対液体比で混合する。別の態様では、この粉末対液体比が0.6mLにつき約1gである。他の多くの比が可能である。この粉末対液体比は、固化溶液において異なる量の脱イオン水を使用することによって、容易に変更される。
【0027】
[0044] 固化溶液と混合するとすぐに、HPOとCa(OH)の間の酸化還元反応によってペーストが生成される。このペーストは、混合後30分と60分の間で硬化塊へ固化する、モネタイト(DCPA)セメントである。この硬化したモネタイトセメントは、その表面上の薄いアパタイト膜により37℃の脱イオン水中で安定しているが、95〜100℃のやや上昇した温度では、炭酸溶液中でアパタイトへ容易に変換される。モネタイトセメントは、生理学的溶液中の中性pHで他のCPCより高い溶解度を有して、擬似体液中でのアパタイト生成を比較的短い時間の後で促進する。pH値を高めることも、アパタイトを生成する、モネタイトの加水分解をもたらす。
【0028】
[0045] 現在入手可能なCPCは、少なくとも2種以上のCaP相又はCa若しくはP含有相を含んでなる粉末成分に基づく。これら粉末混合物の成分は、その貯蔵寿命及び保存条件を制限する、固体状態の反応を受ける場合がある。従って、本明細書で開示するモネタイトセメントで唯1種の粉末成分だけが必要であるという条件は、有利である。このモネタイトセメントはまた、アパタイトセメントに比較して、より高い生体内吸収性を明示する。さらに、α−TCP及びTTCP粉末とは異なり、モネタイトセメント粉末は、室温で合成することができて、セメント相を周囲温度へクエンチさせること(繊細な粉砕を必要として、粉砕の間に、異物混入又は望まれない加水分解を引き起こす場合がある)の必要性が軽減される。
【0029】
[0046] 下記に考察する様々な外科的応用に加えて、本明細書で開示するモネタイト骨セメントは、アパタイトへ変換される、チタンインプラント上のコーティング剤として使用することができて、これは、チタンインプラントの生体適合性を高めるのに有用な技術となる。また、モネタイト骨セメントは、硫酸カルシウム無水物(CSD)セメントへ加えて、CSDセメントの機械特性を有意に高めることができる。
【0030】
[0047] 本明細書でさらに開示するのは、上記に記載したモネタイトセメントのようなアルカリ土類リン酸塩の骨セメントの発熱性を抑える方法と、発熱性が有意に抑えられた
一連のアルカリ土類リン酸塩の骨セメントである。この方法は、酸−塩基反応より生成されるどのセメントペーストでも利用し得て、耐重量性の応用における使用が可能な、極小の発熱性があるアルカリ土類セメントを生成する。この製法は、粉末及び液体の反応体を最適な比で含んでなるセメントペーストを(そのペーストが固化する前に)マイクロ波のような約10Hz〜約1022Hzの間の周波数での電磁放射線へ処して、乾燥したCPC/MPC/SPC粉末を生成する工程を伴う。この照射は、そのセメントを初期の反応段階に維持して、そのペーストが脆性の塊を生成することを引き起こす。この照射はまた、水分を除去してCPC/MPC/SPC前駆体の加水分解及び結晶化を止めて、すべてのCPC/MPC/SPC前駆体を不活性にする。この脆性の粉末は、微細粉末へ砕かれる。次いで、この微細粉末を、水、生理食塩水、又はナノシリカゾルを含んでなる固化溶液と混合する。固化溶液と接触すると、ペーストの硬化が継続して、セメント強度が高まる。この製法より、粘稠で成型可能なペーストが極小の発熱性で得られる。このペーストは、ある時間帯の後で堅い塊へ固化する。
【0031】
[0048] この電磁放射線補助技術を使用して生成されるセメントは、発熱性が有意に極小化されてpHの変化がない、改善された硬化特性及び機械特性を有する。固化溶液としてナノシリカゾルを使用する場合は、水又は他の水溶液に比較して、このセメントの機械特性に対するさらなる改善が達成される。これは、ナノシリカゾルが初期の強度強化と生理活性の増加のために非晶性ケイ酸カルシウム水和物(CSH)ゲルを提供するためである。時間が進行するにつれて、CSHゲルは重合して硬化して、このセメントを支援する固いネットワークを提供し、それによってより大きい強度を提供して、セメントの生理活性を促進する。ナノシリカ又は他のどの添加物の添加も、最終のセメントを生成するのに必要とされる、望ましい粉末対液体比を改変させる可能性があることに留意されたい。
【0032】
[0049] 十分な骨伝導性を有する、いくつかのSi含有CPC/MPC/SPCがすでに市販されている。しかしながら、市販のSi含有セメントは、シリコン又はケイ酸塩「置換」セメントと呼ばれている。この文脈での「置換」は、関連するCPC/MPC/SPC格子(結晶構造)の中へSiが入って、それにより骨伝導性と骨誘導性を変化させることを意味する。このようなセメントは、合成するのが難しく、長い固化時間を有し、耐荷重性の応用には乏しい機械強度を示して、高温溶融を必要とする場合があるので、典型的には、整形外科の応用に適していない(Gibson, I. R., Best, S. M., Bonfield, W., Chemical Characterization of Silicon-Substituted Hydroxyapatite(シリコン置換ヒドロキシアパタイトの化学的な特性決定), J Biomed Mater Res 1999; 44: 422-428 を参照のこと)。今回開示するCPC−SiO、MPC−SiO、及びSPC−SiO組成物では、Siがこの格子を決して変化させない。むしろ、本明細書で開示するように、Siは、骨誘導性も骨伝導性も悪化させることなく、セメント粒子間の強い結合を提供する。生じる組成物は、慣用のCPC/MPC/SPCと比較して、高められた生体適合性、生理活性、及び機械性能を示す。この骨誘導性と骨伝導性は、形成される特定のリン酸塩相によって主に提供される。ある態様において、セメントは、モネタイト(DCPA)であるが、MPC又はSPCにも同じ機序が適用される。
【0033】
[0050] 本明細書で開示するセメントは、多種多様な整形外科状態を修復するのに有用である。非限定的な例を挙げると、このセメントは、脊髄骨折の治療のために椎体へ注射する、骨折修復を強化するか又は骨折断片を安定化させるために長骨又は扁平骨の骨折部分へ注射する、又は強度を向上させるためにインタクトな骨粗鬆症の骨へ注射することが可能である。このセメントは、骨−ネジ又は骨−インプラントの表面の増強に有用である。このセメントはまた、鉱質除去された骨マトリックス材料に置き換えるために骨充填顆粒中へ生成してよい。本明細書で開示するセメントは、慣用の骨セメントよりも骨のそれにより近い弾性係数を提供する一方で生分解性であって、そのセメントが天然の骨に置き換わることを可能にするが、同時に正常骨の特性を模倣して、重量負荷に耐えることが可能である。その高められた耐重量能力の故に、本明細書で開示するセメントは、様々な種類の脊椎骨折に対して骨格支援を提供することができて、脛骨プラトーの再建、手関節骨折の再建、踵骨の再建、及び寛骨の予防強化に使用される可能性がある。さらに、その高められた生体適合性及び生理活性の故に、本明細書で開示するセメントは、薬物、遺伝子、タンパク質、細胞、DNA、又は他の分子の送達担体として使用し得る。
【0034】
[0051] 加えて、このセメントは、骨が不足している可能性がある骨格領域における骨充填剤として有用である。この文脈において、このセメントは、歯周囲、口腔、及び頭蓋顎顔面の応用を含めて、顎顔面骨の骨欠損を充填する、増強する、及び/又は再構築するように企図される。このセメントは、適正な安定化ハードウェアを伴う、後外側脊椎融合又は脊椎強化の手技における使用を含めて、骨格系(即ち、四肢、骨盤、及び脊椎)の骨の空隙又は隙間へ穏やかに詰められる。このセメントは、外科的に創出された骨欠損であるか又は骨への外傷性損傷より創出された骨欠損であり得る欠損を充填するために使用し得る。ある態様において、このセメントは、治癒プロセスの間に骨を再吸収して骨に置き換えられる骨空隙充填剤を提供する。
【0035】
[0052] 注射可能性と付着性は、どの骨セメントの使用にも関連する臨床的に重要な課題である。大きな欠損の修復が進行しているとき、成功する骨セメント組成物は、円滑かつ均一に流れて、最終的に一様な再吸収をもたらすべきである。固化溶液がナノシリカゲルを含む、放射線補助技術より生成される骨セメントの態様は、改善された注射可能性及び付着性を有する。骨セメントの発熱特性も、臨床的に重要である。本明細書で開示するシリカ−モネタイトセメントは、ほとんど熱を放出しないので、このシリカ−モネタイトセメントは、周囲組織の壊死を引き起こさなくて、薬物送達デバイスとして使用し得る。このセメントのモノシリカ結合からの強度の増加により、本明細書に記載されるシリカ含有セメントは、耐重量性の応用に使用することができる。耐重量性の応用の実施例には、脊椎中の骨粗鬆性の脊椎圧迫骨折や脛骨プラトー骨折のような他の外傷性骨折における使用が含まれる。
【0036】
[0053] 本明細書に記載される組成物のいずれにも、それらの特性と産生される硬化セメントの特性を調節するために、様々な添加物を含めてよい。好適な添加物の例には、タンパク質、骨誘導及び/又は骨伝導材料、リン酸ストロンチウム又は酸化ストロンチウムのようなX線不透過剤、医薬品、支持又は強化フィラー材料、結晶成長調節剤、粘度調整剤、気孔形成剤、抗生物質、防腐剤、増殖因子、化学療法剤、骨吸収阻害剤、変色剤、浸漬液、カルボン酸塩、カルボン酸、α−ヒドロキシル酸、金属イオン、又はこれらの混合物が含まれる。他の好適な添加物には、固化時間を調節する物質(ピロリン酸塩又は硫酸塩のような)、注射可能性又は付着能を高める物質(コラーゲンのような疎水性ポリマー)、膨潤時間を変化させる物質、又はマクロ細孔性を導入する物質(ポロゲンのような)が含まれる。
【0037】
[0054] ある種の応用に、本明細書で開示する特別なセメント組成物の低下した粒径が所望されるならば、そのような粒径低下は、例えば、メノウ乳棒及び乳鉢、ボールミル、ローラーミル、遠心インパクトミル及び篩い、カッターミル、アトリションミル、チェイサーミル、流体エネルギーミル、及び/又は遠心インパクト粉砕機を使用することによって達成することができる。粒径の低下は、硬化した骨セメントをペレットへ粉砕して、骨中の穴又は腔をそのペレットで充填することを伴う方法により骨欠損を治療するために所望される場合がある。
【0038】
[0055] 本明細書で開示するセメントは、粉末として、又は後に溶媒と混合してスラリー又はパテを作製するための粉末混合物として、又は非水性増量剤(例、グリセリン及び/又はプロピレングリコール)を含有し得る予混合(pre-mixed)パテとして、を含めて、様々な形態でユーザーへ供給してよい。予混合パテは、このセメントが水との接触時に固化することを可能にするだろう。また、本明細書で開示するセメントのいずれも、注射により送達することができる。即ち、セメントペーストを哺乳動物の身体への注射用のシリンジへ移すことができる。さらに、このセメントは、このセメントを身体へ導入するために使用される器具と共に、又はその中で供給してよい。そのような器具の例には、例えば、シリンジ、皮下デバイス、カニューレ、生体適合パケット、デンチュラ、リーマー、ファイル、又は当業者に明らかである他の形態が含まれる。本明細書で開示する骨セメントは、本明細書で開示する骨セメント組成物へ身体プロセスによって変換されるような形態で身体へ送達し得ることがさらに想定される。
【0039】
[0056] 本明細書で開示するセメントのいずれも、1種以上の主要成分を含有するキットにより、外科医、獣医学者、又は歯科医のような医療実施者に利用可能になり得ると考慮される。そのようなキットの非限定的な例は、乾燥成分と液体成分を別々の容器に含み、ここでその容器は、組み合わされた配置で存在しても存在しなくてもよい。本明細書に記載されるような放射線補助骨セメントを製造するための電磁放射線源を含んでなるキット、粉末と固化溶液の代わりに予混合パテを含んでなるキット、及びそのようなキットの成分より生成される骨セメント組成物を注射するための1本のシリンジ又は多数のシリンジが含まれるキットといった、他の多くのキットがあり得る。このキットには、典型的には、キットの成分を使用して主題の方法を実践するための説明書がさらに含まれる。主題の方法を実践するための説明書は、一般的には、好適な記録媒体に記録される。例えば、説明書は、添付文書としてキット中に存在しても、キット又はその成分の容器のラベルに存在してもよい。他の態様において、説明書は、CD−ROM又はディスケットのような、好適なコンピュータ読み取り可能保存媒体に存在する電子保存データとして存在する。他の態様では、実際の説明書がキット中に存在しないが、その説明書をインターネットのような遠隔ソースより入手するための手段が提供される。この態様の例は、説明書を視ることができる、及び/又は説明書をダウンロードすることができるウェブアドレスが含まれるキットである。説明書と同様に、説明書を入手するためのこの手段も、好適な基質上に記録される。
【0040】
[0057] あるいは、本明細書に記載される骨セメント組成物を生成するための成分は、包装された要素として存在してよい。このセメントは、一般に、滅菌条件で提供又は利用される。滅菌は、放射線滅菌(例、γ線放射)、乾熱滅菌、又は化学低温滅菌のようないくつかの方法によって達成してよい。
【0041】
[0058] 本明細書で開示する骨セメントは、薬物送達のためにさらに使用し得る。薬物を骨セメントペーストに溶かすことができるか又は、薬物を含んでなる溶液に骨セメント組成物を(それが固化する前又は後に)浸漬することができて、その後でこの組成物を解剖学的部位の中又は上へ注射するか又は配置する。次いで、薬物は、そのセメントマトリックスより被験者中へ放出され得る。例えば、PLA/PGA、ポリアクリル酸、ヒドロキシルメチルセルロース、及び/又はキトサンが含まれるポリマーでこのセメントマトリックスをコートすることによって、薬物の持続放出をもたらす態様も想定される。
【実施例】
【0042】
[0059] 実施例1
[0060] 0.0032g クエン酸一水和物、6.0g NaHCO、3.0mL HO、及び12mL HPO(86.2%)を混合することによって、15mLの固化溶液を調製した。この固化溶液のpHは0.25±0.01であって、6ヶ月の貯蔵寿命にわたって安定していた。この固化溶液は、堅く蓋されるガラス瓶に保存した。
【0043】
[0061] このセメントの粉末成分は、Ca(OH)(>95%,Fisher Scientific
)だけを含んだ。1.235g Ca(OH)をメノウ乳鉢においてメノウ乳棒を使用して、0.8mL HOと混合した。次いで、この混合物へ1.5mLの固化溶液を加えて、メノウ乳棒を使用してこの粉末と液体を手動で混合して、ペースト様の物質を2.5〜3分の末に得た。37℃の環境において、このペーストは、33分後に硬化して、約10MPaの強度を示した。
【0044】
[0062] モネタイトセメントへより良く結合するためのキトサンの表面修飾は、3gの98%オルトリン酸、15g 尿素、15mL N,N−ジメチルホルムアミド、及び1gのキトサン微粒子又はナノ粒子をフラスコ中で混合することによって達成した。この混合物を300rpmで1時間磁気撹拌しながら120℃まで加熱した。この混合物を水へ注いで濾過して、表面リン酸化キトサン粒子を回収した。
【0045】
[0063] この表面リン酸化キトサン粒子を300rpmで4時間磁気撹拌しながら固化溶液へ加えることによって、キトサン取込みモネタイトセメントを製造した。キトサン粒子が固化溶液中に一様に分散したときに、新たな固化溶液をさらなる反応のために用意した。1.235g Ca(OH)をメノウ乳鉢においてメノウ乳棒を使用して、0.8mL HOと混合した。次いで、この混合物へ1.5mLの新たな固化溶液を加えて、メノウ乳棒を使用してこの粉末と液体を手動で混合して、ペーストを生成した。硬化の後で、このモネタイトセメントは、20MPaより高い強度を示した。
【0046】
[0064] 図面1は、この反応をエタノール中で止めることによる、10分、20分、40分、及び12時間の中間時点での固化溶液(代表的な組成物としてキトサンを5%加えた)由来の相の生成を示す。すべてのピーク(Ca(OH)以外の)がモネタイト(DCPA)に帰属する。図面2は、0、3、5、及び10重量%のキトサンを含む、注射されるセメントペーストの流動パターンを示す。この結果は、10%キトサンを加えると、唯1つの固体成分を使用するにもかかわらず、このセメントペーストが継続的に流れなくなることを示す。10%組成物は、骨欠損腔を一様に充填しないので、不均一な骨成長をもたらすだろう。図面3は、キトサン含量が異なるセメントのSEM顕微鏡写真である。図面4は、播種から72時間後の骨芽細胞のセメント試料上のSEM顕微鏡写真である。この表面の生体適合性が細胞の拡散によって示されて、セメント粒子が骨芽細胞の真下に見える。このことは、このセメントの生体適合性を証明する。図面5は、表面リン酸化キトサンを加えた後でこのセメントの圧縮強度が向上したことを表示する。
【0047】
[0065] 実施例2
[0066] Ca(OH)を固化溶液及び蒸留水とメノウ乳鉢においてメノウ乳棒を使用することによって手動で混合することによってセメントペーストを製造した。15mLの固化溶液を調製するために、0.0032gのクエン酸一水和物(CAM,C・HO,100%)、6gの重炭酸ナトリウム(NaHCO>99.7%)、固化溶液を希釈するための1.95mLの蒸留水、及びリン酸塩の供給源としての13.05mLのリン酸(HPO,85%)をそれぞれ混合した。初めに、0.6175gのCa(OH)を0.8mLの蒸留水と少なくとも2分間混合して、Ca(OH)が水中に一様に分散したペーストを生成した。最後に、この材料へ0.75mLの固化溶液を加えた。
【0048】
[0067] この混合ペーストを1300Wエネルギー入力の家庭用マイクロ波へ移して、最高出力で5分間焼いた。乳棒を使用して、生じた塊を微粉末へ粉砕した。次いで、1gのモネタイト粉末を0.5〜0.8mLの水又はナノシリカゾルと混合した。いずれの場合でも、生成したペーストは、形状化及び注射することができて、45°F、73°F、及び98.6°Fの環境で自己固化することが可能であった。モネタイト−ケイ酸塩セメントの最大圧縮強度は65MPaに達して、耐重量性の応用に理想的である。図面8は、
この放射線補助技術を使用することの有無で生成されるモネタイト(DCPA)セメントのXRDパターンを示す。図面9は、播種後72時間での前骨芽細胞のモネタイト−セメント試料上の走査型電子顕微鏡(SEM)写真を示す。図面12は、反応体を水と混合する間に発生する熱における、マイクロ波補助技術の有り無しでの差を示す。
【0049】
[0068] 実施例3
[0069] Mg(OH)を固化溶液及び蒸留水とメノウ乳鉢においてメノウ乳棒を使用することによって手動で混合することによってセメントペーストを製造した。15mLの固化溶液を調製するために、0.0032gのクエン酸一水和物(CAM,C・HO,100%)、6gの重炭酸ナトリウム(NaHCO>99.7%)、固化溶液を希釈するための1.95mLの蒸留水、及びリン酸塩の供給源としての13.05mLのリン酸(HPO,85%)をそれぞれ混合した。2mLの蒸留水と3mLの固化溶液の混合物へ2.47gのMg(OH)を加えて、ペーストを生成した。
【0050】
[0070] この混合ペーストを1300Wエネルギー入力の家庭用マイクロ波へ移して、最高出力で5分間焼いた。乳棒を使用して、生じた塊を微粉末へ粉砕した。次いで、2gのMPC粉末を0.5〜0.8mLの水又はナノシリカゾルと混合した。いずれの場合でも、生成したペーストは、形状化及び注射することができて、45°F、73°F、及び98.6°Fの環境で自己固化することが可能であった。
【0051】
[0071] 実施例4
[0072] 0.5mL蒸留水と1.5mL固化溶液の混合物へ1.235g Mg(OH)を加えることによって、セメントペーストを製造した。このペーストをディスク試料へ硬化させた。新たに製造した同じペーストをマイクロ波で10分間処理して、粉末を製造した。合成した粉末の1gを0.4mL蒸留水と混合してペーストを生成して、硬化塊へ固化させた。図面13は、マイクロ波処理後に生成したMg−P前駆体、Mg(OH)及びHPOとの直接混合によって生成したMg−Pセメント、及びマイクロ波処理後に硬化したMg−PセメントのXRDパターンを比較する。図面14は、先の前駆体、直接混合によって生成したセメント、及びマイクロ波処理後に生成したセメントのSEM画像を示す。生成したMg−Pは、ニューベリーアイト(MgHPO・3HO)である。
【0052】
[0073] 擬似体液(SBF)中で7日間のインキュベーションの後で、Mg−Pセメントは、板状結晶とMg2+、Ca2+、Na、及びPO3−イオンのあるアパタイトへ変換された。図面15は、このことを図示するSEM画像を示す。図面16は、7日間のSBFインキュベーション後のMg−PセメントのXRDパターンを示し、一部のニューベリーライト(MgHPO・3HO)がボビエルライト(Mg(PO・8HO)へ変換したことを示す。
【0053】
[0074] 実施例5
[0075] 蒸留水の固化溶液を使用して、ストロンチウム含有セメントを製造した。反応体は、Mg(OH)とHPOの結晶であった。前駆体の製造において、3g Mg(OH)と3.36g HPOを3mLの水と混合した。1分の混合の後で、生成したペーストを5分間の最高出力での加熱処理のためにマイクロ波オーブンへ送った。生成した脆性の粉末を微粉末へ砕いた。この粉末を、SrClを含有する水(1mLの水に対して0.01g SrCl)と3g/mLの重量/容量比で混合してペーストを生成すると、これは5分後に固化した。そのような少量のSrClを加えたので、生じるセメントXRDパターンに変化を見ることができない。
【0054】
[0076] 本明細書の様々な実施例では、Ca−P相を大半の成分として有するセメント
について記載するが、Srのような他のアルカリ土類を加えて、添加Ca−P相を合成することができる。Sr添加Ca−P又はMg−P相のある態様において、生じるセメントは、放射線不透過性を有して、細胞増殖を促進する。このことは、当業者には容易に明らかになろう。
【0055】
[0077] 本明細書での「セメント」という用語は、ペースト、スラリー、パテ、セメント製剤、及びセメント組成物と可換的に使用される。「〜の間」という用語は、文脈が他に示唆しなければ、終端が含まれる範囲に関連して使用される。本明細書での「貯蔵寿命」という用語は、リン酸カルシウムミネラル(複数)の粉末が密封容器において所定の時間帯の間、最も好ましくは少なくとも6ヶ月以上の間保存された後で、それが溶媒と混合されるときに固化してセメントを生成することを意味する。本明細書での「固化溶液」という用語は、酸化還元反応をもたらす溶液を意味する。本開示に従って使用されるような「注射可能な」という用語は、リン酸カルシウムミネラルを溶媒と混合してセメントペーストを生成して、このペーストを哺乳動物の身体への注射用のシリンジへ移す場合に関連する。「固化」という用語は、本明細書に記載されるような粉末成分と固化溶液を混合することによって生成されるペーストの室温又は体温での硬化を意味する。
【0056】
[0078] 本明細書の実施例では、本明細書で開示する骨セメント組成物のある態様が明確化される。これらの実施例は、本発明の特別な態様を示すものの、例解のためにのみ示されると理解されたい。上記の考察とこれらの実施例より、当業者は、本開示の本質的な特徴を確認することができて、本発明の精神及び範囲より逸脱することなく、様々な変更及び修飾を施して、本明細書に記載される組成物及び方法を様々な使用及び条件へ適用することができよう。本開示の本質的な範囲より逸脱することなく、様々な変更をなし得て、その要素を種々の等価物で代用し得よう。加えて、本開示の本質的な範囲より逸脱することなく、その教示に対して特別な状況又は材料を適用すべく多くの修飾を施すことができよう。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16