IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DMG森精機株式会社の特許一覧

特開2022-106438工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム
<>
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図1
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図2
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図3
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図4
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図5
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図6
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図7
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図8
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図9
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図10
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図11
  • 特開-工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022106438
(43)【公開日】2022-07-20
(54)【発明の名称】工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム
(51)【国際特許分類】
   B23Q 17/09 20060101AFI20220712BHJP
【FI】
B23Q17/09 H
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021001432
(22)【出願日】2021-01-07
(11)【特許番号】
(45)【特許公報発行日】2021-09-15
(71)【出願人】
【識別番号】000146847
【氏名又は名称】DMG森精機株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】入野 成弘
(72)【発明者】
【氏名】今別府 泰宏
(72)【発明者】
【氏名】河合 謙吾
(72)【発明者】
【氏名】ハイデム ブジュナア
【テーマコード(参考)】
3C029
【Fターム(参考)】
3C029CC06
3C029CC07
(57)【要約】
【課題】動力計を用いる以外の新たな方法で切削力を推定する技術を提供する。
【解決手段】工具を用いてワークを切削することが可能な工作機械は、ワークの切削により力を受ける、工作機械内の第1面と、ワークの切削により力を受ける、工作機械内の第2面とを備える。第2面は、第1面と平行ではなく、第1面と第2面とに連結している第1歪みセンサと、ワークの切削中における第1歪みセンサの出力値に基づいて、工具にかかる力を推定するための推定部とを備える。
【選択図】図2
【特許請求の範囲】
【請求項1】
工具を用いてワークを切削することが可能な工作機械であって、
前記ワークの切削により力を受ける、前記工作機械内の第1面と、
前記ワークの切削により力を受ける、前記工作機械内の第2面とを備え、前記第2面は、前記第1面と平行ではなく、
前記第1面と前記第2面とに連結している第1歪みセンサと、
前記ワークの切削中における前記第1歪みセンサの出力値に基づいて、前記工具にかかる力を推定するための推定部とを備える、工作機械。
【請求項2】
前記工作機械は、さらに、
前記工具を回転するための主軸と、
前記主軸を収容するためのハウジングとを備え、
前記第1面は、前記主軸の軸方向と所定角度を成す面であって前記ハウジング上の一面であり、
前記第2面は、前記主軸の軸方向に平行な面であって前記ハウジング上の一面である、請求項1に記載の工作機械。
【請求項3】
前記工作機械は、さらに、
前記ワークを回転するための主軸と、
前記ワークを切削する工具を保持可能に構成される刃物台とを備え、
前記第1面は、前記主軸の軸方向と所定角度を成す面であって前記刃物台上の一面であり、
前記第2面は、前記主軸の軸方向に平行な面であって前記刃物台上または前記刃物台の設置面上の一面である、請求項1に記載の工作機械。
【請求項4】
前記所定角度は、90度である、請求項2または3に記載の工作機械。
【請求項5】
前記工作機械は、さらに、
第2歪みセンサと、
第3歪みセンサと、
第4歪みセンサとを備え、
前記第2歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第3面とに連結しており、前記第3面は、前記第1面と平行ではなく、
前記第3歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第4面とに連結しており、前記第4面は、前記第1面と平行ではなく、かつ、前記第2面と対向しており、
前記第4歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第5面とに連結しており、前記第5面は、前記第1面と平行ではなく、かつ、前記第3面と対向している、請求項4に記載の工作機械。
【請求項6】
前記工作機械は、さらに、
第2歪みセンサと、
第3歪みセンサとを備え、
前記第2歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第3面とに連結しており、前記第3面は、前記第1面と平行ではなく、かつ、前記第2面と対向してらず、
前記第3歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第4面とに連結しており、前記第4面は、前記第1面と平行ではなく、かつ、前記第2面および前記第3面と対向していない、請求項4に記載の工作機械。
【請求項7】
工作機械においてワークを切削している際に工具にかかる力の推定方法であって、
前記工作機械は、
前記ワークの切削により力を受ける、前記工作機械内の第1面と、
前記ワークの切削により力を受ける、前記工作機械内の第2面とを備え、前記第2面は、前記第1面と平行ではなく、
前記工作機械は、さらに、前記第1面と前記第2面とに連結している歪みセンサを備え、
前記推定方法は、
前記ワークの切削中に前記歪みセンサの出力値を取得するステップと、
前記出力値に基づいて、前記工具にかかる力を推定するステップとを備える、推定方法。
【請求項8】
工作機械においてワークを切削している際に工具にかかる力の推定プログラムであって、
前記工作機械は、
前記ワークの切削により力を受ける、前記工作機械内の第1面と、
前記ワークの切削により力を受ける、前記工作機械内の第2面とを備え、前記第2面は、前記第1面と平行ではなく、
前記工作機械は、さらに、前記第1面と前記第2面とに連結している歪みセンサを備え、
前記推定プログラムは、前記工作機械に、
前記ワークの切削中に前記歪みセンサの出力値を取得するステップと、
前記出力値に基づいて、前記工具にかかる力を推定するステップとを実行させる、推定プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、工具にかかる力を推定するための技術に関する。
【背景技術】
【0002】
ワークの加工中に工具にかかる力(以下、「切削力」ともいう。)を推定するための技術が開発されている。当該技術に関し、特開平06-315853号公報(特許文献1)は、動力計を用いて切削力を推定する旋削機械を開示している。当該動力計は、旋削機械のタレットに設けられており、タレットに取り付けられている工具にかかる切削力を検出する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平06-315853号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
動力計は、高価であるため、動力計を用いる以外の新たな方法で切削力を推定できる技術が望まれている。
【課題を解決するための手段】
【0005】
本開示の一例では、工具を用いてワークを切削することが可能な工作機械は、上記ワークの切削により力を受ける、上記工作機械内の第1面と、上記ワークの切削により力を受ける、上記工作機械内の第2面とを備える。上記第2面は、上記第1面と平行ではなく、上記第1面と上記第2面とに連結している第1歪みセンサと、上記ワークの切削中における上記第1歪みセンサの出力値に基づいて、上記工具にかかる力を推定するための推定部とを備える。
【0006】
本開示の一例では、上記工作機械は、さらに、上記工具を回転するための主軸と、上記主軸を収容するためのハウジングとを備える。上記第1面は、上記主軸の軸方向と所定角度を成す面であって上記ハウジング上の一面である。上記第2面は、上記主軸の軸方向に平行な面であって上記ハウジング上の一面である。
【0007】
本開示の一例では、上記工作機械は、さらに、上記ワークを回転するための主軸と、上記ワークを切削する工具を保持可能に構成される刃物台とを備える。上記第1面は、上記主軸の軸方向と上記所定角度を成す面であって上記刃物台上の一面である。上記第2面は、上記主軸の軸方向に平行な面であって上記刃物台上または上記刃物台の設置面上の一面である。
【0008】
本開示の一例では、上記所定角度は、90度である。
【0009】
本開示の一例では、上記工作機械は、さらに、第2歪みセンサと、第3歪みセンサと、第4歪みセンサとを備える。上記第2歪みセンサは、上記第1面と、上記ワークの切削により力を受ける第3面とに連結している。上記第3面は、上記第1面と平行ではない。上記第3歪みセンサは、上記第1面と、上記ワークの切削により力を受ける第4面とに連結している。上記第4面は、上記第1面と平行ではなく、かつ、上記第2面と対向している。上記第4歪みセンサは、上記第1面と、上記ワークの切削により力を受ける第5面とに連結している。上記第5面は、上記第1面と平行ではなく、かつ、上記第3面と対向している。
【0010】
本開示の一例では、上記工作機械は、さらに、第2歪みセンサと、第3歪みセンサとを備える。上記第2歪みセンサは、上記第1面と、上記ワークの切削により力を受ける第3面とに連結している。上記第3面は、上記第1面と平行ではなく、かつ、上記第2面と対向していない。上記第3歪みセンサは、上記第1面と、上記ワークの切削により力を受ける第4面とに連結している。上記第4面は、上記第1面と平行ではなく、かつ、上記第2面および上記第3面と対向していない。
【0011】
本開示の他の例では、工作機械においてワークを切削している際に工具にかかる力の推定方法が提供される。上記工作機械は、上記ワークの切削により力を受ける、上記工作機械内の第1面と、上記ワークの切削により力を受ける、上記工作機械内の第2面とを備える。上記第2面は、上記第1面と平行ではない。上記工作機械は、さらに、上記第1面と上記第2面とに連結している歪みセンサを備える。上記推定方法は、上記ワークの切削中に上記歪みセンサの出力値を取得するステップと、上記出力値に基づいて、上記工具にかかる力を推定するステップとを備える。
【0012】
本開示の他の例では、工作機械においてワークを切削している際に工具にかかる力の推定プログラムが提供される。上記工作機械は、上記ワークの切削により力を受ける、上記工作機械内の第1面と、上記ワークの切削により力を受ける、上記工作機械内の第2面とを備える。上記第2面は、上記第1面と平行ではない。上記工作機械は、さらに、上記第1面と上記第2面とに連結している歪みセンサを備える。上記推定プログラムは、上記工作機械に、上記ワークの切削中に上記歪みセンサの出力値を取得するステップと、上記出力値に基づいて、上記工具にかかる力を推定するステップとを実行させる。
【0013】
本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。
【図面の簡単な説明】
【0014】
図1】工作機械の装置構成の一例を示す図である。
図2】歪みセンサが取り付けられた主軸頭を示す図である。
図3】主軸頭に外力が加わっている場合における主軸頭の歪みの度合いを視覚的に示す図である。
図4】工作機械の機能構成の一例を示す図である。
図5】CNC(Computer Numerical Control)ユニットのハードウェア構成の一例を示す模式図である。
図6】切削力の推定処理の流れを示すフローチャートである。
図7】主軸頭のハウジングをZ方向から示す正面図である。
図8】主軸頭のハウジングをX方向から示す側面図である。
図9】主軸頭のハウジングをZ方向から示す正面図である。
図10】主軸頭のハウジングをX方向から示す側面図である。
図11】歪みセンサの様々な配置パターンを示す図である。
図12】変形例に従う工作機械を示す図である。
【発明を実施するための形態】
【0015】
以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。
【0016】
<A.工作機械10の構成>
まず、図1を参照して、工作機械10の装置構成について説明する。図1は、工作機械10の装置構成の一例を示す図である。
【0017】
図1には、マシニングセンタとしての工作機械10が示されている。工作機械10は、横形のマシニングセンタであってもよいし、縦形のマシニングセンタであってもよい。
【0018】
以下では、マシニングセンタとしての工作機械10について説明するが、工作機械10は、マシニングセンタに限定されない。たとえば、工作機械10は、旋盤であってもよいし、付加加工機であってもよいし、その他の切削機械や研削機械であってもよい。
【0019】
図1に示されるように、工作機械10は、制御部50と、サーボドライバ111R,111X~111Zと、サーボモータ112R,112X~112Zと、移動体113と、主軸頭131と、工具134と、テーブル136とを含む。
【0020】
本明細書でいう「制御部50」とは、工作機械10を制御する装置を意味する。制御部50の装置構成は、任意である。制御部50は、単体の制御ユニットで構成されてもよいし、複数の制御ユニットで構成されてもよい。一例として、制御部50は、NC(Numerical Control)ユニットを含んでよいし、PLC(Programmable Logic Controller)を含んでもよい。
【0021】
主軸頭131は、主軸132と、ハウジング133とで構成されている。ハウジング133は、主軸132を収容するためのものである。主軸132には、被加工物であるワークWを加工するための工具が装着される。図1の例では、エンドミルとしての工具134が主軸132に装着されている。
【0022】
以下の説明では、主軸132の軸方向を「Z方向」と称し、重力方向(すなわち、紙面の上下方向)を「Y方向」と称し、Z方向およびY方向の両方に直交する方向を「X方向」と称する。
【0023】
制御部50は、加工開始指令を受けたことに基づいて、予め準備されている加工プログラムの実行を開始し、当該加工プログラムに従ってサーボドライバ111R,111X~111Zを制御することで、テーブル136に固定されるワークWを加工する。当該加工プログラムは、たとえば、NCプログラムで記述されている。
【0024】
サーボドライバ111Rは、制御部50から目標回転速度の入力を逐次的に受け、サーボモータ112R(回転駆動部)を制御する。サーボモータ112Rは、Z方向の軸を中心として主軸132を回転駆動する。より具体的には、サーボドライバ111Rは、サーボモータ112Rの回転角度を検知するためのエンコーダ(図示しない)のフィードバック信号からサーボモータ112Rの実回転速度を算出し、当該実回転速度が目標回転速度よりも小さい場合にはサーボモータ112Rの回転速度を上げ、当該実回転速度が目標回転速度よりも大きい場合にはサーボモータ112Rの回転速度を下げる。このように、サーボドライバ111Rは、サーボモータ112Rの回転速度のフィードバックを逐次的に受けながらサーボモータ112Rの回転速度を目標回転速度に近付ける。
【0025】
サーボドライバ111Xは、制御部50から目標位置の入力を逐次的に受け、サーボモータ112Xを制御する。サーボモータ112Xは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、X方向の任意の位置に主軸132を送り駆動する。より具体的には、サーボドライバ111Xは、サーボモータ112Xの回転角度を検知するためのエンコーダ(図示しない)のフィードバック信号から移動体113の実位置を算出し、当該実位置が目標位置よりも小さい場合にはサーボモータ112Xの実位置を上げ、当該実位置が目標位置よりも大きい場合にはサーボモータ112Xの実位置を下げる。このように、サーボドライバ111Xは、サーボモータ112Xの実位置のフィードバックを逐次的に受けながらサーボモータ112Xの実位置を目標位置に近付ける。これにより、サーボドライバ111Xは、X方向の任意の位置に主軸132を送り駆動する。
【0026】
サーボドライバ111Yは、制御部50から目標位置の入力を逐次的に受け、サーボモータ112Yを制御する。サーボモータ112Yは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、Y方向の任意の位置に主軸132を送り駆動する。サーボドライバ111Yによるサーボモータ112Yの制御方法は、サーボドライバ111Xと同様であるので、その説明については繰り返さない。
【0027】
サーボドライバ111Zは、制御部50から目標位置の入力を逐次的に受け、サーボモータ112Zを制御する。サーボモータ112Zは、主軸頭131が取り付けられている移動体113をボールネジ(図示しない)を介して送り駆動し、Z方向の任意の位置に主軸132を送り駆動する。サーボドライバ111Zによるサーボモータ112Zの制御方法は、サーボドライバ111Xと同様であるので、その説明については繰り返さない。
【0028】
<B.概要>
次に、工作機械10による切削力の推定方法の概要について説明する。
【0029】
工作機械10は、歪みセンサを用いて、ワークの加工中に工具にかかる切削力を推定する。歪みセンサは、その装着部分の歪みを検出するためのセンサである。歪みとは、装着部分に加わる外力に応じて当該装着部分が変形する度合いを示す。歪みセンサは、その装着部分の変形の度合いを電気信号として検出する。当該電気信号は、AD(Analog-to-Digital)変換回路によりデジタル値に変換された上で工作機械10の制御部50に出力される。
【0030】
歪みセンサは、工作機械10内の第1面と第2面とに連結するように設けられる。第1面および第2面は、ワークの切削中に力を受ける面であり、工作機械10内の部材の表面を成す面である。第1面および第2面は、互いに平行ではない。異なる言い方をすれば、第2面は、第1面と所定角度を成す。
【0031】
第1面および第2面は、それぞれ、同一部材上の面であってもよいし、異なる部材上の面であってもよい。また、第1面および第2面は、平面であってもよいし、曲面であってもよい。
【0032】
第1面および第2面の少なくとも一方がワークの加工中に外力を受けると、第1面および第2面の一方の面に対する他方の面の相対位置は微少に変化する。これに応じて、歪みセンサが歪む。歪みセンサは、その歪みの度合いに応じた出力値を出力する。このとき、第1面および第2面にかかる外力が大きいほど、歪みセンサの歪みの度合いが大きくなり、歪みセンサの出力値が大きくなる。
【0033】
この点に着目して、工作機械10は、ワークの切削中における歪みセンサの出力値に基づいて、工具にかかる切削力を推定する。歪みセンサは、動力計などの他のセンサと比べて安価である。そのため、歪みセンサが用いられることで、工作機械10自体の価格が安くなる。また、歪みセンサは、工作機械10内の任意の部材に取り付られ得、加工中に工具にかかる切削力を容易に検出することができる。
【0034】
<C.歪みセンサの取り付け位置>
次に、図2および図3を参照して、歪みセンサの取り付け位置の具体例について説明する。図2は、歪みセンサ140が取り付けられた主軸頭131を示す図である。
【0035】
歪みセンサ140は、たとえば、主軸頭131のハウジング133に装着される。ハウジング133は、フランジ部133Aと、円筒部133Bとで構成される。フランジ部133Aは、円筒部133Bの端部と繋がっている。
【0036】
歪みセンサ140の一端は、フランジ部133A上の面SF1(第1面)に連結されている。面SF1は、主軸132の軸方向(すなわち、Z方向)と所定角度を成す面であり、Z方向と平行ではない面である。典型的には、当該所定角度は、約90度である。一例として、面SF1は、XY平面と平行な面である。
【0037】
一方、歪みセンサ140の他端は、円筒部133B上の面SF2(第2面)に連結されている。面SF2は、面SF1とは平行ではない面である。異なる言い方をすれば、面SF2は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。この場合、面SF2は、面SF1と直交する。一例として、面SF2は、主軸132の軸方向(すなわち、Z方向)と平行な面であってハウジング133上の一面である。
【0038】
歪みセンサ140は、固定部材141と、カバー142と、センシング部143とを含む。センシング部143は、金属箔等で構成され、当該金属箔の伸縮による抵抗値の変化を歪みとして検出する。当該抵抗値の変化は、センシング部143に接続される導線(図示しない)を介して工作機械10の制御部などに出力される。センシング部143は、固定部材141に形成された穴内に貼り付けられており、カバー142によって封止されている。
【0039】
図3は、主軸頭131に外力が加わっている場合における主軸頭131の歪みの度合いを視覚的に示す図である。より詳細には、図3(A)には、加工中においてY方向の正側から負側に力を受けている主軸頭131が示されている。図3(B)には、主軸頭131の各部分の歪みの度合いが濃淡で示されている。なお、説明の便宜のために、図3(B)には、曲がっている状態の主軸頭131が示されているが、実際には、加工中における主軸頭131の曲がり度合いは図3(B)に示されるよりも微少である。
【0040】
図3(B)に示されるように、主軸頭131が加工中に力を受けている場合、主軸頭131の歪みの度合いは、フランジ部133Aと円筒部133Bとの接続部分で最大となる。そのため、歪みセンサ140は、フランジ部133Aと円筒部133Bとに連結されことで主軸頭131の歪みの影響を受けやすくなり、主軸頭131にかかる力を感度よく検出することができる。
【0041】
なお、上述では、歪みセンサ140が主軸頭131に取り付けられている例について説明を行ったが、歪みセンサ140の取り付け位置は、主軸頭131に限定されず、切削により力を受ける任意の部材上に取り付けられ得る。
【0042】
また、上述では、1つの歪みセンサ140が工作機械10に設けられている例について説明を行ったが、2つ以上の歪みセンサ140が工作機械10に設けられてもよい。
【0043】
<D.機能構成>
次に、図4を参照して、切削力の推定処理を実現するための機能構成について説明する。図4は、工作機械10の機能構成の一例を示す図である。
【0044】
図4に示されるように、工作機械10は、機能構成として、取得部52と、推定部54と、出力部56とを含む。
【0045】
取得部52は、歪みセンサ140の出力値を取得するための機能モジュールである。取得部52は、加工プログラムの実行中において、歪みセンサ140の出力値を順次取得する。取得部52は、歪みセンサ140の出力値を推定部54に順次出力する。
【0046】
推定部54は、歪みセンサ140の出力値と切削力との予め定められた相関関係126に基づいて、歪みセンサ140の出力値から切削力を推定する。相関関係126における歪みセンサの出力値と切削力との関係は、テーブル形式で規定されてもよいし、所定の算出式で規定されていてもよい。当該算出式は、たとえば、歪みセンサ140の出力値を説明変数とし、工具にかかる切削力を目的変数とする。
【0047】
典型的には、相関関係126は、歪みセンサ140の出力値が大きいほど推定値としての切削力が大きくなるように規定される。異なる言い方をすれば、相関関係126は、歪みセンサ140の出力値が小さいほど推定値としての切削力が小さくなるように規定される。
【0048】
出力部56は、推定部54によって推定された切削力を種々の態様で出力する。ある局面において、出力部56は、推定された切削力が所定値を超えたことに基づいて、予め定められた異常対処処理を実行する。当該異常対処処理は、たとえば、過大な力が工具にかかったことを示す警告を作業者に出力する処理である。警告の出力態様は、任意である。一例として、当該警告は、工作機械10のディスプレイ上に表示されてもよいし、音声で出力されてもよいし、レポート形式でデータとして出力されてもよい。
【0049】
他の局面において、出力部56は、推定された切削力に基づいて、工作機械10内の駆動機構(たとえば、上述のサーボドライバ111R,111X,111Y,111Z)を制御する。一例として、出力部56は、推定された切削力が所定値を超えたことに基づいて、工作機械10内の駆動機構を停止する。他の例として、出力部56は、推定された切削力に基づいて、主軸132の移動速度、主軸132の回転速度などを制御する。
【0050】
他の局面において、出力部56は、推定された切削力をログとして出力する。ログの出力形式は、任意である。一例として、出力部56は、推定された切削力を時刻に対応付けた上でログに出力する。これにより、作業者は、ログを確認することで異常の原因を突き止めることができる。
【0051】
<E.CNCユニット30のハードウェア構成>
次に、図5を参照して、制御部50の一例であるCNCユニット30のハードウェア構成について説明する。図5は、CNCユニット30のハードウェア構成の一例を示す模式図である。
【0052】
CNCユニット30は、プロセッサ101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、通信インターフェイス104と、フィールドバスコントローラ105と、記憶装置120と、上述の歪みセンサ140とを含む。これらのコンポーネントは、内部バス109に接続される。
【0053】
プロセッサ101は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのGPU(Graphics Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成され得る。
【0054】
プロセッサ101は、加工プログラム122および推定プログラム124などの各種プログラムを実行することでCNCユニット30の動作を制御する。プロセッサ101は、各種プログラムの実行命令を受け付けたことに基づいて、記憶装置120またはROM102からRAM103にプログラムを読み出す。RAM103は、ワーキングメモリとして機能し、プログラムの実行に必要な各種データを一時的に格納する。
【0055】
通信インターフェイス104には、LANやアンテナなどが接続される。CNCユニット30は、通信インターフェイス104を介して外部機器(たとえば、サーバー)とデータをやり取りする。CNCユニット30は、加工プログラム122および推定プログラム124を当該外部機器からダウンロードできるように構成されてもよい。
【0056】
フィールドバスコントローラ105は、フィールドバスに接続される各種ユニットとの通信を実現するためのインターフェイスである。当該フィールドバスに接続されるユニットの一例として、PLCやI/Oユニットなどが挙げられる。
【0057】
記憶装置120は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。記憶装置120は、加工プログラム122、推定プログラム124、および上述の相関関係126などを格納する。
【0058】
加工プログラム122は、ワークの加工を実現するための各種命令を規定している。推定プログラム124は、歪みセンサ140の出力値と切削力との相関関係126と、歪みセンサ140の出力値とに基づいて、切削力を推定するためのプログラムである。当該切削力は、たとえば、加工プログラム122によって参照される。
【0059】
加工プログラム122、推定プログラム124、および相関関係126の格納場所は、記憶装置120に限定されず、プロセッサ101の記憶領域(たとえば、キャッシュメモリなど)、ROM102、RAM103、外部機器(たとえば、サーバー)などに格納されていてもよい。
【0060】
推定プログラム124は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、推定プログラム124による切削力の推定処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う推定プログラム124の趣旨を逸脱するものではない。さらに、推定プログラム124によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが推定プログラム124の処理の一部を実行する所謂クラウドサービスのような形態で工作機械10が構成されてもよい。
【0061】
<F.制御フロー>
次に、図6を参照して、切削力の推定処理に係る制御フローについて説明する。図6は、切削力の推定処理の流れを示すフローチャートである。
【0062】
図6に示される処理は、制御部50が制御プログラムを実行することにより実現される。他の局面において、処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。
【0063】
ステップS110において、制御部50は、加工プログラム122が実行されたか否かを判断する。制御部50は、加工プログラム122が実行されたと判断した場合(ステップS110においてYES)、制御をステップS112に切り替える。そうでない場合には(ステップS110においてNO)、制御部50は、ステップS110の処理を再び実行する。
【0064】
ステップS112において、制御部50は、上述の取得部52(図4参照)として機能し、歪みセンサ140の出力値を取得する。
【0065】
ステップS114において、制御部50は、上述の推定部54(図4参照)として機能し、歪みセンサ140の出力値に基づいて、工具にかかる切削力を推定する。当該切削力の推定方法については上述の通りであるので、その説明については繰り返さない。
【0066】
ステップS120において、制御部50は、ステップS114で推定された切削力が所定値を超えたか否かを判断する。制御部50は、当該切削力が所定値を超えたと判断した場合(ステップS120においてYES)、制御をステップS122に切り替える。そうでない場合には(ステップS120においてNO)、制御部50は、制御をステップS130に切り替える。
【0067】
ステップS122において、制御部50は、上述の出力部56(図4参照)として機能し、工作機械10内の駆動機構(たとえば、上述のサーボドライバ111R,111X,111Y,111Z)に停止指令を出力する。これにより、加工が停止する。
【0068】
ステップS130において、制御部50は、加工が終了したか否かを判断する。一例として、制御部50は、ユーザによる停止操作を受け付けた場合、加工プログラムが最終行まで実行された場合、または加工プログラムが所定回数実行された場合などに、加工が終了したと判断する。制御部50は、加工が終了したと判断した場合(ステップS130においてYES)、図6に示される処理を終了する。そうでない場合には(ステップS130においてNO)、制御部50は、制御をステップS112に戻す。
【0069】
<G.変形例1>
次に、図7および図8を参照して、変形例1に従う工作機械10について説明する。図7は、主軸頭131のハウジング133をZ方向から示す正面図である。図8は、主軸頭131のハウジング133をX方向から示す側面図である。
【0070】
上述の工作機械10においては、1つの歪みセンサ140がハウジング133に設けられていた。これに対して、本変形例に従う工作機械10においては、4つの歪みセンサ140A~140Dがハウジング133に設けられている。歪みセンサ140A~140Dは、上述の歪みセンサ140と同じセンサである。
【0071】
上述のように、主軸頭131のハウジング133は、フランジ部133Aと、円筒部133Bとで構成される。フランジ部133Aは、円筒部133Bの端部と繋がっている。
【0072】
フランジ部133Aは、加工中にワークから力を受ける面SF1を含む。面SF1は、フランジ部133Aとの接続面であり、XY平面と平行な一面である。
【0073】
円筒部133Bは、加工中にワークから力を受ける面SF2~SF5を含む。面SF2~SF5のそれぞれは、円筒部133Bの外面の一部を成し、主軸132の軸方向(すなわち、Z方向)と平行な面である。
【0074】
面SF2は、面SF1と平行ではない面である。異なる言い方をすれば、面SF2は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。この場合、面SF2は、面SF1と直交する。
【0075】
面SF3は、面SF1と平行ではない面である。異なる言い方をすれば、面SF3は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。また、主軸132の軸方向(すなわち、Z方向)から見た場合において、主軸132の回転中心から面SF3の中心に向かう方向と、主軸132の回転中心から面SF2の中心に向かう方向との間の角度は、約90度である。
【0076】
面SF4は、面SF1と平行ではない面である。異なる言い方をすれば、面SF4は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。また、面SF4は、面SF2に対向している。より具体的には、主軸132の軸方向(すなわち、Z方向)から見た場合において、主軸132の回転中心から面SF4の中心に向かう方向と、主軸132の回転中心から面SF2の中心に向かう方向とが成す角度は、約180度である。
【0077】
面SF5は、面SF1と平行ではない面である。異なる言い方をすれば、面SF5は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。また、面SF5は、面SF3に対向している。より具体的には、主軸132の軸方向(すなわち、Z方向)から見た場合において、主軸132の回転中心から面SF5の中心に向かう方向と、主軸132の回転中心から面SF3の中心に向かう方向とが成す角度は、約180度である。
【0078】
歪みセンサ140Aの一端は面SF1に連結されており、歪みセンサ140Aの他端は面SF2に連結されている。また、歪みセンサ140Bの一端は面SF1に連結されており、歪みセンサ140Bの他端は面SF3に連結されている。また、歪みセンサ140Cの一端は面SF1に連結されており、歪みセンサ140Cの他端は面SF4に連結されている。また、歪みセンサ140Dの一端は面SF1に連結されており、歪みセンサ140Dの他端は面SF5に連結されている。その結果、図7および図8に示されるように、歪みセンサ140A~140Dは、主軸132の軸中心から見て90度間隔で等間隔に設けられる。
【0079】
工作機械10は、歪みセンサ140A~140Dのそれぞれの出力値に基づいて、X,Y,Z方向のそれぞれにおける切削力を推定する。各方向の切削力は、たとえば、下記の式(1)に基づいて推定される。
【0080】
F=M・S・・・(1)
式(1)に示される「F」は、X,Y,Z方向の各方向における切削力(F,F,F)を成分とするベクトルである。「S」は、歪みセンサ140A~140Dの各々の出力値(S,S,S,S)を成分とするベクトルである。「M」は、固定値からなる行列である。「M」の値は、歪みセンサ140A~140Dの位置関係などに基づいて、工作機械10の設計時などに予め決められる。
【0081】
<H.変形例2>
次に、図9および図10を参照して、変形例2に従う工作機械10について説明する。図9は、主軸頭131のハウジング133をZ方向から示す正面図である。図10は、主軸頭131のハウジング133をX方向から示す側面図である。
【0082】
変形例1に従う工作機械10においては、4つの歪みセンサ140A~140Dがハウジング133に設けられていた。これに対して、本変形例に従う工作機械10においては、3つの歪みセンサ140A~140Cがハウジング133に設けられている。
【0083】
上述のように、主軸頭131のハウジング133は、フランジ部133Aと、円筒部133Bとで構成される。フランジ部133Aは、円筒部133Bの端部と繋がっている。
【0084】
フランジ部133Aは、加工中にワークから力を受ける面SF1を含む。面SF1は、フランジ部133Aとの接続面であり、XY平面と平行な一面である。
【0085】
円筒部133Bは、加工中にワークから力を受ける面SF2~SF4を含む。面SF2~SF4のそれぞれは、円筒部133Bの外面の一部を成し、主軸132の軸方向(すなわち、Z方向)と平行な面である。
【0086】
面SF2は、面SF1と平行ではない面である。異なる言い方をすれば、面SF2は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。この場合、面SF2は、面SF1と直交する。
【0087】
面SF3は、面SF1と平行ではない面である。異なる言い方をすれば、面SF3は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。また、面SF3は、面SF2と対向していない。一例として、主軸132の軸方向(すなわち、Z方向)から見た場合において、主軸132の回転中心から面SF3の中心に向かう方向と、主軸132の回転中心から面SF2の中心に向かう方向との間の角度は、約120度である。
【0088】
面SF4は、面SF1と平行ではない面である。異なる言い方をすれば、面SF4は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。また、面SF4は、面SF2および面SF3の両方と対向していない。より具体的には、主軸132の軸方向(すなわち、Z方向)から見た場合において、主軸132の回転中心から面SF4の中心に向かう方向と、主軸132の回転中心から面SF2の中心に向かう方向とが成す角度は、約120度である。
【0089】
歪みセンサ140Aの一端は面SF1に連結されており、歪みセンサ140Aの他端は面SF2に連結されている。また、歪みセンサ140Bの一端は面SF1に連結されており、歪みセンサ140Bの他端は面SF3に連結されている。また、歪みセンサ140Cの一端は面SF1に連結されており、歪みセンサ140Cの他端は面SF4に連結されている。その結果、図9および図10に示されるように、歪みセンサ140A~140Cは、主軸132の軸中心から見て120度間隔で等間隔に設けられる。
【0090】
工作機械10は、歪みセンサ140A~140Cのそれぞれの出力値に基づいて、X,Y,Z方向のそれぞれにおける切削力を推定する。各方向の切削力は、たとえば、下記の式(2)に基づいて推定される。
【0091】
F=M・S・・・(2)
式(2)に示される「F」は、X,Y,Z方向の各方向における切削力(F,F,F)を成分とするベクトルである。「S」は、歪みセンサ140A~140Cの各々の出力値(S,S,S)を成分とするベクトルである。「M」は、固定値からなる行列である。「M」の値は、歪みセンサ140A~140Cの位置関係などに基づいて、工作機械10の設計時などに予め決められる。
【0092】
<I.変形例3>
次に、図11を参照して、歪みセンサ140の配置パターンの他の例について説明する。図11は、歪みセンサ140の様々な配置パターンを示す図である。図11には、歪みセンサ140の配置パターンとしてパターン(A)~(F)が示されている。
【0093】
上述の図7および図8の例では、歪みセンサ140A~140Dは、主軸132の軸方向から見て90度間隔に配置されていたが、歪みセンサ140A~140Dは、パターン(A)~(C)に示されるように配置されてもよい。
【0094】
また、上述の図9および図10の例では、歪みセンサ140A~140Cは、主軸132の軸方向から見て120度間隔に配置されていたが、歪みセンサ140A~140Cは、パターン(D),(E)に示されるように配置されてもよい。また、歪みセンサ140A~140Cは、図11のパターン(F)に示されるように配置されてもよい。
【0095】
<J.変形例4>
次に、図12を参照して、変形例4に従う工作機械10について説明する。図12は、変形例4に従う工作機械10を示す図である。
【0096】
本変形例における工作機械10は、回転するワークに工具を接触させてワークの加工を行なう旋削機能と、ワークに回転する工具を接触させてワークの加工を行なうミーリング機能とが備わった複合加工機である。
【0097】
図12に示されるように、工作機械10は、ベッド236と、ワーク主軸211と、対向ワーク主軸216と、工具主軸221と、刃物台231とを有する。
【0098】
ベッド236は、ワーク主軸211、対向ワーク主軸216、工具主軸221および刃物台231などを支持するためのベース部材であり、工場などの床面に設置されている。ベッド236は、鋳鉄などの金属から形成されている。
【0099】
ワーク主軸211および対向ワーク主軸216は、ワークを保持可能なように構成されている。ワーク主軸211および対向ワーク主軸216は、Z軸方向において、互いに対向して設けられている。ワーク主軸211および対向ワーク主軸216は、主に、固定工具を用いた旋削加工時にワークを回転させるために設けられている。ワーク主軸211は、Z軸に平行な中心軸201を中心に回転可能なように設けられている。対向ワーク主軸216は、Z軸に平行な中心軸202を中心に回転可能なように設けられている。ワーク主軸211および対向ワーク主軸216には、それぞれ、ワークを着脱可能なように把持するための第1チャック機構213および第2チャック機構218が設けられている。
【0100】
ワーク主軸211は、ベッド236上において固定されている。対向ワーク主軸216は、各種の送り機構、案内機構およびサーボモータなどによって、Z軸方向に移動可能なように設けられている。
【0101】
工具主軸221および刃物台231は、ワークを切削する工具を保持可能なように構成されている。工具主軸221は、刃物台231よりも上方に設けられている。
【0102】
工具主軸221は、鉛直方向に延びるY軸に平行な中心軸203を中心に回転可能に設けられている。工具主軸221には、工具を着脱可能に保持するためのクランプ機構(不図示)が設けられている。
【0103】
工具主軸221は、さらに、水平方向に延び、Z軸方向に直交するX軸に平行な中心軸204を中心に旋回可能に設けられている(B軸旋回)。工具主軸221の旋回範囲は、たとえば、工具主軸221の主軸端面223が下方を向く姿勢(図12中に示す姿勢)を基準にして±120°の範囲である。
【0104】
工具主軸221は、図示しないコラムなどによりベッド236上に支持されている。工具主軸221は、コラムなどに設けられた各種の送り機構、案内機構およびサーボモータなどによって、Y軸方向、X軸方向およびZ軸方向に移動可能に設けられている。
【0105】
刃物台231は、いわゆるタレット形であり、複数の工具が放射状に取り付けられ、旋回割り出しを行なう。
【0106】
より具体的には、刃物台231は、旋回部232を有する。旋回部232は、Z軸に平行な中心軸206を中心に旋回可能に設けられている。中心軸206を中心にその周方向に間隔を隔てた位置には、工具を保持するための工具ホルダが取り付けられている。旋回部232が中心軸206を中心に旋回することによって、工具ホルダに保持された工具が周方向に移動し、ワーク加工に用いられる工具が割り出される。
【0107】
刃物台231は、図示しないサドルなどによりベッド236上に支持されている。刃物台231は、サドルなどに設けられた各種の送り機構、案内機構およびサーボモータなどによって、Y軸方向とZ軸方向とに移動可能に設けられている。なお、刃物台231は、Z軸方向と、Z軸方向に直交し、鉛直方向成分を含む斜め上下方向とに移動可能に設けられてもよい。この場合に、刃物台231は、Y軸方向と、X軸方向とに同時に送られることによって、Z軸方向に直交し、鉛直方向成分を含む斜め上下方向に移動する構成であってもよい。
【0108】
工具主軸221および刃物台231の各々には、回転工具が保持されてもよいし、固定工具が保持されてもよい。回転工具は、回転しながらワークを加工する工具であり、ドリル、エンドミルまたはリーマなどである。刃物台231に回転工具を保持する場合、刃物台231には、回転を出力するモータと、モータから出力された回転を回転工具に伝達する動力伝達機構とが内蔵される。
【0109】
工作機械10は、スプラッシュガード210をさらに有する。スプラッシュガード210は、工作機械10の外観をなすとともに、ワークの加工エリア200を区画形成している。
【0110】
工作機械10は、刃物台231に設けられている歪みセンサ140を用いて、工具にかかる切削力を推定する。歪みセンサ140の一端は、面SF1(第1面)に連結されている。面SF1は、工具主軸221の軸方向(すなわち、Z方向)と所定角度を成す面であり、刃物台231上の一面である。典型的には、当該所定角度は、約90度である。一例として、面SF1は、XY平面と平行な一面である。
【0111】
一方、歪みセンサ140の他端は、面SF2(第2面)に連結されている。面SF2は、面SF1とは平行ではない面である。異なる言い方をすれば、面SF2は、面SF1と所定角度を成す。当該所定角度は、たとえば、約90度である。一例として、面SF2は、工具主軸221の軸方向(すなわち、Z方向)と平行な面であって刃物台231上の一面である。あるいは、面SF2は、工具主軸221の軸方向に平行な面であって刃物台231の設置面上(すなわち、ベッド236上)の一面である。典型的には、面SF2は、面SF1と直交する。
【0112】
歪みセンサ140は、加工中における刃物台231の歪みの度合いを検出する。工作機械10は、歪みセンサ140の出力値と切削力との予め定められた相関関係に基づいて、歪みセンサ140の出力値から切削力を推定する。当該相関関係における歪みセンサの出力値と切削力との関係は、テーブル形式で規定されてもよいし、所定の算出式で規定されていてもよい。当該算出式は、たとえば、歪みセンサ140の出力値を説明変数とし、工具にかかる切削力を目的変数とする。
【0113】
<K.まとめ>
以上のようにして、歪みセンサ140は、加工中に外力を受ける面SF1,SF2に連結される。面SF1と面SF2とは所定角度を成している。面SF1および面SF2が外力を受けると、面SF1および面SF2の相対位置が微少に変化し、それに応じて歪みセンサ140が歪む。工具が受ける外力が大きいほど、歪みセンサ140の歪みの度合いも大きくなり、歪みセンサ140の出力値が大きくなる。このように、歪みセンサ140の出力値は、工具にかかる切削力と相関している。したがって、工作機械10は、歪みセンサ140の出力値に基づいて、工具にかかる切削力を推定することができる。歪みセンサは、動力計などの他のセンサと比べて安価である。そのため、歪みセンサが用いられることで、工作機械10自体の価格が安くなる。
【0114】
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0115】
10 工作機械、30 CNCユニット、50 制御部、52 取得部、54 推定部、56 出力部、101 プロセッサ、102 ROM、103 RAM、104 通信インターフェイス、105 フィールドバスコントローラ、109 内部バス、111R,111X,111Y,111Z サーボドライバ、112R,112X,112Y,112Z サーボモータ、113 移動体、120 記憶装置、122 加工プログラム、124 推定プログラム、126 相関関係、131 主軸頭、132 主軸、133 ハウジング、133A フランジ部、133B 円筒部、134 工具、136 テーブル、140,140A,140B,140C,140D 歪みセンサ、141 固定部材、142 カバー、143 センシング部、200 加工エリア、201,202,203,204,206 中心軸、210 スプラッシュガード、211 ワーク主軸、213 第1チャック機構、216 対向ワーク主軸、218 第2チャック機構、221 工具主軸、223 主軸端面、231 刃物台、232 旋回部、236 ベッド。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
【手続補正書】
【提出日】2021-05-17
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
工具を用いてワークを切削することが可能な工作機械であって、
前記ワークの切削により力を受ける、前記工作機械内の第1面と、
前記ワークの切削により力を受ける、前記工作機械内の第2面とを備え、前記第2面は、前記第1面と平行ではなく、
前記第1面と前記第2面とに連結している第1歪みセンサと、
前記ワークの切削中における前記第1歪みセンサの出力値に基づいて、前記工具にかかる力を推定するための推定部とを備え、
前記第1歪みセンサは、前記第1面および前記第2面からなる接続部分に接触しない形状である、工作機械。
【請求項2】
前記第1歪みセンサは、
前記第1面および前記第2面に連結される固定部材と、
前記固定部材に設けられた穴に取り付けられたセンシング部とを含む、請求項1に記載の工作機械。
【請求項3】
前記工作機械は、さらに、
前記工具を回転するための主軸と、
前記主軸を収容するためのハウジングとを備え、
前記第1面は、前記主軸の軸方向と所定角度を成す面であって前記ハウジング上の一面であり、
前記第2面は、前記主軸の軸方向に平行な面であって前記ハウジング上の一面である、請求項1または2に記載の工作機械。
【請求項4】
前記工作機械は、さらに、
前記ワークを回転するための主軸と、
前記ワークを切削する工具を保持可能に構成される刃物台とを備え、
前記第1面は、前記主軸の軸方向と所定角度を成す面であって前記刃物台上の一面であり、
前記第2面は、前記主軸の軸方向に平行な面であって前記刃物台上または前記刃物台の設置面上の一面である、請求項1または2に記載の工作機械。
【請求項5】
前記所定角度は、90度である、請求項またはに記載の工作機械。
【請求項6】
前記工作機械は、さらに、
第2歪みセンサと、
第3歪みセンサと、
第4歪みセンサとを備え、
前記第2歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第3面とに連結しており、前記第3面は、前記第1面と平行ではなく、
前記第3歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第4面とに連結しており、前記第4面は、前記第1面と平行ではなく、かつ、前記第2面と対向しており、
前記第4歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第5面とに連結しており、前記第5面は、前記第1面と平行ではなく、かつ、前記第3面と対向している、請求項に記載の工作機械。
【請求項7】
前記工作機械は、さらに、
第2歪みセンサと、
第3歪みセンサとを備え、
前記第2歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第3面とに連結しており、前記第3面は、前記第1面と平行ではなく、かつ、前記第2面と対向してらず、
前記第3歪みセンサは、前記第1面と、前記ワークの切削により力を受ける第4面とに連結しており、前記第4面は、前記第1面と平行ではなく、かつ、前記第2面および前記第3面と対向していない、請求項に記載の工作機械。
【請求項8】
工作機械においてワークを切削している際に工具にかかる力の推定方法であって、
前記工作機械は、
前記ワークの切削により力を受ける、前記工作機械内の第1面と、
前記ワークの切削により力を受ける、前記工作機械内の第2面とを備え、前記第2面は、前記第1面と平行ではなく、
前記工作機械は、さらに、前記第1面と前記第2面とに連結している歪みセンサを備え、
前記歪みセンサは、前記第1面および前記第2面からなる接続部分に接触しない形状であり、
前記推定方法は、
前記ワークの切削中に前記歪みセンサの出力値を取得するステップと、
前記出力値に基づいて、前記工具にかかる力を推定するステップとを備える、推定方法。
【請求項9】
工作機械においてワークを切削している際に工具にかかる力の推定プログラムであって、
前記工作機械は、
前記ワークの切削により力を受ける、前記工作機械内の第1面と、
前記ワークの切削により力を受ける、前記工作機械内の第2面とを備え、前記第2面は、前記第1面と平行ではなく、
前記工作機械は、さらに、前記第1面と前記第2面とに連結している歪みセンサを備え、
前記歪みセンサは、前記第1面および前記第2面からなる接続部分に接触しない形状であり、
前記推定プログラムは、前記工作機械に、
前記ワークの切削中に前記歪みセンサの出力値を取得するステップと、
前記出力値に基づいて、前記工具にかかる力を推定するステップとを実行させる、推定プログラム。