IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 中国電力株式会社の特許一覧

特開2022-106535電源計画策定支援装置および電源計画策定支援プログラム
<>
  • 特開-電源計画策定支援装置および電源計画策定支援プログラム 図1
  • 特開-電源計画策定支援装置および電源計画策定支援プログラム 図2
  • 特開-電源計画策定支援装置および電源計画策定支援プログラム 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022106535
(43)【公開日】2022-07-20
(54)【発明の名称】電源計画策定支援装置および電源計画策定支援プログラム
(51)【国際特許分類】
   G06Q 50/06 20120101AFI20220712BHJP
   G06Q 10/06 20120101ALI20220712BHJP
【FI】
G06Q50/06
G06Q10/06 302
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2021001612
(22)【出願日】2021-01-07
(71)【出願人】
【識別番号】000211307
【氏名又は名称】中国電力株式会社
(74)【代理人】
【識別番号】100126561
【弁理士】
【氏名又は名称】原嶋 成時郎
(72)【発明者】
【氏名】蟻正 慎介
(72)【発明者】
【氏名】勝部 彰浩
(72)【発明者】
【氏名】杉山 暁彦
(72)【発明者】
【氏名】長尾 勇気
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049AA09
5L049CC06
(57)【要約】
【課題】各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を提供する。
【解決手段】電源の発電電力量に市場における電力量価格を乗じて電源の電力量収入を計算する手段(電力量収入計算タスク153)と、電源の発電余力に市場における供給力価格を乗じて電源の容量収入を計算する手段(容量収入想定タスク154)と、電力量収入と容量収入との合計から電源の燃料費と固定費との合計を減算して電源の収益を計算する手段(収益計算タスク157)と、収益と電源の初期投資額とを用いて電源の収益率を計算する手段(期待収益率計算タスク158)と、収益や収益率に基づいて電源の取扱いを判定する手段(判定タスク159)と、を有する。
【選択図】図1
【特許請求の範囲】
【請求項1】
電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段と、
前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段と、
前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段と、
前記収益に基づいて前記電源の取扱いを判定する手段と、を有する、
ことを特徴とする電源計画策定支援装置。
【請求項2】
電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段と、
前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段と、
前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段と、
前記収益と前記電源の初期投資額とを用いて前記電源の収益率を計算する手段と、
前記収益率に基づいて前記電源の取扱いを判定する手段と、を有する、
ことを特徴とする電源計画策定支援装置。
【請求項3】
電力量価格要因を入力とするとともに電力量価格を出力として機械学習によって構築される予測モデルを用いて前記市場における前記電力量価格を推計する手段を有する、
ことを特徴とする請求項1または2に記載の電源計画策定支援装置。
【請求項4】
収益率要因を入力とするとともに収益率を出力として機械学習によって構築される予測モデルを用いて前記電源の前記収益率を推計する手段を有する、
ことを特徴とする請求項2に記載の電源計画策定支援装置。
【請求項5】
コンピュータを、
電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段、
前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段、
前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段、および、
前記収益に基づいて前記電源の取扱いを判定する手段、として機能させる、
ことを特徴とする電源計画策定支援プログラム。
【請求項6】
コンピュータを、
電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段、
前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段、
前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段、
前記収益と前記電源の初期投資額とを用いて前記電源の収益率を計算する手段、および、
前記収益率に基づいて前記電源の取扱いを判定する手段、として機能させる、
ことを特徴とする電源計画策定支援プログラム。
【請求項7】
コンピュータを、
電力量価格要因を入力とするとともに電力量価格を出力として機械学習によって構築される予測モデルを用いて前記市場における前記電力量価格を推計する手段として機能させる、
ことを特徴とする請求項5または6に記載の電源計画策定支援プログラム。
【請求項8】
コンピュータを、
収益率要因を入力とするとともに収益率を出力として機械学習によって構築される予測モデルを用いて前記電源の前記収益率を推計する手段として機能させる、
ことを特徴とする請求項6に記載の電源計画策定支援プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、電源計画策定支援装置および電源計画策定支援プログラムに関し、具体的には、収益性に基づいて電源の存続または廃止ならびに新設または中止に係る計画の策定を支援する技術に関する。
【背景技術】
【0002】
電力取引市場において取引される電力の約定価格を予測する従来の技術として、過去の気象情報を含む環境実績情報や燃料価格実績などと電力市場価格とを関連づけて記憶し、気象情報を含む環境予報情報や燃料価格などに基づいて電力市場価格を予測するシステムが知られている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-046281号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、中長期的な電源計画を策定するためには各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化の情報が必要とされる。しかしながら、特許文献1に記載のシステムでは、既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化を予測することはできない。
【0005】
そこでこの発明は、各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を提供することが可能な、電源計画策定支援装置および電源計画策定支援プログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、請求項1の発明は、電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段と、前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段と、前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段と、前記収益に基づいて前記電源の取扱いを判定する手段と、を有する、ことを特徴とする電源計画策定支援装置である。
【0007】
請求項2の発明は、電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段と、前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段と、前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段と、前記収益と前記電源の初期投資額とを用いて前記電源の収益率を計算する手段と、前記収益率に基づいて前記電源の取扱いを判定する手段と、を有する、ことを特徴とする電源計画策定支援装置である。
【0008】
請求項3の発明は、請求項1または2に記載の電源計画策定支援装置において、電力量価格要因を入力とするとともに電力量価格を出力として機械学習によって構築される予測モデルを用いて前記市場における前記電力量価格を推計する手段を有する、ことを特徴とする。
【0009】
請求項4の発明は、請求項2に記載の電源計画策定支援装置において、収益率要因を入力とするとともに収益率を出力として機械学習によって構築される予測モデルを用いて前記電源の前記収益率を推計する手段を有する、ことを特徴とする。
【0010】
請求項5の発明は、コンピュータを、電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段、前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段、前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段、および、前記収益に基づいて前記電源の取扱いを判定する手段、として機能させる、ことを特徴とする電源計画策定支援プログラムである。
【0011】
請求項6の発明は、コンピュータを、電源の発電電力量に市場における電力量価格を乗じて前記電源の電力量収入を計算する手段、前記電源の発電余力に市場における供給力価格を乗じて前記電源の容量収入を計算する手段、前記電力量収入と前記容量収入との合計から前記電源の燃料費と固定費との合計を減算して前記電源の収益を計算する手段、前記収益と前記電源の初期投資額とを用いて前記電源の収益率を計算する手段、および、前記収益率に基づいて前記電源の取扱いを判定する手段、として機能させる、ことを特徴とする電源計画策定支援プログラムである。
【0012】
請求項7の発明は、請求項5または6に記載の電源計画策定支援プログラムにおいて、コンピュータを、電力量価格要因を入力とするとともに電力量価格を出力として機械学習によって構築される予測モデルを用いて前記市場における前記電力量価格を推計する手段として機能させる、ことを特徴とする。
【0013】
請求項8の発明は、請求項6に記載の電源計画策定支援プログラムにおいて、コンピュータを、収益率要因を入力とするとともに収益率を出力として機械学習によって構築される予測モデルを用いて前記電源の前記収益率を推計する手段として機能させる、ことを特徴とする。
【発明の効果】
【0014】
請求項1や請求項5の発明によれば、電力量収入と容量収入との合計から電源の燃料費と固定費との合計を減算して計算される収益に基づいて電源の取扱いを判定するので、収益を評価指標として用いて各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を提供することが可能となる。
【0015】
請求項2や請求項6の発明によれば、電力量収入と容量収入との合計から電源の燃料費と固定費との合計を減算して得られる収益と電源の初期投資額とを用いて計算される収益率に基づいて電源の取扱いを判定するので、収益率を評価指標として用いて各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を提供することが可能となる。
【0016】
請求項3や請求項7の発明によれば、電力量価格要因を入力とするとともに電力量価格を出力として機械学習によって構築される予測モデルを用いて市場における電力量価格を推計するので、過去の電力量価格に関する実績情報が反映された一層実際的な電力量価格を推計することが可能となり、延いては電源計画の策定を支援する技術としての信頼性の向上を図ることが可能となる。
【0017】
請求項4や請求項8の発明によれば、収益率要因を入力とするとともに収益率を出力として機械学習によって構築される予測モデルを用いて電源の収益率を推計するので、過去の収益率に関する実績情報が反映された一層実際的な収益率を推計することが可能となり、延いては電源計画の策定を支援する技術としての信頼性の向上を図ることが可能となる。
【図面の簡単な説明】
【0018】
図1】この発明の実施の形態に係る電源計画策定支援装置の概略構成を示す機能ブロック図である。
図2図1の電源計画策定支援装置の処理結果の一例を示す図である。
図3】実績データベースの構成の例を示す概念図である。
【発明を実施するための形態】
【0019】
以下、この発明を図示の実施の形態に基づいて説明する。
【0020】
この発明では、既設の電源の存続または廃止ならびに新規の電源(即ち、新設が予定されている電源や新設の計画案がある電源など)の新設または中止を所定のサイクルで判断することを「電源計画」と呼び、電源計画を策定する際のサイクルそれぞれのことを「評価期」と呼ぶ。電源計画を策定する際の1サイクル即ち評価期は、特定の時間長さに限定されるものではないものの、例えば1年,6か月,或いは3ヶ月程度に設定されることが考えられる。
【0021】
電源計画は過去のデータや実績などを参照しつつ策定される基本的には将来に向けての計画であり、電源計画が対象とする計画期間の長さは、特定の期間長に限定されるものではないものの、例えば今後10年間,20年間,或いは30年間程度に設定されることが考えられる。電源計画が対象とする計画期間の長さは、また、後述する期待収益率計算タスク158による、新規の電源の収益率を計算する際の評価期間の期間長が考慮されて設定されるようにしてもよい。
【0022】
電源は、発電設備のことであり、例えば原子力発電所,ガス/石炭/石油火力発電所,水力発電所,および再生可能エネルギー発電所(具体的には例えば、太陽光発電所,風力発電所,バイオマス発電所,地熱発電所,揚水発電所等)などを含む。
【0023】
電源計画は、所定の地域ごとに策定され、例えば送電・配電線網の広がり/纏まりや電源によって電力の供給が想定される地域の範囲などが考慮されるなどしたうえで設定される。電源計画を策定する際の地域の範囲それぞれのことを「計画エリア」と呼ぶ。なお、計画エリアは、日本国内の所定の地域の範囲に限定されるものではなく、外国の所定の地域の範囲であっても構わない。
【0024】
図1は、この発明の実施の形態に係る電源計画策定支援装置1の概略構成を示す機能ブロック図である。図2は、電源計画策定支援装置1の処理結果の一例を示す図である。図2に示す例では、或る計画エリアについて、既設の電源として発電所A,発電所B,および発電所Cがあり、新規(新設)の電源として発電所αおよび発電所βがあるとしている。図2では、また、各評価期(即ち、1サイクル)の時間長さが1年であり、電源計画が対象とする計画期間の始まりの評価期が「20XX年」であるとともに終わりの評価期が「20YY年」であるとしている。そして、電源計画は計画エリア別に策定されるところ、下記では上記或る計画エリアを対象として電源計画策定支援装置1による処理が行われる場合を説明する。
【0025】
電源計画策定支援装置1は、各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を作成して電源計画の策定を支援するための機序であり、主として、入力部11、表示部12、記憶部13、メモリ14、メインタスク15、通信部17、およびこれらを制御などする中央処理部18を備える。
【0026】
電源計画策定支援装置1は、例えば、各種のコンピュータなどに、装置全体の制御プログラムや電源計画の策定の支援に纏わる各種処理を行うためのアプリケーション(電源計画策定支援プログラム19)がインストールされて実行されることによって構成される。
【0027】
入力部11は、利用者の命令などを受けて電源計画策定支援装置1へと入力する機能を備えるインターフェースであり、例えばキーボードやマウスによって構成される。
【0028】
表示部12は、入力部11を介して入力される内容を表示したり、電源計画策定支援装置1としての処理結果(図2参照)を表示したりなどする機能を備え、例えば液晶ディスプレイによって構成される。
【0029】
記憶部13は、各種の情報,プログラム,およびデータなどを記憶する機能を備える記憶領域/記憶装置であり、例えばハードディスク(HDD:Hard Disk Drive の略)によって構成される。
【0030】
記憶部13には、電源計画策定支援装置1全体の制御プログラムや電源計画策定支援プログラム19が格納されるとともに、電源データベース131および実績データベース132が格納される。
【0031】
電源データベース131は、電源それぞれの情報が記録・蓄積されているデータベースであり、電源計画策定支援装置1が電源計画の策定の支援に纏わる各種処理を行う際に電源について必要とされる情報を取得するために適宜参照される。
【0032】
電源データベース131には、具体的には、各電源に関する、電力を供給する計画エリア,発電容量,燃種,熱効率,および固定費など、電源計画策定支援装置1が電源計画の策定の支援に纏わる各種処理を行う際に電源について必要とされる種々の情報が記録・蓄積される。電源データベース131には、既設の電源それぞれの情報に加えて、新規の電源それぞれの情報も記録・蓄積され、新規の電源については初期投資額(尚、後述する期待収益率計算タスク158による、新規の電源の収益率を計算する際に必要とされる初期投資額であり、言い換えると、初期の事業費である)も記録・蓄積される。
【0033】
実績データベース132については後述する。
【0034】
なお、電源データベース131と実績データベース132とのうちのどちらか一方もしくは両方がサーバなどの外部記憶装置に格納されるようにしてもよく、この場合には、電源計画策定支援装置1が、通信部17を介して外部記憶装置にアクセスして各種データや情報を取得するようにしてもよく、あるいは、種々の信号回線を介して外部記憶装置との間でデータや制御指令等の信号の送受信/入出力を行うための接続インターフェースを備えるようにして当該接続インターフェースを介して外部記憶装置にアクセスして各種データや情報を取得するようにしてもよい。
【0035】
メモリ14は、中央処理部18が電源計画の策定の支援に纏わる演算処理を実行する際に生成されるデータや情報を一時的に記憶などするための作業領域となる機能を備える記憶領域/記憶装置であり、例えばRAM(Random Access Memory の略)によって構成される。
【0036】
メインタスク15は、記憶部13に格納されている電源計画策定支援プログラム19が実行されることによって実現される、電源計画の策定の支援に纏わる各種処理を実行するためのタスク群である。
【0037】
通信部17は、例えばLAN(Local Area Network の略)やWAN(Wide Area Network の略)を含む各種の無線/有線通信回線網を介して伝送される信号・情報の送受信/入出力を行う機能を備える通信インターフェースである。
【0038】
中央処理部18は、電源計画策定支援装置1を構成する各部を統制して制御などする機能を備え、例えば、中央演算処理装置(CPU:Central Processing Unit の略)を含んで構成され、記憶部13に格納されている制御プログラムや電源計画策定支援プログラム19に従って各機能を実現する。
【0039】
そして、電源計画策定支援装置1は、電源の発電電力量に市場における電力量価格を乗じて電源の電力量収入を計算する手段(電力量収入計算タスク153)と、電源の発電余力に市場における供給力価格を乗じて電源の容量収入を計算する手段(容量収入想定タスク154)と、電力量収入と容量収入との合計から電源の燃料費と固定費との合計を減算して電源の収益を計算する手段(収益計算タスク157)と、収益と電源の初期投資額とを用いて電源の収益率を計算する手段(期待収益率計算タスク158)と、収益や収益率に基づいて電源の取扱いを判定する手段(判定タスク159)と、を有する、ようにしている。
【0040】
電源計画の策定の支援に纏わる各種処理を実行するために、記憶部13に格納されている電源計画策定支援プログラム19が実行されることにより、メインタスク15が構成される。メインタスク15は、電力量想定タスク151,価格想定タスク152,電力量収入計算タスク153,容量収入想定タスク154,燃料費想定タスク155,固定費想定タスク156,収益計算タスク157,期待収益率計算タスク158,判定タスク159,および学習タスク160を含む。
【0041】
電力量想定タスク151は、評価期ごとの、電力需要〔MW〕に基づいて電源それぞれの発電電力量〔MWh〕を想定するタスクである。電力需要として、具体的には例えば毎時の電力需要が想定される。
【0042】
電力量想定タスク151は、具体的には、まず、評価期ごとに、例えば、過去および現在の人口や産業の立地の状況などと電力需要との間の関係に基づいて予め求められる回帰方程式に従って、今後の開発計画などもふまえて予測される将来の人口や産業の立地の状況などに基づいて将来の電力需要(「ベースの電力需要」と呼ぶ)を推計する。
【0043】
電力量想定タスク151は、そのうえで、必要に応じて、ベースの電力需要を変動させる要因がある場合にはその要因に応じてベースの電力需要を補正して最終的な電力需要を推計する。すなわち、各評価期において電力需要を押し下げる要因がある場合には、その要因による電力需要への影響の程度に応じて、ベースの電力需要を下方修正する。また、各評価期において電力需要を押し上げる要因がある場合には、その要因による電力需要への影響の程度に応じて、ベースの電力需要を上方修正する。
【0044】
電力需要の変動要因としては、例えば、気候や気温などの自然条件の変化や、産業構造の変化、あるいは景気の動向などが考慮され得る。
【0045】
なお、既に推計などされている将来の電力需要のデータが用いられたり、現状のまま推移するとして現在の電力需要が将来の電力需要として用いられたりするようにしてもよい。ここで、この発明の説明における「想定」は、電源計画策定支援装置1において推計する値,既に推計などされている値,および現在の値のままの値を設定することを含む。
【0046】
電力量想定タスク151は、さらに、上記において想定される評価期ごとの電力需要に基づいて、評価期ごとに、前記電力需要に応じて必要とされる、電源計画の対象の計画エリア内の電源それぞれの発電電力量を計算する。この際、前記電力需要を賄うために必要とされる電力量が電源計画の対象の計画エリアへと電力を供給する電源それぞれの発電電力量の合計によって供給されることおよび各電源の発電能力(発電容量)を超えないことが制約条件とされ、また、例えば、電源の長期におよぶ保全作業の予定などが考慮されるようにしてもよい。
【0047】
電力量想定タスク151は、また、電源計画の対象の計画エリア(言い換えると、検討対象の電源が存在する計画エリア)ではない他のエリアへと電力を供給/売電する状況を考慮して、他のエリアへと供給する発電電力量を加算するようにしてもよい。この場合には、計画エリアと他のエリアとの間の連系線/送電系統の送電制約(例えば、エリア間の送電亘長,電圧,および容量など)が考慮されるようにしてもよい。
【0048】
そして、電力量想定タスク151は、評価期ごとの、電源それぞれの発電電力量を出力する。
【0049】
価格想定タスク152は、評価期ごとの、市場における電力量価格(具体的には例えば、卸電力市場などでの電力量の取引における市場価格)〔円/MWh〕を想定するタスクである。
【0050】
ここで、計画エリア間の送電ロスや送電容量を無視した、計画エリア共通の電力量の単価のことを「システム価格」と呼び、計画エリア間の送電ロスや送電容量を考慮した電力量の単価のことを「電力量価格」と呼ぶ。そして、電力量価格は、計画エリア別の電力需要の偏在性や電源構成の差異、また、計画エリア間の送電系統の制約(具体的には、送電ロス、送電容量等)などから、通常はエリア別に異なる値となる。
【0051】
価格想定タスク152は、具体的には、評価期ごとに、例えば、過去から現在にかけての卸電力市場での電力量の取引における市場価格のトレンドに基づいて予め求められる回帰方程式(即ち、トレンド推計法におけるトレンド回帰式,トレンド推計式)に従って電力量価格(「ベースの電力量価格」と呼ぶ)を推計する。
【0052】
価格想定タスク152は、そのうえで、必要に応じて、ベースの電力量価格を変動させる要因がある場合にはその要因に応じてベースの電力量価格を補正して最終的な電力量価格を推計する。すなわち、各評価期において電力量価格を押し下げる要因がある場合には、その要因による電力量価格への影響の程度に応じて、ベースの電力量価格を下方修正する。また、各評価期において電力量価格を押し上げる要因がある場合には、その要因による電力量価格への影響の程度に応じて、ベースの電力量価格を上方修正する。
【0053】
電力量価格の変動要因としては、例えば、下記の項目が考慮され得る。
1)電力需要
ア)電力需要(即ち、計画エリア別の電力需要の合計)が大きいと、システム価格は高くなる。
【0054】
2)エリア別の電源情報
イ)原子力の発電容量が大きいと、システム価格は安くなる。
ウ)石炭火力の発電容量が大きいと、システム価格は高くなる。
エ)再生可能エネルギーの発電容量が大きいと、システム価格は安くなる。
オ)熱効率が高いと、当該電源の発電電力量が大きくなる。
【0055】
3)計画エリア別の燃料価格
カ)計画エリア別の発電用燃料の価格が上昇すると、システム価格は高くなる。
【0056】
4)送電系統の情報
キ)送電亘長が長いと、システム価格と計画エリア別の電力量価格との差異が大きくなる(尚、計画エリア間の送電ロスが大きくなることに起因する)。
ク)送電電圧が高いと、システム価格と計画エリア別の電力量価格との差異が小さくなる(尚、計画エリア間の送電ロスが小さくなることに起因する)。
ケ)計画エリア間の送電容量が小さいと、システム価格と計画エリア別の電力量価格との差異が大きくなる(尚、送電量が送電容量に達し、経済的な発電所が稼働できなくなることに起因する)。
【0057】
5)電力需要と電源情報
コ)計画エリア別の電力需要の偏在性や計画エリア別の電源情報(具体的には例えば、発電容量,燃種,熱効率,固定費など)の差異が大きいと、システム価格と計画エリア別の電力量価格との差異が大きくなる(尚、計画エリア間の送電量が増加することによって送電ロスが増加するとともに、送電量が送電容量に達して経済的な発電所が稼働できなくなることに起因する)。
【0058】
また、価格想定タスク152は、評価期ごとに、電力量価格要因を説明変数とするとともに電力量価格を目的変数とする重回帰式に従って電力量価格を推計するようにしてもよい。この場合は、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における電力量価格要因と電力量価格との実績の組み合わせデータ群が用いられて予め求められる重回帰式に従って電力量価格が推計される。
【0059】
重回帰式の説明変数である電力量価格要因は、特定の項目に限定されるものではなく、電力量価格に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。重回帰式の説明変数である電力量価格要因として、例えば、上記ア乃至コとして挙げた電力量価格の変動要因である、電力需要,原子力の発電容量,石炭火力の発電容量,再生可能エネルギーの発電容量,熱効率,発電用燃料の価格,送電亘長,送電電圧,計画エリア間の送電容量,計画エリア別の電力需要,および計画エリア別の電源情報(言い換えると、電源構成の内容)が挙げられる。
【0060】
価格想定タスク152は、或いは、評価期ごとに、電力量価格要因を入力とするとともに電力量価格を出力とする予測モデルに従って電力量価格を推計するようにしてもよい。この場合は、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における電力量価格要因と電力量価格との実績の組み合わせデータ群が用いられて機械学習によって予め構築される予測モデル(学習モデル)に従って電力量価格が推計される。
【0061】
予測モデル(学習モデル)としては、特に連続値の予測に好適な機械学習の手法が用いられることが考えられ、具体的には例えば、エクストリームラーニングマシン(ELM:Extreme Learning Machine の略),ディープニューラルネットワーク(DNN:Deep Neural Network の略),サポートベクターマシン(SVM:Support Vector Machine の略)などが用いられ得る。
【0062】
機械学習によって構築される予測モデルの入力である電力量価格要因は、特定の項目に限定されるものではなく、電力量価格に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。予測モデルの入力である電力量価格要因として、例えば、上記ア乃至コとして挙げた電力量価格の変動要因である、電力需要,原子力の発電容量,石炭火力の発電容量,再生可能エネルギーの発電容量,熱効率,発電用燃料の価格,送電亘長,送電電圧,計画エリア間の送電容量,計画エリア別の電力需要,および計画エリア別の電源情報(言い換えると、電源構成の内容)が挙げられる。
【0063】
なお、既に推計などされている将来の電力量価格のデータが用いられたり、現状のまま推移するとして現在の電力量価格が将来の電力量価格として用いられたりするようにしてもよい。
【0064】
そして、価格想定タスク152は、評価期ごとの、電力量価格を出力する。
【0065】
電力量収入計算タスク153は、評価期ごとの、電源それぞれの電力量収入〔円〕を計算するタスクである。
【0066】
電力量収入計算タスク153は、具体的には、電力量想定タスク151から出力される評価期ごとの電源それぞれの発電電力量の入力を受けるとともに、価格想定タスク152から出力される評価期ごとの電力量価格の入力を受け、評価期ごとに、前記電源それぞれの発電電力量に前記電力量価格を乗じて各電源の電力量収入(尚、評価期各々の全体における積分値(別言すると、積算値)である)を計算する。
【0067】
そして、電力量収入計算タスク153は、評価期ごとの、電源それぞれの電力量収入(図2におけるRe)を出力する。
【0068】
なお、「評価期ごと」とは、図2に示す例のように、既設の電源(同図では、発電所A,B,C)については電源計画が対象とする計画期間の始まりの評価期(同図では、20XX年)を処理の対象として含めることであり、新規の電源(同図では、発電所α,β)については電源計画が対象とする計画期間の始まりの評価期から終わりの評価期(同図では、20YY年)までの間の各評価期を処理の対象として含めることである。
【0069】
なお、図2に示す例では、既設の電源について、電源計画が対象とする計画期間の始まりの評価期(同図では、20XX年)のみを表示するようにしているが、電源計画が対象とする計画期間の始まりの評価期から終わりの評価期(同図では、20YY年)までの間の評価期についても表示するようにしてもよい。
【0070】
また、図2に示す例では、新規(新設)の電源について、電源計画が対象とする計画期間の始まりの評価期(同図では、20XX年)および終わりの評価期(同図では、20YY年)のみを表示するようにしているが、電源計画が対象とする計画期間の始まりの評価期から終わりの評価期までの間の評価期についても表示するようにしてもよい。
【0071】
容量収入想定タスク154は、評価期ごとの、電源それぞれの容量収入〔円〕を想定するタスクである。
【0072】
容量収入は、「発電することができる能力」(具体的には、将来必要と想定される電気の量(需要)に相当する供給力〔MW〕)を取引することによって得られる収入である。「発電することができる能力」は、日本では、電力広域的運営推進機関が市場管理者となっている容量市場において取引される。
【0073】
容量収入想定タスク154は、具体的には、電力量想定タスク151から出力される評価期ごとの電源それぞれの発電電力量の入力を受け、評価期ごとに、各電源の発電能力(発電容量)を超えないことを制約条件として、電源それぞれの発電余力〔MW〕を計算する。
【0074】
容量収入想定タスク154は、また、評価期ごとに、例えば、過去から現在にかけての容量市場での将来の供給力の取引における市場価格のトレンドに基づいて予め求められる回帰方程式(即ち、トレンド推計法におけるトレンド回帰式,トレンド推計式)に従って市場における供給力価格〔円/MW〕(「ベースの供給力価格」と呼ぶ)を推計する。
【0075】
容量収入想定タスク154は、そのうえで、必要に応じて、ベースの供給力価格を変動させる要因がある場合にはその要因に応じてベースの供給力価格を補正して最終的な供給力価格を推計する。すなわち、各評価期において供給力価格を押し下げる要因がある場合には、その要因による供給力価格への影響の程度に応じて、ベースの供給力価格を下方修正する。また、各評価期において供給力価格を押し上げる要因がある場合には、その要因による供給力価格への影響の程度に応じて、ベースの供給力価格を上方修正する。
【0076】
容量収入想定タスク154は、ベースの供給力価格を推計する際に、或いは、供給力価格の変動要因として、容量市場における指標価格である「Net CONE」(Net Cost Of New Entry の略)を考慮するようにしてもよい。Net CONEは、新規の電源が固定費(例えば、建設費を中心とする、複数年にわたって計上される固定的費用)を回収できる水準であり、具体的には、新規に建設される典型的な電源の1年あたりの固定費から卸電力市場などで得られる利益(即ち、卸電力収入から燃料費などの可変費を控除した後のキャッシュフロー)を差し引いた金額である。
【0077】
なお、既に推計などされている将来の供給力価格のデータが用いられたり、現状のまま推移するとして現在の供給力価格が将来の供給力価格として用いられたりするようにしてもよい。
【0078】
そのうえで、容量収入想定タスク154は、評価期ごとに、上記において計算される評価期ごとの電源それぞれの発電余力に上記において想定される供給力価格を乗じて各電源の容量収入(尚、評価期各々の全体における積分値(別言すると、積算値)である)を計算する。
【0079】
また、容量収入想定タスク154は、評価期ごとに、容量収入要因を説明変数とするとともに容量収入を目的変数とする重回帰式に従って電源それぞれの容量収入を推計するようにしてもよい。この場合は、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における容量収入要因と容量収入との実績の組み合わせデータ群が用いられて予め求められる重回帰式に従って容量収入が推計される。
【0080】
重回帰式の説明変数である容量収入要因は、特定の項目に限定されるものではなく、容量収入に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。重回帰式の説明変数である容量収入要因として、例えば、各電源の発電能力(発電容量),発電電力量,および発電余力、ならびに、容量市場での供給力の取引における市場価格,および容量市場における指標価格である「Net CONE」が挙げられる。
【0081】
容量収入想定タスク154は、或いは、評価期ごとに、容量収入要因を入力とするとともに容量収入を出力とする予測モデルに従って電源それぞれの容量収入を推計するようにしてもよい。この場合は、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における容量収入要因と容量収入との実績の組み合わせデータ群が用いられて機械学習によって予め構築される予測モデル(学習モデル)に従って容量収入が推計される。
【0082】
予測モデル(学習モデル)としては、特に連続値の予測に好適な機械学習の手法が用いられることが考えられ、具体的には例えば、エクストリームラーニングマシン(ELM),ディープニューラルネットワーク(DNN),サポートベクターマシン(SVM)などが用いられ得る。
【0083】
機械学習によって構築される予測モデルの入力である容量収入要因は、特定の項目に限定されるものではなく、容量収入に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。予測モデルの入力である容量収入要因として、例えば、各電源の発電能力(発電容量),発電電力量,および発電余力、ならびに、容量市場での供給力の取引における市場価格,および容量市場における指標価格である「Net CONE」が挙げられる。
【0084】
そして、容量収入想定タスク154は、評価期ごとの、電源それぞれの容量収入(図2におけるRc)を出力する。
【0085】
燃料費想定タスク155は、評価期ごとの、各電源の種類,仕様,および特性などに合わせた、電源それぞれの燃料費〔円〕を想定するタスクである。
【0086】
燃料費想定タスク155は、具体的には、評価期ごとに、例えば、各電源の燃料それぞれについて、過去から現在にかけての発電用燃料の価格(単価)のトレンドに基づいて予め求められる回帰方程式(即ち、トレンド推計法におけるトレンド回帰式,トレンド推計式)に従って発電用燃料の価格(単価;「ベースの燃料価格」と呼ぶ)を推計する。
【0087】
燃料費想定タスク155は、そのうえで、必要に応じて、ベースの燃料価格を変動させる要因がある場合にはその要因に応じてベースの燃料価格を補正して最終的な発電用燃料の価格を推計する。すなわち、各評価期において発電用燃料の価格を押し下げる要因がある場合には、その要因による発電用燃料の価格への影響の程度に応じて、ベースの燃料価格を下方修正する。また、各評価期において発電用燃料の価格を押し上げる要因がある場合には、その要因による発電用燃料の価格への影響の程度に応じて、ベースの燃料価格を上方修正する。
【0088】
発電用燃料の価格の変動要因としては、例えば、ガス,石炭,および石油といった化石燃料価格の変化や、木質バイオマスなどのバイオ燃料価格の変化などが考慮され得る。
【0089】
なお、既に推計などされている発電用燃料の将来の価格のデータが用いられたり、現状のまま推移するとして発電用燃料の現在の価格が将来の価格として用いられたりするようにしてもよい。
【0090】
そのうえで、燃料費想定タスク155は、評価期ごとに、上記において想定される評価期ごとの発電用燃料の価格(単価)や電力量想定タスク151から出力される評価期ごとの各電源の発電電力量などに基づいて各電源の燃料費(尚、評価期各々の全体における積分値(別言すると、積算値)である)を計算する。
【0091】
また、燃料費想定タスク155は、評価期ごとに、燃料費要因を説明変数とするとともに燃料費を目的変数とする重回帰式に従って電源それぞれの燃料費を推計するようにしてもよい。この場合は、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における燃料費要因と燃料費との実績の組み合わせデータ群が用いられて予め求められる重回帰式に従って燃料費が推計される。
【0092】
重回帰式の説明変数である燃料費要因は、特定の項目に限定されるものではなく、燃料費に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。重回帰式の説明変数である燃料費要因として、例えば、各電源の発電電力量、ならびに、ガス,石炭,および石油といった化石燃料価格や、木質バイオマスなどのバイオ燃料価格が挙げられる。
【0093】
燃料費想定タスク155は、或いは、評価期ごとに、燃料費要因を入力とするとともに燃料費を出力とする予測モデルに従って電源それぞれの燃料費を推計するようにしてもよい。この場合は、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における燃料費要因と燃料費との実績の組み合わせデータ群が用いられて機械学習によって予め構築される予測モデル(学習モデル)に従って燃料費が推計される。
【0094】
予測モデル(学習モデル)としては、特に連続値の予測に好適な機械学習の手法が用いられることが考えられ、具体的には例えば、エクストリームラーニングマシン(ELM),ディープニューラルネットワーク(DNN),サポートベクターマシン(SVM)などが用いられ得る。
【0095】
機械学習によって構築される予測モデルの入力である燃料費要因は、特定の項目に限定されるものではなく、燃料費に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。予測モデルの入力である燃料費要因として、例えば、各電源の発電電力量、ならびに、ガス,石炭,および石油といった化石燃料価格や、木質バイオマスなどのバイオ燃料価格が挙げられる。
【0096】
そして、燃料費想定タスク155は、評価期ごとの、電源それぞれの燃料費(図2におけるCf)を出力する。
【0097】
固定費想定タスク156は、評価期ごとの、電源それぞれの固定費〔円〕を想定するタスクである。
【0098】
固定費想定タスク156は、具体的には、各電源の種類,仕様,および特性などをふまえつつ、各評価期において計上する固定費を想定する。なお、固定費としての例えば建設費などについては、総額が評価期あたりの金額に割り戻されて用いられる。また、電源の運用・運営の維持に必要な費用が固定費として適宜見込まれるようにしてもよい。
【0099】
そして、固定費想定タスク156は、評価期ごとの、電源それぞれの固定費(図2におけるCc)を出力する。
【0100】
収益計算タスク157は、評価期ごとの、電源それぞれの収益〔円〕を計算するタスクである。
【0101】
収益計算タスク157は、具体的には、電力量収入計算タスク153から出力される評価期ごとの電源それぞれの電力量収入と、容量収入想定タスク154から出力される評価期ごとの電源それぞれの容量収入と、燃料費想定タスク155から出力される評価期ごとの電源それぞれの燃料費と、固定費想定タスク156から出力される評価期ごとの電源それぞれの固定費との入力を受け、評価期ごとに、電源それぞれの前記電力量収入と前記容量収入との合計から前記燃料費と前記固定費との合計を減算して各電源の収益(尚、評価期各々の全体における積分値(別言すると、積算値)である)を計算する。
【0102】
そして、収益計算タスク157は、評価期ごとの、電源それぞれの収益(図2におけるR)を出力する。
【0103】
期待収益率計算タスク158は、新規の電源それぞれの収益率を計算するタスクである。
【0104】
期待収益率計算タスク158は、具体的には、収益計算タスク157から出力される評価期ごとの新規の電源それぞれの収益の入力を受け、新規の電源それぞれについて、電源計画が対象とする計画期間の評価期ごとの前記収益(図2に示す例では、20XX年から20YY年までの間の年ごとの収益)と、当該電源の初期投資額とを用いて収益率(尚、「期待収益率」とも呼ばれる)を計算する。
【0105】
収益率は、電源のライフサイクルが考慮されるなどしたうえで評価期間の期間長が設定されて計算される。そして、収益率を計算する際の評価期間の期間長が考慮されて電源計画が対象とする計画期間の長さが設定されるようにしてもよい。
【0106】
期待収益率計算タスク158は、具体的には例えば、内部収益率(IRR:Internal Rate of Return の略),投資収益率,或いはプロジェクトIRR(PIRR:Project Internal Rate of Return の略)とも呼ばれる指標(単位はいずれも%)を計算するようにしてもよい。
【0107】
そして、期待収益率計算タスク158は、新規の電源それぞれの収益率(図2におけるER)を出力する。
【0108】
判定タスク159は、既設の電源それぞれについて存続または廃止を判定し、また、新規の電源それぞれについて新設または中止を判定するタスクである。ここで、電源の存続や廃止ならびに新設や中止を「電源の取扱い」とも呼ぶ。
【0109】
判定タスク159は、具体的には、既設の電源それぞれについて、収益計算タスク157から出力される既設の電源それぞれの評価期ごとの収益の入力を受け、前記収益が所定の収益閾値以上である場合には存続と判定し、また、前記収益が所定の収益閾値未満である場合には廃止と判定する。
【0110】
上記の所定の収益閾値は、特定の値に限定されるものではないものの、例えば0に設定されることが考えられる。この場合はすなわち、収益が赤字でなければ当該の電源については存続と判定され、収益が赤字であれば当該の電源については廃止と判定される。
【0111】
判定タスク159は、また、新規の電源それぞれについて、期待収益率計算タスク158から出力される新規の電源それぞれの収益率の入力を受け、前記収益率が所定の収益率閾値以上である場合には新設と判定し、また、前記収益率が所定の収益率閾値未満である場合には中止と判定する。
【0112】
上記の所定の収益率閾値は、特定の値に限定されるものではなく、収益率としての指標の種類が考慮されるなどしたうえで適当な値に適宜設定され得るものの、例えば内部収益率(IRR)が用いられる場合には8%程度に設定されることが考えられる。
【0113】
そして、判定タスク159は、既設の電源それぞれについて存続または廃止の判定結果(図2におけるJ)を出力し、また、新規の電源それぞれについて新設または中止の判定結果(図2におけるJ)を出力する。
【0114】
なお、判定タスク159から出力される、新規の電源それぞれについての新設または中止の判定結果は、例えば、独立系発電事業(Independent Power Producer の略)が整備する電源に出資するか否かの判断指標としても位置づけられる。
【0115】
学習タスク160は、新規の電源それぞれについて、収益率要因を入力とするとともに収益率を出力とする予測モデルに従って収益率を予測するとともに、前記収益率に基づいて電源の取扱いとして新設または中止を判定するタスクである。
【0116】
学習タスク160は、具体的には、電源計画の対象の計画エリアについての過去から現在にかけての複数時点における収益率要因と収益率との実績の組み合わせデータ群が用いられて機械学習によって構築される予測モデル(学習モデル)に従って収益率を予測する。学習タスク160が予測する収益率は、期待収益率計算タスク158による収益率の計算処理において計算される収益率と同じ種類の収益率に設定される。
【0117】
予測モデル(学習モデル)としては、特に連続値の予測に好適な機械学習の手法が用いられることが考えられ、具体的には例えば、エクストリームラーニングマシン(ELM),ディープニューラルネットワーク(DNN),サポートベクターマシン(SVM)などが用いられ得る。
【0118】
機械学習によって構築される予測モデルの入力である収益率要因は、特定の項目に限定されるものではなく、収益率に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。予測モデルの入力である収益率要因として、例えば、電源それぞれの計画エリアおよび発電の種類、また、上記のタスク151乃至157から出力される、電源それぞれの発電電力量,電力量収入,容量収入,燃料費,固定費,および収益、ならびに、当該の電源が存在する計画エリアにおける電力量価格、のうちの一部もしくは全部が、収益率に対する影響が有意であるか否かが考慮されるなどして適宜選択されて設定される。また、上記のタスク151乃至157から出力される項目以外の項目が収益率要因として設定されるようにしてもよい。
【0119】
学習タスク160は、記憶部13に格納される実績データベース132に記録・蓄積されている収益率の実績データを用いて前記収益率の実績データに対して収益率の予測にかかる学習処理を実行して、前記収益率の実績データに基づいて予測モデル(学習モデル)を構築し、所定の情報・条件が入力された場合に的確な収益率の予測結果が得られるように構成される。
【0120】
実績データベース132は、過去の電源整備についての収益率に関する実績情報が記録・蓄積されているデータベースであり、過去に実施された電源整備についての、発電所ごとの、収益率要因の組み合わせデータと、前記組み合わせデータのもとで計算された収益率と、実際の収益率とが対応付けられたデータが過去の実績情報として記録・蓄積されている(図3参照)。
【0121】
収益率要因について、時間の経過に伴って値が変動し得る項目(言い換えると、評価期によって値が異なり得る項目;具体的には例えば、電源それぞれの発電電力量,電力量収入,容量収入,燃料費,固定費,および収益、ならびに、当該の電源が存在する計画エリアにおける電力量価格)については、電源計画が対象とする計画期間の始まりの評価期から終わりの評価期までの間の評価期ごとのデータが実績情報として記録・蓄積される。
【0122】
学習タスク160は、例えば、ニューラルネットワークを利用した機械学習を用いて、実績データベース132に記録・蓄積されている実績情報から取得したデータに基づいて、収益率要因を入力層とするとともに、収益率を出力層とする、中間層を含むニューラルネットワークを作成する。
【0123】
そして、学習タスク160は、過去に実施された電源整備についての実績としての実際の収益率を学習データ(教師データ)として用いて中間層を作成して、中間層における各種パラメータについて学習を行う。学習タスク160は、予測される収益率と、学習データ(教師データ)に含まれる実際の収益率との誤差を最小化するように、中間層における各種パラメータの学習を行う。
【0124】
学習タスク160は、上記のようにして構築した予測モデルに従って、新規の電源それぞれについて、上記のタスク151乃至157から出力される項目のうちの一部もしくは全部や他の項目が設定されている収益率要因から収益率を予測する。
【0125】
学習タスク160は、さらに、上記のようにして予測される収益率に基づいて、新規の電源それぞれについて新設または中止を判定する。
【0126】
学習タスク160は、具体的には、新規の電源それぞれについて、上記のようにして予測される収益率が、所定の収益率閾値以上である場合には新設と判定し、所定の収益率閾値未満である場合には中止と判定する。
【0127】
上記の所定の収益率閾値は、判定タスク159による判定処理において用いられる収益率閾値と同じ値に設定される。
【0128】
そして、学習タスク160は、新規の電源それぞれについて収益率(図2におけるERm)を出力するとともに新設または中止の判定結果(図2におけるJm)を出力する。
【0129】
ここで、図2に示す例のように、期待収益率計算タスク158によって計算される収益率の値(同図におけるER)と学習タスク160によって予測される収益率の値(同図におけるERm)とは異なる場合もある。そして、収益率の値が異なることに伴って、判定結果(同図におけるJとJm)が異なる場合もある。
【0130】
図2に示す例のうちの発電所αについては、期待収益率計算タスク158によって計算される収益率(ER)が9.2であるとともに学習タスク160によって予測される収益率(ERm)が8.9であり、収益率閾値を8とすると、期待収益率計算タスク158による計算結果に基づく判定タスク159による判定結果(J)と学習タスク160による予測結果に基づく判定結果(Jm)とのどちらも「新設」となる。
【0131】
図2に示す例のうちの発電所βについては、期待収益率計算タスク158によって計算される収益率(ER)が8.4であるとともに学習タスク160によって予測される収益率(ERm)が7.8であり、収益率閾値を8とすると、期待収益率計算タスク158による計算結果に基づく判定タスク159による判定結果(J)は「新設」となる一方で、学習タスク160による予測結果に基づく判定結果(Jm)は「中止」となる。
【0132】
このように、期待収益率計算タスク158による計算結果に基づく判定タスク159による判定結果(J)と学習タスク160による予測結果に基づく判定結果(Jm)とを提供することにより、2つの結果が相互補完的に解釈されるなどして電源計画の策定において有用な情報として利用され得る。
【0133】
以上のように、この電源計画策定支援装置1および電源計画策定支援プログラム19によれば、電力量収入と容量収入との合計から電源の燃料費と固定費との合計を減算して計算される収益に基づいて電源の取扱いを判定するので、収益を評価指標として用いて各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を提供することが可能となる。
【0134】
この電源計画策定支援装置1および電源計画策定支援プログラム19によれば、また、電力量収入と容量収入との合計から電源の燃料費と固定費との合計を減算して得られる収益と電源の初期投資額とを用いて計算される収益率に基づいて電源の取扱いを判定するので、収益率を評価指標として用いて各電源の収益性を評価して既設の電源それぞれを存続または廃止したり新規の電源を新設したりした場合の収益の変化に関する情報を提供することが可能となる。
【0135】
また、この電源計画策定支援装置1および電源計画策定支援プログラム19は、電力量価格要因を入力とするとともに電力量価格を出力として機械学習によって構築される予測モデルを用いて市場における電力量価格を推計するようにした場合には、過去の電力量価格に関する実績情報が反映された一層実際的な電力量価格を推計することが可能となり、延いては電源計画の策定を支援する技術としての信頼性の向上を図ることが可能となる。
【0136】
また、この電源計画策定支援装置1および電源計画策定支援プログラム19は、収益率要因を入力とするとともに収益率を出力として機械学習によって構築される予測モデルを用いて電源の収益率を推計するようにした場合には、過去の収益率に関する実績情報が反映された一層実際的な収益率を推計することが可能となり、延いては電源計画の策定を支援する技術としての信頼性の向上を図ることが可能となる。
【0137】
以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。
【0138】
例えば、上記の実施の形態では既設の電源についての判定と新規の電源についての判定との両方を行うようにしているが、既設の電源についての判定と新規の電源についての判定とのうちのどちらか一方のみを行うようにしてもよい。なお、既設の電源についての判定のみを行う場合には、期待収益率計算タスク158を有しない構成となる。
【0139】
また、上記の実施の形態では判定タスク159に加えて学習タスク160を有するようにしているが、判定タスク159と学習タスク160とのうちのどちらか一方のみを有するようにしてもよい。判定タスク159による新規の電源についての判定の結果と学習タスク160による新規の電源についての判定の結果とを相互補完的に提供することにより、電源計画の策定に纏わる想定・推計の精度が向上し、電源の収益性の評価を一層高精度に行って電源計画の策定を支援する技術としての信頼性の一層の向上を図ることが可能となるものの、判定タスク159と学習タスク160とのうちのどちらか一方の判定の結果のみを提供することによっても電源計画の策定を支援することは可能である。
【符号の説明】
【0140】
1 電源計画策定支援装置
11 入力部
12 表示部
13 記憶部
131 電源データベース
132 実績データベース
14 メモリ
15 メインタスク
151 電力量想定タスク
152 価格想定タスク
153 電力量収入計算タスク
154 容量収入想定タスク
155 燃料費想定タスク
156 固定費想定タスク
157 収益計算タスク
158 期待収益率計算タスク
159 判定タスク
160 学習タスク
17 通信部
18 中央処理部
19 電源計画策定支援プログラム
図1
図2
図3