(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022107992
(43)【公開日】2022-07-25
(54)【発明の名称】白金族金属イオン担持触媒及び炭素-炭素結合形成方法
(51)【国際特許分類】
B01J 31/10 20060101AFI20220715BHJP
B01J 31/08 20060101ALI20220715BHJP
C07C 49/782 20060101ALI20220715BHJP
C07C 45/65 20060101ALI20220715BHJP
C07C 255/50 20060101ALI20220715BHJP
C07C 253/30 20060101ALI20220715BHJP
C07B 61/00 20060101ALN20220715BHJP
【FI】
B01J31/10 Z
B01J31/08 Z
C07C49/782
C07C45/65
C07C255/50
C07C253/30
C07B61/00 300
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2021002749
(22)【出願日】2021-01-12
(71)【出願人】
【識別番号】000004400
【氏名又は名称】オルガノ株式会社
(74)【代理人】
【識別番号】110002538
【氏名又は名称】特許業務法人あしたば国際特許事務所
(72)【発明者】
【氏名】中村 慎司
(72)【発明者】
【氏名】高田 仁
(72)【発明者】
【氏名】佐治木 弘尚
(72)【発明者】
【氏名】山田 強
(72)【発明者】
【氏名】朴 貴煥
【テーマコード(参考)】
4G169
4H006
4H039
【Fターム(参考)】
4G169BA23A
4G169BA23B
4G169BA24A
4G169BA24B
4G169BC69A
4G169BC72B
4G169CB25
4G169CB62
4H006AA02
4H006AC24
4H006BA25
4H006BA55
4H006BA81
4H006BA85
4H006QN30
4H039CA41
4H039CD20
(57)【要約】 (修正有)
【課題】炭素-炭素結合を形成させて所望の化合物を得るための炭素-炭素結合の形成方法を、固定床連続流通式で行える触媒であって、種々の原料において、高収率で反応を行うことができる触媒を提供すること。
【解決手段】非粒子状有機多孔質イオン交換体に、白金族金属イオン又は白金族金属錯イオンが担持されている白金族金属イオン担持触媒であり、該非粒子状有機多孔質イオン交換体は、連続骨格相1と連続空孔相2からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gであり、乾燥状態での重量当りのイオン交換容量は1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする白金族金属イオン担持触媒。
【選択図】
図6
【特許請求の範囲】
【請求項1】
非粒子状有機多孔質イオン交換体に、白金族金属イオン又は白金族金属錯イオンが担持されている白金族金属イオン担持触媒であり、該非粒子状有機多孔質イオン交換体は、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gであり、乾燥状態での重量当りのイオン交換容量は1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする白金族金属イオン担持触媒。
【請求項2】
前記非粒子状有機多孔質イオン交換体が、互いにつながっているマクロポアとマクロポアの壁内に平均直径が1~1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、全細孔容積が1~50ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする請求項1記載の白金族金属イオン担持触媒。
【請求項3】
前記非粒子状有機多孔質イオン交換体が、平均粒子径1~50μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に平均直径が20~100μmの三次元的に連続した空孔を有し、全細孔容積が1~10ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする請求項1記載の白金族金属イオン担持触媒。
【請求項4】
前記非粒子状有機多孔質イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30~300μmの開口となる連続マクロポア構造体であり、全細孔容積が0.5~10ml/g、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%であることを特徴とする請求項1記載の白金族金属イオン担持触媒。
【請求項5】
前記非粒子状有機多孔質イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が10~200μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5~10ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする請求項1記載の白金族金属イオン担持触媒。
【請求項6】
前記非粒子状有機多孔質イオン交換体が、連続骨格相と連続空孔相からなり、該骨格は、表面に固着する直径4~40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4~40μmの多数の突起体を有し、連続空孔の平均直径が10~200μm、全細孔容積が0.5~10ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする請求項1記載の白金族金属イオン担持触媒。
【請求項7】
前記白金族金属イオン又は前記白金族金属錯イオンの担持量が、白金族金属原子換算で、0.01~10.0質量%であることを特徴とする請求項1~6いずれか1項記載の白金族金属イオン担持触媒。
【請求項8】
(1)芳香族ハロゲン化物と有機ホウ素化合物との反応、(2)芳香族ハロゲン化物と末端にアルキニル基を有する化合物との反応、又は(3)芳香族ハロゲン化物とアルケニル基を有する化合物との反応を行い、炭素-炭素結合を形成させる炭素-炭素結合形成方法であり、
芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)を、白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該原料液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
該白金族金属イオン担持触媒が、請求項1~7いずれか1項記載の白金族金属イオン担持触媒であること、
を特徴とする炭素-炭素結合形成方法。
【請求項9】
無機塩基の存在下で、前記炭素-炭素結合の形成反応を行うことを特徴とする請求項8記載の炭素-炭素結合形成方法。
【請求項10】
前記芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、前記芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は前記芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)が、水又は親水性溶媒に、原料及び無機塩基が溶解している無機塩基溶解原料液であり、
該無機塩基溶解原料液を、前記白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該無機塩基溶解原料液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
を特徴とする請求項8又は9記載の炭素-炭素結合形成方法。
【請求項11】
前記芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、前記芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は前記芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)が、疎水性の有機溶媒に原料が溶解している疎水性溶媒原料液であり、
該疎水性溶媒原料液と、無機塩基水溶液と、の混合物を、前記白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該疎水性溶媒溶解原料液及び該無機塩基水溶液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
を特徴とする請求項8又は9記載の炭素-炭素結合形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反応の原料液を白金族金属イオン担持触媒に通液することにより、炭素-炭素結合を形成させる反応を行う炭素-炭素結合形成方法及びそれを行うための白金族金属イオン担持触媒に関するものである。
【背景技術】
【0002】
鈴木-宮浦カップリング、薗頭カップリング、溝呂木-ヘックカップリングに代表されるパラジウム等の白金族金属を触媒に用いた炭素-炭素形成反応(カップリング反応)は、医薬中間体や液晶等の高機能材料の合成プロセスにおいて、近年、ますます重要性を増してきている。
【0003】
従来、上記白金族金属触媒は、均一系で用いられることが多く、高い触媒活性を示してきたが、触媒の回収が困難である、製品が触媒である金属に汚染されてしまうといった欠点があった。そこで、上記触媒を担体に担持し、触媒の回収を容易にするとともに製品への金属汚染を低減した不均一触媒が開発されており、近年では不均一触媒に反応基質溶液を通じて、連続的に炭素-炭素結合を形成させる方法も開発されている。例えば、特許第5638862号公報では、多孔質シリカ担体にパラジウムを担持した触媒で、連続的に炭素-炭素結合を形成させる方法を報告しているが、実際の反応例は開示されていない。また、特許第5255215号公報及び特開2008-212765号公報では、幅1mm、深さ20μmの微細流路壁面に白金族金属を担持させた触媒を用いて、炭素-炭素結合を形成させる方法が開示されているものの、理由は定かではないが、開示された反応例では、溶媒として水を用いておらず、また、反応基質溶液の通液速度が1μm/分でのみ実施されており、環境負荷及び生産効率に問題がある。また、ChemCatChem誌、2019年、11号、2427頁には、有機担体にパラジウムを担持した触媒を充填したカラムで、連続的に炭素-炭素結合を形成させる方法が報告されているが、有機担体を得るために複雑な化学変換があり、また、理由は定かではないが、パラジウムを担持した触媒を用いる際に多量の珪藻土を混ぜ合わせる必要がある。
【0004】
一方、我々は、三次元的に連続した空孔を有する非粒子状有機イオン交換体に白金族金属を担持した触媒を開発し、特開2014-15420号公報(特許文献4)又は特開2016-190853号公報(特許文献5)で、該触媒が、炭素-炭素結合形成反応において、水系溶媒中での高い触媒活性を示すことを報告している。特許文献4及び特許文献5に開示されている方法によれば、触媒として非粒子状有機イオン交換体に白金族金属が担持されている白金族金属イオン担持触媒を用いることにより、水系の溶媒中で、高収率で炭素-炭素結合形成反応を行うことができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第5638862号公報(特許請求の範囲)
【特許文献2】特許第5255215号公報(特許請求の範囲)
【特許文献3】特開2008-212765号公報(特許請求の範囲)
【特許文献4】特開2014-15420号公報
【特許文献5】特開2016-190853号公報
【非特許文献】
【0006】
【非特許文献1】ChemCatChem誌、2019年、11号、2427頁
【発明の概要】
【発明が解決しようとする課題】
【0007】
ここで、生産効率の観点からは、反応時間が短い反応方法が求められる。そして、生産効率を高くする方法としては、固定床連続流通式で、反応を行うこと挙げられる。
【0008】
ところが、鈴木-宮浦カップリング、薗頭カップリング、溝呂木-ヘックカップリングにおいては、反応原料によって反応性が異なり、短時間での反応が起こり難いこともある。そのため、固定床連続流通式では、鈴木-宮浦カップリング、薗頭カップリング、溝呂木-ヘックカップリング等の炭素-炭素結合形成反応が起こり難いという問題があった。
【0009】
従って、本発明の目的は、炭素-炭素結合を形成させて所望の化合物を得るための炭素-炭素結合の形成方法を、固定床連続流通式で行える触媒であって、種々の原料において、高収率で反応を行うことができる触媒を提供することにある。
【課題を解決するための手段】
【0010】
かかる実情において、本発明者らは鋭意検討を行った結果、非粒子状有機多孔質イオン交換体に、白金族金属イオン又は白金族金属錯イオンが担持された触媒、つまり、イオンの状態で、白金族金属が非粒子状有機多孔質イオン交換体に担持されている触媒は、いわゆる、固定床連続流通式の炭素-炭素結合反応において、原料として、芳香族臭素化合物を用いた場合にも、収率が高くなること等を見出し、本発明を完成するに至った。
【0011】
すなわち、本発明(1)は、非粒子状有機多孔質イオン交換体に、白金族金属イオン又は白金族金属錯イオンが担持されている白金族金属イオン担持触媒であり、該非粒子状有機多孔質イオン交換体は、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gであり、乾燥状態での重量当りのイオン交換容量は1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする白金族金属イオン担持触媒を提供するものである。
【0012】
また、本発明(2)は、前記非粒子状有機多孔質イオン交換体が、互いにつながっているマクロポアとマクロポアの壁内に平均直径が1~1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、全細孔容積が1~50ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする(1)の白金族金属イオン担持触媒を提供するものである。
【0013】
また、本発明(3)は、前記非粒子状有機多孔質イオン交換体が、平均粒子径1~50μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に平均直径が20~100μmの三次元的に連続した空孔を有し、全細孔容積が1~10ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする(1)の白金族金属イオン担持触媒を提供するものである。
【0014】
また、本発明(4)は、前記非粒子状有機多孔質イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30~300μmの開口となる連続マクロポア構造体であり、全細孔容積が0.5~10ml/g、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%であることを特徴とする(1)の白金族金属イオン担持触媒を提供するものである。
【0015】
また、本発明(5)は、前記非粒子状有機多孔質イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が10~200μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5~10ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする(1)の白金族金属イオン担持触媒を提供するものである。
【0016】
また、本発明(6)は、前記非粒子状有機多孔質イオン交換体が、連続骨格相と連続空孔相からなり、該骨格は、表面に固着する直径4~40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4~40μmの多数の突起体を有し、連続空孔の平均直径が10~200μm、全細孔容積が0.5~10ml/gであり、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする(1)の白金族金属イオン担持触媒を提供するものである。
【0017】
また、本発明(7)は、前記白金族金属イオン又は前記白金族金属錯イオンの担持量が、白金族金属原子換算で、0.05~10.0質量%であることを特徴とする(1)~(6)いずれかの白金族金属イオン担持触媒を提供するものである。
【0018】
また、本発明(8)は、(1)芳香族ハロゲン化物と有機ホウ素化合物との反応、(2)芳香族ハロゲン化物と末端にアルキニル基を有する化合物との反応、又は(3)芳香族ハロゲン化物とアルケニル基を有する化合物との反応を行い、炭素-炭素結合を形成させる炭素-炭素結合形成方法であり、
芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)を、白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該原料液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
該白金族金属イオン担持触媒が、(1)~(7)いずれかの白金族金属イオン担持触媒であること、
を特徴とする炭素-炭素結合形成方法を提供するものである。
【0019】
また、本発明(9)は、無機塩基の存在下で、前記炭素-炭素結合の形成反応を行うことを特徴とする(8)の炭素-炭素結合形成方法を提供するものである。
【0020】
また、本発明(10)は、前記芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、前記芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は前記芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)が、水又は親水性溶媒に、原料及び無機塩基が溶解している無機塩基溶解原料液であり、
該無機塩基溶解原料液を、前記白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該無機塩基溶解原料液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
を特徴とする(8)又は(9)の炭素-炭素結合形成方法を提供するものである。
【0021】
また、本発明(11)は、前記芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、前記芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は前記芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)が、疎水性の有機溶媒に原料が溶解している疎水性溶媒原料液であり、
該疎水性溶媒原料液と、無機塩基水溶液と、の混合物を、前記白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該疎水性溶媒溶解原料液及び該無機塩基水溶液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
を特徴とする(8)又は(9)の炭素-炭素結合形成方法を提供するものである。
【発明の効果】
【0022】
本発明によれば、炭素-炭素結合を形成させて所望の化合物を得るための炭素-炭素結合の形成方法を、固定床連続流通式で行える触媒であって、種々の原料において、高収率で反応を行うことができる触媒を提供することができる。
【図面の簡単な説明】
【0023】
【
図1】第1のモノリスの形態例のSEM写真である。
【
図2】第2のモノリスの形態例のSEM写真である。
【
図3】第3のモノリスの形態例のSEM写真である。
【
図4】
図3のSEM写真の断面として表れる骨格部を転写した図である。
【
図5】第4のモノリスの形態例のSEM写真である。
【
図6】第4のモノリス及び弱塩基性モノリスイオン交換体の共連続構造の模式図である。
【
図7】モノリス中間体(4)の形態例のSEM写真である。
【
図9】第5-1のモノリスの形態例のSEM写真である。
【
図10】参考例1のモノリス中間体のSEM写真である。
【
図12】実施例1の白金族金属イオン担持触媒のEPMA分析結果である。
【
図13】実施例1の白金族金属イオン担持触媒のESCA分析でのPd3d
5/2スペクトルである。
【
図14】本発明の炭素-炭素結合形成方法の第一の実施形態例を示す反応装置の形態例のフロー図である。
【
図15】本発明の炭素-炭素結合形成方法の第二の実施形態例を示す反応装置の形態例のフロー図である。
【発明を実施するための形態】
【0024】
本発明の白金族金属イオン担持触媒は、非粒子状有機多孔質イオン交換体に、白金族金属イオン又は白金族金属錯イオンが担持されている白金族金属イオン担持触媒であり、該非粒子状有機多孔質イオン交換体は、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gであり、乾燥状態での重量当りのイオン交換容量は1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布していることを特徴とする白金族金属イオン担持触媒である。
【0025】
本発明の白金族金属イオン担持触媒において、白金族金属イオン又は白金族金属錯イオンが担持されている担体は、非粒子状有機多孔質イオン交換体であるが、この非粒子状有機多孔質イオン交換体とは、酸性のモノリス状有機多孔質カチオン交換体又は塩基性のモノリス状有機多孔質アニオン交換体である。モノリス状有機多孔質体は、骨格が有機ポリマーにより形成されており、骨格間に反応液の流路となる連通孔を多数有する多孔質体である。そして、モノリス状有機多孔質イオン交換体は、このモノリス状有機多孔質体の骨格中にカチオン交換基又はアニオン交換基が均一に分布するように導入されている多孔質体である。なお、本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」とも言い、また、モノリスの製造における中間体(前駆体)である「モノリス状有機多孔質中間体」を単に「モノリス中間体」とも言う。
【0026】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体は、モノリスにイオン交換基を導入することで得られるものであり、その構造は、連続骨格相と連続空孔相からなる有機多孔質体であって、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gである。
【0027】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体の乾燥状態での連続骨格の厚みは1~100μmである。非粒子状有機多孔質イオン交換体の連続骨格の厚みが、1μm未満であると、体積当りのイオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通液した際に非粒子状有機多孔質イオン交換体が大きく変形してしまうため好ましくない。更に、反応液と非粒子状有機多孔質イオン交換体との接触効率が低下し、触媒活性が低下するため好ましくない。一方、非粒子状有機多孔質イオン交換体の連続骨格の厚みが、100μmを越えると、骨格が太くなり過ぎ、基質の拡散に時間を要するようになって触媒活性が低下するため好ましくない。なお、連続骨格の厚みは、SEM観察により決定される。
【0028】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体の乾燥状態での連続空孔の平均直径は、1~1000μmである。非粒子状有機多孔質イオン交換体の連続空孔の平均直径が、1μm未満であると通液時の圧力損失が大きくなってしまうため好ましくない。一方、非粒子状有機多孔質イオン交換体の連続空孔の平均直径が、1000μmを超えると、反応液と非粒子状有機多孔質イオン交換体との接触が不十分となり、触媒活性が低下するため好ましくない。なお、非粒子状有機多孔質イオン交換体の乾燥状態での連続空孔の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。
【0029】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体の乾燥状態での全細孔容積は0.5~50ml/gである。非粒子状有機多孔質イオン交換体の全細孔容積が、0.5ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過液量が小さくなり、処理量が低下してしまうため好ましくない。一方、非粒子状有機多孔質イオン交換体の全細孔容積が、50ml/gを超えると、体積当りのイオン交換容量が低下し、白金族金属イオンの担持量も低下し触媒活性が低下するため好ましくない。また、機械的強度が低下して、特に高速で通液した際に非粒子状有機多孔質イオン交換体が大きく変形し、通液時の圧力損失が急上昇してしまうため好ましくない。更に、反応液と非粒子状有機多孔質イオン交換体との接触効率が低下するため、触媒活性の低下が顕著になる。なお、全細孔容積は、水銀圧入法で測定される。
【0030】
このような非粒子状有機多孔質イオン交換体の構造例としては、特開2002-306976号公報や特開2009-62512号公報に開示されている連続気泡構造や、特開2009-67982号公報に開示されている共連続構造や、特開2009-7550号公報に開示されている粒子凝集型構造や、特開2009-108294号公報に開示されている粒子複合型構造等が挙げられる。
【0031】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/gである。非粒子状有機多孔質イオン交換体の乾燥状態でのイオン交換容量が、1mg当量/g未満では、担持できる白金族金属イオン量が少なくなってしまうため好ましくなく、一方、9mg当量/gを超えると、イオン交換基導入反応が過酷な条件となり、モノリスの酸化劣化が著しく進んでしまうため好ましくない。非粒子状有機多孔質イオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/g、好ましくは1~8mg当量/g、特に好ましくは1~7mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
【0032】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体において、導入されているイオン交換基は、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAを用いることで簡単に確認される。また、イオン交換基が、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
【0033】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体に導入されているカチオン交換基は、強酸性カチオン交換基又は弱酸性カチオン交換基である。強酸性カチオン交換基としては、例えば、スルホン酸基等が挙げられる。また、弱酸性カチオン交換基としては、例えば、カルボキシル基等が挙げられる。本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体に導入されているアニオン交換基は、強塩基性アニオン交換基又は弱塩基性アニオン交換基である。強塩基性アニオン交換基としては、例えば、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基が挙げられる。また、弱塩基性アニオン交換基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、メチルヒドロキシエチルアミノ基、メチルヒドロキシプロピルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、2,2,6,6-テトラメチルピペリジル基、モルホリル基等の第三級アミノ基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ヒドロキシエチルアミノ基、ヒドロキシブチルアミノ基等の第二級アミノ基、第一級アミノ基等が挙げられる。
【0034】
本発明の白金族金属イオン担持触媒に係る非粒子状有機多孔質イオン交換体において、連続骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.1~30モル%、好適には0.1~20モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.1モル%未満であると、機械的強度が不足するため好ましくなく、一方、30モル%を越えると、イオン交換基の導入が困難になる場合があるため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
【0035】
<モノリス状有機多孔質体及びモノリス状有機多孔質イオン交換体の形態例>
モノリスの形態例としては、以下に示す第1のモノリス~第5のモノリスが挙げられる。また、モノリスイオン交換体としては、以下に示す第1のモノリスイオン交換体~第5のモノリスイオン交換体が挙げられる。なお、第1のモノリスイオン交換体~第5のモノリスイオン交換体において、モノリスに導入されているイオン交換基は、強酸性カチオン交換基、弱酸性カチオン換基、強塩基性アニオン交換基又は弱塩基性アニオン交換基である。
【0036】
<第1のモノリス及び第1のモノリスイオン交換体の説明>
本発明の白金族金属イオン担持触媒において、白金族金属イオン又は白金族金属錯イオンの担体となる第1のモノリスイオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1~1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、乾燥状態での全細孔容積が1~50ml/gであり、イオン交換基を有しており、イオン交換基が均一に分布しており、乾燥状態の重量当りのイオン交換容量が1~9mg当量/gであるモノリスイオン交換体である。また、第1のモノリスは、イオン交換基が導入される前のモノリスであり、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1~1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、乾燥状態での全細孔容積が1~50ml/gである有機多孔質体である。
【0037】
第1のモノリスイオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径1~1000μm、好ましくは10~200μm、特に好ましくは20~100μmの共通の開口(メソポア)となる連続マクロポア構造体であり、その大部分がオープンポア構造のものである。オープンポア構造は、水を流せば該マクロポアと該メソポアで形成される気泡内が流路となる。マクロポアとマクロポアの重なりは、1個のマクロポアで1~12個、多くのものは3~10個である。
図1には、第1の弱塩基性モノリスアニオン交換体の形態例の走査型電子顕微鏡(SEM)写真を示すが、
図1に示す第1のモノリスイオン交換体は、多数の気泡状のマクロポアを有しており、気泡状のマクロポア同士が重なり合い、この重なる部分が共通の開口(メソポア)となる連続マクロポア構造体となっており、その大部分がオープンポア構造である。メソポアの乾燥状態での平均直径が1μm未満であると、通液時の圧力損失が著しく大きくなってしまうため好ましくなく、メソポアの乾燥状態での平均直径が1000μmを越えると、反応液とモノリスイオン交換体との接触が不十分となり、触媒活性が低下してしまうため好ましくない。第1のモノリスイオン交換体の構造が上記のような連続気泡構造となることにより、マクロポア群やメソポア群を均一に形成できると共に、特開平8-252579号公報等に記載されるような粒子凝集型多孔質体に比べて、細孔容積や比表面積を格段に大きくすることができる。
【0038】
なお、本発明では、乾燥状態の第1のモノリスの開口の平均直径、乾燥状態の第1のモノリスイオン交換体の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られる細孔分布曲線の極大値を指す。
【0039】
第1のモノリスイオン交換体の乾燥状態での重量当りの全細孔容積は、1~50ml/g、好適には2~30ml/gである。全細孔容積が1ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスイオン交換体およびそれに担持された白金族金属粒子との接触効率が低下するため、触媒効果も低下してしまうため好ましくない。全細孔容積は、従来の粒子状多孔質イオン交換樹脂では、せいぜい0.1~0.9ml/gであるから、それを越える従来には無い1~50ml/gの高細孔容積、高比表面積のものが使用できる。
【0040】
第1のモノリスイオン交換体において、骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好適には0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、イオン交換基の導入が困難になる場合があるため好ましくない。
【0041】
第1のモノリスイオン交換体の骨格を構成する有機ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記有機ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
【0042】
第1のモノリスイオン交換体に導入されているイオン交換基は、第2のモノリスイオン交換体~第5のモノリスイオン交換体においても同様である。モノリスイオン交換体に導入されているカチオン交換基は、強酸性カチオン交換基又は弱酸性カチオン交換基である。強酸性カチオン交換基としては、例えば、スルホン酸基等が挙げられる。また、弱酸性カチオン交換基としては、例えば、カルボキシル基等が挙げられる。モノリスイオン交換体に導入されているアニオン交換基は、強塩基性アニオン交換基又は弱塩基性アニオン交換基である。強塩基性アニオン交換基としては、例えば、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基が挙げられる。また、弱塩基性アニオン交換基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、メチルヒドロキシエチルアミノ基、メチルヒドロキシプロピルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、2,2,6,6-テトラメチルピペリジル基、モルホリル基等の第三級アミノ基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ヒドロキシエチルアミノ基、ヒドロキシブチルアミノ基等の第二級アミノ基、第一級アミノ基等が挙げられる。
【0043】
第1のモノリスイオン交換体において(第2のモノリスイオン交換体~第5のモノリスイオン交換体においても同じ)、導入されているイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAを用いることで確認される。また、イオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
【0044】
第1のモノリスイオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/gである。乾燥状態での重量当りのイオン交換容量が、上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。第1のモノリスイオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/g、好ましくは1~8mg当量/g、特に好ましくは1~7mg当量/gである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
【0045】
<第1のモノリス及び第1のモノリスイオン交換体の製造方法>
第1のモノリスの製造方法としては、特に制限されないが、特開2002-306976号公報記載の方法に準じた、製造方法の一例を以下示す。すなわち、第1のモノリスは、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させてモノリスを形成することにより得られる。このような、第1のモノリスの製造方法は、モノリスの多孔構造の制御が容易である点で、好ましい。
【0046】
第1のモノリスの製造で用いられるイオン交換基を含まない油溶性モノマーとしては、カルボン酸基、スルホン酸基等のイオン交換基及び四級アンモニウム基等のアニオン交換基のいずれも含まず、水に対する溶解性が低く、親油性のモノマーを指すものである。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、イソプレン、クロロプレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、本発明においては、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3~10モル%、好適には0.3~5モル%とすることが、後の工程でイオン交換基を定量的に導入し、かつ、実用的に十分な機械的強度を確保できる点で好ましい。
【0047】
第1のモノリスの製造で用いられる界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2~70%の範囲で選択することができる。また、必ずしも必須ではないが、モノリスの気泡形状やサイズを制御するために、メタノール、ステアリルアルコール等のアルコール;ステアリン酸等のカルボン酸;オクタン、ドデカン、トルエン等の炭化水素;テトラヒドロフラン、ジオキサン等の環状エーテルを系内に共存させることもできる。
【0048】
また、第1のモノリスの製造において、重合によりモノリスを形成する際、必要に応じて用いられる重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。
【0049】
第1のモノリスの製造において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサー、ホモジナイザー、高圧ホモジナイザーや、被処理物を混合容器に入れ、該混合容器を傾斜させた状態で公転軸の周りに公転させながら自転させることで、被処理物を攪拌混合する、所謂遊星式攪拌装置等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。これらの混合装置のうち、遊星式攪拌装置はW/Oエマルジョン中の水滴を均一に生成させることができ、その平均径を幅広い範囲で任意に設定できるため、好ましく用いられる。
【0050】
第1のモノリスの製造において、このようにして得られた油中水滴型エマルジョンを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、重合開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間、加熱重合させればよく、開始剤として過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0~30℃で1~48時間重合させればよい。重合終了後、内容物を取り出し、イソプロパノール等の溶剤でソックスレー抽出し、未反応モノマーと残留界面活性剤を除去して第1のモノリスを得る。
【0051】
第1のモノリスイオン交換体の製造方法としては、特に制限されず、上記第1のモノリスの製造方法において、イオン交換基を含まないモノマーに代えて、イオン交換基を含むモノマー、例えば、上記イオン交換基を含まない油溶性モノマーに、イオン交換基が導入されているモノマーを用いて重合させ、一段階でモノリスイオン交換体にする方法、イオン交換基を含まないモノマーを用いて重合させ第1のモノリスを形成し、次いで、イオン交換基を導入する方法などが挙げられる。これらの方法のうち、イオン交換基を含まないモノマーを用いて重合させ第1のモノリスを形成し、次いで、イオン交換基を導入する方法は、モノリスイオン交換体の多孔構造の制御が容易であり、イオン交換基の定量的導入も可能であるため好ましい。
【0052】
第1のモノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、強酸性のカチオン交換基、例えば、スルホン酸基を導入する方法としては、スチレン-ジビニルベンゼン共重合体を濃硫酸中で加熱する方法やスチレン-ジビニルベンゼン共重合体とクロロスルホン酸とを反応させる方法などが挙げられる。また、例えば、弱酸性のカチオン交換基、例えば、カルボキシル基を導入する方法としては、アクリル酸エステル重合体の加水分解する方法などが挙げられる。また、例えば、強塩基性のアニオン交換基、例えば、四級アンモニウム基を導入する方法としては、ビニルベンジルクロライド-ジビニルベンゼン共重合体と第三級アミンとを反応させる方法などが挙げられる。また、例えば、弱塩基性のアニオン交換基、例えば、アミン基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、第二級アミンと反応させ導入する方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、第二級アミンと反応させ導入する方法;モノリスにラジカル開始基や連鎖移動基を導入し、グリシジルメタクリレートをグラフト重合した後、第二級アミンと反応させ導入する方法等が挙げられる。アミン基としては、弱塩基性のアミン基であり、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、メチルヒドロキシエチルアミノ基、メチルヒドロキシプロピルアミノ基等の第三級アミノ基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ヒドロキシエチルアミノ基、ヒドロキシブチルアミノ基等の第二級アミノ基、第一級アミノ基等が挙げられる。
【0053】
<第2のモノリス及び第2のモノリスイオン交換体の説明>
本発明の白金族金属イオン担持触媒において、白金族金属イオン又は白金族金属錯イオンの担体となる第2のモノリスイオン交換体は、粒子凝集型モノリスであり、平均粒子径が乾燥状態で1~50μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に平均直径が乾燥状態で20~100μmの三次元的に連続した空孔を有し、乾燥状態での全細孔容積が1~10ml/gである有機多孔質体であり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が該有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体である。また、第2のモノリスは、イオン交換基が導入される前のモノリスであり、粒子凝集型モノリスであり、平均粒子径が乾燥状態で1~50μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に平均直径が乾燥状態で20~100μmの三次元的に連続した空孔を有し、乾燥状態での全細孔容積が1~10ml/gである有機多孔質体である有機多孔質体である。
【0054】
第2のモノリスイオン交換体の基本構造は、架橋構造単位を有する平均粒子径が乾燥状態で1~50μm、好ましくは1~30μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に平均直径が乾燥状態で20~100μm、好ましくは20~90μmの三次元的に連続した空孔を有する粒子凝集型構造であり、当該三次元的に連続した空孔が液体や気体の流路となる。
図2には、第2のモノリスイオン交換体の形態例のSEM写真を示すが、
図2に示す第2のモノリスイオン交換体は、有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に三次元的に連続した空孔を有する粒子凝集型構造である。有機ポリマー粒子の平均粒子径が乾燥状態で1μm未満であると、骨格間の連続した空孔の平均直径が乾燥状態で20μm未満と小さくなってしまうため好ましくなく、50μmを超えると、反応液とモノリスイオン交換体との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。また、骨格間に存在する三次元的に連続した空孔の平均直径が乾燥状態で20μm未満であると、反応液を透過させた際の圧力損失が大きくなってしまうため好ましくなく、一方、100μmを越えると、反応液とモノリスイオン交換体との接触が不十分となり、触媒活性が低下してしまうため好ましくない。
【0055】
なお、第2のモノリス及び第2のモノリスイオン交換体の骨格部分を構成する有機ポリマー粒子の乾燥状態での平均粒子径は、SEMを用いることで簡便に測定される。具体的には、乾燥状態の第2のモノリスイオン交換体の断面の任意に抽出した部分のSEM写真を撮り、そのSEM写真中の全粒子の有機ポリマー粒子の直径を測定して、それらの平均値を平均粒子径とする。
【0056】
また、乾燥状態の第2のモノリスの骨格間に存在する三次元的に連続した空孔の平均直径又は乾燥状態の第2のモノリスイオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径は、水銀圧入法により求められ、水銀圧入法により得られた細孔分布曲線の極大値を指す。
【0057】
第2のモノリスイオン交換体の乾燥状態での重量当りの全細孔容積は、1~10ml/gである。全細孔容積が1ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が10ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまう点で、好ましくない。
【0058】
第2のモノリスイオン交換体において、骨格部分の材料は、架橋構造単位を有する有機ポリマー材料である。すなわち、該有機ポリマー材料は、ビニルモノマーからなる構成単位と、分子中に2個以上のビニル基を有する架橋剤構造単位とを有するものであり、該ポリマー材料は、ポリマー材料を構成する全構成単位に対して、1~5モル%、好適には1~4モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が1モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、上記骨格間に三次元的に連続して存在する空孔径が小さくなってしまい、圧力損失が大きくなってしまうため好ましくない。
【0059】
第2のモノリスイオン交換体の骨格を構成するポリマー材料の種類は、特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルベンジルクロライド等のスチレン系ポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー;スチレン-ジビニルベンゼン共重合体、ビニルベンジルクロライド-ジビニルベンゼン共重合体等が挙げられる。上記ポリマーは、単独のモノマーと架橋剤を共重合させて得られるポリマーでも、複数のモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、粒子凝集構造の形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
【0060】
第2のモノリスイオン交換体に導入されているアニオン交換基は、第1のモノリスイオン交換体に導入されているアニオン交換基と同様である。
【0061】
第2のモノリスイオン交換体において、導入されたイオン交換基は、第1のモノリスイオン交換体と同様に、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。
【0062】
第2のモノリスイオン交換体のイオン交換容量は、乾燥状態での重量当り1~9mg当量/gである。第2のモノリスイオン交換体は、圧力損失を低く押さえたままで重量当りのイオン交換容量を格段に大きくすることができる。乾燥状態での重量当りのイオン交換容量が、上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。第2のモノリスイオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/g、好ましくは1~8mg当量/g、特に好ましくは1~7mg当量/gである。
【0063】
<第2のモノリス及び第2のモノリスイオン交換体の製造方法>
第2のモノリスの製造方法としては、ビニルモノマー、特定量の架橋剤、有機溶媒および重合開始剤とを混合し、静置状態でこれを重合させることにより、第2のモノリスを得る方法が挙げられる。
【0064】
第2のモノリスの製造に用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用される。好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。
【0065】
第2のモノリスの製造に用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好ましい。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用される。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。ビニルモノマーと架橋剤の合計量に対する架橋剤の使用量({架橋剤/(ビニルモノマー+架橋剤)}×100)は、1~5モル%、好ましくは1~4モル%である。架橋剤の使用量は得られるモノリスの多孔構造に大きな影響を与え、架橋剤の使用量が5モル%を超えると、骨格間に形成される連続空孔の大きさが小さくなってしまうため好ましくない。一方、架橋剤使用量が1モル%未満であると、モノリスの機械的強度が不足し、通液時に大きく変形したり、モノリスの破壊を招いたりするため好ましくない。
【0066】
第2のモノリスの製造に用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル等の鎖状エーテル類;ヘキサン、オクタン、デカン、ドデカン等の鎖状飽和炭化水素類等が挙げられる。これらのうち、アルコール類が、静置重合により粒子凝集構造が形成されやすくなると共に、三次元的に連続した空孔が大きくなるため好ましい。また、ベンゼンやトルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用される。
【0067】
第2のモノリスの製造に用いられる重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好ましい。重合開始剤は油溶性であるほうが好ましい。重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対する重合開始剤の使用量({重合開始剤/(ビニルモノマー+架橋剤)}×100)は、約0.01~5モル%である。
【0068】
第2のモノリスの製造においては、重合条件として、モノマーの種類、開始剤の種類により様々な条件を選択することができる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間加熱重合させればよい。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して第2のモノリスを得る。
【0069】
第2のモノリスの製造において、有機溶媒に溶解したビニルモノマーの重合が早く進む条件で行えば、平均粒子径1μmに近い有機ポリマー粒子が沈降し凝集して三次元的に連続した骨格部分を形成させることができる。ビニルモノマーの重合が早く進む条件とは、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、架橋剤を増やす、モノマー濃度を高くする、温度を高くするなどである。このような重合条件を加味して、平均粒子径1~50μmの有機ポリマー粒子を凝集させる重合条件を適宜決定すればよい。また、その骨格間に平均直径が20~100μmの三次元的に連続した空孔を形成するには、前述の如く、ビニルモノマーと架橋剤の合計量に対する架橋剤の使用量を特定量とすればよい。また、モノリスの全細孔容積を1~5ml/gとするには、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、概ね有機溶媒、モノマー及び架橋剤の合計使用量に対する有機溶媒使用量({有機溶媒/(有機溶媒+モノマー+架橋剤)}×100)が、30~80重量%、好適には40~70重量%のような条件で重合すればよい。
【0070】
第2のモノリスイオン交換体の製造方法としては、上記の第2のモノリスの製造方法において、イオン交換基を含むモノマー、例えば、イオン交換基を含まないビニルモノマーに、カルボン酸基、スルホン酸基等のイオン交換基が導入されているモノマーを用いて重合させ、一段階でモノリスイオン交換体にする方法、イオン交換基を含まないビニルモノマーを用いて重合させ第2のモノリスを形成し、次いで、イオン交換基を導入する方法などが挙げられる。
【0071】
第2のモノリスにイオン交換基を導入する方法は、第1のモノリスにイオン交換基を導入する方法と同様である。
【0072】
<第3のモノリス及び第3のモノリスイオン交換体の説明>
本発明の白金族金属イオン担持触媒において、白金族金属イオン又は白金族金属錯イオンの担体となる第3のモノリスイオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径30~300μmの開口となる連続マクロポア構造体であり、乾燥状態での全細孔容積が0.5~10ml/gであり、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%であり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体である。また、第3のモノリスは、イオン交換基が導入される前のモノリスであり、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径30~300μmの開口となる連続マクロポア構造体であり、乾燥状態での全細孔容積が0.5~10ml/gであり、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%である有機多孔質体である有機多孔質体である。
【0073】
第3のモノリスイオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径30~300μm、好ましくは30~200μm、特に好ましくは40~100μmの開口(メソポア)となる連続マクロポア構造体である。
図3には、第3のモノリスイオン交換体の形態例のSEM写真を示すが、
図3に示す第3のモノリスイオン交換体は、多数の気泡状のマクロポアを有しており、気泡状のマクロポア同士が重なり合い、この重なる部分が共通の開口(メソポア)となる連続マクロポア構造体となっており、その大部分がオープンポア構造である。乾燥状態での開口の平均直径が30μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、乾燥状態での開口の平均直径が大き過ぎると、反応液とモノリスイオン交換体および担持された白金族金属粒子との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。
【0074】
なお、乾燥状態の第3のモノリスの開口の平均直径、乾燥状態の第3のモノリスイオン交換体の開口の平均直径及び、以下に述べる第3のモノリスの製造のI工程で得られる、乾燥状態の第3のモノリス中間体(3)の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。
【0075】
第3のモノリスイオン交換体では、連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25~50%、好ましくは25~45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスイオン交換体およびそれに担持された白金族金属粒子との接触効率が低下し、触媒効果が低下するため好ましくなく、50%を超えると、骨格が太くなり過ぎ、通液時の圧力損失が増大するため好ましくない。
【0076】
SEM画像を得るための条件は、切断面の断面に表れる骨格部が鮮明に表れる条件であればよく、例えば倍率100~600、写真領域が約150mm×100mmである。SEM観察は、主観を排除した第3のモノリスイオン交換体の任意の切断面の任意の箇所で撮影された切断箇所や撮影箇所が異なる3枚以上、好ましくは5枚以上の画像で行うのがよい。切断される第3のモノリスイオン交換体は、電子顕微鏡に供するため、乾燥状態のものである。SEM画像における切断面の骨格部を
図3及び
図4を参照して説明する。また、
図4は、
図3のSEM写真の断面として表れる骨格部を転写したものである。
図3及び
図4中、概ね不定形状で且つ断面で表れるものは本発明の「断面に表れる骨格部(符号12)」であり、
図3に表れる円形の孔は開口(メソポア)であり、また、比較的大きな曲率や曲面のものはマクロポア(
図4中の符号13)である。
図4の断面に表れる骨格部面積は、矩形状画像領域11中、28%である。このように、骨格部は明確に判断できる。
【0077】
SEM画像において、切断面の断面に表れる骨格部の面積の測定方法としては、特に制限されず、当該骨格部を公知のコンピューター処理などを行い特定した後、コンピューターなどによる自動計算又は手動計算による算出方法が挙げられる。手動計算としては、不定形状物を、四角形、三角形、円形又は台形などの集合物に置き換え、それらを積層して面積を求める方法が挙げられる。
【0078】
また、第3のモノリスイオン交換体の乾燥状態での重量当りの全細孔容積は、0.5~10ml/g、好ましくは0.8~8ml/gである。全細孔容積が0.5ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が10ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスイオン交換体およびそれに担持された白金族金属イオンとの接触効率が低下するため、触媒効果も低下してしまうため好ましくない。
【0079】
第3のモノリスイオン交換体において、骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好適には0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、イオン交換基の導入が困難になる場合があるため好ましくない。
【0080】
第3のモノリスイオン交換体の骨格を構成するポリマー材料の種類は、特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、イオン交換基を導入する場合は、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
【0081】
第3のモノリスイオン交換体に導入されているイオン交換基は、第1のモノリスイオン交換体に導入されているイオン交換基と同様である。
【0082】
第3のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。
【0083】
第3のモノリスイオン交換体は、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gである。第3のモノリスイオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができるため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。乾燥状態での重量当りのイオン交換容量が、上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。第3のモノリスイオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/g、好ましくは1~8mg当量/g、特に好ましくは1~7mg当量/gである。
【0084】
<第3のモノリス及び第3のモノリスイオン交換体の製造方法>
第3のモノリスは、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5~16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体(3)とも記載する。)を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体(3)の存在下に重合を行い、モノリス中間体(3)の骨格より太い骨格を有する第3のモノリスを得るIII工程、を行うことにより得られる。
【0085】
第3のモノリスの製造方法において、I工程は、特開2002-306976号公報記載の方法に準拠して行えばよい。
【0086】
第3のモノリスの製造方法に係るI工程のモノリス中間体(3)の製造において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3~10モル%、好ましくは0.3~5モル%とすることが、イオン交換基を導入する場合に、イオン交換基量を定量的に導入できるため好ましい。
【0087】
第3のモノリスの製造方法に係るI工程で用いられる界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2~70%の範囲で選択することができる。
【0088】
また、第3のモノリスの製造方法に係るI工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。
【0089】
第3のモノリスの製造方法に係るI工程において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。
【0090】
第3のモノリスの製造方法に係るI工程で得られるモノリス中間体(3)は、連続マクロポア構造を有する。これを重合系に共存させると、モノリス中間体(3)の構造を型として骨太の骨格を有する多孔構造が形成される。また、モノリス中間体(3)は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好ましくは0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。特に、全細孔容積が10~16ml/gと大きい場合には、連続マクロポア構造を維持するため、架橋構造単位を2モル%以上含有していることが好ましい。一方、10モル%を越えると、イオン交換基の導入が困難になる場合があるため好ましくない。
【0091】
第3のモノリスの製造方法に係るI工程において、モノリス中間体(3)のポリマー材料の種類としては、特に制限はなく、前述の第1のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体(3)の骨格に同様のポリマーを形成して、骨格を太らせ均一な骨格構造の第3のモノリスを得ることができる。
【0092】
第3のモノリスの製造方法に係るI工程で得られるモノリス中間体(3)の乾燥状態での重量当りの全細孔容積は、5~16ml/g、好適には6~16ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が連続マクロポア構造から逸脱するため好ましくない。モノリス中間体(3)の全細孔容積を上記数値範囲とするには、モノマーと水の比を、概ね1:5~1:20とすればよい。
【0093】
また、第3のモノリスの製造方法に係るI工程で得られるモノリス中間体(3)は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20~200μmである。乾燥状態での開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通液時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、反応液とモノリスアニオン交換体との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。モノリス中間体(3)は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。
【0094】
第3のモノリスの製造方法に係るII工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
【0095】
第3のモノリスの製造方法に係るII工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体(3)と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。
【0096】
第3のモノリスの製造方法に係るII工程で用いられるビニルモノマーの添加量は、重合時に共存させるモノリス中間体(3)に対して、重量で3~50倍、好ましくは4~40倍である。ビニルモノマー添加量がモノリス中間体に対して3倍未満であると、生成したモノリスの骨格(モノリス骨格の壁部の厚み)を太くできず、また、イオン交換基を導入する場合、導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が50倍を超えると、開口径が小さくなり、通液時の圧力損失が大きくなってしまうため好ましくない。
【0097】
第3のモノリスの製造方法に係るII工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量に対して0.3~10モル%、特に0.3~5モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、イオン交換基の導入量が減少してしまう場合があるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体(3)の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。
【0098】
第3のモノリスの製造方法に係るII工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が30~80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が第3のモノリスの範囲から逸脱してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。
【0099】
第3のモノリスの製造方法に係るII工程で用いられる重合開始剤としては、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01~5%の範囲で使用することができる。
【0100】
第3のモノリスの製造方法に係るIII工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体(3)の存在下に重合を行い、該モノリス中間体(3)の骨格より太い骨格を有する第3のモノリスを得る工程である。III工程で用いるモノリス中間体(3)は、第3のモノリスを創出する上で、極めて重要な役割を担っており、上記重合系に連続マクロポア構造のモノリス中間体(3)を存在させると、第3のモノリスが得られる。
【0101】
第3のモノリスの製造方法において、反応容器の内容積は、モノリス中間体(3)を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体(3)を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体(3)が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体(3)に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。
第3のモノリスの製造方法に係るIII工程において、反応容器中、モノリス中間体(3)は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体(3)の配合比は、前述の如く、モノリス中間体(3)に対して、ビニルモノマーの添加量が重量で3~50倍、好ましくは4~40倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有する第3のモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体(3)の骨格内で重合が進行する。
【0102】
第3のモノリスの製造方法に係るIII工程において、重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択される。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間加熱重合させればよい。加熱重合により、モノリス中間体(3)の骨格に吸着、分配したビニルモノマーと架橋剤が骨格内で重合し、骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して第3のモノリスを得る。
【0103】
第3のモノリスイオン交換体は、III工程で得られた骨太の有機多孔質体である第3のモノリスにイオン交換基を導入するIV工程、を行うことにより得られる。
【0104】
第3のモノリスにイオン交換基を導入する方法は、第1のモノリスにイオン交換基を導入する方法と同様である。
【0105】
第3のモノリス及び第3のモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。
【0106】
<第4のモノリス及び第4のモノリスイオン交換体の説明>
本発明の白金族金属イオン担持触媒において、白金族金属イオン又は白金族金属錯イオンの担体となる第4の弱塩基性モノリスアニオン交換体は、全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10~200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5~10ml/gであり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体である。また、第4のモノリスは、イオン交換基が導入される前のモノリスであり、全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10~200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5~10ml/gである有機多孔質体である。
【0107】
第4のモノリスイオン交換体は、平均太さが乾燥状態で1~60μm、好ましくは3~58μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10~200μm、好ましくは15~180μm、特に好ましくは20~150μmの三次元的に連続した空孔とからなる共連続構造体である。
図5には、第4のモノリスイオン交換体の形態例のSEM写真を示し、
図6には、第4のモノリスイオン交換体の共連続構造の模式図を示す。共連続構造は
図6の模式図に示すように、連続する骨格相1と連続する空孔相2とが絡み合ってそれぞれが共に3次元的に連続する構造10である。この連続した空孔2は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがない。また、骨格が太いため機械的強度が高い。
【0108】
三次元的に連続した空孔の平均直径が乾燥状態で10μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、200μmを超えると、反応液とモノリスイオン交換体との接触が不十分となり、その結果、触媒活性が不十分となるため好ましくない。また、骨格の平均太さが乾燥状態で1μm未満であると、高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスイオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが60μmを越えると、骨格が太くなり過ぎ、通液時の圧力損失が増大するため好ましくない。
【0109】
乾燥状態の第4のモノリスの開口の平均直径、乾燥状態の第4のモノリスイオン交換体の開口の平均直径及び以下に述べる第4のモノリスの製造のI工程で得られる、乾燥状態の第4のモノリス中間体(4)の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、第4のモノリスイオン交換体の骨格の乾燥状態での平均太さは、乾燥状態の第4のモノリスイオン交換体のSEM観察により求められる。具体的には、乾燥状態の第4のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。
【0110】
また、第4のモノリスイオン交換体の乾燥状態での重量当りの全細孔容積は、0.5~10ml/gである。全細孔容積が0.5ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過量が小さくなり、処理量が低下してしまうため好ましくない。一方、全細孔容積が10ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスイオン交換体との接触効率が低下するため、触媒効率も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、反応液との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通液が可能となる。
【0111】
第4のモノリスイオン交換体において、骨格を構成する材料は、全構成単位中、0.1~5モル%、好ましくは0.5~3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.1モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい。
【0112】
第4のモノリスイオン交換体に導入されているイオン交換基は、第1のモノリスイオン交換体に導入されているイオン交換基と同様である。
【0113】
第4のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。
【0114】
第4のモノリスイオン交換体は、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gのイオン交換容量を有する。第4のモノリスイオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。重量当りのイオン交換容量が上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。第4のモノリスイオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/g、好ましくは1~8mg当量/g、特に好ましくは1~7mg当量/gである。
【0115】
<第4のモノリス及び第4のモノリスイニオン交換体の製造方法>
第4のモノリスは、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体(4)とも記載する。)を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3~5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス中間体(4)の存在下に重合を行い、共連続構造体である有機多孔質体である第4のモノリスを得るIII工程、を行うことにより得られる。
【0116】
第4のモノリスの製造方法に係るI工程において、モノリス中間体(4)を得るI工程は、特開2002-306976号公報記載の方法に準拠して行えばよい。
【0117】
すなわち、第4のモノリスの製造方法に係るI工程において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、三級アミノ基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3~5モル%、好ましくは0.3~3モル%とすることが、共連続構造の形成に有利となるため好ましい。
【0118】
第4のモノリスの製造方法に係るI工程で用いられる界面活性剤は、第3のモノリスの製造方法に係るI工程で用いられる界面活性剤と同様であり、その説明を省略する。
【0119】
また、第4のモノリスの製造方法に係るI工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等が挙げられる。
【0120】
第4のモノリスの製造方法に係るI工程において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、第3のモノリスの製造方法に係るI工程における混合方法と同様であり、その説明を省略する。
【0121】
第4のモノリスの製造方法に係るI工程で得られるモノリス中間体(4)は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.1~5モル%、好ましくは0.3~3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16~20ml/gの場合には、共連続構造を形成させるため、架橋構造単位は3モル%未満とすることが好ましい。
【0122】
第4のモノリスの製造方法に係るI工程において、モノリス中間体(4)のポリマー材料の種類は、第3のモノリスの製造方法に係るモノリス中間体(4)のポリマー材料の種類と同様であり、その説明を省略する。
【0123】
第4のモノリスの製造方法に係るI工程で得られるモノリス中間体(4)の乾燥状態での重量当りの全細孔容積は、16ml/gを超え、30ml/g以下、好適には16ml/gを超え、25ml/g以下である。すなわち、このモノリス中間体(4)は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。
図7には、モノリス中間体(4)の形態例のSEM写真を示すが、棒状に近い骨格を有している。これを重合系に共存させると、モノリス中間体(4)の構造を型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、イオン交換基を導入する場合は、体積当たりのイオン交換容量が低下してしまうため好ましくない。モノリス中間体(4)の全細孔容積を上記範囲とするには、モノマーと水の比を、概ね1:20~1:40とすればよい。
【0124】
また、第4のモノリスの製造方法に係るI工程で得られるモノリス中間体(4)は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5~100μmである。開口の平均直径が乾燥状態で5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、反応液と弱塩基性モノリスアニオン交換体との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。モノリス中間体(4)は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。
【0125】
第4のモノリスの製造方法に係るII工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3~5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
【0126】
第4のモノリスの製造方法に係るII工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体(4)と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。
【0127】
第4のモノリスの製造方法に係るII工程で用いられる芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体(4)に対して、重量で5~50倍、好ましくは5~40倍である。芳香族ビニルモノマー添加量がモノリス中間体(4)に対して5倍未満であると、棒状骨格を太くできず、また、イオン交換基を導入する場合、イオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、芳香族ビニルモノマー添加量が50倍を超えると、連続空孔の径が小さくなり、通液時の圧力損失が大きくなってしまうため好ましくない。
【0128】
第4のモノリスの製造方法に係るII工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3~5モル%、特に0.3~3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、イオン交換基を導入する場合、イオン交換基の定量的導入が困難になる場合があるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体(4)の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、また、イオン交換基を導入する場合、イオン交換基導入反応時にクラックが生じやすくなる。
【0129】
第4のモノリスの製造方法に係るII工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30~80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が第4のモノリスの範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。
【0130】
第4のモノリスの製造方法に係るII工程で用いられる重合開始剤は、第3のモノリスの製造方法に係るII工程で用いる重合開始剤と同様であり、その説明を省略する。
【0131】
第4のモノリスの製造方法に係るIII工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体(4)の存在下に重合を行い、該モノリス中間体(4)の連続マクロポア構造を共連続構造に変化させ、共連続構造モノリスである第4のモノリスを得る工程である。III工程で用いるモノリス中間体(4)は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7-501140号等に開示されているように、モノリス中間体(4)不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、第4のモノリスのように上記重合系に特定の連続マクロポア構造のモノリス中間体(4)を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造を持つ第4のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体(4)が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有する第4のモノリスが形成されると考えられる。
【0132】
第4のモノリスの製造方法において、反応容器の内容積は、第3のモノリスの製造方法に係る反応容器の内容積の説明と同様であり、その説明を省略する。
【0133】
第4のモノリスの製造方法に係るIII工程において、反応容器中、モノリス中間体(4)は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体(4)の配合比は、前述の如く、モノリス中間体(4)に対して、芳香族ビニルモノマーの添加量が重量で5~50倍、好ましくは5~40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造の第4のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体(4)の骨格に吸着、分配され、モノリス中間体(4)の骨格内で重合が進行する。
【0134】
第4のモノリスの製造方法に係るIII工程の重合条件は、第3のモノリスの製造方法に係るIII工程の重合条件の説明と同様であり、その説明を省略する。III工程を行うことにより、第4のモノリスが得られる。
【0135】
第4のモノリスイオン交換体は、III工程で得られた第4のモノリスにイオン交換基を導入するIV工程を行うことにより得られる。
【0136】
第4のモノリスにイオン交換基を導入する方法は、第1のモノリスにイオン交換基を導入する方法と同様である。
【0137】
第4のモノリス及び第4のモノリスイオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、第4のモノリスイオン交換体は、骨格が太いため、乾燥状態での体積当りのイオン交換容量を大きくでき、更に、反応液を低圧、大流量で長期間通液することが可能である。
【0138】
<第5のモノリス及び第5のモノリスイオン交換体の説明>
本発明の白金族金属イオン担持触媒において、白金族金属イオン又は白金族金属錯イオンの担体となる第5のモノリスイオン交換体は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する乾燥状態で直径4~40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが乾燥状態で4~40μmの多数の突起体との複合構造体であって、乾燥状態での孔の平均直径が10~200μm、乾燥状態での全細孔容積が0.5~10ml/gであり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体である。また、第5のモノリスは、イオン交換基が導入される前のモノリスであり、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する乾燥状態で直径4~40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが乾燥状態で4~40μmの多数の突起体との複合構造体であって、乾燥状態での孔の平均直径が10~200μm、乾燥状態での全細孔容積が0.5~10ml/gである有機多孔質体である。
【0139】
第5のモノリスイオン交換体は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する乾燥状態で直径4~40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが乾燥状態で4~40μmの多数の突起体との複合構造体である。なお、本明細書中、「粒子体」及び「突起体」を併せて「粒子体等」と言うことがある。
【0140】
第5のモノリスイオン交換体の連続骨格相と連続空孔相は、SEM画像により観察される。第5のモノリスイオン交換体の基本構造としては、連続マクロポア構造及び共連続構造が挙げられる。第5のモノリスイオン交換体の骨格相は、柱状の連続体、凹状の壁面の連続体あるいはこれらの複合体として表れるもので、粒子状や突起状とは明らかに相違する形状のものである。
【0141】
第5のモノリスイオン交換体の好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径10~120μmの開口となる連続マクロポア構造体(以下、「第5-1のモノリスイオン交換体」とも言う。)、及び乾燥状態で平均太さが0.8~40μmの三次元的に連続した骨格と、その骨格間に乾燥状態で平均直径が8~80μmの三次元的に連続した空孔とからなる共連続構造体(以下、「第5-2のモノリスイオン交換体」とも言う。)が挙げられる。また、第5のモノリスとしては、第5-1のモノリスイオン交換体において、イオン交換基が導入される前のモノリス(以下、「第5-1のモノリス」とも言う。)、及び第5-2のモノリスイオン交換体において、イオン交換基が導入される前のモノリス(以下、「第5-2のモノリス」とも言う。)が好ましい。
【0142】
第5-1のモノリスイオン交換体の場合、第5-1のモノリスイオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径20~150μm、好ましくは30~150μm、特に好ましくは35~150μmの開口(メソポア)となる連続マクロポア構造体であり、該マクロポアと該開口(メソポア)で形成される気泡内が流路となる。連続マクロポア構造は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。第5-1のモノリスイオン交換体の乾燥状態での開口の平均直径が20μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、また、乾燥状態での開口の平均直径が150μmを超えると、反応液とモノリスイオン交換体および担持された白金族金属イオンとの接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。
【0143】
なお、乾燥状態の第5のモノリスの開口の平均直径、乾燥状態の第5のモノリスイオン交換体の開口の平均直径及び以下に述べる第5のモノリスの製造のI工程で得られる、乾燥状態のモノリス中間体(5)の開口の平均直径は、水銀圧入法により得られる細孔分布曲線の極大値を指す。
【0144】
第5-2のモノリスイオン交換体の場合、第5-2のモノリスイオン交換体は、乾燥状態で平均太さが1~50μm、好ましくは5~50μmの三次元的に連続した骨格と、その骨格間に乾燥状態での平均直径が10~100μm、好ましくは10~90μmの三次元的に連続した空孔を有する共連続構造である。第5-2のモノリスイオン交換体の三次元的に連続した空孔の乾燥状態での平均直径が10μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、また、100μmを超えると、反応液とモノリスイオン交換体および担持された白金族金属イオンとの接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。また、第5-2のモノリスイオン交換体の骨格の平均太さが乾燥状態で1μm未満であると、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。一方、第5-2のモノリスイオン交換体の骨格の平均太さが乾燥状態で50μmを越えると、骨格が太くなり過ぎ、通液時の圧力損失が増大するため好ましくない。
【0145】
第5-2のモノリスイオン交換体の骨格の乾燥状態での平均太さは、乾燥状態の第5-2のモノリスイオン交換体のSEM観察により求められる。具体的には、乾燥状態の第5-2のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。
【0146】
第5のモノリスイオン交換体の孔の乾燥状態での平均直径は、10~200μmである。第5-1のモノリスイオン交換体の場合、第5-1のモノリスイオン交換体の乾燥状態での孔径の好ましい値は30~150μmであり、また、第5-2のモノリスイオン交換体の場合、第5-2のモノリスイオン交換体の乾燥状態での孔径の好ましい値は10~90μmである。
【0147】
第5のモノリスイオン交換体において、乾燥状態での粒子体の直径及び突起体の大きさは、4~40μm、好ましくは4~30μm、特に好ましくは4~20μmである。なお、本発明において、粒子体及び突起体は、共に骨格表面に突起状に観察されるものであり、粒状に観察されるものを粒子体と称し、粒状とは言えない突起状のものを突起体と称する。
図8に、突起体の模式的な断面図を示す。
図8中の(A)~(E)に示すように、骨格表面21から突き出している突起状のものが突起体22であり、突起体22には、(A)に示す突起体22aのように粒状に近い形状のもの、(B)に示す突起体22bのように半球状のもの、(C)に示す突起体22cのように骨格表面の盛り上がりのようなもの等が挙げられる。また、他には、突起体22には、(D)に示す突起体22dのように、骨格表面21の平面方向よりも、骨格表面21に対して垂直方向の方が長い形状のものや、(E)に示す突起体22eのように、複数の方向に突起した形状のものもある。また、突起体の大きさは、SEM観察したときのSEM画像で判断され、個々の突起体のSEM画像での幅が最も大きくなる部分の長さを指す。また、
図9に、第5のモノリスイオン交換体の形態例のSEM写真を示すが、有機多孔質体の骨格表面に多数の突起体が形成されている。
【0148】
第5のモノリスイオン交換体において、全粒子体等中、乾燥状態で4~40μmの粒子体等が占める割合は70%以上、好ましくは80%以上である。なお、全粒子体等中の乾燥状態で4~40μmの粒子体等が占める割合は、全粒子体等の個数に占める乾燥状態で4~40μmの粒子体等の個数割合を指す。また、骨格相の表面は全粒子体等により40%以上、好ましくは50%以上被覆されている。なお、全粒子体等による骨格層の表面の被覆割合は、SEMにより表面観察にしたときのSEM画像上の面積割合、つまり、表面を平面視したときの面積割合を指す。壁面や骨格を被覆している粒子の大きさが上記範囲を逸脱すると、流体とモノリスイオン交換体の骨格表面及び骨格内部との接触効率を改善する効果が小さくなり易い。なお、全粒子体等とは、乾燥状態で4~40μmの粒子体等以外の大きさの範囲の粒子体及び突起体も全て含めた、骨格層の表面に形成されている全ての粒子体及び突起体を指す。
【0149】
第5のモノリスイオン交換体の骨格表面に付着した粒子体等の乾燥状態での直径又は大きさは、乾燥状態の第5のモノリスイオン交換体のSEM画像の観察により得られる粒子体等の直径又は大きさである。そして、乾燥状態の第5のモノリスイオン交換体のSEM画像中に観察される全ての粒子体等の直径又は大きさを測定して、その値を基に、1視野のSEM画像中の全粒子体等の乾燥状態での直径又は大きさを算出する。この乾燥状態の第5のモノリスイオン交換体のSEM観察を少なくとも3回行い、全視野において、SEM画像中の全粒子体等の乾燥状態での直径又は大きさを算出して、直径又は大きさが4~40μmにある粒子体等が観察されるか否かを確認し、全視野において確認された場合、第5のモノリスイオン交換体の骨格表面上に、直径又は大きさが乾燥状態で4~40μmにある粒子体等が形成されていると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等の乾燥状態での直径又は大きさを算出し、各視野毎に、全粒子体等に占める乾燥状態で4~40μmの粒子体等の割合を求め、全視野において、全粒子体等中の乾燥状態で4~40μmの粒子体等が占める割合が70%以上であった場合には、第5のモノリスイオン交換体の骨格表面に形成されている全粒子体等中、乾燥状態で4~40μmの粒子体等が占める割合は70%以上であると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等による骨格層の表面の被覆割合を求め、全視野において、全粒子体等による骨格層の表面の被覆割合が40%以上であった場合には、第5のモノリスイオン交換体の骨格層の表面が全粒子体等により被覆されている割合が40%以上であると判断する。
【0150】
第5のモノリスイオン交換体において、粒子体等による骨格相表面の被覆率が40%未満であると、反応液とモノリスイオン交換体の骨格内部及び骨格表面との接触効率を改善する効果が小さくなり易い。上記粒子体等による被覆率の測定方法としては、第5のモノリスイオン交換体のSEM画像による画像解析方法が挙げられる。
【0151】
第5のモノリスイオン交換体の乾燥状態での重量当たりの全細孔容積は、0.5~10ml/g、好ましくは0.8~8ml/gである。モノリスイオン交換体の全細孔容積が0.5ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、モノリスイオン交換体の全細孔容積が10ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスイオン交換体およびそれに担持された白金族金属イオンとの接触効率が低下するため、触媒効果も低下してしまうため好ましくない。
【0152】
第5のモノリスイオン交換体において、連続空孔構造の骨格相を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好適には0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、イオン交換基を導入する場合、イオン交換基の導入が困難となり、導入量が減少してしまう場合があるため好ましくない。
【0153】
第5のモノリスの製造で用いられるポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続空孔構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸及びアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
【0154】
第5のモノリスイオン交換体において、有機多孔質体の骨格相を構成する材料と骨格相の表面に形成される粒子体等とは、同じ組織が連続した同一材料のもの、同じではない組織が連続する互いが異なる材料のものなどが挙げられる。同じではない組織が連続する互いが異なる材料のものとしては、ビニルモノマーの種類が互いに異なる材料の場合、ビニルモノマーや架橋剤の種類は同じであっても互いの配合割合が異なる材料の場合などが挙げられる。
【0155】
第5のモノリスイオン交換体に導入されているイオン交換基は、第1のモノリスイオン交換体に導入されているイオン交換基と同様である。
【0156】
第5のモノリスイオン交換体において、導入されたイオン交換基は、有機多孔質体の表面のみならず、有機多孔質体の骨格内部にまで均一に分布している。イオン交換基が、第5のモノリスイオン交換体の表面のみならず、骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
【0157】
第5のモノリスイオン交換体は、乾燥状態での重量当りのイオン交換容量が1~9mg当量/gのイオン交換容量を有する。第5のモノリスイオン交換体の重量当りのイオン交換容量が上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。第5のモノリスイオン交換体の乾燥状態での重量当りのイオン交換容量は、1~9mg当量/g、好ましくは1~8mg当量/g、特に好ましくは1~7mg当量/gである。
【0158】
第5のモノリスイオン交換体は、その厚みは1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体1つ当たりのイオン交換容量が極端に低くなるため好ましくない。第5のモノリスイオン交換体の厚みは、好ましくは3~1000mmである。また、第5のモノリスイオン交換体は、骨格の基本構造が連続空孔構造であるため、機械的強度が高い。
【0159】
<第5のモノリス及び第5のモノリスイオン交換体の製造方法>
第5のモノリスは、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルションを調製し、次いで油中水滴型エマルションを重合させて全細孔容積が5~30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体(5)とも記載する。)を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体(5)の存在下に重合を行い、複合構造を有する複合モノリスである第5のモノリスを得るIII工程、を行うことにより得られる。
【0160】
第5のモノリスの製造方法に係るI工程は、特開2002-306976号公報記載の方法に準拠して行なえばよい。
【0161】
第5のモノリスの製造方法に係るI工程のモノリス中間体(5)の製造において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、三級アミノ基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3~10モル%、好ましくは0.3~5モル%とすることが、後の工程でイオン交換基を導入する場合、イオン交換基量を定量的に導入できるため好ましい。
【0162】
第5のモノリスの製造方法に係るI工程で用いられる界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルションを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルションとは、油相が連続相となり、その中に水滴が分散しているエマルションを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルション粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2~70%の範囲で選択することができる。
【0163】
また、第5のモノリスの製造方法に係るI工程では、油中水滴型エマルション形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等が挙げられる。
【0164】
第5のモノリスの製造方法に係るI工程において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤を混合し、油中水滴型エマルションを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルションを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルション粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルション粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。
【0165】
第5のモノリスの製造方法に係るI工程で得られるモノリス中間体(5)は、連続マクロポア構造を有する。これを重合系に共存させると、そのモノリス中間体(5)の構造を鋳型として連続マクロポア構造の骨格相の表面に粒子体等が形成したり、共連続構造の骨格相の表面に粒子体等が形成したりする。また、モノリス中間体(5)は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好ましくは0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、10モル%を越えると、多孔質体の柔軟性が失われたり、また、イオン交換基を導入する場合、イオン交換基の導入が困難になる場合があるため好ましくない。
【0166】
第5のモノリスの製造方法に係るI工程において、モノリス中間体(5)のポリマー材料の種類としては、特に制限はなく、前述の第5のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体(5)の骨格に同様のポリマーを形成して、複合構造のモノリスである第5のモノリスを得ることができる。
【0167】
第5のモノリスの製造方法に係るI工程で得られるモノリス中間体(5)の乾燥状態での重量当たりの全細孔容積は、5~30ml/g、好適には6~28ml/gである。モノリス中間体の全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、モノリス中間体の全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が不均一になりやすく、場合によっては構造崩壊を引き起こすため好ましくない。モノリス中間体(5)の全細孔容積を上記数値範囲とするには、モノマーと水の比(重量)を、概ね1:5~1:35とすればよい。
【0168】
第5のモノリスの製造方法に係るI工程において、このモノマーと水との比を、概ね1:5~1:20とすれば、モノリス中間体(5)の全細孔容積が5~16ml/gの連続マクロポア構造のものが得られ、III工程を経て得られるモノリスは第5-1のモノリスとなる。また、配合比率を、概ね1:20~1:35とすれば、モノリス中間体(5)の全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のものが得られ、III工程を経て得られるモノリスは第5-2のモノリスとなる。
【0169】
また、第5のモノリスの製造方法に係るI工程で得られるモノリス中間体(5)は、マクロポアとマクロポアの重なり部分である開口(メソポア)の乾燥状態での平均直径が20~200μmである。モノリス中間体の乾燥状態での開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通液時の圧力損失が大きくなってしまうため好ましくない。一方、モノリス中間体の乾燥状態での開口の平均直径が200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなり過ぎ、反応液と弱塩基性モノリスアニオン交換体との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。モノリス中間体(5)は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。
【0170】
第5のモノリスの製造方法に係るII工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
【0171】
第5のモノリスの製造方法に係るII工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。
【0172】
第5のモノリスの製造方法に係るII工程で用いられるビニルモノマーの添加量は、重合時に共存させるモノリス中間体(5)に対して、重量で3~50倍、好ましくは4~40倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格に粒子体等を形成できず、また、イオン交換基を導入する場合、イオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が50倍を超えると、開口径が小さくなり、通液時の圧力損失が大きくなってしまうため好ましくない。
【0173】
第5のモノリスの製造方法に係るII工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤の使用量は、ビニルモノマーと架橋剤の合計量に対して0.3~20モル%、特に0.3~10モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、20モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、また、イオン交換基を導入する場合、イオン交換基の導入量が減少してしまう場合があるため好ましくない。
【0174】
第5のモノリスの製造方法に係るII工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が5~80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が5重量%未満となると、重合速度が低下してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。
【0175】
第5のモノリスの製造方法に係るII工程で用いられる重合開始剤としては、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01~5%の範囲で使用することができる。
【0176】
第5のモノリスの製造方法に係るIII工程は、II工程で得られた混合物を静置下、且つI工程で得られたモノリス中間体(5)の存在下、重合を行い、第5のモノリスを得る工程である。III工程で用いるモノリス中間体(5)は、第5のモノリスを創出する上で、極めて重要な役割を担っている。特表平7-501140号等に開示されているように、モノリス中間体(5)不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体(5)を存在させると、重合後の複合モノリスの構造は劇的に変化し、粒子凝集構造ではなく、上述の特定の骨格構造を有する第5のモノリスが得られる。反応容器の内容積は、モノリス中間体(5)を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体(5)を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体(5)が隙間無く入るもののいずれであってもよい。このうち、重合後の第5のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、第5のモノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後の第5のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体(5)に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。
【0177】
第5のモノリスの製造方法に係るIII工程において、反応容器中、モノリス中間体(5)は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体(5)の配合比は、前述の如く、モノリス中間体(5)に対して、ビニルモノマーの添加量が重量で3~50倍、好ましくは4~40倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、特定の骨格を有する複合モノリスである第5のモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体(5)の骨格に吸着、分配され、モノリス中間体(5)の骨格内で重合が進行する。
【0178】
第5のモノリスの製造方法に係るIII工程において、重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等を用いたときには、不活性雰囲気下の密封容器内において、20~100℃で1~48時間加熱重合させればよい。加熱重合により、モノリス中間体(5)の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該特定の骨格構造を形成させる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して特定骨格構造の複合モノリスである第5のモノリスを得る。
【0179】
上述の第5のモノリスを製造する際に、下記(1)~(5)の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程行うと、第5モノリスの特徴的な構造である、骨格表面に粒子体等が形成されたモノリスを製造することができる。
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である。
(2)II工程で用いる架橋剤のモル%が、I工程で用いる架橋剤のモル%の2倍以上である。
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである。
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである。
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である。
【0180】
(上記(1)の説明)
10時間半減温度は重合開始剤の特性値であり、使用する重合開始剤が決まれば10時間半減温度を知ることができる。また、所望の10時間半減温度があれば、それに該当する重合開始剤を選択することができる。III工程において、重合温度を低下させることで、重合速度が低下し、骨格相の表面に粒子体等を形成させることができる。その理由は、モノリス中間体の骨格相の内部でのモノマー濃度低下が緩やかとなり、液相部からモノリス中間体へのモノマー分配速度が低下するため、余剰のモノマーがモノリス中間体の骨格層の表面近傍で濃縮され、その場で重合したためと考えられる。
【0181】
第5のモノリスの製造方法に係るIII工程において、好ましい重合温度は、用いる重合開始剤の10時間半減温度より少なくとも10℃低い温度である。重合温度の下限値は特に限定されないが、温度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、重合温度を10時間半減温度に対して5~20℃低い範囲に設定することが好ましい。
【0182】
(上記(2)の説明)
第5のモノリスの製造方法に係るII工程で用いる架橋剤のモル%を、I工程で用いる架橋剤のモル%の2倍以上に設定して重合すると、複合構造を有するモノリスが得られる。その理由は、モノリス中間体と含浸重合によって生成したポリマーとの相溶性が低下し相分離が進行するため、含浸重合によって生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相表面に粒子体等の凹凸を形成したものと考えられる。なお、架橋剤のモル%は、架橋密度モル%であって、ビニルモノマーと架橋剤の合計量に対する架橋剤量(モル%)を言う。
【0183】
第5のモノリスの製造方法に係るII工程で用いる架橋剤モル%の上限は特に制限されないが、架橋剤モル%が著しく大きくなると、重合後のモノリスにクラックが発生する、モノリスの脆化が進行して柔軟性が失われる、また、イオン交換基を導入する場合、イオン交換基の導入量が減少してしまう場合があるといった問題点が生じるため好ましくない。好ましい架橋剤モル%の倍数は2倍~10倍である。一方、I工程で用いる架橋剤モル%をII工程で用いられる架橋剤モル%に対して2倍以上に設定しても、骨格相表面への粒子体等の形成は起こらず、第5のモノリスは得られなかった。
【0184】
(上記(3)の説明)
第5のモノリスの製造方法に係るII工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーであると、第5のモノリスが得られる。例えば、スチレンとビニルベンジルクロライドのように、ビニルモノマーの構造が僅かでも異なると、骨格相表面に粒子体等が形成された複合モノリスが生成する。一般に、僅かでも構造が異なる二種類のモノマーから得られる二種類のホモポリマーは互いに相溶しない。したがって、I工程で用いたモノリス中間体形成に用いたモノマーとは異なる構造のモノマーをII工程で用いてIII工程で重合を行うと、II工程で用いたモノマーはモノリス中間体に均一に分配や含浸がされるものの、重合が進行してポリマーが生成すると、生成したポリマーはモノリス中間体とは相溶しないため、相分離が進行し、生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相の表面に粒子体等の凹凸を形成したものと考えられる。
【0185】
(上記(4)の説明)
第5のモノリスの製造方法に係るII工程で用いる有機溶媒が、分子量200以上のポリエーテルであると、第5のモノリスが得られる。ポリエーテルはモノリス中間体との親和性が比較的高く、特に低分子量の環状ポリエーテルはポリスチレンの良溶媒、低分子量の鎖状ポリエーテルは良溶媒ではないがかなりの親和性を有している。しかし、ポリエーテルの分子量が大きくなると、モノリス中間体との親和性は劇的に低下し、モノリス中間体とほとんど親和性を示さなくなる。このような親和性に乏しい溶媒を有機溶媒に用いると、モノマーのモノリス中間体の骨格内部への拡散が阻害され、その結果、モノマーはモノリス中間体の骨格の表面近傍のみで重合するため、骨格相表面に粒子体等が形成され骨格表面に凹凸を形成したものと考えられる。
【0186】
第5のモノリスの製造方法に係るII工程で用いるポリエーテルの分子量は、200以上であれば上限に特に制約はないが、あまりに高分子量であると、II工程で調製される混合物の粘度が高くなり、モノリス中間体内部への含浸が困難になるため好ましくない。好ましいポリエーテルの分子量は200~100000、特に好ましくは200~10000である。また、ポリエーテルの末端構造は、未修飾の水酸基であっても、メチル基やエチル基等のアルキル基でエーテル化されていてもよいし、酢酸、オレイン酸、ラウリン酸、ステアリン酸等でエステル化されていてもよい。
【0187】
(上記(5)の説明)
第5のモノリスの製造方法に係るII工程で用いるビニルモノマーの濃度が、II工程中の混合物中、30重量%以下であると、第5のモノリスが得られる。II工程でモノマー濃度を低下させることで、重合速度が低下し、前記(1)と同様の理由で、骨格相表面に粒子体等が形成でき、骨格相表面に凹凸を形成されることができる。モノマー濃度の下限値は特に限定されないが、モノマー濃度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、モノマー濃度は10~30重量%に設定することが好ましい。
【0188】
このようにして得られる第5のモノリスの好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径10~120μmの開口となる連続マクロポア構造体(「第5-1のモノリス」)及び乾燥状態での平均太さが0.8~40μmの三次元的に連続した骨格と、その骨格間に乾燥状態での直径が8~80μmの三次元的に連続した空孔とからなる共連続構造体(「第5-2のモノリス」)が挙げられる。
【0189】
第5のモノリスが第5-1のモノリスの場合、第5-1のモノリスは、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径10~120μm、好ましくは20~120μm、特に好ましくは25~120μmの開口(メソポア)となる連続マクロポア構造体であり、マクロポアと該開口(メソポア)で形成される気泡内が流路となる。連続マクロポア構造は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。第5-1のモノリスの乾燥状態での開口の平均直径が10μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、また、乾燥状態での開口の平均直径が120μmを超えると、反応液とモノリスイオン交換体および担持された白金族金属粒子との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。
【0190】
第5-2のモノリスの場合、第5-2のモノリスは、乾燥状態での平均太さが0.8~40μmの三次元的に連続した骨格と、その骨格間に乾燥状態での平均直径が8~80μmの三次元的に連続した空孔を有する共連続構造である。第5-2のモノリスの三次元的に連続した空孔の乾燥状態での平均直径が8μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、また、80μmを超えると、反応液とモノリス又は弱塩基性モノリスアニオン交換体および担持された白金族金属粒子との接触が不十分となり、その結果、触媒活性が低下してしまうため好ましくない。また、第5-2のモノリスの骨格の乾燥状態での平均太さが0.8μm未満であると、イオン交換基を導入する場合、モノリスイオン交換体の体積当りのイオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通液した際にモノリス又はモノリスイオン交換体が大きく変形してしまうため好ましくない。一方、骨格の乾燥状態での平均太さが80μmを越えると、通液時の圧力損失が増大するため好ましくない。
【0191】
第5のモノリスイオン交換体は、III工程で得られた第5のモノリスにイオン交換基を導入するIV工程、を行うことにより得られる。
【0192】
第5のモノリスにイオン交換基を導入する方法は、第1のモノリスにイオン交換基を導入する方法と同様である。
【0193】
本発明の白金族金属イオン担持触媒では、非粒子状有機多孔質モノリスイオン交換体(モノリスイオン交換体)に、白金族金属イオン又は白金族金属錯イオンが担持されている。つまり、本発明の白金族金属イオン担持触媒では、白金族金属が、イオンの状態で、モノリスイオン交換体に担持されている。例えば、本発明の白金族金属イオン担持触媒としては、モノリスイオン交換体中の弱塩基性アニオン交換基、例えば、ジメチルアミノ基、ジエチルアミノ基等の第三級アミノ基に、白金族金属イオン又は白金族金属錯イオンが、イオン結合または配位結合により結合することにより、弱塩基性モノリスアニオン交換体基に、白金族金属イオンが担持されている触媒が挙げられる。また、例えば、本発明の白金族金属イオン担持触媒としては、モノリスイオン交換体中の強酸性カチオン交換基、例えば、スルホン酸基や、弱酸性カチオン交換基、例えば、カルボキシル基に、白金族金属イオンがイオン結合により結合することにより、強酸性カチオン交換基又は弱酸性カチオン交換基に白金族金属イオンが担持されている触媒が挙げられる。また、例えば、モノリスイオン交換体中の強塩基性アニオン交換基、例えば、第四級アンモニウム基に、白金族金属錯イオンが、イオン結合により結合することにより、強塩基性モノリスアニオン交換基に白金族金属イオンが担持されている触媒が挙げられる。
【0194】
本発明の白金族金属イオン担持触媒において、白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独であっても、二種類以上の金属を組み合わせであってもよい。そして、白金族金属イオンは、上記白金族金属のイオンである。
【0195】
本発明の白金族金属触媒担持に白金族金属イオン又は白金族金属錯イオンが担持されていることは、透過型電子顕微鏡(TEM)観察を行うことにより、確認される。
【0196】
本発明の白金族金属イオン担持触媒中の白金族金属イオン又は白金族金属錯イオンの担持量((白金族金属原子換算の質量/乾燥状態の白金族金属イオン担持触媒の質量)×100)は、原子換算で、0.01~10.0質量%、好ましくは0.10~5.0質量%である。白金族金属イオン又は白金族金属錯イオンの担持量が上記範囲にあることにより、かかる触媒として機能し、また、原材料の観点から安価となる。なお、本発明では、ICP発光分光分析装置を用いて、白金族金属イオン担持触媒中の白金族金属原子を定量する。
【0197】
本発明の白金族金属イオン担持触媒の製造方法には特に制約はなく、公知の方法により、モノリスイオン交換体に、白金族金属イオン又は白金族金属錯イオンを担持させることにより、白金族金属イオン担持触媒が得られる。例えば、乾燥状態のモノリスイオン交換体を白金族金属化合物の有機溶液に浸漬し、白金族金属イオンをイオン交換によりモノリスイオン交換体に吸着させる方法や、モノリスイオン交換体をテトラアンミンパラジウム錯体等の白金族金属錯化合物の水溶液に浸漬し、白金族金属イオンをイオン交換によりモノリスイオン交換体に吸着させて担持する方法等が挙げられる。
【0198】
モノリスイオン交換体へのパラジウムイオンの導入は、回分式でも流通式でもよく、特に制限はない。
【0199】
白金族金属イオン担持触媒の製造方法に用いられる白金族金属化合物としては、有機塩及び無機塩のいずれでもよく、ハロゲン化物、硫酸塩、硝酸塩、リン酸塩、有機酸塩、無機錯塩等が挙げられる。白金族金属化合物の具体例としては、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、酢酸パラジウム、テトラアンミンパラジウム塩化物、テトラアンミンパラジウム硝酸塩、塩化白金、テトラアンミン白金塩化物、テトラアンミン白金硝酸塩、クロロトリアンミン白金塩化物、ヘキサアンミン白金塩化物、ヘキサアンミン白金硫酸塩、クロロペンタアンミン白金塩化物、シス-テトラクロロジアンミン白金塩化物、トランス-テトラクロロジアンミン白金塩化物、塩化ロジウム、酢酸ロジウム、ヘキサアンミンロジウム塩化物、ヘキサアンミンロジウム臭化物、ヘキサアンミンロジウム硫酸塩、ペンタアンミンアクアロジウム塩化物、ペンタアンミンアクアロジウム硝酸塩、シス-ジクロロテトラアンミンロジウム塩化物、トランス-ジクロロテトラアンミンロジウム塩化物、塩化ルテニウム、ヘキサアンミンルテニウム塩化物、ヘキサアンミンルテニウム臭化物、ヘキサアンミンルテニウムヨウ化物、クロロペンタアンミンルテニウム塩化物、シス-ジクロロテトラアンミンルテニウム塩化物、トランス-ジクロロテトラアンミンロジウム塩化物、塩化イリジウム(III)、塩化イリジウム(IV)、ヘキサアンミンイリジウム塩化物、ヘキサアンミンイリジウム硝酸塩、クロロペンタアンミンイリジウム塩化物、クロロペンタアンミンイリジウム臭化物、ヘキサアンミンオスミウム塩化物、ヘキサアンミンオスミウム臭化物、ヘキサアンミンオスミウムヨウ化物等が挙げられる。
【0200】
白金族金属イオン又は白金族金属錯イオンの担持の際に、白金族金属化合物は、通常、溶媒に溶解させて用いられる。溶媒としては、水;メタノール、エタノール、プロパノール、ブタノール、ベンジルアルコール等のアルコール;アセトン、メチルエチルケトン等のケトン;アセトニトリル等の二トリル;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミドやそれらの混合物が用いられる。また、白金族金属化合物の溶媒への溶解性を高めるため、塩酸、硫酸、硝酸等の酸や、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド等の塩基を添加しても良い。
【0201】
本発明の炭素-炭素結合形成方法は、(1)芳香族ハロゲン化物と有機ホウ素化合物との反応、(2)芳香族ハロゲン化物と末端にアルキニル基を有する化合物との反応、又は(3)芳香族ハロゲン化物とアルケニル基を有する化合物との反応を行い、炭素-炭素結合を形成させる炭素-炭素結合形成方法であり、
芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)、芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)、又は芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)を、白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該原料液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
該白金族金属イオン担持触媒が、上記本発明の白金族金属イオン担持触媒であること、
を特徴とする炭素-炭素結合形成方法である。
【0202】
そして、本発明の炭素-炭素結合形成方法は、反応の原料液、すなわち、原料液(i)、原料液(ii)又は原料液(iii)を、上記本発明の白金族金属イオン担持触媒に通液して、原料液を上記本発明の白金族金属イオン担持触媒に接触させることにより、炭素-炭素結合の形成反応を行う、炭素-炭素結合形成方法である。なお、本発明の炭素-炭素結合形成方法において、炭素-炭素結合の形成反応が、(1)芳香族ハロゲン化物と有機ホウ素化合物との反応の場合は、原料液は、芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)である。また、本発明の炭素-炭素結合形成方法において、炭素-炭素結合の形成反応が、(2)芳香族ハロゲン化物と末端にアルキニル基を有する化合物との反応の場合、原料液は、芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)である。また、本発明の炭素-炭素結合形成方法において、炭素-炭素結合の形成反応が、(3)芳香族ハロゲン化物とアルケニル基を有する化合物との反応の場合、原料液は、芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)である。なお、以下では、芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基を、原料と記載することもある。
【0203】
本発明の炭素-炭素結合形成方法において、上記本発明の白金族金属イオン担持触媒は、充填容器に充填されている。そして、原料液を、上記本発明の白金族金属イオン担持触媒が充填されている充填容器の導入経路より、充填容器内に導入し、白金族金属イオン担持触媒に、原料液を通液し、反応液を充填容器の排出経路から排出することにより、本発明の白金族金属イオン担持触媒の多孔質構造の連続空孔内を、反応原料液が通過し、そのときに、本発明の白金族金属イオン担持触媒の多孔質構造の連続空孔内の白金族金属と、反応原料液とが接触し、白金族金属による炭素-炭素結合形成反応が起こる。つまり、本発明の炭素-炭素結合形成方法は、固定床連続流通式の反応方式である。
【0204】
本発明の炭素-炭素結合形成方法を行うための反応装置の第一の実施形態例のフロー図を、
図14に示す。
図14中、炭素-炭素結合形成反応装置50aは、本発明の白金族金属イオン担持触媒が充填されている円筒状の充填容器51aと、反応の原料液52aが入れられる原料容器53aと、原料液52aを充填容器51aに供給するための原料液供給ポンプ54aと、充填容器51aから排出される反応液55aを入れるための反応液受器56aと、原料容器53aと充填容器51aとを繋ぎ、原料液の導入経路となる原料液導入管57aと、充填容器51aと反応液受器56aとを繋ぎ、途中に切り替え弁58aが付設されている反応液排出管59aと、切り替え弁58aで反応液排出管59aから分岐し、原料液導入管57aに繋がる循環管60aと、からなる。また、充填容器51aには、必要に応じて、充填容器51a内を加熱するための加熱部材又は加熱装置が取り付けられる。
【0205】
そして、炭素-炭素結合形成反応装置50aでは、原料液52aが原料液供給ポンプ54aにより、原料容器53aから充填容器51aに向けて連続的に供給される。充填容器51a内に供給された原料液は、充填容器51a内に充填されている本発明に係る白金族金属イオン担持触媒内を、詳細には有機多孔質体の連続空孔内を通過する。このことにより、本発明に係る白金族金属イオン担持触媒に、原料液が連続的に接触し、原料液中の原料が反応して、炭素-炭素結合形成が行われる。次いで、炭素-炭素結合形成が行われた後の反応液55aは、反応液排出管59aを経て、反応液受器56aに送られる。あるいは、炭素-炭素結合形成が行われた後の反応液55aは、反応液排出管59aから分岐している循環管60aを経て、原料容器53aに返送される。なお、反応液55aの反応液受器56aへの送液と原料容器53aへの返送との切り替えは、切り替え弁58aによって行われる。また、反応液55aの反応液受器56aへの送液と原料容器53aへの返送との切り替えを行うことにより、本発明に係る白金族金属イオン担持触媒の層に、1回だけ通液して反応させることも、触媒層に2回以上通液して反応させることもできる。
【0206】
本発明の炭素-炭素結合形成方法を行うための反応装置の第二の実施形態例のフロー図を、
図15に示す。
図15中、炭素-炭素結合形成反応装置50bは、本発明の白金族金属イオン担持触媒が充填されている円筒状の充填容器51bと、反応の原料液521bが入れられる原料容器531bと、無機塩基水溶液522bが入れられる原料容器532bと、原料液521bを充填容器51bに供給するための原料液供給ポンプ541bと、無機塩基水溶液522bを充填容器51bに供給するための原料液供給ポンプ542bと、充填容器51bから排出される反応液55bを入れるための反応液受器56bと、原料容器531bと、原料容器532bと、のそれぞれから延出し、途中で合流し、充填容器51aに繋がり、原料液及び無機塩基水溶液の導入経路となる原料液導入管57bと、からなる。また、充填容器51bには、必要に応じて、充填容器51b内を加熱するための加熱部材又は加熱装置が取り付けられる。
【0207】
そして、炭素-炭素結合形成反応装置50bでは、原料液521bが原料液供給ポンプ541bにより、原料容器531bから充填容器51bに向けて連続的に供給され、且つ、無機塩基水溶液522bが原料液供給ポンプ542bにより、原料容器532bから充填容器51bに向けて連続的に供給される。そして、合流点で、原料液521bと無機塩基水溶液521bが混合され、得られる混合物が、充填容器51bに供給される。充填容器51b内に供給された原料液と無機塩基水溶液の混合物は、充填容器51b内に充填されている本発明の白金族金属イオン担持触媒内を、詳細には有機多孔質体の連続空孔内を通過する。このことにより、本発明の白金族金属イオン担持触媒に、原料液及び無機塩基水溶液が連続的に接触し、原料液中の原料が反応して、炭素-炭素結合形成が行われる。次いで、炭素-炭素結合形成が行われた後の反応液55bは、反応液排出管59bを経て、反応液受器56bに送られる。
【0208】
本発明の炭素-炭素結合形成方法において、充填容器の大きさ、触媒充填層の厚み、溶媒と反応原料の流速、溶媒の種類、溶液や水素の流通の方向(上向き、下向き又は横向き)等は、反応の種類又は反応条件に応じて、適宜選択される。本発明の炭素-炭素結合形成方法では、原料液を本発明の白金族金属イオン担持触媒に、1回だけ通液してもよいし、あるいは、原料液を本発明の白金族金属イオン担持触媒に通液した後、得られる反応液を、再度、本発明の白金族金属イオン担持触媒に通液してもよい。原料液を本発明の白金族金属イオン担持触媒に通液した後、得られる反応液を、再度、本発明の白金族金属イオン担持触媒に通液する場合、反応液をそのまま、再度、本発明の白金族金属イオン担持触媒に通液してもよいし、あるいは、反応液に原料液を混合して、混合液を、本発明の白金族金属イオン担持触媒に通液してもよい。
【0209】
本発明の炭素-炭素結合形成方法の第一の形態(以下、炭素-炭素結合形成方法(1)とも記載する。)は、上記本発明に係る白金族金属イオン担持触媒に、芳香族ハロゲン化物と有機ホウ素化合物とを含有する原料液(i)を通液して、芳香族ハロゲン化物と有機ホウ素化合物とを反応させることにより、炭素-炭素単結合を生成させる反応である。
【0210】
炭素-炭素結合形成方法(1)で用いられる有機ホウ素化合物は、一般式(I)~(III)で示される有機ホウ素化合物である。
【0211】
【0212】
【0213】
【0214】
式中Rは、いずれも有機基であり、有機基であれば特に制限されないが、例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、芳香族炭素環式基、芳香族複素環式基等が挙げられ、本発明の効果を阻害しない範囲であれば、これらの有機基Rには、アミノ基、メトキシ基、エトキシ基、カルボキシル基、アセチル基、ニトロ基、シアノ基等が導入されていてもよい。
【0215】
そして、炭素-炭素結合形成方法(1)で用いられる有機ホウ素化合物としては、下記一般式(IV)~(VI)で示される芳香族ホウ素化合物が好ましい。
【0216】
【0217】
【0218】
【0219】
(式中、Ar1は、それぞれ炭素数6~18の芳香族炭素環式基または芳香族複素環式基である。)
【0220】
式(IV)~(VI)中、Ar1に係る芳香族炭素環式基または芳香族複素環式基の例としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ピリジル基、ピリミジル基、インドリル基、ベンズイミダゾリル基、キノリル基、ベンゾフラニル基、インダニル基、インデニル基、ジベンゾフラニル基等が挙げられる。芳香族炭素環式基または芳香族複素環式基にホウ素が結合する位置については、特に制限はなく、任意の位置に結合することが可能である。また、芳香族炭素環式基または芳香族複素環式基には、1個以上の置換基が導入されていてもよい。置換基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ベンジル基等の炭化水素基;メトキシ基、エトキシ基、プルポキシ基、ブトキシ基等のアルコキシ基;9-フルオレニルメトキシカルボニル基、ブトキシカルボニル基、ベンジルオキシカルボニル基、ニトロ基、シアノ基等が挙げられる。
【0221】
炭素-炭素結合形成方法(1)で用いられる芳香族ハロゲン化物は、下記一般式(VII)で示される芳香族ハロゲン化物である。
Ar2-X (VII)
(式中、Ar2は、炭素数6~18の芳香族炭素環式基または芳香族複素環式基であり、Xはハロゲン原子である。)
【0222】
式(VII)中、Ar2に係る芳香族炭素環式基または芳香族複素環式基の例としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ピリジル基、ピリミジル基、インドリル基、ベンズイミダゾリル基、キノリル基、ベンゾフラニル基、インダニル基、インデニル基、ジベンゾフラニル基等が挙げられる。芳香族炭素環式基または芳香族複素環式基にハロゲン原子が結合する位置については、特に制限はなく、任意の位置に結合することが可能である。また、芳香族炭素環式基または芳香族複素環式基には、1個以上の置換基が導入されていてもよい。置換基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ベンジル基等の炭化水素基;メトキシ基、エトキシ基、プルポキシ基、ブトキシ基等のアルコキシ基;9-フルオレニルメトキシカルボニル基、ブトキシカルボニル基、ベンジルオキシカルボニル基、ニトロ基、シアノ基、カルボキシル基、有機基で置換されていても良いアミノ基等が挙げられる。なお、Xはハロゲン原子であり、具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子である。
【0223】
炭素-炭素結合形成方法(1)による炭素-炭素結合の生成とは、有機ホウ素化合物からホウ素を含む官能基が脱離した有機基と、芳香族ハロゲン化物からハロゲンが脱離した芳香族残基との間に、炭素-炭素結合が生成することをいう。例えば、有機ホウ素化合物が式(IV)~(VI)で示される芳香族ホウ素化合物であり、芳香族ハロゲン化物が式(VII)で示される芳香族ハロゲン化物である場合、得られるカップリング生成物は、式(VIII)で示される化合物となる。
Ar1-Ar2 (VIII)
(式中、Ar1及びAr2は前記式(IV)~(VII)と同様である。)
【0224】
炭素-炭素結合形成方法(1)で用いられる芳香族ホウ素化合物と芳香族ハロゲン化物の使用割合は、等モルで用いられることが望ましいが、モル比で芳香族ホウ素化合物:芳香族ハロゲン化物=0.5~2:1の範囲であれば、問題なく反応に供することができる。
【0225】
本発明の炭素-炭素結合形成方法の第二の形態(以下、炭素-炭素結合形成方法(2)とも記載する。)は、上記本発明に係る白金族金属イオン担持触媒に、芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを含有する原料液(ii)を通液して、芳香族ハロゲン化物と末端にアルキニル基を有する化合物とを反応させることにより、炭素-炭素単結合を生成させる反応である。
【0226】
炭素-炭素結合形成方法(2)で用いられる芳香族ハロゲン化物は、式(VII)で示される芳香族ハロゲン化物である。
【0227】
炭素-炭素結合形成方法(2)で用いられる末端にアルキニル基を有する化合物は、式(IX)で示される化合物である。
HC≡C-R1 (IX)
(式中、R1は水素原子、炭素数6~18の置換基を有していてもよい芳香族炭素環式基または芳香族複素環式基、炭素数1~18の置換基を有していてもよい脂肪族炭化水素基、炭素数2~18の置換基を有していてもよいアルケニル基、炭素数2~10の置換基を有していてもよいアルキニル基、炭素数1~18の置換基を有していてもよいシリル基である。)
【0228】
式(IX)中、R1に係る炭素数6~18の置換基を有していてもよい芳香族炭素環式基または芳香族複素環式基の例としては、式(IV)~(VII)に係るAr1及びAr2と同様である。また、式(IX)中、R1に係る炭素数1~18の置換基を有していてもよい脂肪族炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基、オクタデシル基等が挙げられる。また、式(IX)、R1に係る炭素数2~18の置換基を有していてもよいアルケニル基の例としては、ビニル基、アリル基、メタリル基、プロペニル基、ブテニル基、ヘキセニル基、オクテニル基、デセニル基、オクタデセニル基等が挙げられる。また、式(IX)中、R1に係る炭素数2~10の置換基を有していてもよいアルキニル基の例としては、エチニル基、プロピニル基、ヘキシニル基、オクテニル基等が挙げられる。これら脂肪族炭化水素基、アルケニル基、アルキニル基の置換基としては、水酸基、炭化水素基、ヘテロ原子含有炭化水素基等が挙げられる。また、炭素数1~18の置換基を有していてもよいシリル基の例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基等が挙げられる。
【0229】
炭素-炭素結合形成方法(2)では、本発明に係る白金族金属イオン担持触媒により、式(VII)で示される芳香族ハロゲン化物と式(IX)で示される化合物が反応して、式(X)の生成物を与える。
Ar2-C≡C-R1 (X)
(式中、Ar2及びR1は、式(VII)および(IX)と同様である。)
【0230】
炭素-炭素結合形成方法(2)で用いられる芳香族ハロゲン化物と末端にアルキニル基を有する化合物の使用割合は、等モルで用いられることが望ましいが、モル比で芳香族ハロゲン化物:末端にアルキニル基を有する化合物=0.5~3:1の範囲であれば、問題なく反応に供することができる。
【0231】
本発明の炭素-炭素結合形成方法の第三の形態(以下、炭素-炭素結合形成方法(3)とも記載する。)は、上記本発明に係る白金族金属イオン担持触媒に、芳香族ハロゲン化物とアルケニル基を有する化合物とを含有する原料液(iii)を通液して、芳香族ハロゲン化物とアルケニル基を有する化合物とを反応させることにより、炭素-炭素単結合を生成させる反応である。
【0232】
炭素-炭素結合形成方法(3)で用いられる芳香族ハロゲン化物は、式(VII)で示される芳香族ハロゲン化物である。
【0233】
炭素-炭素結合形成方法(3)で用いられるアルケニル基を有する化合物は、式(XI)で示される化合物である。
R2HC=CR3R4 (XI)
(式中、R2、R3、R4は、それぞれ独立して水素原子、炭素数6~18の置換基を有していてもよい芳香族炭素環式基または芳香族複素環式基、炭素数1~18の置換基を有していてもよい脂肪族炭化水素基、カルボン酸誘導体、酸アミド誘導体またはシアノ基である。)
【0234】
式(XI)中、R2、R3及びR4に係る炭素数6~18の置換基を有していてもよい芳香族炭素環式基または芳香族複素環式基、および炭素数1~18の置換基を有していてもよい脂肪族炭化水素基の例としては、式(IX)に係るR1と同様である。また、式(XI)中、R2、R3及びR4に係るカルボン酸誘導体の例としては、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等のアルコキシカルボニル基が挙げられる。また、式(XI)中、R2、R3及びR4に係る酸アミド誘導体の例としては、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基等のカルバモイル基が挙げられる。
【0235】
炭素-炭素結合形成方法(3)では、本発明に係る白金族金属イオン担持触媒により、式(VII)で示される芳香族ハロゲン化物と式(XI)で示される化合物が反応して、式(XII)の生成物を与える。
R2Ar2C=CR3R4 (XII)
(式中、Ar2、R2、R3及びR4は、式(VII)および(XI)と同様である。)
【0236】
炭素-炭素結合形成方法(3)で用いられる芳香族ハロゲン化物と末端にアルキニル基を有する化合物の使用割合は、特に制限されないが、モル比で芳香族ハロゲン化物:アルケニル基を有する化合物=0.5~2:1の範囲であれば、問題なく反応に供することができる。
【0237】
本発明の炭素-炭素結合形成反応(1)~(3)において、本発明に係る白金族金属イオン担持触媒の使用量は、芳香族ハロゲン化物に対し、白金族金属原子換算で、0.01~20モル%である。
【0238】
本発明の炭素-炭素結合形成方法では、炭素-炭素結合形成反応を、無溶媒下で行ってもよく、あるいは、溶媒を用いて行ってもよい。
【0239】
本発明の炭素-炭素結合形成方法において、炭素-炭素結合形成反応を、無溶媒下で行う方法としては、例えば、
図14に示す反応装置50aの反応原料液52aに、液状の原料液53aを入れ、液状の原料液53aを、本発明の白金族金属イオン担持触媒が充填されている充填容器51aの導入経路より、充填容器51a内に導入し、本発明の白金族金属イオン担持触媒に、液状の原料液53aを通液し、反応液59aを充填容器51aの排出経路から排出することにより、炭素-炭素結合の形成反応を行う方法が挙げられる。
【0240】
本発明の炭素-炭素結合形成方法において、炭素-炭素結合形成反応を、溶媒を用いて行う場合、用いられる溶媒としては、炭素-炭素結合形成反応を阻害するものでなければ特に制限はなく、ヘキサンやヘプタンなどの炭化水素系溶媒;トルエンやキシレンなどの芳香族系溶媒;ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、4-メチルテトラヒドロピラン等のエーテル系溶媒;酢酸エチル、酢酸プロピル、プロピオン酸エチル等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドやN-メチルピロリドン等のアミド系溶媒;メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、エチレングリコール、プロピレングリコール、グリセリン等のアルコール系溶媒;水などが挙げられ、これらから選択される一種類を単独であっても、二種類以上の溶媒を組み合わせであってもよい。安価でかつ収率が良い点で、トルエン、キシレン、テトラヒドロフラン、4-メチルテトラヒドロピラン、N-メチルピロリドン、2-プロパノール、プロピレングリコール、水、トルエンと水の混合溶媒、キシレンと水の混合溶媒、テトラヒドロフランと水の混合溶媒、4-メチルテトラヒドロピランと水の混合溶媒、N-メチルピロリドンと水の混合溶媒、2-プロパノールと水の混合溶媒、プロピレングリコールと水の混合溶媒が好ましく、トルエン、4-メチルテトラヒドロピラン、N-メチルピロリドン、2-プロパノール、水、トルエンと水の混合溶媒、4-メチルテトラヒドロピランと水の混合溶媒、N-メチルピロリドンと水の混合溶媒、2-プロパノールと水の混合溶媒がより好ましい。
【0241】
本発明の炭素-炭素結合形成方法において、炭素-炭素結合形成反応を、溶媒を用いて行う方法としては、例えば、
図14に示す反応装置50aの反応原料液52aに、原料が有機溶媒に溶解している原料液53aを入れ、原料が有機溶媒に溶解している原料液52aを、本発明の白金族金属イオン担持触媒が充填されている充填容器51aの導入経路より、充填容器51a内に導入し、本発明の白金族金属イオン担持触媒に、原料が有機溶媒に溶解している原料液52aを通液し、反応液59aを充填容器51aの排出経路から排出することにより、炭素-炭素結合の形成反応を行う方法が挙げられる。
【0242】
本発明の炭素-炭素結合形成反応では、無機塩基の存在下で、炭素-炭素結合の形成反応を行うことが好ましい。用いられる無機塩基の例としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸セシウム、酢酸カリウム、リン酸ナトリウム、リン酸カリウム、カリウムフェノキシド、水酸化バリウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウムブトキシド、トリメチルアミン、トリエチルアミン等が挙げられる。これら無機塩基の使用量は、芳香族ハロゲン化物に対して50~300モル%の範囲で設定される。
【0243】
本発明の炭素-炭素結合形成反応の実施方式の第一の形態例としては、原料液(i)、原料液(ii)又は原料液(iii)が、水又は親水性溶媒に、原料(芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基)及び無機塩基が溶解している無機塩基溶解原料液であり、
該無機塩基溶解原料液を、本発明の白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該無機塩基溶解原料液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
を特徴とする炭素-炭素結合形成方法が挙げられる。
【0244】
本発明の炭素-炭素結合形成反応の実施方式の第一の形態例を行う方法としては、例えば、
図14に示す反応装置50aの反応容器53aに、無機塩基が溶解している原料液(i)、原料液(ii)又は原料液(iii)、すなわち、水又は親水性溶媒に、原料(芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基)及び無機塩基が溶解している無機塩基溶解原料液52aを入れ、無機塩基溶解原料液52aを、本発明の白金族金属イオン担持触媒が充填されている充填容器51aの導入経路より、充填容器51a内に導入し、本発明の白金族金属イオン担持触媒に、無機塩基溶解原料液52aを通液し、反応液59aを充填容器51aの排出経路から排出することにより、炭素-炭素結合の形成反応を行う方法が挙げられる。
【0245】
また、本本発明の炭素-炭素結合形成反応の実施方式の第一の形態例を行う方法としては、例えば、
図14に示す反応装置50bの反応容器531bに、原料液521bとして、親水性の有機溶媒に、原料(芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基)が溶解している原料液(i)、原料液(ii)又は原料液(iii)を入れ、また、原料容器532bに、無機塩基水溶液522bを入れ、親水性の有機溶媒に原料が溶解している原料液521bと無機塩基水溶液522bを、本発明の白金族金属イオン担持触媒が充填されている充填容器51aに向けて供給する。そして、合流点で、原料液521bと無機塩基水溶液522bが混合され、得られる混合物、すなわち、水又は親水性溶媒に、原料(芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基)及び無機塩基が溶解している無機塩基溶解原料液を、充填容器51bの導入経路より、充填容器51b内に導入し、本発明の白金族金属イオン担持触媒に、無機塩基溶解原料液を通液し、反応液59bを充填容器51bの排出経路から排出することにより、炭素-炭素結合の形成反応を行う方法が挙げられる。
【0246】
本発明の炭素-炭素結合形成反応の実施方式の第一の形態例は、溶媒として、水又は親水性の有機溶媒を用いる均一系の反応方式であり、水又は親水性の有機溶媒に、原料と無機塩基とを溶解させた無機塩基原料液を、本発明の白金族金属イオン担持触媒に通液する反応方式である。
【0247】
本発明の炭素-炭素結合形成反応の実施方式の第一の形態例では、予め水又は親水性の有機溶媒に、原料及び無機塩基の両方を溶解させて、無機塩基溶解原料液を調製し、それを本発明の白金族金属イオン担持触媒に通液してもよいし、あるいは、水又は親水性の有機溶媒に原料を溶解させた原料液と、無機塩基水溶液と、を別々に調製し、それぞれ別々の容器に入れ、各容器から、原料液と無機塩基水溶液を、本発明の白金族金属イオン担持触媒に反応原料を供給するための導入経路に供給して、導入経路内で、原料液と無機塩基水溶液を混合して、均一な機塩基溶解原料液を調製し、それを本発明の白金族金属イオン担持触媒に通液してもよい。
【0248】
本発明の炭素-炭素結合形成反応の実施方式の第二の形態例としては、原料液(i)、原料液(ii)、又は原料液(iii)が、疎水性溶媒に原料が溶解している疎水性溶媒原料液であり、
該疎水性溶媒原料液と、無機塩基水溶液と、の混合物を、本発明の白金族金属イオン担持触媒が充填されている充填容器の導入経路より、該充填容器内に導入し、該白金族金属イオン担持触媒に、該疎水性溶媒溶解原料液及び該無機塩基水溶液を通液し、反応液を該充填容器の排出経路から排出することにより、炭素-炭素結合の形成反応を行うこと、
を特徴とする炭素-炭素結合形成方法。
【0249】
本発明の炭素-炭素結合形成反応の実施方式の第二の形態例を行う方法としては、例えば、
図15に示す反応装置50aの反応容器53aに、疎水性の有機溶媒に、原料(芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基)が溶解している原料液(i)、原料液(ii)、又は原料液(iii)、すなわち、疎水性溶媒原料液と、無機塩基水溶液と、を入れ、反応容器53a内で混合して、懸濁液にし、得られる懸濁液を、本発明の白金族金属イオン担持触媒が充填されている充填容器51aの導入経路より、充填容器51a内に導入し、本発明の白金族金属イオン担持触媒に、疎水性溶媒原料液と無機塩基水溶液の懸濁液を通液し、反応液59aを充填容器51aの排出経路から排出することにより、炭素-炭素結合の形成反応を行う方法が挙げられる。
【0250】
また、本発明の炭素-炭素結合形成反応の実施方式の第二の形態例を行う方法としては、例えば、
図15に示す反応装置50bの反応容器531bに、原料液521bとして、疎水性の有機溶媒に、原料(芳香族ハロゲン化物と有機ホウ素化合物、芳香族ハロゲン化物と末端にアルキニル基を有する化合物、又は芳香族ハロゲン化物とアルケニル基)が溶解している原料液(i)、原料液(ii)、又は原料液(iii)、すなわち、疎水性溶媒原料液521bを入れ、また、原料容器532bに、無機塩基水溶液522bを入れ、疎水性溶媒原料液521bと無機塩基水溶液522bを、本発明の白金族金属イオン担持触媒が充填されている充填容器51aに向けて供給する。そして、合流点で、疎水性溶媒原料液521bと無機塩基水溶液522bが混合され、得られる混合物を、充填容器51bの導入経路より、充填容器51b内に導入し、本発明の白金族金属イオン担持触媒に、疎水性溶媒原料液及び無機塩基水溶液を通液し、反応液59bを充填容器51bの排出経路から排出することにより、炭素-炭素結合の形成反応を行う方法が挙げられる。
【0251】
本発明の炭素-炭素結合形成反応の実施方式の第二の形態例は、溶媒として、疎水性の有機溶媒を用いる不均一系の反応方式であり、疎水性の有機溶媒に、原料を溶解させた原料液と、無機塩基水溶液と、の混合物を、本発明の白金族金属イオン担持触媒に通液する反応方式である。
【0252】
本発明の炭素-炭素結合形成反応の実施方式の第二の形態例では、予め容器内で、疎水性の有機溶媒に原料が溶解している疎水性溶媒原料液と、無機塩基水溶液とを混合して、混合物を調製し、それを本発明の白金族金属イオン担持触媒に通液してもよいし、あるいは、疎水性の有機溶媒に原料を溶解させた疎水性溶媒原料液と、無機塩基水溶液と、を別々に調製し、それぞれ別々の容器に入れ、各容器から、疎水性溶媒原料液と無機塩基水溶液を、本発明の白金族金属イオン担持触媒に反応原料を供給するための導入経路に供給して、導入経路内で、疎水性溶媒原料液と無機塩基水溶液を混合して、不均一な混合物を得、それを本発明の白金族金属イオン担持触媒に通液してもよい。
【0253】
また、本発明の炭素-炭素結合形成方法が行われる雰囲気は、空気中でもかまわないが、好ましくは窒素やアルゴンなどの不活性ガス雰囲気下が好ましい。反応温度は、特に制限されないが、-20℃~150℃の範囲で任意に設定され、好ましくは0℃~120℃であり、特に好ましくは20℃~100℃である。本発明の炭素-炭素結合形成反応において、反応液の送液は、SV=0.1h-1~10000h-1の範囲の任意の流速で実施されるが、収率が高くなる観点から、SV=0.5h-1~2000h-1であることが好ましく、SV=1h-1~1000h-1であることが特に好ましい。
【0254】
本発明の炭素-炭素結合形成方法における反応液中の原料濃度は、特に制限されないが、本発明の炭素-炭素結合形成方法は、例えば、0.40~1.00mol/L、好ましくは0.40~0.80mol/Lと原料濃度が高くても、高収率で炭素-炭素結合の形成反応を行うことができる。なお、本発明の炭素-炭素結合形成方法では、原料濃度が上記範囲より小さい範囲でも、良好に炭素-炭素結合の形成反応を行うことができる。
【0255】
本発明の炭素-炭素結合形成方法において、充填容器は、本発明に係る白金族金属イオン担持触媒が充填される容器であり、本発明に係る白金族金属イオン担持触媒の一端側に原料液を送液するための経路となる原料液の導入経路と、本発明に係る白金族金属イオン担持触媒の他端側に排出される反応液を充填容器の外に送液するための経路となる反応液の排出経路と、を有する。また、充填容器の形状は、特に限定されず、例えば、通液方向に対して垂直な面で切ったときの断面形状が、円形、矩形、六角形等が挙げられる。また、本発明の炭素-炭素結合形成方法では、充填容器と白金族金属イオン担持触媒との隙間ができる限り小さいことが、本発明に係る白金族金属イオン担持触媒内の連続空孔内を選択的に、原料溶液を通液することができる点で好ましい。
【0256】
本発明の炭素-炭素結合形成方法では、本発明に係る白金族金属イオン担持触媒を、充填容器に充填して、本発明に係る白金族金属イオン担持触媒に、原料溶液を通液することにより、炭素-炭素結合の形成反応を、本発明に係る白金族金属イオン担持触媒の連続空孔内で選択的に起こさせ、且つ、触媒と原料液の接触時間、触媒と原料液の接触の態様を均一にできるので、目的生成物の選択性が高くなる。
【0257】
一方、バッチ式の反応方式により、反応容器内で、原料液と本発明に係る白金族金属イオン担持触媒とを混合して、接触させる場合は、触媒と原料液の接触時間が長くなり、特に反応時に加熱を要する場合は、原料液の加熱時間も長くなり、副反応を制御できないので、目的生成物の選択性が低くなる。
【0258】
本発明の白金族金属イオン担持触媒は、原料として、反応性が高い芳香族ヨウ素化合物を用いる場合も、反応性が芳香族ヨウ素化合物に比べ低い芳香族臭素化合物を用いる場合も、高い収率で、炭素-炭素結合形成反応を行うことができる。また、本発明の白金族金属イオン担持触媒は、無機塩基の存在下で反応行う場合に、水又は親水性の有機溶媒に原料及び無機塩基が溶解している無機塩基溶解原料液を用いる均一系でも、原料を溶解させる溶媒として、疎水性の有機溶媒を用い、原料が疎水性の有機溶媒に溶解している疎水性溶媒原料液と、無機塩基水溶液と、を用いる不均一系でも、高い収率で、炭素-炭素結合形成反応を行うことができる。
【0259】
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【実施例0260】
(参考例1)弱塩基性モノリスアニオン交換体の製造
(モノリス中間体の製造(I工程))
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.25gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEMにより観察した。SEM画像を
図10に示すが、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は18.2ml/gであった。
【0261】
(モノリスの製造)
次いで、スチレン216.6g、ジビニルベンゼン4.4g、1-デカノール220g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下50℃で24時間重合させた。重合終了後内容物を取り出し、アセトンでソックスレー抽出した後、減圧乾燥した(III工程)。
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.2モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を
図11に示す。
図11から明らかなように、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の平均太さは20μmであった。また、水銀圧入法により測定した、当該モノリスの三次元的に連続した空孔の平均直径は70μm、全細孔容積は4.4ml/gであった。なお、空孔の平均直径は、水銀圧入法により得られた細孔分布曲線の極大値から求めた。
【0262】
(弱塩基性モノリスアニオン交換体の製造)
上記で製造したモノリスをカラム状反応器に入れ、塩化チオニル1600gと四塩化スズ400g、ジメトキシメタン2500mlからなる溶液を循環・通液して、30℃、5時間反応させ、クロロメチル基を導入した。反応終了後、クロロメチル化モノリスをTHF/水=2/1の混合溶媒で洗浄し、更にTHFで洗浄し、クロロメチル化モノリスを得た。
次いで、クロロメチル化モノリスを減圧乾燥した。乾燥後のクロロメチル化モノリスの重量は8.4gであった。このクロロメチル化モノリスを、攪拌子を入れたセパラブルフラスコに入れ、ジメチルアミン50%水溶液56ml、THF180mlからなる溶液をセパラブルフラスコに導入し、還流下、10時間攪拌した。反応終了後、生成物をメタノールで洗浄し、次いで洗浄して弱塩基性モノリスアニオン交換体を得た。
得られた弱塩基性モノリスアニオン交換体の乾燥状態の総アニオン交換容量は、4.7mg当量/gであり、弱アニオン交換容量は、4.3mg当量/gであった。また、SEM画像から測定した乾燥状態での骨格の平均太さは25μmであった。
【0263】
(実施例1)
参考例1で製造した弱塩基性モノリスアニオン交換体を減圧乾燥した。乾燥後の弱塩基性モノリスアニオン交換体の重量は、8.7gであった。この乾燥状態のモノリスを、メタノール中、塩酸で処理したのち、塩化パラジウム146mgを溶解させた希塩酸に24時間浸漬し、テトラクロロパラジウム酸イオンを付した。浸漬終了後、数回純水で洗浄し、Pdイオン担持弱塩基性モノリスアニオン交換体を調製した。得られたPdイオン担持弱塩基性モノリスアニオン交換体中のパラジウムの担持量をICP発光分析で求めたところ、パラジウム担持量は1.0重量%であった。また、得られたPdイオン担持弱塩基性モノリスアニオン交換体のEPMA(Electron Probe Micro Analyzer)分析及びESCA(Electron Spectroscopy for Chemical Analysis)分析の分析結果を、それぞれ、
図12及び
図13に示す。
以下、実施例1で得られた白金族金属イオン担持触媒を、「Pdイオン担持弱塩基性モノリスアニオン交換体」と記載する。
【0264】
(実施例2)
【0265】
【0266】
4-ブロモアセトフェノン(0.796g、4.0mmol)とフェニルボロン酸(0.536g,4.4mmol)のトルエン(2.0mL)溶液に、1.1M水酸化ナトリウム水溶液(4.0mL,4.4mmol)を加え攪拌した。この懸濁液を、Pdイオン担持弱塩基性モノリスアニオン交換体(φ2.0×150mm)を充填して80℃に加熱したETFE製カラム内に流速0.3mL/分で通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率83%で4-アセチルビフェニルを得た。
【0267】
(実施例3)
【0268】
【0269】
4-ブロモアセトフェノン(0.796g、4.0mmol)のトルエン(2.0mL)溶液を0.1mL/分で、フェニルボロン酸(0.536g、4.4mmol)及び水酸化ナトリウム(4.4mmol)の水(4.0mL)溶液を0.2mL/分でそれぞれ送液して、それぞれの溶液をジョイントにて合一させる。合一させた液を、Pdイオン担持弱塩基性モノリスアニオン交換体(φ2.0×150mm)を充填して80℃に加熱したETFE製カラム内に通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率78%で4-アセチルビフェニルを得た。
【0270】
(実施例4)
【0271】
【0272】
4-ブロモアセトフェノン(0.995g、5.0mmol)とフェニルボロン酸(0.671g、5.5mmol)のNMP(10mL)溶液を0.5mL/分で、0.55M水酸化ナトリウム(10mL、5.5mmol)を0.2mL/分でそれぞれ送液して、それぞれの溶液をジョイントにて合一させる。合一させた液を、Pdイオン担持弱塩基性モノリスアニオン交換体(φ2.0×150mm)を充填して80℃に加熱したETFE製カラム内に通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率94%で4-アセチルビフェニルを得た。
【0273】
(実施例5)
【0274】
【0275】
2-ブロモベンゾニトリル(0.728g、4.0mmol)と4-メチルフェニルボロン酸(0.598g、4.4mmol)のトルエン(1.0mL)溶液に、1.0M水酸化ナトリウム水溶液(4.0mL、4.0mmol)を加え攪拌した。この懸濁液を、Pdイオン担持弱塩基性モノリスアニオン交換体(φ2.0×150mm)を充填して80℃に加熱したETFE製カラム内に流速0.5mL/分で通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率97%で2-シアノ-4’-メチルビフェニルを得た。
【0276】
(実施例6)
【0277】
【0278】
2-ブロモベンゾニトリル(0.728g、4.0mmol)のトルエン(2.0mL)溶液を0.1mL/分で、4-メチルフェニルボロン酸(0.598g、4.4mmol)水酸化ナトリウム(4.4mmol)の水(4.0mL)溶液を0.4mL/分でそれぞれ送液して、それぞれの溶液をジョイントにて合一させる。合一させた液をPdイオン担持弱塩基性モノリスアニオン交換体(φ2.0×150mm)を充填して80℃に加熱したETFE製カラム内に通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率95%で2-シアノ-4’-メチルビフェニルを得た。
【0279】
(参考例2)強酸性モノリスカチオン交換体の製造
(モノリス中間体の製造(I工程))
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.25gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEMにより観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は18.2ml/gであった。
【0280】
(モノリスの製造)
次いで、スチレン216.6g、ジビニルベンゼン4.4g、1-デカノール220g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下50℃で24時間重合させた。重合終了後内容物を取り出し、アセトンでソックスレー抽出した後、減圧乾燥した(III工程)。
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.2モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の平均太さは20μmであった。また、水銀圧入法により測定した、当該モノリスの三次元的に連続した空孔の平均直径は70μm、全細孔容積は4.4ml/gであった。なお、空孔の平均直径は、水銀圧入法により得られた細孔分布曲線の極大値から求めた。
【0281】
(強酸性モノリスカチオン交換体の製造)
上記で製造したモノリスをカラム状反応器に入れ、クロロスルホン酸500gとジクロロエタン1000mlからなる溶液を循環・通液して、30℃、3時間反応させた。反応終了後、クロロメチル化モノリスをジクロロエタンで洗浄し、更にメタノールで洗浄し、強酸性モノリスカチオン交換体を得た。
得られた強酸性モノリスカチオン交換体の乾燥状態の総アニオン交換容量は、4.7mg当量/gであり、強カチオン交換容量は、4.3mg当量/gであった。また、SEM画像から測定した乾燥状態での骨格の平均太さは25μmであった。
【0282】
(実施例7)
参考例2で製造した強酸性モノリスカチオン交換体を減圧乾燥し、乾燥後重量7.5gの乾燥状態のモノリスを、酢酸パラジウム800mgを溶解させたメタノール中窒素雰囲気下室温にて浸漬し、強酸性モノリスカチオン交換体にパラジウムイオンを担持させた。次いで強酸性モノリスカチオン交換体を取り出して純水で数回洗浄して、Pdイオン担持強酸性モノリスカチオン交換体を調製した。得られたPdイオン担持強酸性モノリスカチオン交換体中のパラジウムの担持量をICP発光分析で求めたところ、パラジウム担持量は4.6重量%であった。
以下、実施例7で得られた白金族金属イオン担持触媒を、「Pdイオン担持強酸性モノリスカチオン交換体」と記載する。
【0283】
(実施例8)
【0284】
【0285】
2-ブロモベンゾニトリル(0.728g、4.0mmol)と4-メチルフェニルボロン酸(0.598g、4.4mmol)のトルエン(1.0mL)溶液に、1.0M水酸化ナトリウム水溶液(4.0mL、4.0mmol)を加え攪拌した。この懸濁液を、Pdイオン担持強酸性モノリスカチオン交換体(φ4.6×30mm)を充填して80℃に加熱したSUS製カラム内に通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率24%で2-シアノ-4’-メチルビフェニルを得た。
【0286】
(比較例1)
実施例1で製造したPdイオン担持弱塩基性モノリスアニオン交換体をヒドラジン水溶液中に24時間浸漬し、Pdイオンを還元した。浸漬終了後、数回純水で洗浄し、Pdナノ粒子担持弱塩基性モノリスアニオン交換体を調製した。
【0287】
(比較例2)
【0288】
【0289】
4-ブロモアセトフェノン(0.796g、4.0mmol)のトルエン(2.0mL)溶液を0.1mL/分で、フェニルボロン酸(0.536g、4.4mmol)及び水酸化ナトリウム(4.4mmol)の水(4.0mL)溶液を0.2mL/分でそれぞれ送液して、それぞれの溶液をジョイントにて合一させる。合一させた液を、比較例1で製造したPdナノ粒子担持弱塩基性モノリスアニオン交換体(φ2.0×150mm)を充填して80℃に加熱したETFE製カラム内に通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率53%で4-アセチルビフェニルを得た。
【0290】
(比較例3)
弱塩基性アニオン交換樹脂(アンバーライトTMA21)乾燥重量10gをメタノール中、塩酸で処理したのち、塩化パラジウム170mgを溶解させた希塩酸に24時間浸漬し、テトラクロロパラジウム酸イオンを付した。浸漬終了後、数回純水で洗浄し、Pdイオン担持弱塩基性アニオン交換樹脂を調製した。
【0291】
(比較例4)
【0292】
【0293】
4-ブロモアセトフェノン(0.796g、4.0mmol)のトルエン(2.0mL)溶液を0.1mL/分で、フェニルボロン酸(0.536g、4.4mmol)及び水酸化ナトリウム(4.4mmol)の水(4.0mL)溶液を0.2mL/分でそれぞれ送液して、それぞれの溶液をジョイントにて合一させる。合一させた液を、比較例3で製造したPdイオン担持弱塩基性アニオン交換樹脂(0.5mL)を充填して80℃に加熱したSUS製カラム内に通じ、飽和塩化アンモニウム水溶液を蓄えたフラスコに回収した。得られた液の有機層をGCで分析した結果、転化率28%で4-アセチルビフェニルを得た。