IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トプコンの特許一覧

<>
  • 特開-撮影装置、及び構造物検査システム 図1
  • 特開-撮影装置、及び構造物検査システム 図2
  • 特開-撮影装置、及び構造物検査システム 図3
  • 特開-撮影装置、及び構造物検査システム 図4
  • 特開-撮影装置、及び構造物検査システム 図5
  • 特開-撮影装置、及び構造物検査システム 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022111555
(43)【公開日】2022-08-01
(54)【発明の名称】撮影装置、及び構造物検査システム
(51)【国際特許分類】
   G01N 21/88 20060101AFI20220725BHJP
【FI】
G01N21/88 Z
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021007055
(22)【出願日】2021-01-20
(71)【出願人】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100187322
【弁理士】
【氏名又は名称】前川 直輝
(72)【発明者】
【氏名】石鍋 郁夫
(72)【発明者】
【氏名】桐生 徳康
(72)【発明者】
【氏名】高本 悠介
(72)【発明者】
【氏名】大佛 一毅
【テーマコード(参考)】
2G051
【Fターム(参考)】
2G051AA90
2G051AB02
2G051AC16
2G051BA02
2G051BA06
2G051BA10
2G051BA20
2G051BB01
2G051BB02
2G051BB09
2G051BB17
2G051CA03
2G051CA07
2G051CB01
2G051CC09
2G051EA23
(57)【要約】
【課題】照明をなるべく低い位置に設置して必要な照度を低減するとともに、撮影範囲も確保すること。
【解決手段】移動体に搭載され、移動体が構造物の表面に対して並行移動しながら検査するための撮影装置であって、移動体の後方に配置され、構造物の表面に向けて移動方向と交差するライン方向に延びる光を照射する、ライン方向に沿って複数配置された線状照射光源を備えた照明部と、構造物を撮影するためのライン方向に沿って複数配置された少なくとも3台以上のラインカメラと、を備え、ラインカメラのうち少なくともライン方向の最も外側にある一対のラインカメラの各々が外側に向けて配置され、ラインカメラの撮像素子の受光面と、ラインカメラの光学系の主面と、構造物の表面がシャインプルーフの条件を満たすように、ラインカメラが配置されている。
【選択図】図1
【特許請求の範囲】
【請求項1】
移動体に搭載され、前記移動体が構造物の表面に対して並行移動しながら検査するための撮影装置であって、
前記移動体の後方に配置され、
前記構造物の表面に向けて移動方向と交差するライン方向に延びる光を照射する、前記ライン方向に沿って複数配置された線状照射光源を備えた照明部と、
前記構造物を撮影するための前記ライン方向に沿って複数配置された少なくとも3台以上のラインカメラと、を備え、
前記ラインカメラのうち少なくとも前記ライン方向の最も外側にある一対のラインカメラの各々が外側に向けて配置され、前記ラインカメラの撮像素子の受光面と、前記ラインカメラの光学系の主面と、前記構造物の表面がシャインプルーフの条件を満たすように、前記ラインカメラが配置されている、撮影装置。
【請求項2】
前記構造物の表面及び前記ライン方向に直交する断面における、前記構造物に対する前記ラインカメラの前記光学系の光軸の角度と、前記構造物の表面に対する前記照明部の光軸の角度が異なる、請求項1に記載の撮影装置。
【請求項3】
前記移動体は車両であり、前記照明部及び前記ラインカメラが前記構造物の表面からの距離が0.8m以下となる場所に設置されている、請求項1又は2に記載の撮影装置。
【請求項4】
複数の前記線状照射光源の配置間隔がライン方向外側に向かうにつれて小さい、請求項1から3のいずれか一項に記載の撮影装置。
【請求項5】
前記照明部の照明光学系が、ファイバ光源の出射側に配置されたコリメートレンズと、シリンダレンズからなるレンズユニットを含んでいる、請求項1から4のいずれか一項に記載の撮影装置。
【請求項6】
前記ラインカメラが撮影した画像を補正するキャリブレーション部を備える、請求項1から5のいずれか一項に記載の撮影装置。
【請求項7】
構造物検査システムであって、
移動体と、
移動体の後方に配置されて搭載され、移動体が構造物の表面に対して並行移動しながら検査するための撮影装置と、
前記構造物の表面に向けて移動方向と交差するライン方向に延びる光を照射する、前記ライン方向に沿って複数配置された線状照射光源を備えた照明部と、
前記構造物を撮影するための前記ライン方向に沿って複数配置された少なくとも3台以上のラインカメラと、を備え、
前記ラインカメラのうち少なくとも前記ライン方向の最も外側にある一対のラインカメラの各々が外側に向けて配置され、前記ラインカメラの撮像素子の受光面と、前記ラインカメラの光学系の主面と、前記構造物の表面がシャインプルーフの条件を満たすように、前記ラインカメラが配置されている、構造物検査システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、撮影装置に関する。
【背景技術】
【0002】
路面のひび割れ等を検査するには、カメラ等の撮影装置を自動車等の車両に搭載し、走行しながら路面を撮影し、その撮影画像を解析することによって、路面に生じたひび割れ等を検出している。
【0003】
例えば、特許文献1には車両に搭載した撮影装置を用いて、撮影装置を車両から真下に向けて撮影し、路面の性状を検査する装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2017-181396号公開公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、路面の画像を撮影するには照明も必要である。照明とカメラとは概ね同じ高さに設置される。なるべく撮影範囲を広げようとしてカメラを上方、すなわち高い位置に設置すると、照明も路面までの距離が大きくなり、撮影に必要な照度も大きくなってしまう。一方で、カメラを下方、すなわち低い位置に設置してしまうと、撮影範囲が狭まってしまう。
【0006】
以上により、本開示は、照明をなるべく低い位置に設置して必要な照度を低減するとともに、撮影範囲も確保することができる撮影装置、及び構造物検査システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示の実施形態に係る撮影装置は、移動体に搭載され、移動体が構造物の表面に対して並行移動しながら検査するための撮影装置であって、移動体の後方に配置され、構造物の表面に向けて移動方向と交差するライン方向に延びる光を照射する、ライン方向に沿って複数配置された線状照射光源を備えた照明部と、構造物を撮影するためのライン方向に沿って複数配置された少なくとも3台以上のラインカメラと、を備え、ラインカメラのうち少なくともライン方向の最も外側にある一対のラインカメラの各々が外側に向けて配置され、ラインカメラの撮像素子の受光面と、ラインカメラの光学系の主面と、構造物の表面がシャインプルーフの条件を満たすように、ラインカメラが配置されている。
【0008】
また、本開示の実施形態に係る構造物検査システムは、移動体と、移動体の後方に配置されて搭載され、移動体が構造物の表面に対して並行移動しながら検査するための撮影装置と、前記構造物の表面に向けて移動方向と交差するライン方向に延びる光を照射する、前記ライン方向に沿って複数配置された線状照射光源を備えた照明部と、前記構造物を撮影するための前記ライン方向に沿って複数配置された少なくとも3台以上のラインカメラと、を備え、前記ラインカメラのうち少なくとも前記ライン方向の最も外側にある一対のラインカメラの各々が外側に向けて配置され、前記ラインカメラの撮像素子の受光面と、前記ラインカメラの光学系の主面と、前記構造物の表面がシャインプルーフの条件を満たすように、前記ラインカメラが配置されている。
【発明の効果】
【0009】
本開示によれば、照明をなるべく低い位置に設置して必要な照度を低減するとともに、撮影範囲も確保することができる撮影装置、構造物検査システムを提供することができる。
【図面の簡単な説明】
【0010】
図1】本開示の実施形態に係る撮影装置及びそれを用いた構造物検査システムの構成について示す図である。
図2】シャインプルーフの条件について説明するための図である。
図3】照明部について説明するための図である。
図4】撮影光学系と照明光学系の光軸の関係について説明するための図である。
図5】照明光学系の一例について説明するための図である。
図6】実施例における必要照度と照射面における放射照度のシミュレーション結果について示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら本開示の実施形態に係る構造物検査システムについて説明する。図1は、本開示の実施形態に係る撮影装置、及びこの撮影装置を用いた構造物検査システムの概要を示す図である。
【0012】
構造物検査システム1は、撮影装置100と、移動体200と、分析装置300を備えている。構造物を検査するための撮影装置100は、移動体200に搭載され、移動体200が構造物の表面MSに対して並行移動しながら、撮影装置100によって構造物の表面MSを撮影することにより画像を取得し、取得した画像を分析装置300により分析することで構造物の表面を検査するものである。
【0013】
移動体200は例えば車両、又は飛行体である。車両は人間が運転する自動車等の車両に限られず、自動運転による無人運転の車両も含まれる。飛行体は無人航空機などの遠隔操作又は予め定められた航路を自律飛行する飛行体であって、構造物との距離を一定に保つことができるものが含まれる。したがって、並行移動には厳密に平行移動するものに限られず、ほぼ一定の距離を保ちながら移動することが含まれる。
【0014】
撮影装置100は、より具体的にはラインカメラ、ラインセンサをカメラとして用いるものである。ここではラインカメラを移動体200の移動により走査して画像を取得するので、ラインカメラと統一して表記することにする。すなわち、移動体の移動方向が走査方向となる。なお、走査しながら撮影する画像を画像処理により統合できるのであれば、撮影装置100のカメラはエリアセンサカメラを用いても構わない。
【0015】
ラインカメラは、一方向に配列された画素を持つ受光素子110と、複数のレンズ等の光学素子から構成された撮影光学系120を備えている。受光素子110は、例えばCCDやCMOS等の撮像素子である。
【0016】
構造物は、例えば道路の路面、建築物の壁面などであって、表面にある程度の平坦性が担保されるものであって、より具体的には例えばアスファルトの路面である。一般道や高速道路程度のアスファルトの路面程度の平坦性があるものが対象となり、完全に平面でなくても構わない。したがって、例えば路面などが検査対象の場合は車両を走行させながら、又は飛行体を飛行させながら撮影を行う。壁面が対象の場合は壁面に沿って移動する移動体や飛行体により撮影することもできる。
【0017】
分析装置300は、例えばPCなどの計算機であって、分析装置記憶部390と、分析部350を備えている。分析装置記憶部390は、撮影装置100より送信され受信した画像、又は撮影装置100の撮影装置記憶部190に記憶された画像を、所定の記憶媒体を仲介して分析装置記憶部390に移し替えた画像を記憶する。分析部350は分析装置記憶部390に記憶された画像を読みだして分析する機能を有する。より具体的には、画像解析により路面等の構造物の表面にあるひび割れ等を検出する。
【0018】
さらに分析装置300は、読み込んだ画像を補正する画像補正部360を備えていてもよい。後述するにように撮影された画像が、ライン方向外側が歪んだ状態で撮影されるものである場合、その歪みを補正する画像処理を行うこともできる。
【0019】
このような構造物検査システム1において、路面の画像を撮影するにあたり、なるべく撮影範囲を広げようとして撮影装置100を移動体200の上方、すなわち高い位置に設置すると、照明から路面までの距離が大きくなり、撮影に必要な照度も大きくなってしまう。一方で、撮影装置100を下方、すなわち低い位置に設置してしまうと、撮影範囲が狭まってしまう。
【0020】
不必要に照明の光量を増やすことは、高価な光源を採用することになり不経済であるばかりではなく、一般道や高速道においては光安全上の問題が生じる。
【0021】
また、路面に対して垂直に撮影面を向けた状態よりも撮影範囲を広げようとして、路面に対して斜めに配置した場合、撮影範囲の中で焦点が合う部分と合わない部分が生じる、すなわちピントがずれる場所が発生してしまう。
【0022】
そこで、本開示の実施形態に係る撮影装置100にあっては、受光素子110の受光面110Sと、撮影光学系120の主面120Sと、検査対象である構造物の表面MSとが、シャインプルーフの条件を満たすように配置することにより、撮影範囲を広げつつ、焦点が合っている画像を撮影することができる。
【0023】
上記の要件を満たすために、本開示の実施形態に係る撮影装置100には、受光素子110の受光面110S又は撮影光学系の主面120Sの角度を調整する機能を備えている。より具体的には、例えば光学系の主面120Sを構成するレンズ主面のチルト機能を実現するレンズチルト機構が設けられている。
【0024】
図2は、シャインプルーフの条件について説明する図である。この図では、移動方向に垂直な断面においてライン方向の外側に配置される一方のラインカメラの受光素子110、その受光素子110の撮影光学系120と、構造物の表面MSとの位置関係を示している。シャインプルーフの原理とは、受光素子110の受光面110Sと、光学系の主面120Sと、検査対象である構造物の表面MSとが、同一直線C上で交わる場合、合焦状態となる物体面(構造物の表面MS)も同一直線C上で交わるというものである。したがって、このようなシャインプルーフの原理に基づく条件は、受光素子110の受光面110Sと、光学系の主面120Sと、構造物の表面MSが同一直線C上で互いに交わることである。これにより、広い撮影範囲にピントを合わせることができる。
【0025】
このようにシャインプルーフの条件を満たすように配置される撮影装置100は、ライン方向に沿って一列に配置される複数のラインカメラ100R、100C、100Lのうち、最も外側にあるラインカメラ100R、100Lである。各々のラインカメラ100R、100Lは、その向きが路面に対して垂直から水平の間でシャインプルーフの条件を満たすように外側に斜めに向けて配置される。
【0026】
また、最も外側にあるラインカメラ100R、100Lは、上記のごとく外側に配置されているので、その中間、すなわち真ん中の部分の撮影領域が抜けてしまう。そのために、これらの外側一対のラインカメラの内側にも少なくとも1台のラインカメラ100Cを配置することが好ましい。その配置角度は適宜設定できるが、例えば路面に対して垂直に配置することができる。これにより、少なくとも3台のラインカメラ100R、100C、100Lを用いて低い位置に配置しても広範囲に合焦状態での撮影が可能になる。
【0027】
このように、ラインカメラはシャインプルーフの条件を満たすように配置されるので、ライン方向外側の像は歪むことになる。これを補正するため、カメラの内部パラメータを調整することにより取得画像の歪みを補正するキャリブレーション部160を備えていてもよい。キャリブレーション部160は、カメラの内部パラメータを用いて、撮影される画像を補正する機能を有する。そのようなカメラの内部パラメータは、相対的な位置関係が既知の基準対象物の各基準点を異なる位置から複数枚撮影し、その撮影された複数枚の画像に基づき求められている。例えば特許第3696336号などに記載されているカメラキャリブレーション法を用いることができる。
【0028】
このような撮影装置100においては、撮影範囲を照らすために同じくライン方向に延びる光を照射する照明部150が設けられている。図3は照明部150について説明する図である。照明部150は例えば、ライン方向に沿って一列に配置される複数の線状照射光源150LA、150LB、…150LF、150RA、150RB、…150RFを有している。配置される線状照射光源の個数はこの図に示された個数に限定されるものではない。
【0029】
各線状照射光源は、例えばLED(発光ダイオード)やLD(レーザダイオード)などの固体光源から放射された光を、複数の光路、例えば光ファイバ等に分け、これを介して伝播させ、最終的に出射側で照明光学系により成形した線状光源を出力するものである。なお、光源としてLDを用いた場合はコヒーレント性により像にスペックルが生じる可能性があるので、光路中にモードスクランブラを設けてコヒーレント性を低減させてもよい。
【0030】
光源より放射される光の波長は、例えば940nmである。このような光は、水蒸気による吸収がある波長であり、街路樹の影など太陽光の影響を低減し、昼夜問わず安定した性能を得ることができる。したがって、940nmの波長の光が含まれる光源であることが好ましい。
【0031】
各線状光源の照明光学系は、例えばファイバの出射側に設けられたコリメートレンズと、シリンダレンズ(シリンドリカルレンズ)との組み合わせからなるレンズユニットにより構成してもよい。このようなレンズユニットは、ファイバから出射された光をコリメートレンズにより平行光に成形した後、シリンダレンズ(例えば入射面が略円形、出射面が平坦面である、いわゆる蒲鉾型レンズ等)により線状光に成形することができる。このようなレンズユニットを用いることにより、ファイバから分波した複数の線状照射光源を所望の配置にすることができる。
【0032】
このような複数の線状照射光源が、その光の照射される線状方向とライン方向とを合わせて、ライン方向に沿って複数配置されることで、ライン方向において各線状照射光源から照射される光が重畳して照射され、ラインカメラの撮影範囲を適切に照射する。線状照射光源配置の仕方は自由であるが、例えば図3のように移動体200や撮影装置100の中心からライン方向に対称に配置することができる。
【0033】
また、これらの複数の線状照射光源の配置間隔は、ライン方向外側に向かうにつれて小さくなっていることが好ましい。光の強さは逆2乗の法則により距離の2乗に反比例するので、撮影した画像における明るさをより均一にするためには、ライン方向の外側ほど照射面における照度を高くする必要がある。特に本開示の実施形態においては、外側の両ラインカメラをシャインプルーフの条件を満たすように外側に傾けていることから、全てのラインカメラを垂直配置しているよりも、外側により多くの照度が必要である。そのために、複数の線状照射光源の配置間隔は、ライン方向外側に向かうにつれて小さく、より密に配置することが好ましい。このようにすることにより、後述するようにライン方向の外側において不足し受光面において低下する照度を均一化することができる。
【0034】
また、ライン方向においてラインカメラとラインカメラの間に線状照射光源が位置するように配置することが好ましい。これにより、所望の照度分布を実現することができる。
【0035】
あるいは、外側に配置される線状照射光源の出力を大きくし、照射面における照度分布が、外側の方が大きくなるようにしてもよい。所望の照度分布を実現することができる。
【0036】
また、照明光学系の光軸と、撮影光学系の光軸とは、構造物の表面に対する角度が異なっていることが好ましい。図4は、撮影光学系と照明光学系の光軸の関係について説明するための図であり、構造物の表面MSとライン方向に直交する断面における、照明光学系の光軸と、撮影光学系の光軸を示している。この図において、ラインカメラ100Lによる撮影光学系の光軸は構造物の表面MSに対しては垂直方向に向いている(ライン方向については両外側のラインカメラはシャインプルーフの条件を満たしている)。これに対し、照明部150による照明光学系の光軸は、この角度とは異なる角度、例えばこの垂直な方向から5~20度傾いた角度で入射する関係となっている。なお、図面はわかりやすさのために描かれており、必ずしも上記の角度関係とはなっていない。このように照明系と撮影系を同一平面におかないことにより、道路のひびが斜めから照明されるので、影ができやすくなる。これにより、道路表面とひびのコントラストを得やすくなる。
【0037】
以上説明した本開示の実施形態に係る構造物検査システムについて実施例を示す。撮影装置100は、例えば普通自動車である移動体200の後方に所定の取付治具などにより取り付けることができる。この際、高さは路面から0.8m以下となる位置に取り付けることが好ましく、例えば0.7mの高さの位置に取り付けられる。また、撮影装置は、例えばラインカメラ100R、100C、100Lの3台のラインカメラを設置することができ、そのうち両外側のラインカメラ100R、100Lが路面に対してそれぞれ外側に向いてシャインプルーフの条件を満たすように配置され、真ん中のラインカメラ100Cは路面に対して垂直な向きで配置されている。また、ラインカメラ100Rからラインカメラ100Lまでの間隔はライン方向において例えば1.4mである。このような配置によればライン方向に例えば3.8mの撮影範囲を確保することができて、1車線分の撮影をすることができ、一般道路や高速道路の路面性状を確認することができる。
【0038】
また、照明部150は、照明系と撮影系が同一平面におかれないように斜めに向けて配置され、例えば垂直な方向から5~20度傾けて配置されている。各線状照射光源は、例えば片側9個、両側18個の線状照射光源が配置されていてもよい。なお、ラインカメラの個数、線状照射光源の個数については必要な照度と撮影範囲に応じて適宜可能であり、この例に限られるものではない。
【0039】
このような一例における、必要照度と、照射面における放射照度のシミュレーション結果について図6に示す。この図において、横軸はライン方向の位置(mm)を、縦軸は照度(W/mm)を表しており、実線の曲線で示されたのが照射面における必要照度である。また、点によりプロットされているのが、シミュレーション結果に基づく放射照度である。この図によればライン方向の全ての領域において、放射照度が必要照度を上回り、必要な光が照射面に供給されることがわかる。
【0040】
以上により、本開示の実施形態に係る撮影装置、構造物検査システムは、移動体に搭載され、移動体が構造物の表面に対して並行移動しながら検査するための撮影装置であって、移動体の後方に配置され、構造物の表面に向けて移動方向と交差するライン方向に延びる光を照射する、ライン方向に沿って複数配置された線状照射光源を備えた照明部と、構造物を撮影するためのライン方向に沿って複数配置された少なくとも3台以上のラインカメラと、を備え、ラインカメラのうち少なくともライン方向の最も外側にある一対のラインカメラの各々が外側に向けて配置され、ラインカメラの撮像素子の受光面と、ラインカメラの光学系の主面と、構造物の表面がシャインプルーフの条件を満たすように、ラインカメラが配置されていることにより、照明をなるべく低い位置に設置して必要な照度を低減するとともに、撮影範囲も確保することができる。
【0041】
また、構造物の表面及びライン方向に直交する断面における、構造物に対するラインカメラの光学系の光軸の角度と、構造物の表面に対する照明部の光軸の角度が異なることにより、道路のひびが斜めから照明されるので、影ができやすくなり、道路表面とひびのコントラストを得やすくなる。
【0042】
また、移動体は車両であり、照明部及びラインカメラが構造物表面からの距離が0.8m以下となる場所に設置されていることにより、必要な照明の光量を減らすことができる。
【0043】
また、複数の線状照射光源の配置間隔がライン方向外側に向かうにつれて小さいことにより、ライン方向の外側において不足し受光面において低下する照度を均一化することができる。
【0044】
照明部の照明光学系が、ファイバ光源の出射側に配置されたコリメートレンズと、シリンダレンズからなるレンズユニットを含んでいることにより、ファイバから分波した複数の線状照射光源を所望の配置にすることができる。
【0045】
また、ラインカメラが撮影した画像を補正するキャリブレーション部を備えることにより、シャインプルーフの条件に配置したことにより外側が歪んで撮像された像を補正することができる。
【0046】
以上で、本開示の実施形態の説明を終えるが、本開示の態様はこの実施形態に限定されるものではない。
【符号の説明】
【0047】
1 構造物検査システム
100 撮影装置
110 受光素子
110S 受光面
120 撮影光学系
120S 主面
121 コリメートレンズ
122 シリンダレンズ
150 照明部
150LF 線状照射光源
160 キャリブレーション部
190 撮影装置記憶部
200 移動体
300 分析装置
350 分析部
360 画像補正部
390 分析装置記憶部
C 直線
MS 表面
図1
図2
図3
図4
図5
図6