(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022112231
(43)【公開日】2022-08-02
(54)【発明の名称】ステッピングモータ
(51)【国際特許分類】
H02K 37/04 20060101AFI20220726BHJP
H02K 11/225 20160101ALI20220726BHJP
【FI】
H02K37/04 501Y
H02K37/04 501E
H02K11/225
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021007968
(22)【出願日】2021-01-21
(71)【出願人】
【識別番号】000114215
【氏名又は名称】ミネベアミツミ株式会社
(74)【代理人】
【識別番号】100096884
【弁理士】
【氏名又は名称】末成 幹生
(72)【発明者】
【氏名】亀岡 広大
(72)【発明者】
【氏名】高橋 友也
(72)【発明者】
【氏名】吉田 賢雄
【テーマコード(参考)】
5H611
【Fターム(参考)】
5H611AA01
5H611BB10
5H611PP07
5H611QQ03
5H611RR01
5H611UA04
(57)【要約】
【課題】センサの出力に重畳するノイズの低減を図ることができ、センサの検出精度を向上することができるステッピングモータを提供する。
【解決手段】フロントフランジとリアフランジとの間に、ステータと、ロータとを備え、リアフランジとセンサカバーとの間にロータの回転角を検出するセンサ部とを備えたステッピングモータである。センサ部は、センサ固定子230と、センサ固定子230の内側に回転可能に配置されたセンサ回転子220とを備えている。ステータは径方向内側に突出する複数の磁極134を備え、センサ固定子230は径方向内側に突出する複数の磁極231を備え、ステータの磁極134と、センサ固定子230の磁極231は同じ数であり、軸方向から見て、隣接するステータの磁極134の間に、センサ固定子230の磁極231が配置されている。
【選択図】
図6
【特許請求の範囲】
【請求項1】
フレームに、ステータと、前記ステータの内側に回転可能に配置されたロータと、前記ロータの回転角を検出するセンサ部とを備えたステッピングモータであって、
前記センサ部は、センサ固定子と、該センサ固定子の内側に回転可能に配置されたセンサ回転子とを備え、
前記ステータは径方向内側に突出する複数の磁極を備え、
前記センサ固定子は径方向内側に突出する複数の磁極を備え、
前記ステータの前記磁極と、前記センサ固定子の磁極は同じ数であり、軸方向から見て、隣接する前記ステータの前記磁極の間に、前記センサ固定子の磁極が配置されているステッピングモータ。
【請求項2】
前記ステータの前記磁極と、前記センサ固定子の前記磁極はそれぞれ周方向に等しい角度間隔で形成され、前記センサ固定子の前記磁極は、隣接する前記ステータの前記磁極間の円周方向中央に位置している請求項1に記載のステッピングモータ。
【請求項3】
前記ロータは、回転軸と、該回転軸に固定されたロータコアとを備え、
前記センサ回転子は、前記ロータコアと軸方向で離間して前記回転軸に固定されている請求項1に記載のステッピングモータ。
【請求項4】
前記センサ固定子は、正面視で略四角形状をなす請求項1に記載のステッピングモータ。
【請求項5】
前記センサ固定子は、正面視で円形状をなす請求項1に記載のステッピングモータ。
【請求項6】
前記ステッピングモータは2相ハイブリッド型ステッピングモータである請求項1に記載のステッピングモータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はステッピングモータに関し、特にステッピングモータのロータの回転角および回転速度等を検出する回転角センサを備えたステッピングモータに関する。
【背景技術】
【0002】
従来、ロータの回転角および速度等を検出するセンサを備えたステッピングモータが提案されている(例えば、特許文献1参照)。
図14は、特許文献1に開示された2相ハイブリッド型ステッピングモータの構成を示す図であり、このモータ1は、回転子鉄心6a,6bを有する回転子3と、回転磁界を形成するために固定子鉄心4に巻線5が巻回された固定子2とを備えている。回転子鉄心6a,6bの端面部には、略円筒状の凹部21が形成され、凹部21およびその側方の空間22内には、固定子2の巻線5の端面に当接するモータフレーム11の一部が配置され、モータフレーム11には、回転子軸7に貫通されて回転子軸7を回転自在に支持する軸受9と、回転子軸7の回転角および回転速度等を検出するセンサ23とが配置されている。
【0003】
センサ23は可変磁気抵抗式レゾルバであり、モータフレーム11に形成された凹部11aに固定された固定部23aと、回転子軸7に固定された回転部23bとからなる。固定部23aの鉄心には位置検出用の巻線が巻回されており、固定部23aと回転部23bとの位置関係により、巻線のインダクタンスが変化することで、回転部23b、つまり回転子軸7の回転角を検出する。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1の2相ハイブリッド型ステッピングモータでは、モータ1の固定子2からの漏れ磁束がセンサ23の固定部23aの鉄心に巻回された巻線に鎖交し、巻線から出力される信号に対してノイズとして重畳する結果、センサの検出精度が低下する虞がある。
【0006】
本発明は、上記事情に鑑みてなされたもので、モータの固定子側からの漏れ磁束がセンサの固定子に流れた場合であっても、センサの出力信号に重畳するノイズの軽減を図ることができ、よって、センサの検出精度を向上することができるステッピングモータを提供することを目的としている。
【課題を解決するための手段】
【0007】
本発明は、フレームに、ステータと、前記ステータの内側に回転可能に配置されたロータと、前記ロータの回転角を検出するセンサ部とを備えたステッピングモータであって、前記センサ部は、センサ固定子と、該センサ固定子の内側に回転可能に配置されたセンサ回転子とを備え、前記ステータは径方向内側に延在する複数の磁極を備え、前記センサ固定子は径方向内側に延在する複数の磁極を備え、前記ステータの前記磁極と、前記センサ固定子の磁極は同じ数であり、軸方向から見て、隣接する前記ステータの前記磁極の間に、前記センサ固定子の磁極が配置されているステッピングモータである。
【0008】
センサ固定子の磁極がステータの磁極と同じ円周方向の位置に配置されている場合には、ステータからの漏れ磁束はセンサ固定子に侵入すると直接ないし単純な経路を経てセンサ固定子の磁極に達し、磁極に巻回されたセンサコイルに鎖交する。この点、本発明によれば、ステータの磁極と、センサ固定子の磁極は同じ数であり、軸方向から見て、隣接するステータの磁極の間に、センサ固定子の磁極が配置されているから、ステータからの漏れ磁束は、センサ固定子やセンサ回転子における曲折した経路を経てセンサ固定子の磁極に達する。このため、漏れ磁束がセンサ固定子のセンサコイルに達するまでに磁束の一部が散逸し、磁束密度が低下する。したがって、本発明においては、センサ固定子の磁極に巻回されたセンサコイルに鎖交する磁束の磁束密度が低下するので、センサコイルから出力される信号に対するノイズの重畳が軽減される。
【発明の効果】
【0009】
本発明によれば、センサ固定子の磁極に巻回されたセンサコイルに鎖交する磁束の磁束密度が低下し、センサコイルから出力される信号に対するノイズの重畳が軽減されるので、センサによる回転角および回転速度等の検出精度が向上されたステッピングモータが提供される。
【図面の簡単な説明】
【0010】
【
図1】本発明の一実施形態のステッピングモータを示す断面図である。
【
図2】(A)および(B)は
図1においてモータ部とセンサ部とを分離した状態を示す断面図であり、(C)はステータの磁極を示す平面図である。
【
図6】モータ部の固定子の磁極と、センサ部のセンサ固定子の磁極との位置関係を説明する模式図である。
【
図7】従来のステッピングモータにおけるセンサ部での磁束の流れを示す模式図である。
【
図8】従来のステッピングモータにおけるセンサ部での他の磁束の流れを示す模式図である。
【
図9】本発明の実施例におけるセンサ部での磁束の流れを示す模式図である。
【
図10】本発明の実施例におけるセンサ部での他の磁束の流れを示す模式図である。
【
図11】本発明の他の実施形態におけるセンサ部を示す平断面図である。
【
図12】センサ固定子の形状が四角形のときの実施例と比較例、それぞれの信号電圧を示すグラフである。
【
図13】センサ固定子の形状が円形のときの実施例と比較例、それぞれの信号電圧を示すグラフである。
【
図14】従来のステッピングモータを示す断面図である。
【発明を実施するための形態】
【0011】
1.第1実施形態
図1乃至
図10を参照して本発明の第1実施形態のステッピングモータを説明する。
図1に示すステッピングモータは、インナーロータの2相ハイブリッド型ステッピングモータであり、モータ部100とセンサ部200とから構成されている。以下、モータ部100とセンサ部200の構成を順番に説明する。
【0012】
(1)モータ部の構成
図1において符号110はフロントフランジ(フレーム)である。フロントフランジ110は例えばアルミニウム合金により構成され、正面視で略四角形状をなしている。フロントフランジ110の裏面中央部には、軸方向に突出する円筒状のボス部111が形成され、ボス部111の内周面には第1の軸受112が固定されている。
【0013】
フロントフランジ110から軸方向へ離間した箇所にリアフランジ(フレーム)120が配置されている。リアフランジ120は例えばアルミニウム合金により構成され、裏面視で略四角形状をなしている。リアフランジ120の中央部には、軸方向に突出する円筒状のボス部121が形成され、ボス部121の中央に空間123が形成されている。そして、フロントフランジ110とリアフランジ120との間には、ステータ130が挟持されている。
【0014】
ステータ130は、ステータコア131を備えている。ステータコア131は、軟磁性材(例えば、電磁鋼板)からなるコアを軸方向に所定枚数積層して構成されている。ステータコア131は正面視で略四角形の形状を有し、周方向に等間隔で放射状に複数個(例えば、8個)の磁極134が内側に突出しており、それぞれの磁極134の先端には等ピッチで複数個の小歯136(
図2(C)参照)を有している。ステータコア131には、インシュレータ132を介してコイル135が巻回されている。コイル135は、A相コイルとB相コイルとからなり、2相ハイブリッド型ステッピングモータのステータ130を構成している。
【0015】
ステータ130の内側にはロータ140が回転可能に配置されている。ロータ140は、ロータコア141と、ロータコア141の中心に固定された回転軸142と、マグネット(永久磁石)143を備えている。ロータコア141は正面視で略円形の形状をなし、その外周面には周方向に等ピッチで複数個の小歯(図示略)を有している。一方のロータコア141の小歯と、他方のロータコアの小歯は、半ピッチ円周方向にずれて配置されている。この小歯と、ステータコア131の磁極134の先端に形成された小歯136とは、所定のエアーギャップを介して対向配置されている。回転軸142の一端側は、第1の軸受112によって回転可能に支持されている。
【0016】
マグネット143はリング状をなし、軸方向に2極(N極とS極)が着磁されている。ロータコア141はマグネット143を挟んで2つ配置され、一方は外周に向けてN極の磁場を発生し、他方はS極の磁場を発生する。ロータコア141は、軟磁性材(例えば、電磁鋼板)からなるコアを軸方向に所定枚数積層して構成されている。
【0017】
図1に示すように、リアフランジ120の外周壁の一部分には切欠が形成されており、切欠には外方に突出するコネクタハウジング150が取り付けられている。ステータコア131に巻回されたコイル135は、インシュレータ132の端部に配置された回路基板151に形成された配線パターンに接続され、配線パターンには端子ピン152の一端が接続されている。このように、端子ピン152とコイル135は配線パターンを介して電気的に導通している。端子ピン152の他端は、コネクタハウジング150の中に配置されている。コネクタハウジング150と回路基板151により矩形状の開口が形成され、その開口に外部電源と接続されたプラグが挿入されて端子ピン152に接続され、コイル135に電流が供給される。
【0018】
(2)センサ部の構成
次に、センサ部200の構成を説明する。
図1および
図2において符号210はセンサカバーである。センサカバー210は例えばアルミニウム合金や真鍮などの非磁性材料により構成され、正面視で略四角形状をなしている。センサカバー210には、正面視で略四角形状をなす凹部211が形成され、凹部211には、リアフランジ120に形成した環状の凸部122が嵌合している。凹部211の底部中央には、軸方向に突出する円筒状のボス部212が形成され、ボス部212の内周面には第2の軸受213が固定されている。この第2の軸受213によって回転軸142の他端側が回転可能に支持されている。これにより、ロータ140は、第1の軸受112および第2の軸受213によって回転可能に支持されている。
【0019】
第2の軸受213よりも軸方向内側の部分の回転軸142には、センサ回転子220が固定されている。センサ回転子220は、リアフランジ120の空間123の内径よりも外径が小さい正面視で円形の形状を有し、その外周面には周方向に等ピッチで複数個の小歯221(
図3参照)を有している。センサ回転子220は、正面視で円形の形状を有し、ロータコア141と同一材料の軟磁性材(例えば、電磁鋼板)からなるコアを軸方向に所定枚数積層して構成されている。ロータコア141とセンサ回転子220との間には、非磁性材(例えば、アルミニウム合金や真鍮)からなる中空円筒状のスリーブ124が介装されている。
【0020】
センサカバー210のボス部212の外周面には、センサ固定子230が固定されている。センサ固定子230は、正面視で略四角形状をなし、軟磁性材(例えば、電磁鋼板)からなるコアを軸方向に所定枚数積層して構成されている。センサ固定子230では、
図5に示すように、円環部から径内方に複数(例えば、8個)の磁極231が延在している。磁極231は全て同じ形状で、周方向に等間隔で配置されている。磁極231の先端には複数個の小歯232が円周方向に等間隔で形成されている。磁極231にはインシュレータ233(
図1および
図2参照)を介してセンサコイル235が巻回されている。
【0021】
図1および
図2に示すように、センサカバー210の外周壁の一部分には切欠が形成されており、切欠には外方に突出するコネクタハウジング250が取り付けられている。センサ固定子230には、インシュレータ233を介してセンサコイル235が巻回されている。センサコイル235は、インシュレータ233の端部に配置された回路基板251に形成された配線パターンに接続され、配線パターンには端子ピン252の一端が接続されている。このように、端子ピン252とセンサコイル235は配線パターンを介して電気的に導通している。端子ピン252の他端は、コネクタハウジング250の内部に配置されている。コネクタハウジング250と回路基板251により矩形状の開口が形成され、その開口に外部制御装置と接続されたプラグが挿入されて端子ピン252と接続され、センサコイル235に外部制御装置から励磁信号が供給されるとともに、センサコイル235から出力される信号が外部制御装置に送られる。
【0022】
図3は
図2(A)を矢印III方向から見た図である。
図3に示すように、リアフランジ120の四隅には、ネジ等の締結材を挿通させるための貫通孔125が形成されている。
図4はセンサカバー210の裏面図である。
図4に示すように、センサカバー210の四隅には、座刳り穴214が形成されている。この座刳り穴214から締結材を挿入して貫通孔125およびステータコア131に貫通させ、フロントフランジ110に形成されたネジ穴に螺合させることで、フロントフランジ110、ステータコア131、リアフランジ120、およびセンサカバー210が互いに結合されている。
【0023】
図5に示すように、センサコイル235は、A相(sin相)コイルであるセンサコイルAとセンサコイルA’、およびB相(cos相)コイルであるセンサコイルBとセンサコイルB’とからなっている。各センサコイルは、円周方向に向かってセンサコイルA、センサコイルB、センサコイルA’、センサコイルB’の順に磁極231に配置されている。各センサコイルに任意の周波数の定電流を印加し、ロータ角度に応じたインダクタンスの変化に従った電圧信号が出力される。
【0024】
ここで、
図6を参照してセンサ固定子230の磁極231とモータ部100のステータ130の磁極134との位置関係を説明する。
図6はステータ130を縮小してセンサ固定子230と同等の大きさとなるように記載した模式図である。
図6に示すように、センサ固定子230の磁極231は、ステータ130の磁極134と同数であり、磁極134同士の間の円周方向中央に位置している。
【0025】
(3)ステッピングモータの作用
ステータ130のコイル135に駆動電流が供給されると、ステータコア131の磁極134とロータ140のロータコア141を貫通する磁束が発生し、磁束がロータコア141に作用してロータ140に回転力が発生する。その磁束は、他の部品にも影響を及ぼす漏れ磁束となるが、漏れ磁束のセンサ部200に及ぼす影響を比較例と本発明の実施例とに分けて説明する。
【0026】
(比較例)
i)漏れ磁束経路1
図7は比較例における漏れ磁束の磁束経路を説明するためのセンサ固定子230とセンサ回転子220を示す模式図である。
図7では、ステータ130およびその磁極134を省略しているが、ステータ130はセンサ部200に対して紙面の奥側に配置されている。また、磁極134は円周方向でセンサ固定子230の磁極231と同じ位置に配置されている。
【0027】
図7に示すように、モータ部100のステータコア131からの漏れ磁束の一部は、紙面の奥側から手前側に流れてセンサ固定子230の角部がアンテナとなって侵入し、侵入した漏れ磁束の一部は、磁極231を通過し、センサ回転子220を横断して磁極231を通過し、センサ固定子230のコアバック部234を通ってセンサ固定子230の角部付近から紙面の奥側へ向けて流れ、モータ部100のステータコア131に戻る。
【0028】
ここで、説明の便宜のために
図7の頂部に位置するA相コイルのセンサコイルAの位置を0°相と定義すると、時計回りの方向に隣接するB相コイルのセンサコイルBの位置は90°相となり、90°相に隣接するA相コイルのセンサコイルA’の位置は180°相となる。
図7にはそのようにして定義した位置を相として示している。
【0029】
たとえば、侵入した漏れ磁束の一部は、センサ固定子230の角部近傍に形成された270°相の磁極231へ流れ、センサ回転子220を横断し、センサ固定子230の角部近傍に形成された90°相の磁極231を経て、センサ固定子230の角部付近からモータ部100のステータコア131に戻る。このような磁束が、センサ固定子230の磁極231に巻回したB相コイルのセンサコイルBとセンサコイルB’に鎖交する結果、B相コイルが出力する信号に対してノイズが重畳する。以上のノイズ発生の原理を、数式を用いて説明すると以下のとおりである。
【0030】
励磁信号をsin(ωt)とし、センサ回転子220の回転角をθとすると、0°相と180°相のA相コイルから出力される信号VAは以下のように表される。
VA=sin(ωt)×sin(θ)
【0031】
この信号を位相シフタに通して励磁信号の位相を90°ずらすと下記VA’が得られる。
VA’=cos(ωt)×sin(θ)
【0032】
モータ部100からの漏れ磁束が270°相のB相コイルのセンサコイルB’に鎖交し、センサ回転子220を横断して90°相のB相コイルのセンサコイルBに鎖交し、モータ部100に戻る結果、270°相と90°相のB相コイルに対してそれぞれ逆相のノイズが発生し、それらB相コイルから出力される信号VBは以下のように表される。
VB=sin(ωt)×cos(θ)+αsin(φ)
【0033】
そして、得られる信号Sigは以下のように表される。
Sig=VA’+VB
=sin(ωt+θ)+αsin(φ)
【0034】
以上のような漏れ磁束の経路により、B相コイルの検出信号に対してαsin(φ)なるノイズが重畳する。また、
図7から理解できるように、センサ固定子230の角部から侵入した漏れ磁束は、曲折することなく直線的に270°相の磁極231に達する。
【0035】
ii)漏れ磁束経路2
図8は比較例における漏れ磁束の他の磁束経路を説明するためのセンサ固定子230とセンサ回転子220を示す模式図である。モータ部100におけるステータコア131の磁極134の小歯136と、ロータコア141の小歯との間に形成された微小なエアーギャップからの漏れ磁束の一部は、紙面の奥側から流れてセンサ固定子230の270°相の磁極231の小歯232から侵入し、侵入した磁束の一部はセンサ固定子230の磁極231を通り、270°相のB相コイルのセンサコイルB’に鎖交する。
【0036】
次いで、磁束はセンサ固定子230のコアバック部234を通ってセンサ固定子230の角部に達し、そこで磁束の一部は、紙面の奥側へ流れてモータ部100のステータコア131に戻り、また、磁束の一部は、センサ固定子230の90°相の磁極231を通り、B相コイルBに鎖交し紙面の奥側へ流れてモータ部100のステータコア131に戻る。その結果、B相コイルの出力信号にノイズが発生する。以上のノイズ発生の原理は、以下のとおり漏れ磁束経路1の場合と同じであり、検出信号に対してαsin(φ)なるノイズが重畳する。また、
図8から理解できるように、270°相の磁極231の小歯232から侵入した磁束は、そのままセンサ固定子230の磁極231を通る。
【0037】
VA=sin(ωt)×sin(θ)
VA’=cos(ωt)×sin(θ)
VB=sin(ωt)×cos(θ)+αsin(φ)
Sig=VA’+VB
=sin(ωt+θ)+αsin(φ)
【0038】
(実施例)
i)漏れ磁束経路1
図9は実施例における漏れ磁束の経路を説明するためのセンサ固定子230センサ回転子220、および、モータ部100のステータコア131の磁極134を示す模式図である。
図9では、ステータ130はセンサ部200に対して紙面の奥側に配置されている。また、磁極134はセンサ固定子230の磁極231同士の円周方向中央に配置されている。
【0039】
モータ部100のステータコア131からの漏れ磁束の一部は、紙面の奥側からセンサ固定子230の角部がアンテナとなって侵入し、角部から侵入した漏れ磁束は、センサ固定子230のコアバック部234から270°相の磁極231を通ってセンサ回転子220に抜け、センサ回転子220を横切って隣接する0°相の磁極231からコアバック部234に抜け、センサ固定子230の角部から紙面の奥側へ流れてモータ部100のステータコア131に戻る。このような磁束が、センサ固定子230の270°相の磁極231に巻回したB相コイルのセンサコイルB’および0°相の磁極231に巻回したA相コイルのセンサコイルAに鎖交する。
【0040】
また、モータ部100のステータコア131からの漏れ磁束の一部は、紙面の奥側から流れてセンサ固定子230の角部がアンテナとなって侵入し、角部から侵入した漏れ磁束は、センサ固定子230のコアバック部234から180°相の磁極231を経てセンサ回転子220に抜け、センサ回転子220を横切って隣接する90°相の磁極231からコアバック部234に抜け、センサ固定子230の角部から紙面の奥側へ流れてモータ部100のステータコア131に戻る。このような磁束が、センサ固定子230の180°相の磁極231に巻回したA相コイルのセンサコイルA’と、90°相の磁極231に巻回したB相コイルのセンサコイルBに鎖交する。
【0041】
以上のように、ステータコア131からの漏れ磁束の一部がA相コイルのセンサコイルA、センサコイルA’、およびB相コイルのセンサコイルBおよびセンサコイルB’に鎖交する結果、A相コイルおよびB相コイルにノイズが発生する。以上のノイズ発生の原理を、数式を用いて説明すると以下のとおりである。
【0042】
90°相のB相コイルのセンサコイルBと270°相のB相コイルのセンサコイルB’にそれぞれ逆相のノイズが発生すると同時に、0°相のA相コイルのセンサコイルAと180°相のA相コイルのセンサコイルA’にそれぞれ逆相のノイズが発生する。ここで、A相コイルおよびB相コイルの巻き方向により、各ノイズ(φ)の位相は以下の関係にある。
φ0=φ90+π=φ180+π=φ270
【0043】
0°相と180°相のA相コイルのセンサコイルA、A’から出力される信号VAは、ノイズを含んで以下のように表される。
VA=sin(ωt)×sin(θ)+αsin(φ)
【0044】
この信号を位相シフタに通して励磁信号の位相を90°ずらすと下記VA’が得られる。
VA’=cos(ωt)×sin(θ)+αsin(φ)
【0045】
90°相と270°相のB相コイルのセンサコイルB、B’から出力される信号VBは、ノイズを含んで以下のように表される。
VB=sin(ωt)×cos(θ)+αsin(φ+π)
【0046】
そして、得られる信号Sigは以下のように表される。
Sig=VA’+VB
=sin(ωt+θ)+αsin(φ)+αsin(φ+π)
=sin(ωt+θ)
【0047】
以上のように、本発明の実施例では、A相コイルとB相コイルに発生するノイズが互いに打ち消し合い、理論上はノイズのない信号を出力することができる。また、
図9から理解できるように、センサ固定子230の角部から侵入した漏れ磁束は、曲折を繰り返して270°相の磁極231に達する。したがって、漏れ磁束の一部が散逸して磁極231に達した磁束の磁束密度は低くなる。
【0048】
ii)漏れ磁束経路2
図10は実施例における漏れ磁束の他の経路を説明するためのセンサ固定子230、センサ回転子220、および、モータ部100のステータコア131の磁極134を示す模式図である。
図10においても、ステータ130はセンサ部200に対して紙面の奥側に配置されている。また、磁極134は、センサ固定子230の磁極231同士の円周方向中央に配置されている。
【0049】
モータ部100におけるステータコア131の磁極134の小歯136と、ロータコア141の小歯との間に形成された微小なエアーギャップからの漏れ磁束の一部は、紙面の奥側から流れてセンサ固定子230の270°相の磁極231の小歯232から侵入し、侵入した磁束の一部はセンサ固定子230の270°相の磁極231を通り、センサコイルB’に鎖交する。
【0050】
次いで、磁束の一部はセンサ固定子230のコアバック部234を通ってセンサ固定子230の角部に達し、そこで磁束は紙面の奥側へ流れてモータ部100のステータコア131に戻る。また、磁束の一部はセンサ固定子230の0°相の磁極231を通ってセンサコイルAに鎖交し、小歯232から紙面の奥側へ流れてモータ部100のステータコア131に戻る。
【0051】
また、モータ部100におけるステータコア131の磁極134の小歯136と、ロータコア141の小歯との間に形成された微小なエアーギャップからの漏れ磁束の一部は、紙面の奥側から流れてセンサ固定子230の180°相の磁極231の小歯232から侵入し、侵入した磁束は180°相の磁極231を通ってセンサコイルA’に鎖交する。
【0052】
次いで、磁束の一部はセンサ固定子230のコアバック部234を通ってセンサ固定子230の角部に達し、そこで磁束は紙面の奥側へ流れてモータ部100のステータコア131に戻る。また、磁束の一部はセンサ固定子230の90°相の磁極231を通り、センサコイルBに鎖交して小歯232からモータ部100のステータコア131に戻る。
【0053】
以上のように、ステータコア131からの漏れ磁束の一部がA相コイルのセンサAとセンサコイルA’、およびB相コイルのセンサコイルBとセンサコイルB’に鎖交する結果、A相コイルおよびB相コイルの出力にノイズが発生する。以上のノイズ発生と消滅の原理は、以下のとおり漏れ磁束経路1の場合と同じである。
【0054】
VA=sin(ωt)×sin(θ)+αsin(φ)
VA’=cos(ωt)×sin(θ)+αsin(φ)
VB=sin(ωt)×cos(θ)+αsin(φ+π)
Sig=VA’+VB
=sin(ωt+θ)+αsin(φ)+αsin(φ+π)
=sin(ωt+θ)
【0055】
図10から理解できるように、磁極231の小歯232から侵入した漏れ磁束は、磁極231の中央部で曲折して270°相の磁極231を通過する。したがって、漏れ磁束の一部が散逸して磁極231に達した磁束の磁束密度は低くなる。
【0056】
上記構成のステッピングモータにあっては、ステータコア131の磁極134と、センサ固定子230の磁極231は同じ数であり、軸方向から見て、隣接するステータコア131の磁極134の間に、センサ固定子230の磁極231が配置されているから、ステータコア131からの漏れ磁束は、センサ固定子230やセンサ回転子220における曲折した経路を経てセンサ固定子230の磁極231に達する。このため、漏れ磁束がセンサ固定子230のセンサコイルA、センサコイルA’、センサコイルBおよびセンサコイルB’に達するまでに磁束の一部が散逸し、磁束密度が低下する。したがって、上記実施形態においては、センサ固定子230の磁極231に鎖交する磁束の磁束密度が低下するので、A相コイルおよびB相コイルから出力される信号に対するノイズの重畳が軽減される。
【0057】
特に、上記実施形態では、A相コイルとB相コイルのノイズの位相を逆にすることにより、両者の信号を合わせることでノイズを打ち消し合うように構成しているから、ノイズを効果的に軽減することができる。
【0058】
2.第2実施形態
図11は本発明の第2実施形態を示す図である。
図11に示すセンサカバー310には、正面視で円形の凹部311が形成され、凹部311には、正面視で円形のセンサ固定子330が固定されている。なお、それらの構成以外の構成は前記第1実施形態のものと同じである。
【0059】
上記第2実施形態においては、センサ固定子330が円形であるため、前記第1実施形態のようにセンサ固定子230の角部が漏れ磁束を引き寄せるアンテナとなるようなことがない。したがって、各磁極231のセンサコイルA、センサコイルA’、センサコイルBおよびセンサコイルB’への漏れ磁束の鎖交がより一層軽減され、A相コイルおよびB相コイルの出力信号に対するノイズの重畳を効果的に軽減することができる。
【実施例0060】
図5に示す略四角形状のセンサ固定子230を有する実施例のステッピングモータと、
図5においてセンサ固定子230の磁極231が、ステータコア131の磁極134と同じ円周方向の位置に配置された比較例のステッピングモータとを用い、センサコイル235に20kHzの信号を供給して出力信号を調査した。その結果を
図12に示す。
図12に示すように、本発明の実施例では、比較例と比べてノイズが20dB程度低減されることが確認された。なお、
図12において20kHzのピークはメインの信号である。
図13においても同様である。
【0061】
図11に示す円形のセンサ固定子330を有する実施例のステッピングモータと、
図11においてセンサ固定子330の磁極がステータコア131の磁極134と同じ円周方向の位置に配置された比較例のステッピングモータとを用い、センサコイル235に20kHzの信号を供給して出力信号を調査した。その結果を
図13に示す。
図13に示すように、円形のセンサ固定子330を有するステッピングモータでは、略四角形状のセンサ固定子230を有するステッピングモータと比較して実施例及び比較例ともにノイズは低減されている。そして、
図13に示すように、実施例のステッピングモータでは、比較例のステッピングモータよりもノイズが5dB程度低減されることが確認された。
【0062】
図12および
図13に示す実施例により、本発明においては、円形のセンサ固定子330を用いる場合よりも、略四角形状のセンサ固定子230を用いる場合に、本発明の効果がより発揮されることが確認された。
【0063】
3.変更例
(1)上記実施形態では8個の磁極134を有するステータコア131と、8個の磁極231を有するセンサ固定子230(330)を用いているが、磁極の数は任意である。
【0064】
(2)センサ固定子230(330)の磁極231は、ステータコア131の磁極134同士の間の円周方向中央に配置する必要はなく、円周方向中央からずれた位置に配置してもよい。
【0065】
(3)上記実施形態は本発明を2相ハイブリッド型ステッピングモータに適用したものであるが、PM型(Permanent Magnet型)やVR型(Variable Reluctance型)のステッピングモータに適用することもできる。
100…モータ部、110…フロントフランジ(フレーム)、111…ボス部、112…第1の軸受、120…リアフランジ(フレーム)、121…ボス部、122…環状の凸部、123…空間、124…スリーブ、125…貫通孔、130…ステータ、131…ステータコア、132…インシュレータ、134…磁極、135…コイル、136…小歯、140…ロータ、141…ロータコア、142…回転軸、143…マグネット、150…コネクタハウジング、151…回路基板、152…端子ピン、200…センサ部、210…センサカバー(フレーム)、211…凹部、212…ボス部、213…第2の軸受、214…座刳り穴、220…センサ回転子、221…小歯、230…センサ固定子、231…磁極、232…小歯、233…インシュレータ、234…コアバック部、235…センサコイル、250…コネクタハウジング、251…回路基板、252…端子ピン、310…センサカバー、311…凹部、330…センサ固定子、A,A’…A相コイルのセンサコイル、B,B’…B相コイルのセンサコイル。