IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人静岡大学の特許一覧

特開2022-115580距離画像撮像装置及び距離画像を撮像する方法
<>
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図1
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図2
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図3
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図4
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図5
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図6
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図7
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図8
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図9
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図10
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図11
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図12
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図13
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図14
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図15
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図16
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図17
  • 特開-距離画像撮像装置及び距離画像を撮像する方法 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022115580
(43)【公開日】2022-08-09
(54)【発明の名称】距離画像撮像装置及び距離画像を撮像する方法
(51)【国際特許分類】
   G01S 17/894 20200101AFI20220802BHJP
   G01S 17/32 20200101ALI20220802BHJP
【FI】
G01S17/894
G01S17/32
【審査請求】未請求
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2021012227
(22)【出願日】2021-01-28
【新規性喪失の例外の表示】特許法第30条第2項適用申請有り 開催日 令和2年1月29日 集会名、開催場所 エレクトロニックイメージング2020(Electronic Imaging 2020)ハイアット リージェンシー サンフランシスコ エアポート、1333 ベイショア ハイウェイ バーリンゲーム、カリフォルニア ユーエスエー(Hyatt Regency San Francisco Airport、1333 Bayshore Highway Burlingame,California USA) [刊行物等] ウェブサイトの掲載日 令和3年1月11日 ウェブサイトのアドレス https://doi.org/10.3390/s21020454
(71)【出願人】
【識別番号】304023318
【氏名又は名称】国立大学法人静岡大学
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100124800
【弁理士】
【氏名又は名称】諏澤 勇司
(74)【代理人】
【識別番号】100170818
【弁理士】
【氏名又は名称】小松 秀輝
(72)【発明者】
【氏名】川人 祥二
(72)【発明者】
【氏名】キム ジュヨン
【テーマコード(参考)】
5J084
【Fターム(参考)】
5J084AA05
5J084AD02
5J084AD05
5J084BA02
5J084BA34
5J084BA36
5J084BA40
5J084CA07
5J084CA10
5J084CA29
5J084CA31
5J084CA44
5J084CA49
5J084CA53
5J084EA04
(57)【要約】
【課題】距離画像撮像装置の総合的な性能の向上を図る。
【解決手段】距離画像撮像装置1は、光源2と、受けた光に対応する電荷を生成するフォトダイオード11と、画素回路部10の動作を制御する周辺回路4と、を備える。周辺回路4は、第1浮遊拡散部FDに蓄積される第1電荷量Qと第2浮遊拡散部FDに蓄積される第2電荷量Qとの大小関係に基づいて、第1転送制御パルスSG及び第2転送制御パルスSGを生成する。
【選択図】図1
【特許請求の範囲】
【請求項1】
パルス光を発生させる光源と、
受けた光に対応する電荷を生成する複数の画素回路部を含む画素回路部アレイと、
前記画素回路部アレイの動作を制御する転送制御パルスを前記画素回路部アレイに提供する周辺回路と、を備え、
前記画素回路部は、
光を前記電荷に変換する光電変換領域と、
前記光電変換領域から転送された前記電荷を第1電荷として蓄積する第1電荷読出領域と、
前記光電変換領域から前記第1電荷読出領域への前記電荷の転送を制御する第1転送制御パルスを受ける第1制御電極と、
前記光電変換領域から転送された前記電荷を第2電荷として蓄積する第2電荷読出領域と、
前記光電変換領域から前記第2電荷読出領域への前記電荷の転送を制御する第2転送制御パルスを受ける第2制御電極と、を有し、
前記周辺回路は、前記第1電荷読出領域に蓄積される前記第1電荷の量と前記第2電荷読出領域に蓄積される前記第2電荷の量との大小関係に基づいて、前記第1転送制御パルス及び前記第2転送制御パルスを生成する、距離画像撮像装置。
【請求項2】
前記周辺回路は、
前記第1電荷に基づく第1電圧と前記第2電荷に基づく第2電圧との差分に関する演算値を出力する第1演算部と、
前記第1転送制御パルスおよび前記第2転送制御パルスを出力するタイミングを決定するための遅延時間を、前記演算値を用いて決定する第2演算部と、を有し、
前記周辺回路は、前記第1電荷及び前記第2電荷を蓄積する蓄積動作と、前記第1演算部の動作と、前記第2演算部の動作と、を繰り返す、請求項1に記載の距離画像撮像装置。
【請求項3】
前記第2演算部は、第n回目(nは1以上の整数)の前記第2演算部の動作において、前記演算値が第1情報であるときに、第n回目の前記蓄積動作のために用いた第n回目の前記遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の前記蓄積動作のために用いる第n+1回目の前記遅延時間として決定する、請求項2に記載の距離画像撮像装置。
【請求項4】
前記第2演算部は、
第n回目の前記第2演算部の動作において、前記演算値が第1情報であるときに制御変数に1を加える動作を行うカウンタと、
前記制御変数と単位遅延時間とを乗算して得た値を、第n+1回目の前記蓄積動作のために用いる第n+1回目の前記遅延時間として決定する遅延時間決定部と、を有する、請求項2又は3に記載の距離画像撮像装置。
【請求項5】
前記第1演算部は、前記第1電圧と前記第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目(mは2以上の整数)までの前記差分電圧の積分値に第m回目の前記差分電圧を加算した結果を、第m回目の前記差分電圧の積分値として求め、
前記第2演算部は、第m回目の積分値が第2情報であるときに、第m+1回目の前記蓄積動作のために用いる第m+1回目の前記遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の前記遅延時間を第2遅延時間として決定する、請求項2に記載の距離画像撮像装置。
【請求項6】
前記第1演算部は、第1回目から第m-1回目までの差分電圧の積分値に第m回目の前記差分電圧を加算した結果を、第m回目の積分値として求める積分器を有し、
前記第2演算部は、第m回目の積分値が第2情報であるときに第m+1回目の前記遅延時間として第1遅延時間を決定し、第m回目の積分値が第1情報であるときに第m+1回目の前記遅延時間として第2遅延時間を決定する遅延時間決定部を有する、請求項2又は5に記載の距離画像撮像装置。
【請求項7】
前記第1演算部が出力する前記演算値をデジタル信号に変換し、前記デジタル信号を前記第2演算部に出力すると共に、前記第1演算部及び前記第2演算部と協働してデルタシグマ変調器を構成するA/D変換器と、
前記蓄積動作、前記第1演算部の動作、前記A/D変換器の動作及び前記第2演算部の動作が繰り返されるごとに、前記A/D変換器が出力する前記デジタル信号を受け、前記デジタル信号に対してローパスフィルタ処理とダウンサンプリングを行うデシメーションフィルタをさらに備える、請求項5または6に記載の距離画像撮像装置。
【請求項8】
前記デシメーションフィルタは、前記ローパスフィルタ処理のオーバーサンプリング比が、2B―1より大きく2より小さい整数であり、
Bはオーバーサンプリング比を表現可能な最小ビット数である、請求項7に記載の距離画像撮像装置。
【請求項9】
前記周辺回路は、
前記第1電荷及び前記第2電荷を蓄積する蓄積動作と、前記第2演算部が、第n回目の前記第2演算部の動作において、前記演算値が第1情報であるときに、第n回目の前記蓄積動作のために用いた第n回目の前記遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の前記蓄積動作のために用いる第n+1回目の前記遅延時間として決定する動作と、を含む処理を繰り返す第1測定と、
前記蓄積動作と、前記第1演算部が、前記第1電圧と前記第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの前記差分電圧の積分値に第m回目の前記差分電圧を加算した結果を、第m回目の前記差分電圧の積分値として求める動作と、前記第2演算部が、第m回目の積分値が第2情報であるときに第m+1回目の前記遅延時間として第1遅延時間を決定し、第m回目の積分値が第1情報であるときに第m+1回目の前記遅延時間として第2遅延時間を決定する動作と、を含む処理を繰り返す第2測定と、を行う、請求項2に記載の距離画像撮像装置。
【請求項10】
前記第1演算部は、第1回目から第m-1回目までの差分電圧の積分値に第m回目の前記差分電圧を加算した結果を求める積分器を含み、
前記第2演算部は、
第n回目の前記第2演算部の動作において、前記演算値が第1情報であるときに制御変数に1を加える動作を行うカウンタと、
前記制御変数と単位遅延時間とを乗算して得た値を、第n+1回目の前記蓄積動作のために用いる第n+1回目の前記遅延時間として決定する動作、又は、第m回目の積分値が第2情報であるときに第m+1回目の前記遅延時間として第1遅延時間を決定し、第m回目の積分値が第1情報であるときに第m+1回目の前記遅延時間として第2遅延時間を決定する動作を選択的に実行する遅延時間決定部と、を有する、請求項2又は9に記載の距離画像撮像装置。
【請求項11】
前記第1演算部は、前記第1電圧と前記第2電圧との差分を差分電圧として出力する差動増幅器を含み、
前記差動増幅器は、
第1入力端、第2入力端、第3入力端、第1出力端及び第2出力端を有する演算増幅器と、
前記第1電荷読出領域から第1電荷を受けると共に、前記第1入力端及び前記第1出力端に接続された帰還キャパシタと、
前記第2電荷読出領域から第2電荷を受けると共に、前記第2入力端及び前記第2出力端に接続された帰還キャパシタと、
前記第3入力端、前記第1出力端及び前記第2出力端に接続され、前記第1出力端からの出力値と、前記第2出力端からの出力値と、の差分がコモン電圧と等しくなるように、前記第3入力端に信号を提供するコモンモード帰還制御部と、を含む、請求項4、6及び10の何れか一項に記載の距離画像撮像装置。
【請求項12】
距離画像撮像装置を用いて距離画像を撮像する方法であって、
前記距離画像撮像装置は、
光を電荷に変換する光電変換領域と、
前記光電変換領域から転送された前記電荷を第1電荷として蓄積する第1電荷読出領域と、
前記光電変換領域から前記第1電荷読出領域への前記電荷の転送を制御する第1転送制御パルスを受ける第1制御電極と、
前記光電変換領域から転送された前記電荷を第2電荷として蓄積する第2電荷読出領域と、
前記光電変換領域から前記第2電荷読出領域への前記電荷の転送を制御する第2転送制御パルスを受ける第2制御電極と、を有し、
前記距離画像を撮像する方法は、
前記第1制御電極に与えられる第1転送制御パルスに基づいて前記第1電荷読出領域に前記第1電荷を蓄積すると共に、前記第2制御電極に与えられる第2転送制御パルスに基づいて前記第2電荷読出領域に前記第2電荷を蓄積する電荷蓄積工程と、
前記第1電荷の量と前記第2電荷の量との大小関係に基づいて、前記第1転送制御パルス及び前記第2転送制御パルスを生成するパルス生成工程と、
を有する、距離画像を撮像する方法。
【請求項13】
前記パルス生成工程は、
前記第1電荷に基づく第1電圧と前記第2電荷に基づく第2電圧との差分に関する演算値を出力する演算工程と、
前記第1転送制御パルスおよび前記第2転送制御パルスを出力するタイミングを決定するための遅延時間を、前記演算値を用いて決定する遅延時間決定工程と、を含み、
前記電荷蓄積工程及び前記パルス生成工程を繰り返す、請求項12に記載の距離画像を撮像する方法。
【請求項14】
前記遅延時間決定工程は、第n回目の前記演算工程において、前記演算値が第1情報であるときに、第n回目の前記電荷蓄積工程のために用いた第n回目の前記遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の前記電荷蓄積工程のために用いる第n+1回目の前記遅延時間として決定する工程を含む、請求項13に記載の距離画像を撮像する方法。
【請求項15】
前記遅延時間決定工程は、
前記第1電圧と前記第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの前記差分電圧の積分値に第m回目の前記差分電圧を加算した結果を、第m回目の前記差分電圧の積分値として求める工程と、
第m回目の積分値が第2情報であるときに、第m+1回目の前記電荷蓄積工程のために用いる第m+1回目の前記遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の前記遅延時間を第2遅延時間として決定する工程と、を含む、請求項13に記載の距離画像を撮像する方法。
【請求項16】
前記遅延時間決定工程は、
第n回目の前記演算工程において、前記演算値が第1情報であるときに、第n回目の前記電荷蓄積工程のために用いた第n回目の前記遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の前記電荷蓄積工程のために用いる第n+1回目の前記遅延時間として決定する工程と、
前記第1電圧と前記第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの前記差分電圧の積分値に第m回目の前記差分電圧を加算した結果を、第m回目の前記差分電圧の積分値として求める工程と、
第m回目の積分値が第2情報であるときに、第m+1回目の前記電荷蓄積工程のために用いる第m+1回目の前記遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の前記遅延時間を第2遅延時間として決定する工程と、を含む、請求項13に記載の距離画像を撮像する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、距離画像撮像装置及び距離画像を撮像する方法に関する。
【背景技術】
【0002】
距離画像撮像装置は、距離画像を出力する。距離画像は、撮像対象物までの距離情報を有する。距離画像撮像装置は、測定光を撮像対象物に出射する。測定光は、撮像対象物において反射されて、再び距離画像撮像装置に入射する。測定光を出射したタイミングと撮像対象物からの反射光が入射したタイミングとを利用すると、測定光が距離画像撮像装置から撮像対象物へ到達するために要した時間がわかる。この時間は、光飛行時間とも称する。光飛行時間と光の速度とを利用すれば、距離画像撮像装置から撮像対象物までの距離がわかる。このような距離測定の手法は、タイムオブフライト測定法(TIME OF FLIGHT)と呼ばれている。そして、このような距離測定の手法に基づく距離画像測定装置は、TOFセンサとも称される。特許文献1~5は、TOFセンサに関する技術を開示する。
【0003】
TOFセンサには、いわゆる直接型TOFセンサと間接型TOFセンサがある。直接型TOFセンサは、光飛行時間を直接に測定する。例えば、特許文献6、7は、直接型TOFセンサに関する技術を開示する。間接型TOFセンサは、反射光により生成される電荷を複数の領域に時間ごとに振り分ける。そして、領域ごとに蓄積された電荷の比率を利用して、光飛行時間を得る。例えば、特許文献8~10は、間接型TOFセンサに関する技術を開示する。間接型TOFセンサは、直接型TOFセンサと比べると、画素サイズが小さくできること、回路を単純にできること、距離の分解能が高いといったいくつかの有利な点を有する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2019-082331号公報
【特許文献2】特開2016-090436号公報
【特許文献3】再表2016/075885号公報
【特許文献4】特開2008-076390号公報
【特許文献5】特開平06-066940号公報
【特許文献6】特開平07-191144号公報
【特許文献7】特開平08-313631号公報
【特許文献8】国際公開第2019/078366号
【特許文献9】国際公開第2019/031510号
【特許文献10】国際公開第2016/133053号
【発明の概要】
【発明が解決しようとする課題】
【0005】
間接型TOFセンサの性能を示す特性には、距離の分解能や、距離と出力信号との線形性などが挙げられる。当該分野にあっては、これらの指標を含む総合的な性能の向上が望まれている。例えば、距離の分解能を高めるためには、測定光の照射時間を短くすればよい。つまり、短いパルス状の測定光を照射すればよい。一方、より短いパルスを用いることは、距離分解能を改善するために有効であるが、画素のソースフォロワ増幅器の非線形性、光パルスの波形の歪、フォトダイオード内の有限な光キャリア応答時間、復調のための転送制御パルスの歪、及び、転送制御パルスのスキューなどが、解決すべき大きな課題となってくる。その結果、線形性が損なわれる可能性がある。つまり、ある特性を向上させようとすると、別の特性を低下させてしまうことがあり得る。そこで、発明者らは、間接型TOFセンサについて総合的に性能を向上することが可能な技術の検討を行った。
【0006】
本発明は、総合的な性能の向上が可能な距離画像撮像装置及び距離画像を撮像する方法を提供する。
【課題を解決するための手段】
【0007】
本発明の一形態である距離画像撮像装置は、パルス光を発生させる光源と、受けた光に対応する電荷を生成する複数の画素回路部を含む画素回路部アレイと、画素回路部アレイの動作を制御する転送制御パルスを画素回路部アレイに提供する周辺回路と、を備える。画素回路部は、光を電荷に変換する光電変換領域と、光電変換領域から転送された電荷を第1電荷として蓄積する第1電荷読出領域と、光電変換領域から第1電荷読出領域への電荷の転送を制御する第1転送制御パルスを受ける第1制御電極と、光電変換領域から転送された電荷を第2電荷として蓄積する第2電荷読出領域と、光電変換領域から第2電荷読出領域への電荷の転送を制御する第2転送制御パルスを受ける第2制御電極と、を有する。周辺回路は、第1電荷読出領域に蓄積される第1電荷の量と第2電荷読出領域に蓄積される第2電荷の量との大小関係に基づいて、第1転送制御パルス及び第2転送制御パルスを生成する。
【0008】
この装置によれば光飛行時間に関する電荷量の差分から得た演算値に基づいて、転送制御パルスのタイミングを制御する。その結果、電荷読出領域ごとの電荷量の偏りを小さくすることが可能になるので、総合的な性能の向上が望める。
【0009】
周辺回路は、第1電荷に基づく第1電圧と第2電荷に基づく第2電圧との差分に関する演算値を出力する第1演算部と、第1転送制御パルスおよび第2転送制御パルスを出力するタイミングを決定するための遅延時間を、演算値を用いて決定する第2演算部と、を有してもよい。周辺回路は、第1電荷及び第2電荷を蓄積する蓄積動作と、第1演算部の動作と、第2演算部の動作と、を繰り返してもよい。この構成によっても、電荷読出領域ごとの電荷量の偏りを小さくすることが可能になる。その結果、総合的な性能の向上が望める。
【0010】
第2演算部は、第n回目の第2演算部の動作において、演算値が第1情報であるときに、第n回目の蓄積動作のために用いた第n回目の遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の蓄積動作のために用いる第n+1回目の遅延時間として決定してもよい。この動作によれば、電荷量の偏りを好適に抑制できる。
【0011】
第2演算部は、第n回目の第2演算部の動作において、演算値が第1情報であるときに制御変数に1を加える動作を行うカウンタと、制御変数と単位遅延時間とを乗算して得た値を、第n+1回目の蓄積動作のために用いる第n+1回目の遅延時間として決定する遅延時間決定部と、を有してもよい。この構成によれば、電荷量の偏りを好適に抑制できる。
【0012】
第1演算部は、第1電圧と第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を、第m回目の差分電圧の積分値として求めてもよい。第2演算部は、第m回目の積分値が第2情報であるときに、第n+1回目の蓄積動作のために用いる第n+1回目の遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の遅延時間を第2遅延時間として決定してもよい。この動作によれば、単位遅延時間に起因する誤差が抑制された光飛行時間を得ることができる。
【0013】
第1演算部は、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を、第m回目の積分値として求める積分器を有してもよい。第2演算部は、第m回目の積分値が第2情報であるときに第m+1回目の遅延時間として第1遅延時間を決定し、第m回目の積分値が第1情報であるときに第m+1回目の遅延時間として第2遅延時間を決定する遅延時間決定部を有してもよい。この構成によれば、単位遅延時間に起因する誤差が抑制された光飛行時間を得ることができる。
【0014】
距離画像撮像装置は、第1演算部が出力する演算値をデジタル信号に変換し、デジタル信号を第2演算部に出力すると共に、第1演算部及び第2演算部と協働してデルタシグマ変調器を構成するA/D変換器と、蓄積動作、第1演算部の動作、A/D変換器の動作及び第2演算部の動作が繰り返されるごとに、A/D変換器が出力するデジタル信号を受け、デジタル信号に対してローパスフィルタ処理とダウンサンプリングを行うデシメーションフィルタをさらに備えてもよい。
【0015】
デシメーションフィルタは、ローパスフィルタ処理のオーバーサンプリング比が、2B―1より大きく2より小さい整数であってもよい。Bはオーバーサンプリング比を表現可能な最小ビット数であってもよい。
【0016】
周辺回路は、第1電荷及び第2電荷を蓄積する蓄積動作と、第2演算部が、第n回目の第2演算部の動作において、演算値が第1情報であるときに、第n回目の蓄積動作のために用いた第n回目の遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の蓄積動作のために用いる第n+1回目の遅延時間として決定する動作と、を含む処理を繰り返す第1測定と、蓄積動作と、第1演算部が、第1電圧と第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を、第m回目の差分電圧の積分値として求める動作と、第2演算部が、第m回目の積分値が第2情報であるときに第m+1回目の遅延時間として第1遅延時間を決定し、第m回目の積分値が第1情報であるときに第m+1回目の遅延時間として第2遅延時間を決定する動作と、を含む処理を繰り返す第2測定と、を行ってもよい。この動作によるループによれば、第1測定でおおよその光飛行時間を測定でき、その結果をもって第2測定で精密な光飛行時間を測定することができる。
【0017】
第1演算部は、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を求める積分器を含んでもよい。第2演算部は、第n回目の第2演算部の動作において、演算値が第1情報であるときに制御変数に1を加える動作を行うカウンタと、制御変数と単位遅延時間とを乗算して得た値を、第n+1回目の蓄積動作のために用いる第n+1回目の遅延時間として決定する動作、又は、第m回目の積分値が第2情報であるときに第m+1回目の遅延時間として第1遅延時間を決定し、第m回目の積分値が第1情報であるときに第m+1回目の遅延時間として第2遅延時間を決定する動作を選択的に実行する遅延時間決定部と、を有してもよい。この構成によるループによれば、第1測定でおおよその光飛行時間を測定でき、その結果をもって第2測定で精密な光飛行時間を測定することができる。
【0018】
第1演算部は、第1電圧と第2電圧との差分を差分電圧として出力する差動増幅器を含んでもよい。差動増幅器は、第1入力端、第2入力端、第3入力端、第1出力端及び第2出力端を有する演算増幅器と、第1電荷読出領域から第1電荷を受けると共に、第1入力端及び第1出力端に接続された帰還キャパシタと、第2電荷読出領域から第2電荷を受けると共に、第2入力端及び第2出力端に接続された帰還キャパシタと、第3入力端、第1出力端及び第2出力端に接続され、第1出力端からの出力値と、第2出力端からの出力値と、の差分がコモン電圧と等しくなるように、第3入力端に信号を提供するコモンモード帰還制御部と、を含んでもよい。
【0019】
本発明の別の形態である距離画像撮像装置を用いて距離画像を撮像する方法は、第1制御電極に与えられる第1転送制御パルスに基づいて第1電荷読出領域に第1電荷を蓄積すると共に、第2制御電極に与えられる第2転送制御パルスに基づいて第2電荷読出領域に第2電荷を蓄積する電荷蓄積工程と、第1電荷の量と第2電荷の量との大小関係に基づいて、第1転送制御パルス及び第2転送制御パルスを生成するパルス生成工程と、を有する。
【0020】
この方法によれば光飛行時間に関する電荷量の差分から得た演算値に基づいて、転送制御パルスのタイミングを制御する。その結果、電荷読出領域ごとの電荷量の偏りを小さくすることが可能になるので、総合的な性能の向上が望める。
【0021】
パルス生成工程は、第1電荷に基づく第1電圧と第2電荷に基づく第2電圧との差分に関する演算値を出力する演算工程と、第1転送制御パルスおよび第2転送制御パルスを出力するタイミングを決定するための遅延時間を、演算値を用いて決定する遅延時間決定工程と、を含んでもよい。電荷蓄積工程及びパルス生成工程を繰り返してもよい。この方法によれば、電荷量の偏りを好適に抑制できる。
【0022】
遅延時間決定工程は、第n回目の演算工程において、演算値が第1情報であるときに、第n回目の電荷蓄積工程のために用いた第n回目の遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の電荷蓄積工程のために用いる第n+1回目の遅延時間として決定する工程を含んでもよい。この方法によれば、電荷量の偏りを好適に抑制できる。
【0023】
遅延時間決定工程は、第1電圧と第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を、第m回目の差分電圧の積分値として求める工程と、第m回目の積分値が第2情報であるときに、第m+1回目の電荷蓄積工程のために用いる第m+1回目の遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の遅延時間を第2遅延時間として決定する工程と、を含んでもよい。この方法によれば、単位遅延時間に起因する誤差が抑制された光飛行時間を得ることができる。
【0024】
遅延時間決定工程は第n回目の演算工程において、演算値が第1情報であるときに、第n回目の電荷蓄積工程のために用いた第n回目の遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の電荷蓄積工程のために用いる第n+1回目の遅延時間として決定する工程と、第1電圧と第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を、第m回目の差分電圧の積分値として求める工程と、第m回目の積分値が第2情報であるときに、第m+1回目の電荷蓄積工程のために用いる第m+1回目の遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の遅延時間を第2遅延時間として決定する工程と、を含んでもよい。この方法によるループによれば、おおよその光飛行時間を測定でき、その結果をもって精密な光飛行時間を測定することができる。
【発明の効果】
【0025】
本発明の距離画像撮像装置及び距離画像を撮像する方法は、総合的な性能の向上を図ることができる。
【図面の簡単な説明】
【0026】
図1図1は、距離画像撮像装置の構成を示す図である。
図2図2は、距離画像を撮像する方法の主要な工程を示すフロー図である。
図3図3は、距離画像撮像装置の原理を示す図である。
図4図4(a)及び図4(b)は、光飛行時間の測定における問題点を説明する図である。
図5図5は、C測定を説明するための図である。
図6図6(a)及び図6(b)は、単位遅延時間の変更を概念的に示す図である。
図7図7は、露光動作の回数と電荷の差分の積分値との推移を示す図である。
図8図8は、C測定を行う構成の等価ブロック線図である。
図9図9(a)は、C測定の動作を概念的に説明する図である。図9(b)は量子化誤差を概念的に示す図である。
図10図10は、F測定を行う構成の等価ブロック線図である。
図11図11は、ノイズ伝達関数による量子化誤差の形を示す図である。
図12図12は、C測定とF測定とをまとめて示すタイミングチャートである。
図13図13は、画素回路部の構成を示す図である。
図14図14は、前段増幅器の回路構成を示す図である。
図15図15は、画素回路部及び復調器の動作を示すタイミングチャートである。
図16図16は、アナログ処理ユニットの回路構成を示す図である。
図17図17は、DT変換器と転送制御パルス発生器の回路構成を示す図である。
図18図18は、距離画像撮像装置の具体例を示す図である。
【発明を実施するための形態】
【0027】
以下、添付図面を参照しながら本発明を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0028】
図1に示す距離画像撮像装置1は、距離画像を得る。距離画像とは、距離画像撮像装置1から対象物100までの距離情報を含む画像である。距離画像撮像装置1は、対象物100に向けて照射光L1(測定光)を出射する。照射光L1は、対象物100の表面において反射する。反射した反射光L2は、距離画像撮像装置1に入射する。距離画像撮像装置1は、照射光L1を出射したタイミングと反射光L2を受けたタイミングとの時間差を得る。この時間差は、光飛行時間とも称される。光飛行時間は、照射光L1が対象物100に到達し、さらに対象物100から距離画像撮像装置1に到達するまでに要した時間である。つまり、光飛行時間は、距離画像撮像装置1から対象物100までの距離に応じて決まる。従って、光飛行時間を得ることにより、距離画像撮像装置1から対象物100までの距離を得ることができる。
【0029】
まず、距離測定の原理を説明する。図3は、距離画像撮像装置1の原理を示す図である。距離画像撮像装置1は、光飛行時間を間接的に測定する。距離画像撮像装置1は、電荷を蓄積する複数個の領域を有する。距離画像撮像装置1は、光の入射によって光電変換領域に生じた電荷を、それぞれの蓄積領域に振り分ける。この振り分けは、光電変換領域から蓄積領域への電荷の転送を制御するゲートによって行われる。第1期間において第1蓄積領域に電荷を転送する。第1期間において、第2蓄積領域には電荷を転送しない。そして、第1期間に続く第2期間において第1蓄積領域への電荷の転送を停止すると共に、第2蓄積領域へ電荷を転送する。第1期間と第2期間の時間Tと、第1蓄積領域の第1電荷量Qと第2蓄積領域の第2電荷量Qの比率を利用すると、光飛行時間を得ることができる。
【0030】
ここで、照射光L1を出射するタイミングと、第1蓄積領域への電荷転送期間との時間的な関係は、変化しないと仮定する。また、第2蓄積領域への電荷転送期間についても同様に、時間的な関係は変化しないと仮定する。この仮定のもとに、距離画像撮像装置1を動作させる。図4(a)に示すように、対象物100までの距離が近い場合には、照射光L1を出射してから反射光L2が入射するまでの時間が短い。従って、第1転送制御パルスSGによって動作する第1蓄積領域における第1電荷量Qは多くなる。一方、第2転送制御パルスSGによって動作する第2蓄積領域における第2電荷量Qは少なくなる。図4(b)に示すように、対象物100までの距離が遠い場合には、照射光L1を出射してから反射光L2が入射するまでの時間が長い。従って、第1電荷量Qは少なくなる。一方、第2電荷量Qは多くなる。つまり、対象物100までの距離が長くなるほど、第1電荷量Qが減少し、第2電荷量Qが増加する。
【0031】
第1蓄積領域及び第2蓄積領域へ電荷を蓄積する蓄積動作を実施するときには、反射光L2に起因しない電荷も蓄積されてしまう。つまり、蓄積領域に蓄積された電荷には、反射光L2に起因する電荷と反射光L2に起因しない電荷とがある。このような反射光L2に起因しない電荷は、ノイズ成分となる。ノイズ成分は、電荷を蓄積するときだけでなく、電荷を読み出すときにも発生することがある。
【0032】
そうすると、反射光L2に起因する電荷量が少ない場合には、反射光L2に起因しない電荷量の割合が相対的に大きくなる。その結果、距離の分解能の低下といった距離画像撮像装置1の性能に影響を及ぼす。この問題は、距離画像撮像装置1の測定範囲の上限又は下限に近付くに従って大きくなる。つまり、従来の距離画像撮像装置で採用されていたように、第1蓄積領域及び第2蓄積領域への転送のタイミングが常に一定であると、対象物100までの距離によっては、一方の蓄積領域に蓄積される電荷量が非常に少なくなる。その結果、距離分解能の低下を招いていた。
【0033】
上記の問題を解決するため、発明者らが鋭意検討した結果、照射光L1を出射するタイミングと第1蓄積領域への電荷の転送期間との時間的な関係を変化させることによって解決できることに想到した。つまり、第1転送制御ゲートG及び第2転送制御ゲートGを開くタイミングは、照射光L1の出射のタイミングに対して固定することなく、可変とする。さらに、第1転送制御ゲートG及び第2転送制御ゲートGを開くタイミングは、第1転送制御ゲートGによって転送される第1電荷量Qと第2転送制御ゲートGによって転送される第2電荷量Qの大小関係に応じて制御することに想到した。
【0034】
電荷量の大小関係に応じた制御によれば、第1電荷量Qと第2電荷量Qとの偏りを小さくする、つまり、電荷量の差分を小さくするような動作が可能になる。その結果、ノイズの影響を抑制することができる。さらに、電荷量の大小関係に応じた制御によれば、いわゆるデルタシグマ変調技術を適用することも可能である。デルタシグマ変調技術によれば、量子化誤差を低減することができる。つまり、蓄積される電荷の偏りの解消と、デルタシグマ変調技術の導入による量子化誤差の低減により、測定範囲の全域にわたって距離分解能を向上させることが可能となる。
【0035】
さらに、電荷量の大小関係を用いた制御では、電荷量の大小関係に応じて電荷を転送するタイミングを制御するというフィードバックループを構成する。まず、蓄積領域に蓄積された電荷量の差分をアナログ電圧の差分に変換する。次に、アナログ電圧の差分を二値のデジタル値に変換する。次に、デジタル値を用いて電荷を転送するタイミングを決める。決定されたタイミングに基づき画素を動作させると、再び蓄積領域に電荷が蓄積される。このフィードバックループでは、デジタル値を用いて電荷を転送するタイミングを決める点に技術的な特徴がある。つまり、デジタル値を時間に変換している。発明者らは、この技術を「時間領域フィードバック制御」と名付けた。
【0036】
電荷量の大小関係に応じて電荷を転送する制御は、2つの態様を取り得る。
【0037】
第1の態様では、電荷量の差分を減少させることを制御の目標とする。第1の態様によれば、既知のずれを含むおおよその光飛行時間を得ることができる。第1の態様によりおおよその光飛行時間を得る測定を、発明者らは、「Coarse測定」と名付けた。以下の説明では、単に「C測定」(第1測定)とも称する。
【0038】
図5は、C測定を説明するための図である。図5には、4回のフィードバック動作が行われる例を示している。照射光L1の出射期間と反射光L2の入射期間との時間的なずれは、反射光L2を生じた対象物100までの距離に対応する。
【0039】
1回目の動作(n=1)では、第1転送期間の終了を照射光L1の出射期間における中点に一致させる。第1転送期間の終了は、第2転送期間の開始と一致する。従って、第2転送期間の開始も出射期間における中点に一致する。このような第1転送期間及び第2転送期間をもって、反射光L2を受け入れる。なお、以下の説明において、反射光L2を受け入れて電荷を発生させる動作を、「露光動作」とも称する。1回目の露光動作では、反射光L2の入射期間は、第1転送期間には重複せず、第2転送期間の一部に重複する。1回目の露光動作の結果、第1蓄積領域の第1電荷量Qは、第2蓄積領域の第2電荷量Qより少ないという結果が得られる。電荷量の差分(=第2電荷量Q-第1電荷量Q)で評価した場合には、符号がプラス(正)であるといえる。
【0040】
この結果に基づき、2回目(n=2)の露光動作における第1転送期間及び第2転送期間を設定する。電荷量の差分がプラスであるとき、第1転送期間及び第2転送期間を当初のタイミングから、単位遅延時間Δtだけ遅らせる。2回目の露光動作では、1回目の露光動作から単位遅延時間Δtだけ遅れたタイミングで第1転送期間及び第2転送期間が設定される。2回目の露光動作では、反射光L2の入射期間は、第1転送期間には重複せず、第2転送期間の全期間に重複する。その結果、電荷量の差分の符号は、未だプラスである。
【0041】
3回目(n=3)の露光動作では、2回目の露光動作のタイミングからさらに単位遅延時間Δtだけ第1転送期間及び第2転送期間を遅らせる。つまり、1回目の露光動作から2Δtだけ遅れている。3回目の露光動作では、反射光L2の入射期間は、第1転送期間の一部に重複し、第2転送期間の一部にも重複する。第2転送期間の重複期間が、第1転送期間の重複期間より長い。従って、電荷量の差分の符号は、未だプラスである。
【0042】
4回目(n=4)の露光動作では、3回目の露光動作のタイミングからさらに単位遅延時間Δtだけ第1転送期間及び第2転送期間を遅らせる。つまり、1回目の露光動作から3Δtだけ遅れている。4回目の露光動作では、反射光L2の入射期間は、第1転送期間の一部に重複し、第2転送期間の一部にも重複する。第1転送期間の重複期間が、第2転送期間の重複期間より長い。従って、電荷量の差分の符号は、マイナスである。
【0043】
ここで、第1転送期間に蓄積される第1電荷量Qと第2転送期間に蓄積される第2電荷量Qとが等しいとき、第1転送期間の終了は反射光L2の入射期間の中央に一致するといえる。照射光L1の照射タイミング(開始、中央又は終了)が既知であり、電荷量の差分がゼロとなる第1転送期間及び第2転送期間のタイミングがわかると、照射光L1に対する反射光L2の入射タイミングがわかる。つまり、光飛行時間がわかる。
【0044】
上述の1回目から4回目までの動作では、単位遅延時間Δt毎に第1転送期間及び第2転送期間をずらした。そうすると、電荷量の差分がゼロとなる場合も生じるが、電荷量の差分がゼロとならないことも生じる。しかし、電荷量の差分の符号がプラスであったタイミングと、電荷量の差分の符号がマイナスであったタイミングと、の間に差分がゼロになるタイミングが存在することはわかる。
【0045】
そこで、差分の符号が切り替わる遅延時間を探索することにより、おおよその光飛行時間を得ることができる。この「おおよそ」とは、最大値として単位遅延時間Δtに相当する誤差を含み得ることを意味する。C測定に用いられる負帰還は、電荷量の差分に基づくデジタル値を時間へ変換する。変換された時間は、第1転送期間及び第2転送期間のための転送制御パルスの遅延時間に対応する。電荷量の差分を減少させる制御は、換言すると、転送制御パルスの遅延時間と光飛行時間との差分を減少させる負帰還制御ということもできる。このような制御によれば、アナログ読出回路の動作点を一定に維持することが可能になる。その結果、直線性を効果的に改善できる。
【0046】
C測定の結果は、遅延時間と、当該遅延時間の動作によって得た電荷量の差分と、を含む。C測定の結果は、次に説明するF測定の処理に用いる。
【0047】
電荷量の大小関係に応じて電荷を転送する制御における第2態様について説明する。第2態様では、露光動作を繰り返すごとに電荷量の差分を積分する。この態様において、各回の露光動作ごとに第1転送期間及び第2転送期間に対して付与する遅延時間を変更する。付与する遅延時間の変更は、電荷量の差分を積分した結果によって決める。積分の結果は、0又は1の二値のデジタル値に変換される。複数回の露光動作を繰り返すと、0又は1によって表現された情報が得られる。0が現れる回数及び1が現れる回数は、真の光飛行時間に関係する。従って、0が現れる回数及び1が現れる回数を利用することにより、C測定により得られるおおよその光飛行時間からさらに精密な光飛行時間を得ることができる。第2態様により精密な光飛行時間を得る測定を、発明者らは、「Fine測定」と名付けた。以下の説明では、単に「F測定」(第2測定)とも称する。
【0048】
F測定の基本的な動作について説明する。F測定では、各回の露光動作ごとに第1転送期間及び第2転送期間に対して付与する遅延時間を変更すると述べた。図6は、遅延時間の変更を概念的に示す。F測定では、第1遅延時間(2Δt)と第2遅延時間(3Δt)とを用いる。第1遅延時間(2Δt)は、露光動作の結果として電荷量の差分がプラスとなるものである(図6(a)参照)。第2遅延時間(3Δt)は、露光動作の結果として電荷量の差分がマイナスとなるものである(図6(b)参照)。いずれの遅延時間を採用するかは、C測定の電荷量の差分の符号がプラスからマイナスに変わる前後に与えた単位遅延時間Δtの倍数と、電荷量の積分値に基づいて決める。ここでは、図5で、2Δtから3Δtとしたときに電荷量の差分の符号がプラスからマイナスに変わったため、第1遅延時間を2Δt、第2遅延時間を3Δtとした。しかし、これは例示である。第1遅延時間及び第2遅延時間は、電荷量の差分がプラスとマイナスになる組み合わせであれば良い。
【0049】
図7は、露光動作の回数と電荷の差分の積分値との推移を示す。また、図7には、積分値の符号と当該符号に対応する遅延時間との関係も併せて示す。F測定における0回目とは、C測定における最終回の1回前の動作に対応する。上述したC測定において、最終回の1回前(3回目)の露光動作の結果は、電荷量の差分を示す差分電荷量ΔQであった。そして差分電荷量ΔQの符号はプラスであった。差分電荷量ΔQの符号がプラスであるとき、次の露光動作では、第2遅延時間(3Δt)を採用する。F測定における1回目の露光動作の結果、差分電荷量ΔQ(符号はマイナス)が得られる。この差分電荷量ΔQを、0回目の積分値に加算する。その結果、あらたな積分値が得られる。あらたな積分値の符号は、未だプラスである。従って、次の2回目の露光動作でも、第2遅延時間(3Δt)を採用する。このように、露光動作による電荷の蓄積と、電荷量の差分の取得と、取得した差分の足し合わせと、足し合わせた結果の符号に応じた遅延時間の選択と、を順次繰り返す。図7の例では、3回目の露光動作の結果も、積分値の符号はプラスである。その一方、積分値の絶対値は次第に小さくなっていく。
【0050】
そして、4回目の露光動作の結果、積分値の符号がプラスからマイナスに切り替わる。積分値の符号がマイナスであるとき、次の6回目の露光動作では、第1遅延時間(2Δt)を採用する。6回目の露光動作の結果、電荷量の差分は符号がプラスである(図6(a)参照)。6回目の電荷量の差分を、5回目の積分値に加算すると、積分値の符号は再びプラスに転じる。図7には、10回目までの露光動作の様子を示した。
【0051】
F測定の積分動作では、第1転送期間及び第2転送期間に付与される遅延時間と、求めたい光飛行時間との誤差の大きさと、に比例して、積分値への加算値が大きくなる。従って、誤差の小さな遅延時間の出現頻度は大きくなる。一方、誤差の大きな遅延時間の出現頻度は小さくなる。つまり、第1遅延時間及び第2遅延時間をその出現頻度で重み付け平均することで、光飛行時間を得ることができる。
【0052】
次に、F測定では、精密な光飛行時間を算出する。例えば、図7に示すように、1回目から10回目の露光動作の結果として、第1遅延時間(2Δt)が2回現れている。第2遅延時間(3Δt)は8回現れている。その結果、光飛行時間は、式(1)によって得られる。
【数1】
【0053】
上述した、時間領域での負帰還技術である時間領域フィードバック制御を適用するF測定の動作は、いわゆる1次のデルタシグマ変調(DSM)動作であるともいえる。デルタシグマ変調によれば、オーバーサンプリング信号処理を用いた自己充足的な低歪と低ノイズ性を持つ。その結果、距離画像撮像装置1は、高い直線性と高い距離分解能とを達成することができる。
【0054】
ここまでの議論をまとめると、距離画像撮像装置1は、時間領域フィードバック制御という技術思想を採用する。そして、時間領域フィードバック制御の第1態様としておおよその光飛行時間を得るC測定を行う。その後、時間領域フィードバック制御の第2態様として、精密な光飛行時間を得るF測定を行う。このような動作によれば、距離画像撮像装置1は、高い直線性と高い距離分解などを達成可能であり総合的な性能向上を図ることができる。
【0055】
次に、時間領域フィードバック制御を用いた短パルスベース間接型TOFイメージセンサについて詳細に説明する。
【0056】
図1は、距離画像撮像装置1の機能ブロック図である。距離画像撮像装置1は、光源2と、距離画像センサ3と、を有する。光源2は、照射光L1を出射する。照射光L1は、対象物100で反射する。反射した照射光L1は、フォトダイオード11と復調器12とによって電圧信号に変換される。距離画像センサ3は、フォトダイオード11と、復調器12と、アナログ処理ユニット20(第1演算部)と、A/D変換器30と、デジタル処理ユニット40(第2演算部)と、DT変換器50(第2演算部、遅延時間決定部)と、を有する。これらの要素は、時間領域負帰還ループを構成する。距離画像センサ3は、光飛行時間を得る。光飛行時間を得ることにより、対象物100までの距離を得ることができる。
【0057】
距離画像センサ3は、上述したC測定とF測定とを行う。これらの動作によれば、距離画像センサ3の性能を高めることができる。より詳細には、距離画像センサ3は、光飛行時間と距離との関係を示す直線性が高い。また、距離画像センサ3は、光飛行時間の分解能が高い。つまり、距離画像センサ3は、距離の分解能が高い。さらに、距離画像センサ3は、高い直線性と高い分解能とを、広い測定範囲にわたって維持することができる。
【0058】
距離画像センサ3は、C測定のための時間領域負帰還ループと、F測定のための時間領域負帰還ループと、を相互に切り替える。この動作の切り替えは、アナログ処理ユニット20が実現する2種類の動作(バッファ動作、積分動作)の選択と、デジタル処理ユニット40が実現する2種類の動作(計数動作、加算動作)の選択と、による。C測定では、アナログ処理ユニット20が実現するバッファ21としての動作が選択されると共に、デジタル処理ユニット40が実現するカウンタ41としての動作が選択される。F測定では、アナログ処理ユニット20が実現する積分器22としての動作が選択されると共に、デジタル処理ユニット40が実現する加算器42としての動作が選択される。F測定が行われるとき、距離画像センサ3は、1次のデルタシグマ変調器であるとみなせる。
【0059】
光源2は、光飛行時間(TOF:TIME OF FLIGHT)方式による距離計測を行うために、対象物100に出射する照射光L1を発生させる。光源2は、半導体発光素子と駆動回路とを有する。半導体発光素子は、近赤外領域又は可視光領域等の波長領域の光を発生させる。半導体発光素子として、発光ダイオード又はレーザダイオードを採用できる。
【0060】
距離画像センサ3は、対象物100からの反射光L2を受ける。そして、距離画像センサ3は、受けた反射光L2を利用して距離画像を出力する。距離画像センサ3は、フォトダイオード11と、復調器12と、アナログ処理ユニット20と、A/D変換器30と、デジタル処理ユニット40と、DT変換器50と、を有する。また、距離画像センサ3は、デシメーションフィルタ60を有する。
【0061】
画素回路部10のフォトダイオード11は、反射光L2を受ける。距離画像撮像装置1は、二次元状に配置された複数の画素回路部10を有する。二次元状に配置された複数の画素回路部10は、画素回路部アレイ10Sを構成する。フォトダイオード11は、反射光L2に応じた電荷を発生する。画素回路部10は、フォトダイオード11で発生した電荷を復調器12に転送する。画素回路部10の出力値は、第1電荷量Q、第2電荷量Q及び差分電荷量ΔQに基づく。画素回路部10の物理的な構成は、後述する。
【0062】
復調器12は、フォトダイオード11からの電荷の転送を制御する。復調器12は、フォトダイオード11から受けた電荷量の差分を電圧の差分として出力する。復調器12の出力値は、第1前段電圧信号VP1、第2前段電圧信号VP2及び差分前段電圧信号ΔVを含む。復調器12の物理的な構成は、後述する。
【0063】
アナログ処理ユニット20、A/D変換器30、デジタル処理ユニット40及びDT変換器50は、周辺回路4を構成する。
【0064】
アナログ処理ユニット20は、電圧の差分を処理する。アナログ処理ユニット20が行う処理は、電圧の差分を整数倍する処理と、電圧の差分を積分する処理と、を含む。アナログ処理ユニット20は、電圧の差分を整数倍する処理を行うバッファ21を含む。さらに、アナログ処理ユニット20は、電圧の差分を積分する処理を行う積分器22を含む。アナログ処理ユニット20の出力値は、第1後段電圧信号VO1(第1電圧)、第2後段電圧信号VO2(第2電圧)及び差分後段電圧信号ΔV(差分電圧)を含む。アナログ処理ユニット20の具体的な回路構成は、後述する。
【0065】
A/D変換器30は、アナログ処理ユニット20が出力する電圧を量子化する。具体的には、A/D変換器30は、アナログ処理ユニット20が出力する電圧を、0又は1の二値のデジタル値に変換する。A/D変換器30の出力値は、デジタル信号DFBを含む。
【0066】
デジタル処理ユニット40は、A/D変換器30が出力するデジタル信号DFBを処理する。デジタル処理ユニット40が行う処理には、入力されたデジタル信号DFBにおける0又は1を数える処理と、入力されたデジタル信号DFBを予め記憶された別のデジタル信号に加算する処理と、を含む。デジタル処理ユニット40は、0又は1を数える処理を行うカウンタ41を含む。カウンタ41の出力端は、DT変換器50及び加算器42に接続されている。デジタル処理ユニット40は、加算する処理を行う加算器42を含む。加算器42の入力端には、A/D変換器30及びカウンタ41が接続されている。つまり、加算器42は、A/D変換器30の出力値とカウンタ41の出力値とを受けることができる。加算器42の出力端はDT変換器50に接続されている。デジタル処理ユニット40の出力値は、デジタル信号Dを含む。
【0067】
F測定において加算器42及びDT変換器50は、積分結果の符号に応じて次の蓄積動作のための遅延時間を決定する。積分結果の符号は、デジタル処理ユニット40の出力値であるデジタル信号Dの値に応じる。加算器42及びDT変換器50は、積分結果の符号がゼロ又はプラス(第1情報)であるとき遅延時間として3Δtを決定する。3Δtは、電荷の差分がマイナスとなる遅延時間である。加算器42及びDT変換器50は、積分結果の符号がマイナス(第2情報)であるとき遅延時間として2Δtを決定する。2Δtは、電荷の差分がプラスとなる遅延時間である。
【0068】
デシメーションフィルタ60は、デジタル処理ユニット40の加算器42の入力端に接続される。デシメーションフィルタ60は、加算器42と共にデジタル信号DFBを受ける。デシメーションフィルタ60は、デジタル信号DFBに対してデジタルフィルタ処理を行う。デジタルフィルタ処理は、ローパスフィルタ処理とダウンサンプリング処理とを含む。例えば、デシメーションフィルタ60は、ローパスフィルタ処理のオーバーサンプリング比が、2B―1より大きく2より小さい整数であってもよい。Bはオーバーサンプリング比を表現可能な最小ビット数であってもよい。
【0069】
図1の機能ブロック図及び図2のフロー図によれば、距離画像撮像装置1を用いた距離画像を撮像する方法は、電荷蓄積工程S10C、S10Fと、パルス生成工程S20C、S20Fと、を含む。距離画像を撮像する方法では、電荷蓄積工程S10Cと、パルス生成工程S20Cと、を繰り返し実行する。電荷蓄積工程S10C及びパルス生成工程S20Cは、C測定を構成する。その後、距離画像を撮像する方法では、電荷蓄積工程S10Fと、パルス生成工程S20Fと、を繰り返し実行する。電荷蓄積工程S10F及びパルス生成工程S20Fは、F測定を構成する。
【0070】
電荷蓄積工程S10Cは、画素回路部10によって実行される。画素回路部10は、電荷蓄積工程S10Cとして、第1転送制御ゲートGに与えられる第1転送制御パルスSGに基づいて第1浮遊拡散部FDに第1電荷を蓄積する。さらに、画素回路部10は、電荷蓄積工程S10Cとして、第2転送制御ゲートGに与えられる第2転送制御パルスSGに基づいて第2浮遊拡散部FDに第2電荷を蓄積する。パルス生成工程S20Cは、周辺回路4によって実行される。周辺回路4は、パルス生成工程S20Cとして、第1電荷量Qと第2電荷量Qとの大小関係に基づいて、第1転送制御パルスSG及び第2転送制御パルスSGを生成する。
【0071】
パルス生成工程S20Cは、演算工程S21Cと、判定工程S30と、遅延時間決定工程S22Cと、パルス出力工程S24Cと、を含む。演算工程S21Cは、復調器12及びアナログ処理ユニット20により実行される。なお、演算工程S21Cを行う要素として、A/D変換器30を含めてもよい。演算工程S21Cは、第1電荷に基づく第1電圧と第2電荷に基づく第2電圧との差分に関する演算値を出力する。演算値は、差分電圧そのものであってもよいし、差分電圧を二値化したデジタル値であってもよい。
【0072】
演算工程S21Cの後に、TOFが得られたか否かの判定を行う(工程S30)。TOFが得られたと判定された場合には、F測定のループに移行する。TOFが得られたと判定されない場合には、遅延時間決定工程S22Cに移行する。
【0073】
遅延時間決定工程S22Cは、デジタル処理ユニット40により実行される。遅延時間決定工程S22Cは、第1転送制御パルスSGおよび第2転送制御パルスSGを出力するタイミングを決定するための遅延時間を、演算値を用いて決定する。C測定のための遅延時間決定工程S22Cは、デジタル処理ユニット40のカウンタ41によって実行される。カウンタ41によれば、第n回目の演算工程S21Cにおいて、演算値が第1情報であるとき(判定工程S30)に、第n回目の電荷蓄積工程S10Cのために用いた第n回目の遅延時間を、さらに単位遅延時間だけ遅らせたものを、第n+1回目の電荷蓄積工程のために用いる第n+1回目の遅延時間として決定するという動作が実現できる。
【0074】
パルス出力工程S23Cは、DT変換器50によって実行される。パルス出力工程S23Cは、決定された遅延時間に基づいて第1転送制御パルスSGおよび第2転送制御パルスSGを出力する。
【0075】
F測定のための工程は、電荷蓄積工程S10Fと、パルス生成工程S20Fと、を有する。パルス生成工程S20Fは、演算工程S21Fと、遅延時間決定工程S22Fと、パルス出力工程S23Fと、を有する。演算工程S21Fは、アナログ処理ユニット20の積分器22によって実行される。積分器22によれば、第1電圧と第2電圧との差分を差分電圧として出力した後に、第1回目から第m-1回目までの差分電圧の積分値に第m回目の差分電圧を加算した結果を、第m回目の差分電圧の積分値として求めるという動作が実現できる。遅延時間決定工程S22Fは、デジタル処理ユニット40の加算器42によって実行される。加算器42によれば、第m回目の積分値が第2情報であるときに、第m+1回目の電荷蓄積工程のために用いる第m+1回目の遅延時間を第1遅延時間とし、第m回目の積分値が第1情報であるときに、第m+1回目の遅延時間を第2遅延時間として決定するという動作が実現できる。
【0076】
上述したように、時間領域フィードバック制御では、C測定と、F測定とを、行うことができる。つまり、図1に示す距離画像撮像装置1は、C測定を行う構成と、F測定を行う構成と、を実現できる。C測定を行う構成とF測定を行う構成は、相互に切り替え可能である。つまり、C測定を行う構成により、おおよその光飛行時間を得る。おおよその光飛行時間が求まったのちに、C測定を行う構成からF測定を行う構成に切り替える。そして、F測定により、さらに精密な光飛行時間を得る。C測定を行う構成とF測定を行う構成の切り替えは、アナログ処理ユニット20におけるバッファ21又は積分器22の選択と、デジタル処理ユニット40におけるカウンタ41又は加算器42の選択と、により実現できる。
【0077】
C測定を行うとき、アナログ処理ユニット20は、バッファ21として機能する。さらに、デジタル処理ユニット40は、カウンタ41として機能する。図8は、C測定を行う構成の等価ブロック線図である。
【0078】
C測定を行う構成において、距離画像センサ3は、加え合わせ点F8aと、第1伝達要素F8bと、第2伝達要素F8cと、第3伝達要素F8dと、第4伝達要素F8eと、第5伝達要素F8fと、を有する。加え合わせ点F8a及び第1伝達要素F8bは、復調器12に対応する。第2伝達要素F8cは、バッファ21に対応する。第3伝達要素F8dは、A/D変換器30に対応する。第4伝達要素F8eは、カウンタ41に対応する。第5伝達要素F8fは、DT変換器50に対応する。
【0079】
図8の等価ブロック線図を参照しながら、C測定について説明する。等価ブロック線図において、第2伝達要素F8c(バッファ21)の出力値である後段電圧信号V(演算値)は、式(2)により示される。
【数2】

:第2伝達要素F8c(バッファ21)が出力する後段電圧信号の大きさ。
BUF:第2伝達要素F8c(バッファ21)のゲイン。
:復調器12の時間-電圧変換ゲイン。
TOF:光飛行時間。
:第5伝達要素F8f(DT変換器50)が出力する遅延時間信号。
【0080】
第3伝達要素F8d(A/D変換器30)は、第2伝達要素F8c(バッファ21)が出力する後段電圧信号Vを量子化する。量子化の処理は、式(3)に従う。第3伝達要素F8d(A/D変換器30)は、量子化処理の結果、デジタル領域帰還のためのインクリメントコードとしてデジタル信号DFBを生成する。
【数3】
【0081】
第4伝達要素F8e(カウンタ41)は、デジタル信号DFBを受ける。第4伝達要素F8eは、第n回目の動作におけるデジタル信号DFBが1であるとき、第n-1回目の内部変数(制御変数)に1を加えるカウントアップ動作を行う。つまり、カウンタ41は、成分が1であるデジタル信号DFBを数える。例えば、C測定において電荷の差分値が第1情報(0又はプラス)であるときは、A/D変換器30がデジタル値として「1」を出力する。一方、C測定において電荷の差分値が第2情報(マイナス)であるときは、A/D変換器30がデジタル値として「0」を出力する。カウンタ41は、当該デジタル値に基づいて計数動作を行ってもよい。n回の動作を行った結果、カウンタ41が出力するデジタル信号D(n)は式(4)に示される。
【数4】
【0082】
第5伝達要素F8f(DT変換器50)は、デジタル信号Dを受ける。第5伝達要素F8f(DT変換器50)は、式(5)に従い、遅延時間信号Tを得る。つまり、遅延時間信号Tは、単位遅延時間Δtとデジタル信号Dとの乗算によって得られる。
【数5】

(n):n回目の動作における遅延時間信号。
Δt:単位遅延時間。DT変換器50の変換ファクタ。
【0083】
図9(a)は、C測定の動作を概念的に説明する。図9(a)は、デジタル信号DFBと遅延時間信号Tとを示す。まず、第1回目のフィードバック動作では、遅延時間信号Tは、ゼロに設定される。第n回目のフィードバック動作の結果、A/D変換器30の出力値であるデジタル信号DFBが1であるとき、第n+1回目のフィードバック動作では、遅延時間信号Tには、単位遅延時間Δtが加算される。従って、繰り返されるフィードバック動作において、デジタル信号DFBが1である限り、遅延時間信号Tは単位遅延時間Δtを一つのステップとして階段状に増加する。つまり、遅延時間は、光飛行時間(TOF)に近づく。
【0084】
複数回のフィードバック動作の結果、遅延時間信号Tが光飛行時間(TOF)よりも大きくなる。このとき、A/D変換器30は、出力値としてデジタル信号DFB=0を出力する。デジタル信号DFBがゼロであるとき、遅延時間信号Tに対する単位遅延時間Δtの加算は停止する。換言すると、DT変換器50の出力値である遅延時間信号Tのインクリメントは止まる。遅延時間信号Tの増加の停止が、n回目のフィードバック動作で発生したと仮定すれば、カウンタ41の出力値であるデジタル信号Dは、式(6)によって示される。
【数6】

(n):n回目のフィードバック動作におけるカウンタ41の出力値。
:遅延時間信号Tの増加の停止が発生した回数。
【0085】
は、DT変換器50における遅延時間信号Tの最大値を規定する。最終ステップ(n)のDT変換器50の出力値である遅延時間信号T(n)は、式(7)によって示される。
【数7】
【0086】
ところで、C測定において、DT変換器50は、インクリメンタルな動作を行う。従って、光飛行時間(TOF)と遅延時間信号T(n)の差分は、誤差である。図9(b)に示すように、誤差は、-Δt/2と+Δt/2の間の値を取り得る。そして、光飛行時間(TOF)の測定範囲(TM,Max)は、式(8)によって示される。
【数8】

M,Max:光飛行時間(TOF)の測定範囲。
:C測定におけるフィードバック動作の最大回数。
Δt:単位遅延時間。
【0087】
C測定の最終出力結果は、出力Ycoarseである。出力Ycoarseは、カウンタ41に保存された最終コードである。最終コードは、式(9)によって示される。
【数9】

coarse:C測定の最終出力結果。
:単位遅延時間Δtの増加の停止が発生した時のカウンタ値。
【0088】
また、1回のフィードバック動作に要する時間を時間(TCM0)とする。そうすると、C測定の実行に必要な時間TCMは、式(10)によって示される。
【数10】
【0089】
F測定を行うとき、アナログ処理ユニット20は、積分器22として機能する。さらに、デジタル処理ユニット40は、加算器42として機能する。図10は、F測定を行う構成の等価ブロック線図である。図10は、時間領域負帰還を備えた1次のデルタシグマ変調(DSM)を採用したF測定の等価的ブロック図である。
【0090】
距離画像センサ3は、第1加え合わせ点F10aと、第2加え合わせ点F10bと、第6伝達要素F10cと、第7伝達要素F10dと、第3加え合わせ点F10eと、第8伝達要素F10fと、第9伝達要素F10gと、第10伝達要素F10hと、を有する。第6伝達要素F10c及び第2加え合わせ点F10bは、復調器12に対応する。第7伝達要素F10dは、積分器22に対応する。加え合わせ点F8aは、A/D変換器30に対応する。第8伝達要素F10fは、デルタシグマ変調器F10の帰還系に配置される微分回路に対応する。第9伝達要素F10g及び第10伝達要素F10hは、DT変換器50に対応する。
【0091】
図10の等価ブロック線図を参照しながら、F測定について説明する。図10に示される等価ブロック線図から、デルタシグマ変調器F10の出力値DFBは、式(11)により示される。
【数11】

INT:積分器22のゲイン。
:復調器12の時間-電圧変換ゲイン。
(z)は、A/D変換器30の量子化ノイズであり、D(z)は、時間領域帰還に対するΔTOFとの差であり、式(12)により示される。
【数12】

ΔTOF(z):光飛行時間の差分。
Δt:単位遅延時間。
【0092】
式(12)を式(11)に代入することにより、図10のデルタシグマ変調部分に対するz領域での全体のシステム応答は、式(13)により示される。
【数13】

INT:積分器22のゲイン。
:復調器12の時間-電圧変換ゲイン。
ΔTOF(z):光飛行時間の差分。
Δt:単位遅延時間。
(z):A/D変換器30の量子化ノイズ。
A/D変換器30を含む1次のデルタシグマ変調器F10が安定に動作するとき、ループゲインは、1である。その結果、「KINT×K×Δt=1」という条件が成立する。この条件によれば、式(13)から式(14)が得られる。
【数14】
【0093】
式(14)より、信号と量子化ノイズの伝達関数が得られる。信号の伝達関数、即ち、デジタル信号DFBと差分光飛行時間ΔTOFとの関係は、DT変換器50の単位遅延時間Δtの逆数と同じである。ノイズ伝達関数(NTF)、即ち、デジタル信号DFBと量子化ノイズEとの関係は、1-z-1である。
【0094】
デルタシグマ変換の量子化ノイズを見積もるため、式(15)を用い、周波数領域でノイズ伝達関数の自乗を計算すると、式(16)が得られる。
【数15】

【数16】

f:周波数。
SO:オーバーサンプリング周期。
SO:オーバーサンプリング周波数。
【0095】
図11は、式(16)によって与えられるノイズ伝達関数による量子化誤差のパワースペクトル密度の形を示している。この形の量子化誤差は、カットオフ周波数fLPFのデジタルローパスフィルタ(LPF)を用いることにより、効果的に減らすことができる。これにより、全体のノイズパワーに対する残留ノイズパワー(ハッチングの領域)の平方根の比の分だけ、F測定における有効ビット数(ENOB)が増加する。fSO/2fLPFで与えられるオーバーサンプリング比Nを用いると、全体のノイズパワーに対する残留ノイズパワーの面積比は、おおよそ1/N である。このとき、理想的ローパスフィルタを用いると有効ビット数の増加分ΔENOBは、式(17)によって与えられる。
【数17】
【0096】
この1次のデルタシグマ変換を用いた技術では、N=4に対してΔENOB=3が得られる。しかしながら、これは、非常に急峻なカットオフを持つ理想的ローパスフィルタの場合である。現実的な実装においては、ビットストリーム中の1の数をカウントする非常に単純なカウンタがローパスフィルタとして用いられる。カウンタはそれほど急峻なカットオフを持たない。その周波数応答は移動平均フィルタに似ており、ローパスフィルタの後の残留量子化ノイズパワーは、全体の量子化ノイズパワーの1/N となる。
【0097】
この場合の有効ビット数の増加分ΔENOBは、式(18)で与えられる。
【数18】

実際の実装においては、N=64(或いはエラー削減のため66)及び、カウンタベースのローパスフィルタが使われる。F測定の実装におけるENOBの増加分は6ビットである。式(18)から、オーバーサンプリング比Nを2倍にすると、C測定の処理時間は2倍掛かるもののENOBを1ビット増やすことが出来る。
【0098】
=64は、6ビットのF測定におけるTD変換に厳密に相当する。これは、C測定、及び、F測定の変換コードの接続境界で深度分解能を悪化させることがある。これは、直線性の特性において、最大ΔTOFの境界で不連続のステップが現れるためである。この不連続点で、時間変数エラーが発生する。この特異点では、距離分解能(深度ノイズ)が悪化する。これは、Nを2の階乗の64を超えた値に設定すれば回避できる。例えばN=66にすることによって回避可能である。
【0099】
図12は、C測定とF測定とをまとめて示すタイミングチャートである。つまり、図12は、C測定とF測定とにより光飛行時間(TOF)を測定する技術の概念的な駆動波形を示している。距離画像撮像装置1は、まず、C測定を行う。C測定において、距離画像撮像装置1のDT変換器50は、光飛行時間の推定値としてΔt・nを生成する。距離画像撮像装置1は、次に、F測定を行う。F測定において、距離画像撮像装置1は、デルタシグマ変調器として動作する。その結果、距離画像撮像装置1のDT変換器50は、ビットストリーム波形である信号を出力する。ビットストリーム波形は、ΔtD・と、Δt・(n-1)との2つの状態を含む。デルタシグマ変調器F10の出力値は、ローパスフィルタに出力される。そして、データのダウンサンプリングがなされた結果、F測定の出力値として、Yfineが得られる。なお、図12では、デジタルカウンタ(1次積分器)がデシメーションフィルタに用いられているときのフィルタ出力の様子を示している。
【0100】
F測定の出力値であるYfineは、式(19)によっても示される。Yfineは、0-1の値を取る。
【数19】

fine:F測定の出力値。
:デルタシグマ変調器F10から出力される数。
:F測定におけるトータルサンプリング数。
【0101】
C測定とF測定とを含む光飛行時間測定の技術によれば、光飛行時間を示す出力値YTOFは、式(20)又は式(21)により示される。
【数20】

【数21】
【0102】
とNを、2Mと2Mとすれば、C測定とF測定とを含む光飛行時間測定の技術は、光飛行時間(TOF)を(m+m)ビットのデジタルコードに変換する。
【0103】
以下、距離画像撮像装置1の具体的な回路構成を説明する。図13図14は、画素回路部10、画素121及び前段増幅器122の回路構成を示す。画素回路部10は、フォトダイオード11(光電変換部)と、復調器12と、を有する。フォトダイオード11は、対象物100からの反射光L2を受ける。画素121は、前段増幅器122に第1電荷量Q及び第2電荷量Qを出力する。
【0104】
フォトダイオード11は、発生した電荷を復調器12に出力する。フォトダイオード11は、基準電位Vrefに接続されている。
【0105】
復調器12は、第1浮遊拡散部FD(第1電荷読出領域)と、第1転送制御ゲートG(第1制御電極)と、第2浮遊拡散部FD(第2電荷読出領域)と、第2転送制御ゲートG(第2制御電極)と、電圧源Vと、第3転送制御ゲートGと、を有する。復調器12は、フォトダイオード11から電荷を受ける。復調器12は、アナログ処理ユニット20に第1前段電圧信号VP1と第2前段電圧信号VP2を出力する。
【0106】
フォトダイオード11の出力は、第1転送制御ゲートGと、第2転送制御ゲートGと、第3転送制御ゲートGと、に接続されている。第1転送制御ゲートG及び第2転送制御ゲートGは、横方向電界制御電荷変調器ゲートである。横方向電界制御電荷変調器ゲートを採用することにより、フォトダイオード11から第1浮遊拡散部FDへの第1電荷量Qの転送の許可と禁止とを極めて高速に切り替えることができる。例えば、切り替え時間は、サブナノ秒程度である。その結果、距離測定の分解能を高めることができる。
【0107】
第1転送制御ゲートGは、第1浮遊拡散部FDに接続されている。従って、第1転送制御ゲートGは、フォトダイオード11と第1浮遊拡散部FDとの間に配置されている。第1転送制御ゲートGは、フォトダイオード11から第1浮遊拡散部FDへの電荷の転送を許可する。また、第1転送制御ゲートGは、フォトダイオード11から第1浮遊拡散部FDへの電荷の転送を禁止する。転送の許可と禁止とは、第1転送制御ゲートGに与えられる制御信号の電圧に応じて切り替わる。第1転送制御ゲートGに与えられた制御信号の電圧が、いわゆる「HIGH」であるとき、第1転送制御ゲートGは、フォトダイオード11から第1浮遊拡散部FDへの電荷の転送を許可する。一方、第1転送制御ゲートGに与えられた制御信号の電圧が、いわゆる「LOW」であるとき、第1転送制御ゲートGは、フォトダイオード11から第1浮遊拡散部FDへの電荷の転送を禁止する。第1浮遊拡散部FDは、前段増幅器122の第1入力端に接続されている。第1浮遊拡散部FDは、フォトダイオード11から転送された電荷を第1電荷として蓄積する。
【0108】
第2転送制御ゲートG及び第2浮遊拡散部FDの接続構成は、第1転送制御ゲートG及び第1浮遊拡散部FDと同様である。従って、詳細な説明は省略する。
【0109】
第3転送制御ゲートGは、MOSトランジスタゲートである。このMOSトランジスタのドレインは、電圧源Vに接続されている。従って、第3転送制御ゲートGは、フォトダイオード11と電圧源Vとの間に配置されている。第3転送制御ゲートGは、HIGHに対応する制御信号が与えられたとき、フォトダイオード11からドレインの電荷の転送を許可する。つまり、電荷は、ドレインに排出される。また、第3転送制御ゲートGは、LOWに対応する制御信号が与えられたとき、フォトダイオード11からドレインへの電荷の転送を禁止する。
【0110】
前段増幅器122は、完全差動電荷感応型の増幅器(CSA)である。前段増幅器122は、画素121から第1電荷量Q及び第2電荷量Qを受ける。前段増幅器122は、アナログ処理ユニット20に第1前段電圧信号VP1及び第2前段電圧信号VP2を出力する。前段増幅器122は、演算増幅器122Sと、帰還キャパシタCS1、CS2と、リセットスイッチPR11、PR12と、を有する。前段増幅器122は、さらに、第1コモンモード帰還制御器122Aを有する。
【0111】
演算増幅器122Sは、第1入力端と、第2入力端と、第3入力端と、を有する。演算増幅器122Sは、さらに、第1出力端と、第2出力端と、を有する。
【0112】
第1入力端は、第1浮遊拡散部FDに接続されている。第1入力端は、第1浮遊拡散部FDに蓄積された第1電荷量Qを受ける。第1出力端は、アナログ処理ユニット20の入力端に接続されている。第1出力端は、アナログ処理ユニット20の入力端に第1前段電圧信号VP1を出力する。第1出力端は、第1コモンモード帰還制御器122Aに接続されている。第1出力端は、第1コモンモード帰還制御器122Aに第1前段電圧信号VP1を出力する。
【0113】
第2入力端及び第2出力端の接続構成は、第1入力端及び第1出力端の接続構成と同様である。従って、詳細な説明は省略する。
【0114】
第3入力端は、第1コモンモード帰還制御器122Aに接続されている。第3入力端は、第1コモンモード帰還制御器122Aから制御信号を受ける。第1コモンモード帰還制御器122Aは、完全作動出力の平均レベルがコモン電圧VCOMと等しくなるように演算増幅器122Sを制御する。
【0115】
帰還キャパシタCS1は、第1入力端と第1出力端との間に接続されている。リセットスイッチPR11は、第1入力端と第1出力端との間に接続されている。リセットスイッチPR11は、帰還キャパシタCS1に対して電気的に並列に接続されている。
【0116】
前段増幅器122の第1前段電圧信号VP1は式(22)により示される。また、前段増幅器122の第2前段電圧信号VP2は式(23)により示される。
【数22】

【数23】

P1:第1前段電圧信号。
P2:第2前段電圧信号。
:第1浮遊拡散部FD1に蓄積された第1電荷量。
:第2浮遊拡散部FD2に蓄積された第2電荷量。
:帰還キャパシタCS1及び帰還キャパシタCS2の容量値。
COM:基準電圧。
【0117】
さらに、第1電荷量Qは式(24)により示される。第2電荷量Qは式(25)により示される。
【数24】

【数25】

S1:第1電荷量Qにおいて反射光に起因する信号電荷量。
S2:第2電荷量Qにおいて反射光に起因する信号電荷量。
:第1電荷量Q及び第2電荷量Qにおいて背景光に起因するノイズ電荷量。
【0118】
コモンモード帰還を伴う完全差動増幅器を用いることによって、差分前段電圧信号ΔVは、式(26)により示される。式(26)によれば、前段増幅器122の出力値である差分前段電圧信号ΔVは、背景光成分(Q)をキャンセルしている。さらに、差分前段電圧信号ΔVは、信号電荷量QS1と信号電荷量QS2の差分に比例する。
【数26】

ΔV:差分前段電圧信号。
P1:第1前段電圧信号。
P2:第2前段電圧信号。
S1:第1電荷量Qにおいて反射光に起因する信号電荷量。
S2:第2電荷量Qにおいて反射光に起因する信号電荷量。
:帰還キャパシタCS1及び帰還キャパシタCS2の容量値。
【0119】
電荷-電圧変換ゲインGは、式(27)により示される。
【数27】

:電荷-電圧変換ゲイン。
ΔV:差分前段電圧信号。
S1:第1電荷量Qにおいて反射光に起因する信号電荷量。
S2:第2電荷量Qにおいて反射光に起因する信号電荷量。
:帰還キャパシタCS1及び帰還キャパシタCS2の容量値。
【0120】
なお、1つの短パルス光に含まれる光子の数は少ない。従って、信号は、反射光を周期的に多くのサイクルで受光することによって増強される。
【0121】
図15は、画素10回路部及び復調器12の動作を示すタイミングチャートである。図15では、差分前段電圧信号ΔVの動きを、反射光の3つの場合の相対的遅延時間信号tに対して示している。相対的遅延時間信号Tが0であり、且つ、信号電荷量QS1と信号電荷量QS2が等しい場合には、差分前段電圧信号ΔVは0である。相対的遅延時間信号tが0より大きければ(t>0)、差分前段電圧信号ΔVの絶対値は次第に増加する。この場合の符号は、正である。相対的遅延時間信号Tより小さければ(t<0)、差分前段電圧信号ΔVの絶対値は次第に増加する。この場合の符号は、負である。従って、光飛行時間によって相対的な光パルス遅延を測定することが可能であり、光パルス遅延の測定に電荷感受性型の前段増幅器122を含む復調器12を採用できる。
【0122】
図16は、アナログ処理ユニット20の回路構成を示す。アナログ処理ユニット20は、前段増幅器122から第1前段電圧信号VP1及び第2前段電圧信号VP2を受ける。アナログ処理ユニット20は、A/D変換器30に第1後段電圧信号VO1と第2後段電圧信号VO2と、を出力する。アナログ処理ユニット20は、前処理部23と、後段増幅部24と、を有する。
【0123】
前処理部23は、入力キャパシタCI1、CI2と、入力スイッチPS1、PS2と、ドレインスイッチPR1D1、PR1D2と、を有する。入力キャパシタCI1、CI2は、前段増幅器122の出力端に接続されている。入力キャパシタCI1、CI2は、入力スイッチPS1、PS2及びドレインスイッチPR1D1、PR1D2に接続されている。入力スイッチPS1、PS2は、入力キャパシタCI1、CI2と後段増幅部24の演算増幅器20Sの入力端に接続されている。ドレインスイッチPR1D1、PR1D2は、入力キャパシタCI1、CI2と基準電位Vrefに接続されている。
【0124】
後段増幅部24は、演算増幅器20Sと、帰還キャパシタCF1と、帰還キャパシタCF2と、リセットスイッチPR21、PR22と、第2コモンモード帰還制御器20A(コモンモード帰還制御部)と、を有する。後段増幅部24の回路構成は、前段増幅器122の回路構成と同じである。従って、後段増幅部24を構成する要素の接続については、詳細な説明を省略する。
【0125】
前述したように、アナログ処理ユニット20は、C測定であるときにはバッファ21として機能する。また、アナログ処理ユニット20は、F測定であるときには積分器22として機能する。アナログ処理ユニット20は、入力スイッチPS1、PS2、ドレインスイッチPR1D1、PR1D2、リセットスイッチPR21、PR22の制御によってそれぞれの動作を実現する。
【0126】
バッファ21として機能させるための、アナログ処理ユニット20の動作を説明する。この動作によれば、アナログ処理ユニット20は、固定ゲイン増幅器であるとみなせる。バッファ21として機能させるとき、アナログ処理ユニット20は、2つの動作態様を取り得る。
【0127】
第1動作態様では、ドレインスイッチPR1D1、PR1D2をONする。その結果、入力キャパシタCI1、CI2に差分前段電圧信号ΔVがサンプルされる。この時間中、リセットスイッチPR21、PR22をONする。その結果、帰還キャパシタCF1及び帰還キャパシタCF2がリセットされる。
【0128】
第2動作態様では、ドレインスイッチPR1D1、PR1D2をOFFする。さらに、入力スイッチPS1、PS2をONする。その結果、入力キャパシタCI1、CI2にサンプルされた電荷は、容量比(C/C)で入力信号が増幅されるように帰還キャパシタCF1、CF2に転送される。また、リセットスイッチPR21、PR22をOFFする。さらに、入力スイッチPS1、PS2をONする。その結果、入力キャパシタCI1、CI2にサンプルされた電荷は、容量比(C/C)で入力信号が増幅されるように帰還キャパシタCF1、CF2に転送される。
【0129】
バッファ21のゲインAは、式(28)により示される。バッファ21のゲインとは、差動入力に対する差動出力のゲインである。
【数28】

:バッファ21のゲイン。
ΔV:差分前段電圧信号。
ΔV:差分後段電圧信号。
:入力キャパシタCI1及び入力キャパシタCI2の容量値。
:帰還キャパシタCF1及び帰還キャパシタCF2の容量値。
【0130】
積分器22として機能させるための、アナログ処理ユニット20の動作を説明する。この動作によれば、アナログ処理ユニット20は、完全差動スイッチトキャパシタ積分器であるとみなせる。この動作モードでは、リセットスイッチPR21、PR22は、帰還キャパシタCF1及び帰還キャパシタCF2の電荷をリセットするためにONされる。
【0131】
入力キャパシタCI1、CI2とドレインスイッチPR1D1、PR1D2による入力信号サンプリングと、入力スイッチPS1、PS2による帰還キャパシタCF1及び帰還キャパシタCF2への電荷転送が、スイッチトキャパシタ積分を行うように繰り返される。つまり、積分器22は、ループを繰り返すごとに、第m-1回目の積分結果に第m回目の差分前段電圧信号ΔVを加算する。N回のスイッチトキャパシタ積分の繰り返し後の最後の出力、即ち、差分後段電圧信号ΔV(N)(演算値)は式(29)により示される。
【数29】

ΔV(N):N回目の差分後段電圧信号。
:バッファ21のゲイン。
ΔV(i):i番目の差動入力。
【0132】
図17は、DT変換器50と転送制御パルス発生器70の回路構成を示す。DT変換器50は、デジタル処理ユニット40からデジタル信号Dを受ける。DT変換器50は、光トリガ制御器84aから信号Tを受ける。DT変換器50は、信号Tをトリガとして動作を開始する。
【0133】
DT変換器50は、第1ディレイライン51aと、第2ディレイライン51bと、第3ディレイライン51cと、第1デジタルコンパレータ52aと、第2デジタルコンパレータ52bと、第3デジタルコンパレータ52cと、を有する。第1ディレイライン51a、第2ディレイライン51b及び第3ディレイライン51cは、デジタル制御可能な遅延回路である。
【0134】
第1ディレイライン51aは、光トリガ制御器84a(図18参照)に接続されている。第1ディレイライン51aは、光トリガ制御器84aから信号Tを受ける。第1ディレイライン51aは、第2ディレイライン51bの入力端に接続されている。第2ディレイライン51bは、第3ディレイライン51cの入力端に接続されている。つまり、第1ディレイライン51a、第2ディレイライン51b及び第3ディレイライン51cは、電気的に直列に接続されている。第1ディレイライン51a、第2ディレイライン51b及び第3ディレイライン51cのそれぞれは、5ビットのカウンタを有する。
【0135】
第1ディレイライン51aは、第1デジタルコンパレータ52aに第1バイナリカウンティングコードを出力する。第1デジタルコンパレータ52aは、第1バイナリカウンティングコードとデジタル処理ユニット40のデジタル信号Dとを比較する。第1デジタルコンパレータ52aは、比較の結果を、信号DCO0として転送制御パルス発生器70に出力する。この信号DCO0は、第1転送制御ゲートGに与えられる第1転送制御パルスSGのためのものである。
【0136】
第2ディレイライン51b及び第2デジタルコンパレータ52bの接続構成及び動作は、第1ディレイライン51a及び第1デジタルコンパレータ52aの接続構成及び動作と同様である。従って、詳細な説明は省略する。
【0137】
第3ディレイライン51c及び第3デジタルコンパレータ52cの接続構成及び動作も、第1ディレイライン51a及び第1デジタルコンパレータ52aの接続構成及び動作と同様である。従って、詳細な説明は省略する。
【0138】
転送制御パルス発生器70は、DT変換器50から信号DCO0、DCO1、DCO2を受ける。転送制御パルス発生器70は、復調器12に第1転送制御パルスSG、第2転送制御パルスSG、第3転送制御パルスSGを出力する。転送制御パルス発生器70は、第1論理素子71a、第2論理素子71b、第3論理素子71cと、第1素子72aと、第2素子72bと、第3素子72cと、を有する。
【0139】
第1論理素子71aは、AND回路である。第1論理素子71aの非反転入力端には、第1デジタルコンパレータ52aが接続される。第1論理素子71aの反転入力端には、第2デジタルコンパレータ52bが接続される。第1論理素子71aの出力端は、第1素子72aが接続される。第1素子72aは、復調器12に第1転送制御パルスSGを出力する。
【0140】
第2論理素子71bも、AND回路である。第2論理素子71bの非反転入力端には、第2デジタルコンパレータ52bが接続される。第2論理素子71bの反転入力端には、第3デジタルコンパレータ52cが接続される。第2論理素子71bの出力端は、第2素子72bが接続される。第2素子72bは、復調器12に第2転送制御パルスSGを出力する。
【0141】
第3論理素子71cは、OR回路である。第3論理素子71cの非反転入力端には、第3デジタルコンパレータ52cが接続される。第3論理素子71cの反転入力端には、第1デジタルコンパレータ52aが接続される。第3論理素子71cの出力端は、第3素子72cが接続される。第3素子72cは、復調器12に第3転送制御パルスSGを出力する。
【0142】
図18に示すように、距離画像撮像装置1は、光源2と、チップ部品83と、FPGA84と、を有する。チップ部品83及びFPGA84は、プリント基板81に配置されている。また、プリント基板81には、コンパレータ85も配置されている。プリント基板81は、チップ部品83が出力する信号を外部に出力するJTAGインターフェースを有する。プリント基板81は、JTAGインターフェースを介してコンピュータ200にチップ部品83が出力する信号を出力する。
【0143】
チップ部品83は、デジタルディレイライン51と、デジタルコンパレータ52と、転送制御パルス発生器70と、フォトダイオード11と、復調器12と、前段増幅器122と、アナログ処理ユニット20と、マルチプレクサ83aと、を含む。
【0144】
チップ部品83は、FPGA84から各種の制御信号を受ける。チップ部品83は、対象物100からの反射光L2を受ける。チップ部品83のアナログ処理ユニット20は、多重化されたチャンネルを介してコンパレータ85に接続されている。チップ部品83は、コンパレータ85に第1後段電圧信号VO1及び第2後段電圧信号VO2を出力する。
【0145】
コンパレータ85は、第1後段電圧信号VO1及び第2後段電圧信号VO2に基づいて、ビットストリーム信号を発生する。コンパレータ85は、ビットストリーム信号をFPGA84に出力する。
【0146】
FPGA84は、光トリガ制御器84aと、デジタル処理ユニット40と、リードアウト制御器84bと、を有する。FPGA84は、コンパレータ85からビットストリーム信号であるデジタル信号DFBを受ける。FPGA84は、チップ部品83に信号を出力する。具体的には、光トリガ制御器84aは、信号TLをデジタル遅延制御器82に出力する。光トリガ制御器84aは、信号TSをチップ部品83のデジタルディレイライン51に出力する。デジタル処理ユニット40は、カウンタ41と、加算器42と、デシメーションフィルタ60と、を有する。デジタル処理ユニット40は、デジタルディレイライン51にデジタル信号Dを出力する。リードアウト制御器84bは、前段増幅器122、アナログ処理ユニット20及びマルチプレクサ83aにクロック信号PC[n]を出力する。
【0147】
以下、従来の距離画像測定装置における課題を詳細に説明する。そのあとに、実施形態の距離画像撮像装置1の作用効果について説明する。
【0148】
距離画像測定装置には、直接型と称される装置と、間接型と称される装置と、がある。直接型の装置は、照射光を出射してから反射光を受けるまでの時間を直接的に測定する。一方、間接型の装置は、反射光に起因して発生した電荷を2個以上の領域(タップ)に時間毎に振り分ける。この振り分けは、復調ともいう。それぞれの領域に振り分けられた電荷量の比率に基づいて、光飛行時間を得る。
【0149】
距離画像撮像装置1には、高い精度、確度、直線性、及び、環境光への耐性が要求される。通常、直接型の装置は、光信号を計測するための素子として、SPAD(SINGLE PHOTON AVALANCHE DIODE)を採用する。SPADと全デジタル領域の処理を用いた直接型の装置は、高確度の光飛行時間測定には適している。直接型の装置において、光飛行時間は、TIME-TO-DIGITAL(TD)変換器によってデジタル化される。TD変換器を備えた直接型の装置は、高い分解能と直線性を有する。しかし、回路規模が大きくなり、TD変換器の分解能が距離分解能を制限する。従って、直接型の装置は、短距離の測定が困難である。そして、直接型の装置に、極めて高い分解能と環境光への耐性が要求された場合には、直接型の装置は、ハードウェア構成が複雑化する。
【0150】
一方、間接型の装置では、2つ以上の電荷蓄積領域を備えた画素を採用する。このような画素は、ロックイン画素とも称される。間接型の装置は、光電荷信号を発光トリガパルス信号に同期(ロックイン)させて復調する。次に、間接型の装置は、復調された光電荷信号をA/D変換器によってデジタル信号に変換する。次に、間接型の装置は、第1電荷蓄積領域における電荷量と、第2電荷蓄積領域における電荷量の比率を得る。そして、間接型の装置は、電荷量の比率に基づいて、距離を計算する。
【0151】
間接型の装置における分解能と直線性は、光電荷復調器とA/D変換器のシステム応答に依存する。間接型の装置における分解能と直線性は、直接型の装置における分解能と直線性よりも低い。しかし、間接型の装置は、画素サイズが小さい、回路が複雑でない、及び、特に数メートルの距離測定に対する比較的信頼できる距離分解能が得られるという点において、直接型の装置よりも有利である。
【0152】
間接型の装置は、変調された光の波形に応じてさらに2つの種類に分類される。光の波形とは、第1に連続波(CW)である。第2に、短パルス波である。短パルス波を利用する間接型の装置は、照射光のパワーが短いパルス波に集中する。その結果、画素の電荷排出機能が環境光の影響を低減する。従って、短パルス波を利用する間接型の装置は、環境光に対する耐性が高い。
【0153】
しかしながら、短パルス波を利用する間接型の装置は、光飛行時間の測定におけるアナログ領域の処理により、画素のソースフォロワ増幅器の非線形性の問題及び光パルスの波形の歪の問題を抱えている。さらに、短パルス波を利用する間接型の装置は、フォトダイオードの内部において光キャリア応答時間が有限である問題、及び、復調のための転送制御パルスの歪の問題も抱えている。つまり、短パルス波を利用する間接型の装置は、アナログ的な不完全性の問題を抱えている。
【0154】
例えば、フォトンショットノイズが距離分解能を制限する問題を考える場合には、画素のフルウェルキャパシティが、間接型の装置における距離分解能を制限する。また、画素のフルウェルキャパシティが、間接型の装置における深度ノイズを制限する。
【0155】
短パルス波を利用する間接型の装置において、極めて短いパルス光を用いることは、距離分解能を改善するために有効である。例えば、100ピコ秒以下の光パルスを用いたセンサが報告されている。報告書には、このセンサは、サブ100μmの距離分解能を持つことが記されている。しかし、短パルス光に起因する非線形性の問題及び転送制御パルスのスキューの問題などが依然として課題となっている。短パルス波を利用する間接型の装置には、非線形性を補正するための複雑なオフライン処理が必要である。また、短パルス波を利用する間接型の装置には、オンチップスキュー補正回路も必要である。
【0156】
間接型の装置におけるシステム応答は、復調器とA/D変換器の伝達関数が分解能と直線性を制限する。実際には、間接型の装置のシステム応答は、オフセットと非線形な係数とを有する。オフセットは容易に補正することができる。しかし、非線形な係数をシステム応答から除去することは容易ではない。非線形な係数を補正するためには、大規模な処理回路が必要である。また、非線形な係数を補正するためには、複雑な信号処理が必要である。
【0157】
そこで、実施形態の距離画像測定装置1によれば光飛行時間に関する電荷量の差分から得た演算値を所定条件の基にデジタル信号に変換する。そして当該デジタル信号を用いて、転送制御パルスのタイミングを制御する。その結果、電荷読出領域ごとの電荷量の偏りを小さくすることが可能になるので、総合的な性能の向上が望める。
【0158】
つまり、本実施形態の距離画像撮像装置1は、2つの電荷蓄積部の電荷量が共に大きな状態で測定を行うため、電荷蓄積や読出しに伴うノイズの影響を最小限とできる。さらには、Fine測定においては、デルタシグマ変調技術を適用することで量子化誤差が低周波領域で小さく、高周波領域で大きくなるため、後段にローパスフィルタを設けることで、量子化誤差の低減を効果的に行うことができる。
【0159】
以上、距離画像撮像装置をその実施形態に基づいて詳細に説明した。しかし、距離画像撮像装置は上記実施形態に限定されるものではない。距離画像撮像装置は、その要旨を逸脱しない範囲で様々な変形が可能である。
【0160】
上述の距離画像撮像装置は、C測定とF測定とを切り替えながら動作した。例えば、距離画像撮像装置は、C測定又はF測定の何れか一方を行ってもよい。つまり、距離画像撮像装置は、おおよその距離情報を得るC測定のみを行ってもよい。この場合には、距離画像撮像装置は、F測定のための回路構成を省略してよい。さらに、C測定のみを行う距離画像撮像装置は、互いに異なる2つの単位遅延時間を用いた動作を行ってもよい。つまり、距離画像撮像装置は、第1の単位遅延時間に基づく動作と、第1の遅延時間よりも短い第2の単位遅延時間に基づく動作と、を行う。このような動作によれば、第2の単位遅延時間に基づく動作は、疑似的なF測定としてみなすことも可能である。
【0161】
また、距離画像撮像装置は、F測定のみを行ってもよい。この場合には、距離画像撮像装置は、C測定のための回路構成を省略してよい。
【符号の説明】
【0162】
1…距離画像撮像装置、2…光源、4…周辺回路、10…画素回路部、10S…画素回路部アレイ、21…バッファ、22…積分器、30…A/D変換器、41…カウンタ、42…加算器、60…デシメーションフィルタ、F10…デルタシグマ変調器、FD…第1浮遊拡散部(第1電荷読出領域)、FD…第2浮遊拡散部(第2電荷読出領域)、G…第1転送制御ゲート(第1制御電極)、G…第2転送制御ゲート(第2制御電極)、SG…第1転送制御パルス、SG…第2転送制御パルス。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18