IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 合同会社紫光技研の特許一覧

<>
  • 特開-紫外線照射装置とその駆動方法 図1
  • 特開-紫外線照射装置とその駆動方法 図2
  • 特開-紫外線照射装置とその駆動方法 図3
  • 特開-紫外線照射装置とその駆動方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022115993
(43)【公開日】2022-08-09
(54)【発明の名称】紫外線照射装置とその駆動方法
(51)【国際特許分類】
   H01J 65/00 20060101AFI20220802BHJP
   H01J 61/42 20060101ALI20220802BHJP
【FI】
H01J65/00 B
H01J61/42 Z
【審査請求】有
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2022076688
(22)【出願日】2022-05-06
(62)【分割の表示】P 2021156879の分割
【原出願日】2015-11-13
(71)【出願人】
【識別番号】515206001
【氏名又は名称】株式会社紫光技研
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100159385
【弁理士】
【氏名又は名称】甲斐 伸二
(74)【代理人】
【識別番号】100163407
【弁理士】
【氏名又は名称】金子 裕輔
(74)【代理人】
【識別番号】100166936
【弁理士】
【氏名又は名称】稲本 潔
(74)【代理人】
【識別番号】100174883
【弁理士】
【氏名又は名称】冨田 雅己
(74)【代理人】
【識別番号】100189429
【弁理士】
【氏名又は名称】保田 英樹
(74)【代理人】
【識別番号】100213849
【弁理士】
【氏名又は名称】澄川 広司
(72)【発明者】
【氏名】篠田 傳
(72)【発明者】
【氏名】平川 仁
(72)【発明者】
【氏名】粟本 健司
(72)【発明者】
【氏名】日▲高▼ 武文
(72)【発明者】
【氏名】▲高▼橋 純一郎
(57)【要約】
【課題】高強度の照射光が得られる水銀レス構造の紫外線照射装置を提供すること。
【解決手段】電極構造体と、該電極構造体上に平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブから成るガス放電チューブアレイ構造体を有し、前記電極構造体は、前記複数の紫外発光ガス放電チューブを共通に横切る電極スリットを挟んで両側に対称的に広がる1対の電極を有することを特徴とする紫外線照射装置。
【選択図】図1
【特許請求の範囲】
【請求項1】
初期放電を発生させるための電極スリットを挟んで配置された1対の電極を有する電極構造体と、それぞれが前記電極スリットを横切る細管であって当該電極対に背面が対向するように複数平行に並んだ紫外発光ガス放電チューブとを備え、
前記電極対は、前記紫外発光ガス放電チューブの背面側において、前記電極スリットの対応部と、平行に並んで隣接する前記紫外発光ガス放電チューブの隙間と、を含めた発光面積の80%以上をカバーして前記電極スリットの両側に対称的に広がるパターンを有することを特徴とする紫外線照射装置。
【請求項2】
前記電極スリットの対応部に、前記紫外発光ガス放電チューブの背面側に抜ける紫外発光を塞ぐ絶縁部材を配置したことを特徴とする請求項1に記載の紫外線照射装置。
【請求項3】
前記電極スリットの対応部に配置された絶縁部材が光反射テープであることを特徴とする請求項2記載の紫外線照射装置。
【請求項4】
前記電極構造体の各電極がフッ素系樹脂の絶縁体上に形成された反射性材料から成り、前記電極スリットの対応部に前記複数の紫外発光ガス放電チューブからの紫外発光の通過を塞ぐ光反射テープを設けたことを特徴とする請求項1~3の何れか1項に記載の紫外線照射装置。
【請求項5】
電極構造体と、
該電極構造体上に所定の間隔を持って平行に配列された複数本の紫外発光ガス放電チューブとを有し、
前記電極構造体は、それぞれの紫外発光ガス放電チューブが横切る電極スリットと、当該電極スリットを挟んだ両側に広がる1対の電極とを備え、かつ前記電極スリット対応部に各紫外発光ガス放電チューブから背面側に抜ける紫外発光を塞ぐ絶縁部材を配置してなることを特徴とする紫外線照射装置。
【請求項6】
電極構造体と、
該電極構造体上に所定間隔で平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブを有し、
前記電極構造体は、それぞれの紫外発光ガス放電チューブが横切る共通の電極スリットを挟んだ両側に対称的に広がる1対の反射性電極を有し、前記電極対と、当該電極対間の前記電極スリット対応部に配置された反射性絶縁部材とで前記発光面の背面側をカバーしたことを特徴とする紫外線照射装置。
【請求項7】
前記紫外発光ガス放電チューブのそれぞれが前記電極構造体の上に離脱可能に配置されていることを特徴とする請求項1~6の何れか1項に記載の紫外線照射装置。
【請求項8】
電極構造体と、
該電極構造体上にそれぞれ非接着状態で平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブとを備え、
前記電極構造体は、それぞれの紫外発光ガス放電チューブが横切る電極スリットと、当該電極スリットを挟んだ両側に対称的に広がり、それぞれの紫外発光ガス放電チューブの前記発光面の背面側を共通にカバーする1対の反射性電極を有することを特徴とする紫外線照射装置。
【請求項9】
絶縁支持体と、
該絶縁支持体上に所定の隙間を空けて平行に配列された複数本の紫外発光ガス放電チューブを有し、
前記絶縁支持体には、それぞれの紫外発光ガス放電チューブを共通に横切る電極スリットを挟んで両側に延びる1対の電極が設けられ、更に前記電極スリットの対応部からの紫外発光を塞ぐよう当該電極スリット対応部に絶縁部材を配置したことを特徴とする紫外線照射装置。
【請求項10】
前記電極スリットが1~10mmの幅を有し、前記1対の電極が当該電極スリットの5倍以上の長さ持って前記紫外発光ガス放電チューブの長手方向の両側に対称的に広がるパターンを有することを特徴とする請求項1、6~9の何れか1項に記載の紫外線照射装置。
【請求項11】
請求項1~9の何れか1項に記載の紫外線照射装置における前記1対の電極の間にインバータ電源を接続し、
該インバータ電源から前記1対の電極の間に駆動電圧を間欠的に印加し、
間欠的な前記駆動電圧のデューティ比を変えることで紫外線照射強度を調整することを特徴とする紫外線照射装置の駆動方法。
【請求項12】
電極構造体と、
該電極構造体上にそれぞれ離脱可能な状態で平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブとを備え、
前記電極構造体は、それぞれの紫外発光ガス放電チューブを共通に横切る電極スリットを挟んで前記発光面の背面側に対称的に広がる1対の反射性電極と、当該反射性電極対を所定形状で支持するリジッドな基体とを有することを特徴とする紫外線照射装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、紫外発光ガス放電チューブのアレイからなる紫外線照射装置とその駆動方法に関するものである。
【背景技術】
【0002】
従来、産業用や医療用、殺菌・滅菌用などの分野で紫外線が広く応用されているが、光源デバイスとしては高圧水銀ランプやエキシマ放電ランプのほかには実用的なものが無いのが実情である。水銀レス構造として注目される紫外発光LEDは、未だ開発途上にあって十分な発光強度のものが得られていない。また、特許文献1には外部電極構成のガス放電チューブを利用した紫外発光用平面光源デバイスも提案されているが、同じく発光強度の向上が望まれている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2011-040271号公開特許公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のように、LEDを利用した従来の光源デバイスは未だ十分な発光強度が得られておらず、また、ガス放電チューブを利用した従来の平面光源は、電極構成が複雑であるほか、発光効率や発光出力の点で未だ実用の域に達していない。
【0005】
従って、本発明は、高強度の照射光が得られる水銀レスの光源デバイスの提供を目的とするものである。
【課題を解決するための手段】
【0006】
本発明は、細長いガラス管の長手方向に沿って設けた一対の長電極間で放電を発生させるようにした外部電極型の新しい紫外発光ガス放電チューブをベースとするものである。この新しい紫外発光ガス放電チューブは、従来の平面光源に用いられた発光チューブとは電極構造並びに放電形式が異なり、発光効率の大幅な改善が図られている。また、複数本の発光チューブを共通の電極対上に配列して面光源を構成した場合、アルミニウム箔のような反射性の電極材料で発光チューブの発光面積に対する背面側の80%以上をカバーすることが可能となるので、一層高い集光機能を得ることができる。
【0007】
かくして本発明による紫外線照射装置は、絶縁基板上に少なくとも1対の帯状電極対を平行に配置した電極構造体と、内部に放電ガスを封入してなる複数の紫外発光ガス放電チューブを平行に配列したチューブアレイ構造体とを備え、前記電極構造体の上に複数の各放電チューブの底面側が位置して前記帯状電極対を横切る方向となるよう前記チューブアレイ構造体を組み合わせて紫外線発光構造体を構成したことを特徴とするものである。
【0008】
前記紫外発光ガス放電チューブの配列面は、照射対象を挟むように形成された複合平面でもよいし、円筒又は角筒などの筒状面であってもよい。
【0009】
紫外発光ガス放電チューブの配列面を筒状に構成する場合、前記配列面を紫外線透過性のガラス筒やメッシュ構造体で構成してもよい。
【発明の効果】
【0010】
本発明の紫外線照射装置によれば、水銀レスの達成は勿論、安全で且つ安価な構成で高強度の紫外線を対象面に照射することが可能となり、医療用途や殺菌・滅菌用途など産業上の実用範囲が大幅に拡大する。
【図面の簡単な説明】
【0011】
図1】本発明による紫外線照射装置に用いる紫外発光ガス放電チューブを利用した面光源デバイスの基本構成を説明する説明図である。
図2】本発明の紫外線照射装置の実施形態1における発光面の構成と照射プロファイルを示す説明図である。
図3】本発明による紫外線照射装置の使用例を示す模式的斜視図である。
図4】本発明の実施形態2の紫外線照射装置の発光面の構成を示す斜視図である。
【発明を実施するための形態】
【0012】
以下、図面に示す実施形態を用いて、本発明を詳述する。これによって、この発明が限定されるものではない。
(実施形態1)
【0013】
図1(a)は、本発明の実施形態1における紫外線照射装置に用いる紫外発光ガス放電チューブの基本構成を示す断面図、図1(b)は該紫外発光ガス放電チューブを複数本配列して構成した面光源の基本構成を示す斜視図、図1(c)はその駆動原理を説明する説明図である。
【0014】
〔紫外発光ガス放電チューブ〕
図1(a)に示すように、新しい紫外発光ガス放電チューブ(以下、発光チューブという)1は、扁平楕円形状の横断面を有する細長いガラス管2を主体とし、その内部底面に紫外蛍光体層3を備えると共に、内部にネオンとキセノンを混合した放電ガスが封入され、両端が封止されている。ガラス管2は、酸化珪素(SiO2)と酸化硼素(B2O3)を主成分とする硼珪酸系ガラスを材料とした、例えば長径2mm、短径1mm程度の扁平楕円断面を持つ細管で、肉厚を300μm以下に制限して紫外線に対する十分な透過率を実現している。
【0015】
紫外蛍光体層3に、ガドリリュウム賦活蛍光体(LaMgAl11O19 : Gd) を用いた場合、産業用や医療用に有効なUV-Bバンドの波長レンジである311nmの紫外発光を得ることができる。また、プラセオジム賦活の蛍光体(YBO3 : PrまたはY2SiO5 : Pr)を用いれば殺菌・滅菌効果のあるUV-Cバンドの波長レンジの261nmまたは270nmの紫外発光を得ることができる。
【0016】
〔フレキシブル面光源デバイス〕
ガラス管2を主体とした発光チューブ1が、図1(b)に示すようにチューブの長手方向と交差する方向に複数本平行に並べられてアレイ構成の面光源デバイス(発光チューブアレイ構造体)10が作られる。図1(a)の断面図との関連において一層明らかなように、発光チューブアレイ構造体10を構成する各発光チューブ1は、耐熱性の薄い絶縁フィルム11の上にシリコーン樹脂のような熱伝導性の良好な粘着剤12により離脱可能な粘着状態で配置されている。隣接する発光チューブ1の相互間には発光面の彎曲を可能とするため同じ幅又は部分的に異なる幅の隙間が設けられている。
【0017】
他方、発光チューブアレイ構造体10の下には、例えば、ポリイミド系樹脂製のフレキシブルな絶縁基板13と、その上に形成された電極対14とからなる電極構造体15が非接着状態で配置されている。電極対14は、発光チューブアレイ構造体10を構成する各発光チューブ1の底部背面に対向して、共通の電極スリットGを挟んで両側に広がる帯状のX電極14XとY電極14Yとからなる。
【0018】
即ち、X電極14XとY電極14Yは、全体としては各発光チューブ1の長手方向と交差する方向に延びる共通の電極パターンを有するが、個々の発光チューブ1に対しては、そのチューブ内に初期放電を発生させる0.1~10mm程度の電極スリットGを挟んで長手方向の両側に対称的に延びる長電極対の構成をもつ。X電極14X、Y電極14Yのチューブ長手方向における長さは電極スリットGの幅の5~10倍またはそれ以上となる。
【0019】
因に、発光チューブ1を長径2mm、短径1mmの扁平楕円断面を持つ長さ5cmのガラス細管で構成し、これを1mm間隔で20本平行配列して図1(b)に示すような発光チューブアレイ構造体10を構成した場合、X電極14XとY電極14Yは、3mm幅の放電スリットGの両側にそれぞれ23.5mmの幅を持って各発光チューブ1と交差する方向に延びるパターンで設けられる。この結果、各発光チューブの長手方向における電極対の占める長さ4.7cm(23.5mm×2)と、電極スリットの幅(3mm)を合わせた5cmの長さに対し、幅2mmの発光チューブ20本を1mmの間隔で配列した合計6cmの幅を持った5×6=30cm2の発光面が構成され、その背面側は、電極スリットGの幅に対応した0.3×6=1.8cm2の隙間を除いて全て電極面でカバーされた形となる。発光面積に対する電極のカバー率は94%に相当する。
【0020】
X電極14XとY電極14Yは、絶縁基板13の上に銀ペースト等の導電性インクを印刷して直接形成してもよいし、あらかじめ整形した銅やアルミニウム等の金属導体箔を粘着または接着して構成してもよい。
【0021】
発光チューブ1をアレイ状に支持する絶縁フィルム11としてテフロン(登録商標)などのフッ素系透明樹脂で構成した場合、X、Y電極14X、14Yには高い光反射率の材料を用いることが好ましく、その意味では特にアルミニウム箔を用いるのが効果的である。この場合、電極スリットGが下方に開いた窓となって紫外発光が裏へ抜けるおそれがあるので、電極スリットGの対応部を電極材料と同等の光反率を持った絶縁材料、例えば光反射テープで塞ぐことが好ましい。
【0022】
また、電極対14を形成した絶縁基板13上に直接シリコーン樹脂等の粘着性絶縁層を設けて発光チューブ1を配置するようにしてもよい。それによって、発光チューブ1と電極対14との間が非接着状態で滑り可能になるので、フレキシブルな面光源デバイスを湾曲させる場合に絶縁基板13に加わる引っ張り力を吸収することができる。
【0023】
〔駆動原理〕
本発明による紫外線照射装置の基本単位となる新しい形式の発光チューブ1は、外部電極型であり、正弦波電圧で駆動する。即ち図1(c)に示すように電極対14の一方のX電極14Xを接地した状態で他方のY電極14Yに正弦波電圧を印加するようにインバータ電源17を接続する。正弦波電圧の上昇過程において電極スリットGで電極近接端間の電圧が対応ガス空間の放電開始電圧を超えた時点でトリガ放電が発生する。
【0024】
このトリガ放電からの空間電荷の供給による種火効果で近傍の放電開始電圧が低下するので、印加正弦波電圧の上昇と相俟って新たな放電がX電極14XとY電極14Yの両端方向に拡張していく。
【0025】
一方、外部電極型放電デバイスの特徴として放電した電極対応部分の内壁には印加電圧の極性と反対極性の電荷(電子と陽イオン)が壁電荷として蓄積し、この内部電界が当該対応部分に印加された外部電圧の電界を打ち消す結果、一旦発生した放電は順次停止していくことになる。この動作原理は本発明者等が先に出願した特願2015-148622号(特許第6,103,730号)に更に詳しく述べられている。
【0026】
印加される正弦波駆動電圧の極性が反転すると、壁電荷による内部電界が外部印加電圧の電界に加算される結果、再度、電極スリットGの対応部で放電が始まった後、上記と同様に印加正弦波電圧の逆方向への上昇に伴う放電の拡張と停止が、電極対14の両端方向に進行する。この動作の繰り返しでガス放電とそれに伴う発光が行われる。
【0027】
因に、正弦波駆動電圧の周波数は、負荷となるガス空間の容量や電極間容量の関係から10KHz乃至40KHz、例えば25KHzに設定される。また、ピーク電圧は電極スリットGに対応したガス空間の放電開始電圧よりも高い1000V乃至はそれ以上となるが、長電極対上での放電の広がり長さと、電極スリット部16の耐圧を超えた損傷防止との両方のバランスを考慮して決めるのが望ましい。
【0028】
因に、先に例示した5cm長、20本の発光チューブからなる面光源デバイスを駆動するには、12Vの直流電圧(電池)を20KHzの正弦波に変換するインバータ回路と、この正弦波をピーク電圧2000Vまで昇圧する小型トランスを含む小型のインバータ電源で十分である。
【0029】
〔自己集光機能〕
ところで、図1に示した発光面が平面の面光源デバイス10では、照射対象物を発光面に接近させて配置しても個々の発光チューブ1の発光強度以上の照射強度は得られない。本発明は発光面を曲げることによって複数本の発光チューブ1の光束を照射対象に向けて収束させるようにした自己集光機能を有する構成を特徴とする。これは発光チューブアレイ構造体である面光源デバイス10がフレキシブルである利点を最大限利用するものである。
【0030】
図2は実施形態1による紫外線照射装置の発光面構成と照射強度プロファイルを示す説明図である。先に説明したような複数本の発光チューブ1のアレイからなる面光源20は、湾曲した発光面を持つよう全体が図2のように湾曲している。この湾曲面を実現するには、前述したように隣接チューブ間に絶縁フィルム11や電極基板13の湾曲を吸収する隙間が必須となる。
【0031】
即ち、隣接する発光チューブ1同志が当接するまでフレキシブルの光源デバイスを湾曲させて圧縮力を吸収することができるので、半円状の発光面を得る場合には等間隔配列とし、両サイドの曲率を小さくした湾曲面を得る場合には中間部に比べて両サイドでの配列間隔を広くすることになる。また湾曲時における絶縁基板13と発光チューブ配列を支持する絶縁フィルム11との間は単に重ねた状態でコンタクトしているだけであり機械的な固着手段で固着されていないので湾曲時の張力は両者間の滑りによって吸収されることになる。
【0032】
発光面を湾曲させたことにより、各発光チューブの発光中心軸(以下、光軸という)22は湾曲面の内側に向けて収束する。その結果、平坦な受光面23に対しては、図2(a)に示すように、湾曲した発光面に対応して、ほぼ均等且つ強度の高い照射強度プロファイル24を得ることができる。従って、受光面23の代わりに立体的な照射対象物25を置けば、図2(b)に示すように、照射強度プロファイル26で対象物25の表面全体にほぼ均等に紫外線照射を行うことが可能となる。
(実施形態2)
【0033】
図3は、本発明による自己集光機能を有する紫外線照射装置の実施形態2を示す概略説明図である。
【0034】
図3(a) において、トンネル形状に湾曲した紫外線照射装置30が、自動搬送機(ベルトコンベア)35の走行路の一部を覆う形で配置されている。紫外線照射装置30は、フレキシブルな電極支持体とその上(図では下面側)に配列した複数の発光チューブ1からなる紫外光源デバイスの発光面を内側に向けて湾曲させた構成を持ち、各発光チューブ1の光軸は、搬送機35に載せられた立体形状の照射対象物36に向けて収束した形となる。
【0035】
この実施形態によれば、自動搬送機35に載置した立体形状の照射対象物36に対して殺菌効果のある紫外線を強い強度で直接照射可能な照射装置を提供することができる。特に、紫外線照射装置30は、主体となる光源デバイスが発光チューブ1の長手方向と交差する方向にフレキシブルであり、また発光面の幅を発光チューブの配列本数で決定することができる点から、自動搬送機で搬送する照射対象物36の大きさに見合った設計対応が可能である。
【0036】
図3(b)は、図3(a)に示す実施形態の変形例である。自動搬送機35の走行路に沿って2つの紫外線照射装置30が走行路をトンネル状に直列にカバーする形で設けられている。かくして搬送機35に載せられて移動する照射対象物36は2つの照射装置30からの紫外線照射に連続して2回曝される。連続照射の構成は、自動搬送機35の速度を速めて処理速度を向上させる点と、低速でトータル照射線量を増やす点で効果的である。
【0037】
なお、2つの紫外線照射装置30とは同じ構成でもよいが、互いに発光波長や発光波長幅の異なる構成とすることも可能である。発光波長は、単位発光源となる各発光チューブ1の蛍光体層3(図1(a)参照)の材料を調整することで実現する。
【0038】
図3(c)は、図3(a)に示す実施形態の別の変形例であり、自動搬送機35の走行路に沿って、2つの紫外線照射装置30が搬送路を上下から包むように配置されている。搬送機35に載せられて移動する立体的な照射対象物36は、湾曲した発光面を下に向けた照射装置30と、湾曲した発光面を上に向けた照射装置30のそれぞれから収束して照射される紫外線に両面を曝され、全表面の照射処理が行われる。この場合、搬送機37は、少なくとも照射対象物を載置する部分において下側の照射装置30からの照射紫外線を透過させることが必要である。
【0039】
従って、搬送機35の搬送ベルトをメッシュ構成のものとするほか、載置部分を紫外線透過性のフッ素系樹脂膜で構成するなどの対策が採られる。また図3(b)の場合と同様、上下の紫外線照射装置30を搬送機の走行路に沿って更に増設することにより照射処理効率を上げることも可能であるし、それぞれの発光スペクトルを異ならせておくことも可能である。
(実施形態3)
【0040】
図4(a)及び(b)は、それぞれ本発明による実施形態3の紫外線照射装置の2種類の構成を示す概略斜視図である。この実施形態は、2つ以上の平坦発光面を角度を持って組み合わせて自己集光機能を得るようにした複合発光面を特徴とするものである。
【0041】
即ち図4(a)には、発光チューブアレイ構造体の平面光源デバイスをそのほぼ中央の発光チューブの長手方向に沿うライン41で発光面側に2つに折り曲げた紫外線照射装置40が示されている。折り曲げられて形成された2つの発光面10Aと10Bを構成する各発光チューブ1の光軸22は、折り曲げライン41の垂直面に向けて互いに収束する方向となり、中央垂直面の延長位置に置いた照射対象物に効果的な紫外線照射を行うことができる。
【0042】
図4(b)の紫外線照射装置70は、矩形状に折り曲げた3つの複合発光面10A、10B、及び10Cからなり、各発光面を構成する発光チューブ1の光軸は発光面で囲まれた照射空間に集まる形となる。
【0043】
折り曲げられた複合発光面10A、10B及び10Cは、それぞれ独立した面光源デバイスとして構成してもよいし、電極配置基板13を各発光面に共通とした構成にしてもよい。複合発光面で囲まれた照射空間に図示しない搬送ベルトを通すことにより、移動する搬送ベルト上の被照射物に効果的に紫外線照射を行うことが可能となる。
【0044】
(その他の変形例)
本発明の紫外線照射装置は、最初に述べたようにガス放電を利用した発光チューブを複数本並べて構成したアレイ状の面光源デバイスを基本構成とするものである。
【0045】
図1に例示した光源デバイスの基本構成では、細長いガラス管2に対してその長手方向を2分して1対のX電極14XとY電極14Yを直列配置しているが、更に電極を複数対直列配置して発光チューブの長尺化に対応することができる。因に、ガラス管2の長さを20cm余りとした場合、ガラス管の長手方向にそれぞれ電極スリットGを挟んだ長さ5cmのXY電極対を所定間隔で2対直列配置することにより、有効発光長が20cmの紫外発光チューブを構成することができる。
【0046】
図1に示す電極支持用の絶縁基板13については、フレキシブルな樹脂フィルムが好適であるが、予め発光面の曲がり具合に沿った曲面又は複合平面のそれぞれに対応した面を持つリジッドなガラス又はセラミック基体で代替してもよい。また、発光チューブ1の配列方向に延びる帯状の共通X電極14XとY電極14Yの背面パターンに対応してそれぞれ独立した形状の金属放熱フィンのような放熱エレメントを電極基板の裏側に密着するよう設けることにより光源デバイスの放熱を促進して発光効率を安定に保つことができる。
【0047】
紫外線照射強度は複数の発光チューブの光軸が照射対象に向けて収束させることで強められるが、その強度調整は、図1(c)に示すインバータ電源17から駆動正弦波電圧をバースト形式で間欠的に印加する際のデューティ比を変えることで行うことができる。また、図3の実施形態に示したような自動搬送機35に載置されて移動する照射対象物に紫外線を照射する構成では、駆動正弦波電圧の印加を照射対象物の搬送速度に同期した通過時間幅で間欠的に行うことにより光源デバイスの発熱を抑制することができる。
【0048】
いずれにしても本発明の紫外線照射装置によれば、反射ミラーや集光レンズ等の光学素子を用いることなく発光面自体の形状で集光機能を制御できるメリットが得られ、紫外線応用面の拡大に極めて有益である。
【符号の説明】
【0049】
1:紫外発光ガス放電チューブ(発光チューブ)
2:ガラス管
3:紫外蛍光体層
10:発光チューブアレイ構造体(面光源デバイス)
11:絶縁層
12:粘着剤
13:絶縁基板
14:電極対
14X:X電極
14Y:Y電極
15:電極構造体
17:交番電源
G:電極スリット
20:面光源
図1
図2
図3
図4