IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マイクロン テクノロジー, インク.の特許一覧

特開2022-116167遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物
<>
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図1
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図2
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図3
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図4
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図5
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図6
  • 特開-遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022116167
(43)【公開日】2022-08-09
(54)【発明の名称】遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)メモリデバイスコンポーネント及び組成物
(51)【国際特許分類】
   H01L 21/8239 20060101AFI20220802BHJP
   H01L 45/00 20060101ALI20220802BHJP
【FI】
H01L27/105 449
H01L45/00 A
【審査請求】有
【請求項の数】22
【出願形態】OL
(21)【出願番号】P 2022085145
(22)【出願日】2022-05-25
(62)【分割の表示】P 2021507612の分割
【原出願日】2019-08-13
(31)【優先権主張番号】16/107,930
(32)【優先日】2018-08-21
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】595168543
【氏名又は名称】マイクロン テクノロジー,インク.
(74)【代理人】
【識別番号】100121083
【弁理士】
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【弁理士】
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100074099
【弁理士】
【氏名又は名称】大菅 義之
(72)【発明者】
【氏名】ファンティーニ パオロ
(72)【発明者】
【氏名】ベルナスコーニ マルコ
(72)【発明者】
【氏名】ガバルディ シルヴィア
(57)【要約】
【課題】一実施形態は、より大きなバンドギャップと速いSET速度との両方を有する相変化材料を含有するメモリ素子を提供する。
【解決手段】遷移金属ドープのGSTを使用するメモリセルを動作するための方法、システム、及びデバイスが説明される。本明細書で論じるように、ゲルマニウム(Ge)と、アンチモン(Sb)と、テルル(Te)と、イットリウム(Y)及びスカンジウム(Sc)の内の少なくとも1つとを含む組成物がメモリセル内のメモリ素子として使用され得る。例えば、メモリ素子は、組成物の15原子パーセント(at.%)~35at.%のレンジの量のGeと、組成物の50at.%以下の量のSbと、組成物の40at.%以上の量のTeと、組成物の0.15at.%~10at.%のレンジの量の、Y及びScの内の少なくとも1つの元素とを有する組成物を含み得る。
【選択図】図7
【特許請求の範囲】
【請求項1】
組成物の41原子パーセント(at.%)~45at.%のレンジの量のゲルマニウムと、
前記組成物の40at.%以上の量のテルルと、
前記組成物の.15at.%~20at.%のレンジの量の、イットリウム及びスカンジウムからなるグループから選択された少なくとも1つの元素と
を含む物質の組成物。
【請求項2】
前記グループから選択された前記少なくとも1つの元素はイットリウムである、請求項1に記載の組成物。
【請求項3】
前記少なくとも1つの元素の量は、前記組成物の5at.%以下である、請求項2に記載の組成物。
【請求項4】
前記少なくとも1つの元素の量が、前記組成物の6at.%以下である、請求項1に記載の組成物。
【請求項5】
原子パーセントによる前記テルルの量は、原子パーセントによる前記ゲルマニウムの量よりも多い、請求項1に記載の組成物。
【請求項6】
前記テルルの量は、前記組成物の45at.%~55at.%のレンジである、請求項1に記載の組成物。
【請求項7】
前記組成物のバンドギャップは、0.6電子ボルト~0.9電子ボルトのレンジである、請求項1に記載の組成物。
【請求項8】
前記少なくとも1つの元素の量が、前記少なくとも1つの元素の電気陰性度に少なくとも部分的に基づいており、および、前記少なくとも1つの元素と前記テルルとの間の第1の電気陰性度の差が、アンチモンと前記テルルとの間の第2の電気陰性度の差より大きい、請求項1に記載の組成物。
【請求項9】
前記組成物のバンドギャップ及び前記組成物の結晶化速度が、前記少なくとも1つの元素の電気陰性度、並びに前記組成物中の前記少なくとも1つの元素の量と1または複数の他の元素の1または複数の量との間の比率に少なくとも部分的に基づく、請求項1に記載の組成物。
【請求項10】
セレクタデバイスと、
前記セレクタデバイスと結合されたメモリ素子であって、
組成物の41原子パーセント(at.%)~45at.%のレンジの量のゲルマニウムと、
前記組成物の40at.%以上の量のテルルと、
前記組成物の.15at.%~20at.%のレンジの量の、イットリウム及びスカンジウムからなるグループから選択された少なくとも1つの元素と
を含む前記組成物を有する前記メモリ素子と
を含む、装置。
【請求項11】
前記グループから選択された前記少なくとも1つの元素はイットリウムである、請求項10に記載の装置。
【請求項12】
前記少なくとも1つの元素の量は、前記組成物の6at.%以下である、請求項10に記載の装置。
【請求項13】
原子パーセントによる前記テルルの量は、原子パーセントによる前記ゲルマニウムの量よりも多い、請求項10に記載の装置。
【請求項14】
前記メモリ素子の高さは、20ナノメートル~40ナノメートルのレンジであり、前記メモリ素子の幅は、5ナノメートル~50ナノメートルのレンジである、請求項10に記載の装置。
【請求項15】
前記セレクタデバイスは、金属-酸化物-半導体電界効果トランジスタ(MOSFET)、バイポーラ接合トランジスタ(BJT)、ダイオード、又はオボニックスレッショルドスイッチの内の何れか1つを含む、請求項10に記載の装置。
【請求項16】
前記メモリ素子のバンドギャップが0.6電子ボルトから0.9電子ボルトの範囲であり、前記メモリ素子の結晶化速度が10マイクロ秒未満である、請求項10に記載の装置。
【請求項17】
前記少なくとも1つの元素と前記テルルとの間の第1の電気陰性度の差は、アンチモンと前記テルルとの間の第2の電気陰性度の差より大きい、請求項10に記載の装置。
【請求項18】
第1のアクセス線と、
第2のアクセス線と、
ゲルマニウム、アンチモン、テルル、並びにイットリウム及びスカンジウムの内の少なくとも1つ、の組成物を含むカルコゲナイド材料を含む第1のメモリセルであって、前記第1のアクセス線が前記第1のメモリセルを介して前記第2のアクセス線と結合される、前記第1のメモリセルと
を含む装置であって、
前記カルコゲナイド材料の前記組成物は、
前記組成物の41原子パーセント(at.%)~45at.%のレンジの量のゲルマニウムと、
前記組成物の40at.%以上の量のテルルと、
前記組成物の.15at.%~20at.%のレンジの量の、イットリウム及びスカンジウムからなるグループから選択された少なくとも1つの元素と
を含む、装置。
【請求項19】
前記第1のメモリセルと結合された第2のメモリセルであって、前記第2のメモリセルの中央と前記第1のメモリセルの中央との間の距離は、10ナノメートル~45ナノメートルのレンジである、前記第2のメモリセル
を更に含む、請求項18に記載の装置。
【請求項20】
前記第1のアクセス線及び前記第2のアクセス線は、3次元クロスポイント構成で配列され、前記装置は、
第3のアクセス線であって、前記第1のアクセス線及び前記第3のアクセス線は、前記3次元クロスポイント構成で配列され、前記第2のメモリセルと結合される、前記第3のアクセス線を更に含む、請求項19に記載の装置。
【請求項21】
前記第1のメモリセルは、
セレクタデバイスと、
前記カルコゲナイド材料を含むメモリ素子であって、前記メモリ素子の高さは、20ナノメートル~40ナノメートルのレンジであり、前記メモリ素子の幅は、5ナノメートル~50ナノメートルのレンジである、前記メモリ素子と
を含む、請求項18に記載の装置。
【請求項22】
前記少なくとも1つの元素と前記テルルとの間の第1の電気陰性度の差は、アンチモンと前記テルルとの間の第2の電気陰性度の差より大きい、請求項18に記載の装置。

【発明の詳細な説明】
【技術分野】
【0001】
[クロスリファレンス]
特許に対する本出願は、2018年8月21日に出願された“TRANSITION METAL DOPED GERMANIUM-ANTIMONY-TELLURIUM (GST) MEMORY DEVICE COMPONENTS AND COMPOSITION”という名称のFantini等による米国特許出願番号16/107,930に対する優先権を主張し、該出願は、本出願の譲受人に譲渡され、その全体が参照により本明細書に組み込まれる。
【0002】
以下は、一般的に、メモリアレイを動作することに関し、より具体的には、遷移金属ドープのゲルマニウム(Ge)-アンチモン(Sb)-テルル(Te)(GST)及び関連するメモリデバイスに関する。
【背景技術】
【0003】
メモリデバイスは、コンピュータ、無線通信デバイス、カメラ、及びデジタル表示装置等の様々な電子デバイス内に情報を蓄積するために広く使用される。情報は、メモリデバイスの異なる状態をプログラミングすることによって蓄積される。例えば、バイナリデバイスは、論理“1”又は論理“0”によりしばしば示される2つの状態を有する。他のシステムでは、2つよりも多くの状態が蓄積され得る。蓄積された情報にアクセスするために、電子デバイスのコンポーネントは、メモリデバイス内の蓄積された状態を読み出し得、又はセンシングし得る。情報を蓄積するために、電子デバイスのコンポーネントは、メモリデバイス内に状態を書き込み得、又はプログラミングし得る。
【0004】
磁気ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ダイナミックRAM(DRAM)、同期型ダイナミックRAM(SDRAM)、強誘電体RAM(FeRAM)、磁気RAM(MRAM)、抵抗変化RAM(RRAM)、フラッシュメモリ、及び相変化メモリ(PCM)等を含む様々な種類のメモリデバイスが存在する。メモリデバイスは揮発性又は不揮発性であり得る。不揮発性メモリ(例えば、FeRAM、PCM、RRAM)は、外部電源が存在しなくても長時間、それらの蓄積された論理状態を維持し得る。揮発性メモリデバイス(例えば、DRAM)は、外部電源により定期的にリフレッシュされない限り、それらの蓄積状態を時間と共に喪失し得る。
【0005】
カルコゲナイド材料組成物は、相変化メモリセルのコンポーネント内で、例えば、セレクタデバイス又はメモリ素子において、使用され得る。これらのコンポーネントは、アモルファス状態にある場合のそれらが導電性になる(組成物に電流が流れることが可能である)第1の閾値電圧と、結晶状態にある場合の異なる閾値電圧とを有し得、第1の閾値電圧と第2の閾値電圧との間の差は、閾値電圧ウィンドウと称され得る。幾つかの場合、相変化メモリセルのセンシングウィンドウは、対応するカルコゲナイド材料の閾値電圧ウィンドウに依存し、例えば、センシングウィンドウは、カルコゲナイド材料の閾値電圧ウィンドウの増加と共に増加し得る。しかしながら、より大きな閾値電圧ウィンドウを有するメモリコンポーネントはまた、幾つかの場合、より遅い結晶化(又はSET)速度(アモルファスから結晶状態への組成物が遷移する速度)を有し得、それは、対応するメモリセルの動作速度を減少させ得る。改善されたメモリデバイスが望まれる。
【図面の簡単な説明】
【0006】
図1】本開示の様々な態様に従った遷移金属ドープのゲルマニウム-アンチモン-テルル(GST)をサポートするメモリアレイの一例を説明する。
図2】本開示の様々な態様に従った遷移金属ドープのGSTをサポートするメモリアレイの例示的な断面図を説明する。
図3】本開示の様々な態様に従った遷移金属ドープのGSTに対するプロットの一例を説明する。
図4】本開示の様々な態様に従った例示的な遷移金属ドープのGST組成物を示す例示的な三角ダイアグラムを説明する。
図5】本開示の様々な実施形態に従った例示的な遷移金属ドープのGSTをサポートする例示的なメモリアレイを説明する。
図6】本開示の様々な実施形態に従った遷移金属ドープのGST及び関連するメモリデバイスをサポートする例示的なシステムを説明する。
図7】本開示の様々な実施形態に従った遷移金属ドープのGSTのための1つ以上の方法のフローチャートを説明する。
【発明を実施するための形態】
【0007】
電子データは、異なる抵抗率(例えば、抵抗又は閾値電圧)を有するように(例えば、電圧又は電流を印加することで)電子的にプログラミング可能であるメモリ素子を含有するメモリセル内に蓄積され得る。例えば、論理値は、対応するメモリ素子の抵抗率を変化させることによってメモリセル内に蓄積され得、メモリ素子の第1の抵抗率は、第1の論理値に対応し、メモリ素子の第2の抵抗率は、第2の論理値に対応する。
【0008】
電子的にプログラミング可能な抵抗率を有するメモリ素子は、材料の相に基づいて、例えば、材料がアモルファス相又は結晶相の何れにあるかに基づいて、異なる抵抗率を示す材料を含み得る。これらの材料の一例は、相変化材料を含み得、又は相変化材料と称され得る。幾つかの例では、第1の相(例えば、アモルファス相)にある相変化材料を含有するメモリ素子は、第1の抵抗を示し得、及び/又は第1の閾値電圧を有し得、第2の相(例えば、結晶相)にある相変化材料を含有するメモリ素子は、第2の抵抗を示し得、及び/又は第2の閾値電圧を有し得る。幾つかの場合、第1の閾値電圧は、第2の閾値電圧よりも大きくてもよく、第1の閾値電圧と第2の閾値電圧との間の差は、メモリ素子に対する閾値電圧ウィンドウと称され得る。
【0009】
メモリ素子の異なるプログラミング可能な抵抗率の状態は、要因の中でもとりわけ、メモリ素子内に含まれる相変化材料の組成物、及びメモリ素子のサイズ等の、メモリ素子の物理的特徴に依存し得る。幾つかの場合、メモリ素子の閾値電圧、それ故、閾値電圧ウィンドウは、相変化材料のバンドギャップと相関し得、例えば、メモリ素子の閾値電圧ウィンドウは、相変化材料のバンドギャップが増加すると共に増加し得、その逆もまた然りである。相変化材料のバンドギャップは、相変化材料の分子構造に基づき得る。幾つかの場合、相変化材料のバンドギャップは、異なる素子の電気陰性度に基づき得る。
【0010】
したがって、幾つかの相変化材料は、相変化材料を作り上げる素子の特定の組み合わせに基づいて、より高い又はより低いバンドギャップを有し得る。実例として、(ISTと称され得る)インジウム(In)、アンチモン(Sb)、及びテルル(Te)、又は(IGTと称され得る)In、ゲルマニウム(Ge)、及びTeを含む相変化材料は、大きなバンドギャップを有し得る一方、(GSTと称され得る)Ge、Sb、及びTeのみを含む相変化材料は、狭いバンドギャップを有し得る。メモリ素子の閾値電圧ウィンドウはまた、メモリ素子のサイズと相関し得、例えば、メモリ素子の閾値電圧ウィンドウは、メモリ素子のサイズが減少すると共に減少し得、その逆もまた然りである。
【0011】
幾つかの例では、メモリ素子内の相変化材料の相は、例えば、書き込み動作の間に、対応するメモリセルにおいて論理値を蓄積するために変化し得る。幾つかの例では、相変化材料の相は、相変化材料に渡って1つ以上の電圧を(又は、例えば、相変化材料に流れる電流を)印加することと、相変化材料の相をある相から別の相へ遷移させるように、少なくともある一定の温度(ガラス遷移温度又は融解温度と称され得る)まで材料を加熱することと、印加された電圧又は電流を除去又は変更することにより、材料を冷却すること(急冷と称され得る)とによって変化し得る。相変化材料の異なる相は、特定の論理値に対応し得る。例えば、相変化材料がアモルファス相にある場合、対応するメモリ素子/セルは、第1の論理値を蓄積し(例えば、第1の抵抗率を有し)得、相変化材料が結晶相にある場合、対応するメモリ素子/セルは、第2の論理値を蓄積し(例えば、第2の抵抗率を有し)得る。
【0012】
相変化材料を含むメモリ素子がアモルファス相から結晶相へ遷移する速度は、メモリ素子の“SET速度”と称され得、メモリ素子が結晶相からアモルファス相へ遷移する速度は、メモリ素子の“RESET速度”と称され得る。同様に、アモルファス相から結晶相へメモリ素子の相変化材料を遷移するために必要とされる時間は、“SET期間”と称され得、結晶相からアモルファス相へメモリ素子の相変化材料を遷移するために必要とされる時間は、“RESET期間”と称され得る。
【0013】
メモリ素子の閾値電圧ウィンドウと同様に、メモリ素子のSET速度は、メモリ素子内の相変化材料の分子構造に基づき得る。幾つかの場合、SET速度/期間は、結晶化のための核として機能し得る、組成物内の4員環(four-fold rings)の数の関数であり得、例えば、多数の4員環を有する組成物は、少数の4員環を有する組成物よりも速いSET速度/短いSET期間を有し得る。したがって、幾つかのメモリ素子は、メモリ素子内の相変化材料を作り上げる素子の特定の組み合わせに基づいて、より速い又はより遅いSET速度を有し得る。
【0014】
幾つかの場合、メモリ素子のSET速度は、メモリ素子内の相変化材料のバンドギャップと逆に相関し、例えば、相変化材料のバンドギャップが減少すると共に、対応するメモリ素子のSET速度は速まり、その逆もまた然りである。実例として、IST及びIGT等の大きなバンドギャップを有する組成物を有する相変化材料を使用するメモリ素子は、遅いSET速度を有し得る。相変化材料のバンドギャップを増加させる素子の追加もまた、典型的には、相変化材料内の4員環の数を削減し得るので、この関係性が生じる。
【0015】
幾つかの例では、メモリ素子内の相変化材料の相は、例えば、リクエストされたデータをリクエストするデバイス(例えば、メモリコンポーネント又は外部のデバイス)に提供するための読み出し動作の間に、対応するメモリセルにおいて蓄積された論理値を判定するために使用され得る。例えば、メモリセル内に蓄積された論理値は、メモリセル内に含有されるメモリ素子の抵抗率をセンシングすることによって判定され得る。技術の中でもとりわけ、ストレージ素子の抵抗率は、メモリセルに電圧を印加することと、メモリセルに電流が流れるか否か、又は如何なる量が流れるかを判定することとによってセンシングされ得る。こうした場合、異なる相の間のメモリ素子の抵抗率の差が大きい程、メモリセルにおいて蓄積された論理値はより確実に(例えば、より低い誤り率で)判定され(例えば、センシングされ、又は読み出され)得る。幾つかの例では、異なる論理状態の抵抗率の間の差は、メモリセルのセンシングウィンドウ(又は読み出しウィンドウ若しくはメモリウィンドウ)と称され、より大きなセンシングウィンドウが望まれ得る。
【0016】
幾つかの場合、メモリセルのセンシングウィンドウは、対応するメモリ素子の閾値電圧ウィンドウが増加すると共に増加する。本明細書で論じるように、相変化材料のバンドギャップは、メモリ素子の閾値電圧ウィンドウと相関し得、したがって、メモリセルのセンシングウィンドウもまた、相変化材料のバンドギャップと相関し得、例えば、メモリセルのセンシングウィンドウは、対応するメモリ素子の相変化材料のバンドギャップが増加すると共に増加し得、その逆もまた然りである。したがって、IST又はIGT等の、より広いバンドギャップを有する相変化材料を含むメモリ素子(又は“ワイドバンドギャップメモリ素子”)は、GST等の、より狭いバンドギャップを有する相変化材料を含むメモリ素子(又は“ナローバンドギャップメモリ素子”)よりも、メモリセルに対してより大きなセンシングウィンドウをもたらし得る。しかしながら、本明細書でも論じているように、ワイドバンドギャップメモリ素子に対するSET速度は、ナローバンドギャップメモリ素子に対するSET速度よりもしばしば遅い。
【0017】
センシングウィンドウとSET速度との間のこの関係性、すなわち、センシングウィンドウが増加すると共にSET速度が遅くなる関係性は、より大きなセンシングウィンドウにより与えられる信頼性と、より速いSET速度により与えられるより速いスループットとの間にトレードオフをもたらし得る。幾つかの場合、ワイドバンドギャップメモリ素子に対するSET速度は、メモリ動作のタイミング制約を満たすには不十分であり得る。そのようなものだとして、幾つかの場合、ナローバンドギャップメモリ素子は、例えば、タイミング制約に合致するために、対応するメモリセルに対するより小さいセンシングウィンドウをナローバンドギャップメモリ素子がもたらすにもかかわらず、ワイドバンドギャップメモリ素子の代わりに使用され得る。
【0018】
センシングウィンドウとSET速度との間の関係性の望ましくない効果は、メモリアレイのサイズが減少すると共に強調され得る。より小さなフットプリント内で同等以上のメモリ容量が実現され得るように、相変化メモリアレイがサイズ的に減少すると共に、メモリ素子もまたサイズ的に減少し得、例えば、高さ、幅、及び/又は深さが減少し得る。また、本明細書で論じるように、相変化材料を含有するメモリ素子のサイズが削減されると共に、メモリ素子の閾値電圧ウィンドウもまた減少し得る。閾値電圧ウィンドウにおけるこのサイズベースの削減に適合するために、例えば、より小さいセンシングウィンドウと対応するメモリアレイに対する信頼性とを維持するために、よりコンパクトなメモリアレイ内でワイドバンドギャップメモリ素子が使用され得る。しかしながら、本明細書で論じるように、ワイドバンドギャップメモリ素子の含有は、より遅いSET速度としばしば相関する。また、幾つかの場合、ワイドバンドギャップメモリ素子の追加は、非準拠のメモリ動作、例えば、メモリ動作のタイミング制約への合致の失敗をもたらし得る。
【0019】
スループット、メモリ密度、及び/又はメモリセルの信頼性を増加させるために、より大きなバンドギャップと速いSET速度との両方を有する相変化材料を含有するメモリ素子が望まれる。
【0020】
本明細書で論じるように、大きなバンドギャップと所望のSET速度との両方を有する相変化材料は、Geと、Sbと、Teと、3族-遷移金属(3族-TM)とも称され得る、イットリウム(Y)又はスカンジウム(Sc)等の周期表の3族から選択された少なくとも1つの遷移金属元素との組み合わせを含み得る。幾つかの例では、相変化材料は、15~35の原子パーセント(at.%)のレンジの量のGeと、50at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量のY又はScの内の少なくとも1つとを含むTeリッチな組成物であり得る。本明細書で論じるように、先の組み合わせに従って創出された組成物は、大きなバンドギャップ(例えば、0.6と0.9電子ボルト(eV)との間)と、所望のSET速度(例えば、10μs未満)とを有し得る。幾つかの場合、原子パーセントによる組成物内に含まれるTeの量は、1)原子パーセントによる組成物内に含まれるGeの量、2)原子パーセントによる組成物内に含まれるSbの量、又は3)原子パーセントによる組成物内に含まれるY及び/若しくはScの量よりも多くてもよい。幾つかの場合、組成物内のY及び/又はScの量が増加すると共に、組成物内のSbの対応する量は、例えば、相応の量、減少する。
【0021】
本明細書で論じるような材料がメモリ素子に組み込まれる場合、メモリ素子は、より大きな閾値電圧ウィンドウを有し得る。例えば、所与の高さと幅とを有するメモリ素子に対する閾値電圧は、材料を組み込むことに基づいて増加し得る。更に、メモリ素子は、(少なくとも実質的に、又は匹敵する閾値電圧ウィンドウを有するその他の化学的性質と比較して)SET速度を維持しながら、閾値電圧ウィンドウのこの増加からの便益を受け得る。例えば、この組成物の材料がメモリ素子に組み込まれた場合、メモリ素子は、10μs未満のSET期間を有し得る。したがって、メモリ素子内にこうした材料を使用することによって、メモリアレイのスループットに不利な影響を及ぼすことなく(又は何らかの不利な影響を少なくとも軽減して)、例えば、センシングウィンドウを拡大することにより、対応するメモリセルの信頼性は増加し得る。
【0022】
また、本明細書で論じるような材料がメモリ素子に組み込まれる場合、メモリ素子に対するより大きな閾値電圧ウィンドウの便益は、SET速度を維持しながら、メモリ素子のサイズが減少しても維持され得る、例えば、削減された高さ及び/又は幅を有するメモリ素子に対する閾値電圧は、SET速度の僅かな削減と共に又は削減なしに、材料を組み込むことに基づいて増加し得る。したがって、メモリ素子内にこうした材料を使用することによって、メモリアレイの密度は、例えば、同じフットプリントを有する低密度のメモリアレイ内で使用されるメモリセルと同じ、メモリセルに対するセンシングウィンドウを有することによって、メモリアレイの信頼性に不利な影響を及ぼすことなく、例えば、メモリセルのサイズを削減することによって、フットプリント内で増加し得る。
【0023】
上で紹介した開示の機構は、メモリシステムの文脈で以下に更に説明される。遷移金属ドープのGSTに対する例示的組成物及び関連するメモリデバイスの具体例がその後説明される。開示のこれら及びその他の機構は、遷移金属ドープのGST及び関連するメモリデバイスに関する装置図、システム図、及びフローチャートによって更に説明され、それらを参照しながら更に説明される。
【0024】
図1は、本開示の様々な態様に従った遷移金属ドープのGSTをサポートするメモリアレイの一例を説明する。メモリアレイ100は、電子情報を蓄積するように構成され得、電子メモリ装置を含み得、電子メモリ装置とも称され得る。メモリアレイ100は、異なる状態を蓄積するようにプログラミング可能なメモリセル105を含む。
【0025】
各メモリセル105は、論理0及び論理1として示される2つの状態を蓄積するようにプログラミング可能であり得る。幾つかの場合、メモリセル105は、2つよりも多い論理状態を蓄積するように構成される。メモリセル105は、プログラミング可能な状態を表す電荷をコンデンサ内に蓄積し得、例えば、充電及び非充電のコンデンサは、2つの論理状態を夫々表し得る。DRAMアーキテクチャは、こうした設計を一般的に使用し得、用いられるコンデンサは、絶縁体として線形又は常誘電性の電気分極特性を有する誘電体材料を含み得る。強誘電体メモリセルは、同様に、コンデンサを含み得るが、絶縁材料として強誘電体を有し得る。強誘電体コンデンサの分極の異なるレベルは、異なる論理状態を表し得る。強誘電体材料は、非線形の分極特性を有し、強誘電体材料は、強誘電体材料に渡って電圧が存在しない場合に情報を蓄積し得る。又は、幾つかの場合、カルコゲナイドベースの及び/又は相変化材料が用いられ得る。本明細書で説明されるカルコゲナイドは、PCMストレージ素子若しくはセレクタデバイス、又はそれら両方内にあり得る。
【0026】
メモリアレイ100は、3次元(3D)メモリアレイであり得、二次元(2D)メモリアレイは、相互に重なり合って形成され得る。これは、2Dアレイと比較して、単一のダイ又は基板上に形成され得るメモリセルの数を増加させ得、それは、順次、生産コストを削減し得、若しくはメモリアレイの性能を増加させ得、又はそれら両方であり得る。図1に描写される例に従えば、メモリアレイ100は、メモリセル105の2つのレベルを含み、したがって、3次元メモリアレイとみなされ得るが、レベルの数は2つに限られない。各レベルは、メモリセル105が各レベルに渡って相互に凡そ整列され得、メモリセルスタック145を形成するように、整列又は位置付けられ得る。本明細書の教示に従うと、メモリアレイ100は、Ge、Sb、Te、Sc、若しくはY、又はこれらの元素の幾つかの組み合わせを含む組成物を含み得る。
【0027】
メモリセル105の各行はアクセス線110に接続され、メモリセル105の各列はビット線115に接続される。アクセス線110はワード線110としても知られ得、ビット線115はデジット線115としても知られ得る。ワード線及びビット線又はそれらの同等物への言及は、理解又は動作を失うことなく相互に交換可能ある。ワード線110及びビット線115は、アレイを創出するために、相互に実質的に直角であり得る、メモリセルスタック145内の2つのメモリセル105は、デジット線115等の共通の導電線を共有し得る。すなわち、デジット線115は、上部のメモリセル105の底部電極、及び下部のメモリセル105の上部電極と電子通信し得る。他の構成が可能であり得、例えば、第3のレイヤは、下部のレイヤとワード線110を共有し得る。又は、第1及び第2のレイヤは、それら自身のワード線及びビット線を共に有し得る。すなわち、下部のメモリセル105の上部電極は、第1のデジット線と電子通信し得、上部のメモリセル105の底部電極は、第2のデジット線と電子通信し得る。幾つかの場合、第3のアクセス線が存在し得、セレクタデバイスを活性化及び不活性化するために使用され得る。
【0028】
一般的に、1つのメモリセル105は、ワード線110及びビット線115等の2つの導電線の交点に設置され得る。この交点は、メモリセルのアドレスと称され得る。対象のメモリセル105は、通電されたワード線110とビット線115との交点に設置されたメモリセル105であり得、すなわち、ワード線110及びビット線115は、それらの交点におけるメモリセル105を読み出す又は書き込むために通電され得る。同じワード線110又はビット線115と電子通信する(例えば、それらの線に接続された)その他のメモリセル105は、非対象のメモリセル105と称され得る。
【0029】
本明細書で論じるように、電極は、メモリセル105とワード線110又はビット線115とに結合され得る。用語、電極は、電気伝導体を指し得、幾つかの場合、メモリセル105への電気コンタクトとして用いられ得る。電極は、メモリアレイ100の素子又はコンポーネント間の導電経路を提供するトレース、ワイヤ、導電線、又は導電レイヤ等を含み得る。
【0030】
読み出し及び書き込み等の動作は、ワード線110及びビット線115を活性化又は選択することによってメモリセル105上で実施され得、それは、個別の線に電圧又は電流を印加することを含み得る。ワード線110及びビット線115は、金属(例えば、銅(Cu)、アルミニウム(Al)、金(Au)、タングステン(W)、チタン(Ti)等)、金属合金、炭素、導電的にドープされた半導体、又はその他の導電材料、合金、若しくは化合物等の導電材料で作られ得る。
【0031】
メモリセル105は、メモリ素子及びセレクタデバイスを各々有し得る。メモリ素子の抵抗率は、特定の論理状態に対応するようにプログラミングされ得る。幾つかの場合、メモリ素子は、相変化材料を含み得る。例えば、メモリ素子は、GST組成物と称され得る、元素Ge、Sb、及びTeの特定の組み合わせを含むカルコゲナイド材料であり得、又は該カルコゲナイド材料を含み得る。幾つかの場合、GST組成物は、例えば、GST組成物のバンドギャップを増加させるために、In等の他の元素を用いてドープされ得る。しかしながら、In等の元素を用いてGST組成物をドープすることは、該組成物のSET速度を減少させ得る(すなわち、アモルファスから結晶相への組成物の遷移をより時間がかかるようにさせ得る)。
【0032】
SET速度の僅かな減少と共に又は減少なしに、及び幾つかの場合、増加と共に、GST化合物のバンドギャップを増加させるために、GSTは、例えば、Y及び/又はSc等の少なくとも1つの3族-TM元素を用いてドープされ得る。幾つかの場合、3族-TM元素をGST組成物に組み込むことによりGST組成物をドープすることは、GST組成物内のSbの量の対応する減少を伴い得る。幾つかの場合、遷移金属ドープのGSTは、0.6eVと0.9eVとの間のバンドギャップと、10μs未満のSET期間とを有し得る。
【0033】
セレクタデバイスは、メモリアレイ100の残部からメモリセル105を一時的に絶縁するために使用され得る。例えば、メモリセル105は、セレクタデバイスがバイアスされた場合にアクセスされ得る。幾つかの場合、セレクタデバイスは、金属-酸化物-半導体電界効果トランジスタ(MOSFET)、バイポーラ接合トランジスタ(BJT)、ダイオード、又はオボニックスレッショルドスイッチ(OTS)を含み得る。幾つかの場合、セレクタデバイスは、カルコゲナイド材料等の相変化材料を含み得る。メモリセル105の選択は、セレクタデバイスの閾値電圧の関数であり得る。
【0034】
メモリセル105へのアクセスは、行デコーダ120及び列デコーダ130を通じて制御され得る。例えば、行デコーダ120は、メモリコントローラ140から行アドレスを受信し得、受信した行アドレスに基づいて適切なワード線110を活性化し得る。同様に、列デコーダ130は、メモリコントローラ140から列アドレスを受信し、適切なビット線115を活性化する。したがって、ワード線110及びビット線115を活性化することによって、メモリセル105はアクセスされ得る。
【0035】
アクセスすると、メモリセル105は、センスコンポーネント125によって読み出され得又はセンシングされ得る。例えば、センスコンポーネント125は、メモリセル105にアクセスすることにより生成された信号に基づいて、メモリセル105の蓄積された論理状態を判定するように構成され得る。信号は電圧又は電流を含み得、センスコンポーネント125は、電圧センスアンプ、電流センスアンプ、又はそれら両方を含み得る。例えば、電流がメモリセル105に印加され得、電流を創出するための電圧の大きさは、メモリセル105の電気抵抗又は閾値電圧に依存し得る。同様に、電圧が(対応するワード線110及びビット線115を使用して)メモリセル105に印加され得、もたらされる電流の大きさは、メモリセル105の電気抵抗及び/又は閾値電圧に依存し得る。幾つかの場合、2つの以上の異なる電流がメモリセル105の論理状態に基づいて発現し得る。2つ以上の異なる電流の間の差は、メモリ(又はセンシング)ウィンドウと称され得る。
【0036】
幾つかの場合、より大きなセンシングウィンドウを有するメモリセルは、より小さなセンシングウィンドウを有するメモリセルよりも信頼性がある(例えば、より少ない読み出しエラーを有し得る)。幾つかの場合、センシングウィンドウは、メモリセル105内のメモリ素子の閾値電圧ウィンドウに対応する。幾つかの場合、メモリセル105のセンシングウィンドウは、メモリセル内に含まれるメモリ素子の閾値電圧ウィンドウを増加させることによって増加し得、メモリ素子の閾値電圧ウィンドウは、メモリ素子内に高いバンドギャップの相変化材料を含むことによって増加し得る。幾つかの場合、メモリセル105のセンシングウィンドウは、Y-GST又はSc-GST等の、遷移金属ドープのGST化合物を含むメモリ素子を使用することによって増加し得る。
【0037】
センスコンポーネント125は、ラッチと称され得る、信号を検出及び増幅するための様々なトランジスタ又はアンプを含み得る。ラッチされた信号は、メモリセル105の論理状態に対応し得、出力135として出力され得る。幾つかの場合、センスコンポーネント125の正確性は、メモリセルのセンシングウィンドウに依存する。例えば、より大きなセンシングウィンドウは、メモリセル105によりデジット線115上に誘発されて、センシングのためにセンスコンポーネント125に提供される電圧又は電流のより大きな変化を可能にし得る。幾つかの場合、センスコンポーネント125は、列デコーダ130又は行デコーダ120の一部であり得る。又は、センスコンポーネント125は、列デコーダ130又は行デコーダ120に接続され得、又は列デコーダ130又は行デコーダ120と電子通信し得る。
【0038】
メモリセル105は、関連するワード線110及びビット線115を同様に活性化することによってセットされ得、又は書き込まれ得、すなわち、メモリセル105内に論理値が蓄積され得る。列デコーダ130又は行デコーダ120は、メモリセル105に書き込まれるデータ、例えば、入力/出力135を受け取り得る。相変化メモリの場合、メモリセル105は、例えば、ガラス遷移温度と称され得るある一定の温度にメモリ素子が到達するまでメモリ素子に電流を流すことにより、メモリ素子を加熱することによって書き込まれ得る。ガラス遷移温度に到達した後、メモリ素子は、冷却した後に最初の相とは異なる相になるように、急冷され得る。メモリ素子がアモルファス相から結晶相へ遷移する速度は、結晶化速度又はSET速度と称され得る。幾つかの場合、SET速度は、メモリセル105に論理状態が書き込まれ得る速度を制限する。幾つかの例では、メモリ素子をアモルファス相から結晶相へ遷移するための期間(SET期間と称され得る)は、メモリ動作の1つ以上のタイミング制約を超過し得る。幾つかの場合、メモリセル105のSET速度は、メモリセル105内の、Y-GST又はSc-GST等の遷移金属ドープのGST化合物を含むメモリ素子を使用することによって、メモリセル105のセンシングウィンドウを削減又は増加することなく、増加又は維持され得る。
【0039】
幾つかの場合、メモリセル105のサイズが減少すると共に(例えば、メモリアレイ100のサイズが減少すると共に)、及び/又はメモリ素子220のサイズが(例えば、20nmと30nmとの間の高さと、5nmと20nmとの間の幅とを有するように)減少すると共に、メモリセル105のセンシングウィンドウと共にメモリセル105により含有されるメモリ素子の閾値電圧ウィンドウもまた減少し得る。幾つかの場合、広いバンドギャップを有する相変化材料を含むメモリ素子(又は“ワイドバンドギャップメモリ素子”)は、閾値電圧ウィンドウの削減を妨げるために、削減されたサイズのメモリセル15により使用され得る。しかしながら、ワイドバンドギャップメモリ素子は、より遅いSET期間と関連付けられ得、削減されたサイズのメモリセル105は、1つ以上のメモリシステム要件への準拠を喪失し得、例えば、1つ以上のタイミング制約への合致を失敗し得る。
【0040】
本明細書で論じるように、ワイドバンドギャップメモリ素子は、Geと、Sbと、Teと、Y及び/又はSc等の少なくとも1つの3族-TM元素との特定の組み合わせを含むカルコゲナイド材料を含み得る。例えば、ワイドバンドギャップメモリ素子は、15at.%~35at.%のレンジの量のGeと、40at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量のY又はScの内の少なくとも1つとを含み得る。このメモリ素子は、広いバンドギャップ(例えば、0.6eVと0.9eVとの間)と、短いSET期間(例えば、<10μs)とを有し得、削減されたサイズのメモリセル105に組み込まれ得、それは、SET準拠を維持しながら、ワイドバンドギャップメモリ素子の同等以上に大きいセンシングウィンドウからの便益を受け得る。
【0041】
幾つかのメモリアーキテクチャでは、メモリセル105にアクセスすることは、蓄積された論理状態を劣化又は破壊し得、メモリセル105に元の論理状態を戻すために、再書き込み又はリフレッシュ動作が実施され得る。しかしながら、カルコゲナイドベースの又はPCM等の不揮発性メモリでは、メモリセル105にアクセスすることは、論理状態を破壊しなくてもよく、したがって、メモリセル105は、アクセスした後に再書き込みを必要としなくてもよい。
【0042】
メモリコントローラ140は、様々なコンポーネント、例えば、行デコーダ120、列デコーダ130、及びセンスコンポーネント125を通じて、メモリセル105の動作(読み出し、書き込み、再書き込み、リフレッシュ、放電等)を制御し得る。幾つかの場合、行デコーダ120、列デコーダ130、及びセンスコンポーネント125の内の1つ以上は、メモリコントローラ140と共同設置され得る。メモリコントローラ140は、所望のワード線110及びビット線115を活性化するために行及び列のアドレス信号を生成し得る。メモリコントローラ140はまた、メモリアレイ100の動作の間に使用される様々な電位又は電流を生成及び制御し得る。例えば、それは、1つ以上のメモリセル105にアクセスした後に、ワード線110又はビット線115に放電電圧を印加し得る。
【0043】
一般的に、本明細書で論じる印加電圧又は電流の振幅、形状、又は期間は、調整又は変更され得、メモリアレイ100の動作において論じられる様々な動作に対して異なり得る。更に、メモリアレイ100内の1つの、複数の、又は全てのメモリセル105は同時にアクセスされ得、例えば、メモリアレイ100の複数の又は全てのセルは、全てのメモリセル105又はメモリセル105のグループが単一の論理状態にセットされる動作の間に同時にアクセスされ得る。メモリコントローラ140がメモリセル105にアクセスし得る信頼性は、遷移金属ドープのGST組成物を使用するメモリセル105に対して増加し得る。メモリセル105のセンシングウィンドウは増加し得るからである。同時に、メモリコントローラ140がメモリセル105にアクセスし得るタイミングは、遷移金属ドープのGST組成物を使用するメモリセル105に対して同一に維持され得、又は減少し得る。メモリセル105のSET速度は維持又は削減されるからである。
【0044】
図2は、本開示の様々な態様に従った遷移金属ドープのGSTをサポートするメモリアレイの例示的な断面を説明する。メモリアレイ200は、電子データを蓄積するように構成され得、図1のメモリアレイ100の態様の一例であり得る。メモリアレイ200は、図1を参照しながら説明したようなメモリセル105、ワード線110、及びビット線115の例示であり得るメモリセル105-a、第1のアクセス線110-a(例えば、ワード線110-a)、及び第2のアクセス線115-a(例えば、ビット線115-a)を含む。
【0045】
幾つかの場合、3次元(3D)メモリアレイは、複数のメモリアレイ200を相互に積み重ねることによって形成され得る。2つの積み重ねられたアレイは、幾つかの例では、図1を参照しながら説明したように各レベルがワード線110又はビット線115を共有し得るように、共通の導電線を有し得る。幾つかの例では、メモリアレイ200は、セレクタデバイス215と電子通信する追加のアクセス線を含む、追加のアクセス線を含み得る。例えば、セレクタデバイス215が3端子デバイスである場合、追加のアクセス線は、セレクタデバイス215を活性化及び不活性化するために使用され得る。
【0046】
メモリアレイ200は、クロスポイントアーキテクチャと称され得る。それはまた、ピラー構造体とも称され得る。例えば、図2に示すように、ピラーは、第1の導電線(第1のアクセス線110-a)と第2の導電線(ビット線115-a)とに接触し得、ピラーは、第1の電極210、セレクタデバイス215、及びメモリセル105-aを含み、メモリセル105-aは、第2の電極225、メモリ素子220、及び第3の電極205を含み得る。第1の電極210は、底部電極210と称され得、第2の電極225は、中間電極と、又はメモリセル105-aの底部電極と称され得、第3の電極205は、上部電極205と称され得る。
【0047】
こうしたピラーアーキテクチャは、他のメモリアーキテクチャと比較してより低い生産コストで比較的高密度のデータ蓄積を提供し得る。例えば、クロスポイントアーキテクチャは、他のアーキテクチャと比較して面積の削減、結果としてメモリセル密度の増加を伴うメモリセルを有し得る。例えば、該アーキテクチャは、3端子選択を有するアーキテクチャ等の6Fメモリセル面積を有する他のアーキテクチャと比較して、4Fのメモリセル面積を有し得、Fは、最小の機構サイズである。
【0048】
メモリセル105-aは、異なる状態にあるように電子的にプログラミング可能であり得、特定の状態に対応する論理値を蓄積するように構成され得る。メモリセル105-aは、第2の電極225、第3の電極205、及びメモリ素子220を含み、メモリ素子220は相変化材料を含み得る。メモリセル105-aは、対象メモリセルであり得る。
【0049】
セレクタデバイス215は、幾つかの場合、メモリセル105と導電線との間、例えば、メモリセル105-aと第1のアクセス線110-a又はビット線115-aの内の少なくとも1つとの間に直列に接続され得る。例えば、図2に描写するように、セレクタデバイス215は、底部電極210と中間電極225との間に設置され得、したがって、セレクタデバイス215は、メモリセル105-aと第1のアクセス線110-aとの間に直列に設置される。その他の構成が可能である。例えば、セレクタデバイス215は、メモリセル105-aとビット線115-aとの間に直列に設置され得る。セレクタデバイス215は、特定のメモリセル105-aを選択することを助力し得、又は、選択されたメモリセル105-aに隣接する非選択のメモリセル105-aに迷走電流が流れることを防ぐのを助け得る。例えば、セレクタデバイス215は、閾値電圧に合致する又は閾値電圧を超えた場合にセレクタデバイス215に電流が流れるように閾値電圧を有し得る。メモリセル105-aの選択は、セレクタデバイス215の閾値電圧の関数であり得る。セレクタデバイス215は、選択コンポーネントとも称され得る。幾つかの場合、セレクタデバイス215は、金属-酸化物-半導体電界効果トランジスタ(MOSFET)、バイポーラ接合トランジスタ(BJT)、ダイオード、又はオボニックスレッショルドスイッチ(OTS)を含み得る。
【0050】
セレクタデバイス215は、メモリ素子220と結合され得る。セレクタデバイス215及びメモリ素子220は、第1のアクセス線110-aとビット線115-aとの間に直列構成で配列され得る。セレクタデバイス215は、第1のカルコゲナイド材料を含み得る。幾つかの場合、セレクタデバイス215は、第1のカルコゲナイド材料を含み得、メモリ素子220は、セレクタデバイス215とは異なる組成物(例えば、第2のカルコゲナイド材料)を含み得る。図2で説明したメモリアレイ200の例は、別個のメモリ素子及びセレクタデバイスを含むが、幾つかの場合、メモリセル105は、別個のメモリ素子及びセレクタデバイスを含まなくてもよい。この種のメモリアーキテクチャは、自己選択メモリと称され得、セレクタデバイス215は、メモリ素子として役立ち得、又は逆もまた同じである。メモリデバイスは、それ故、自己選択メモリデバイスを含むメモリセルを含み得る。例えば、カルコゲナイド材料を含む単一の素子は、別個のセレクタデバイスが不必要であり得るように、メモリ素子とセレクタデバイスとの両方として役立ち得る。
【0051】
メモリ素子220は、プログラミング可能な抵抗を有する材料を含み得る。幾つかの場合、材料は、材料の相(例えば、アモルファス相又は結晶相)に基づいて異なる抵抗率(例えば、抵抗及び/又は電圧閾値)を示し得、相変化材料と称され得る。本明細書で論じるように、相変化材料の相は、メモリ素子220に電圧を印加すること及びメモリ素子220から電圧を除去することによって変化し得る。
【0052】
メモリ素子220は、セレクタデバイス215を介してアクセスされ得る。例えば、セレクタデバイス215に渡る電圧が閾値に到達した場合、メモリ素子220を通じてアクセス線110-aと115-aと間に電流が流れ得る。電流のこの流れは、メモリ素子220に論理値を書き込むために使用され得る。書き込み動作は、メモリ素子220をガラス遷移温度まで加熱する電圧をメモリ素子220に印加することを含み得る。メモリ素子220がガラス遷移温度に到達した後、電圧は除去され得、メモリ素子220は冷却され得る。冷却期間の間、メモリ素子220内の原子は、特定の相に従って配列され得る。例えば、結晶相に対しては、メモリ素子220の全て又は殆どの原子の間に八面体形分子構造(octahedral bonding geometry)が形成され得、アモルファス相に対しては、メモリ素子220の原子の間に可変の結合構成が形成され得る。メモリ素子220が結晶相又はアモルファス相の何れを示すかは、冷却期間の間にメモリ素子220からどのように電圧が除去されるか、及び該メモリ素子220に追加の電圧が印加されるか否かに基づき得る。
【0053】
アモルファス相にあるメモリ素子220において異なる論理値を蓄積するために、書き込み動作は、アモルファス相から結晶相へメモリ素子220を遷移することを含み得る。アモルファス相から結晶相へメモリ素子220を遷移するための期間は、SET期間と称され得る。幾つかの場合、メモリ素子220に対するSET期間の長さは、メモリ素子220を含む組成物に基づく。実例として、SET期間は、ある一定の組成物に対しては、他のものに対するよりも短くてもよい。本明細書で論じるように、SET期間は、メモリ素子220の閾値電圧ウィンドウと相関し得、例えば、閾値電圧ウィンドウが増加すると共に、SET期間の長さもまた増加する。
【0054】
メモリ素子220への電流の流れはまた、メモリ素子220において蓄積された論理値を読み出すために使用され得る。メモリ素子220を読み出す場合、電流が流れ始めるセレクタデバイス215に渡る閾値電圧と、メモリ素子220の閾値電圧ウィンドウとの間の差は、センシングウィンドウと称され得る。幾つかの場合、メモリ素子220のセンシングウィンドウが大きくなると、メモリセル105-aはより信頼性がある。本明細書で論じるように、メモリ素子の閾値電圧ウィンドウは、メモリ素子220のサイズに基づき得、例えば、メモリ素子220がサイズ的に減少すると共に、閾値電圧ウィンドウもまた減少し得、及び/又はメモリ素子220に含まれる組成物のバンドギャップに基づき得、例えば、組成物のバンドギャップが増加すると共に、メモリ素子220の閾値電圧ウィンドウが増加する。しかしながら、本明細書で論じるように、メモリ素子220の閾値電圧ウィンドウは、メモリ素子220に対するSET期間の減少をもたらし得る。同様に、メモリ素子220のサイズが減少する場合、メモリ素子220の閾値電圧ウィンドウを増加させるためにより高いバンドギャップを有する組成物を使用することはまた、メモリ素子220に対するSET期間の減少をもたらし得る。
【0055】
本明細書で論じるように、幾つかの場合、メモリ素子220は、メモリ素子220のSET速度を維持又は増加させながら、メモリ素子220の閾値電圧ウィンドウを増加させる高いバンドギャップの組成物を含む。例えば、メモリ素子は、Geと、Sbと、Teと、少なくとも1つの3族-TM元素との組み合わせを含む相変化材料を含む。例えば、メモリ素子220は、組成物の15at.%~35at.%のレンジの量のGeと、組成物の50at.%以下の量のSbと、組成物の40at.%以上の量のTeと、組成物の0.15at.%~10at.%のレンジの量の、イットリウム及びスカンジウムを含むグループから選択された少なくとも1つの元素とを含む相変化材料を含み得る。本明細書で論じるように、これらのレンジに従って創出された組成物は、大きなバンドギャップ(例えば、0.6と0.9電子ボルト(eV)との間)と、速いSET速度(例えば、10μs未満)とを有し得る。
【0056】
メモリアレイ200は、材料の形成及び除去の様々な組み合わせによって作られ得る。例えば、第1のアクセス線110-a、底部電極210、セレクタデバイス215、中間電極225、メモリ素子220、及び上部電極205に対応する材料のレイヤが堆積され得る。材料は、図2に描写したピラー構造体等の所望の機構を創出するために選択的にその後除去され得る。例えば、フォトレジストをパターニングするためにフォトリソグラフィを使用して機構が画定され得、その後、エッチング等の技術によって材料が除去され得る。例えば、図2に描写した線構造体を形成するために、材料のレイヤを堆積することと、選択的にエッチングすることとによって、ビット線115-aがその後形成され得る。幾つかの場合、電気的絶縁領域又はレイヤが形成され得又は堆積され得る。電気的絶縁領域は、酸化ケイ素、窒化ケイ素等の酸化若しくは窒化材料、又はその他の電気的絶縁材料を含み得る。
【0057】
メモリアレイ200の材料又はコンポーネントを形成するために様々な技術が使用され得る。これらは、例えば、薄膜成長技術の中でもとりわけ、化学気相成長(CVD)、有機金属化学気相成長(MOCVD)、物理気相成長(PVD)、スパッタ堆積、原子層堆積(ALD)、又は、分子線エピキタシ(MBE)を含み得る。材料は、複数の技術を使用して除去され得、それらは、例えば、化学エッチング(“ウェットエッチング”とも称され得る)、プラズマエッチング(“ドライエッチング”とも称され得る)、又は化学機械平坦化を含み得る。
【0058】
図3は、本開示の様々な態様に従った遷移金属ドープのGSTの特徴を説明するプロットの一例を説明する。プロット300は、図2のメモリ素子220(及び/又はセレクタデバイス215)並びにメモリセル105-a等の、メモリ素子の関連する結晶化速度と、メモリ素子及び/又はメモリセルに対するセンシングウィンドウとの間の関係性を電圧の観点で説明する。プロット300は、センシングウィンドウ軸305、SET速度軸310、トレンド線315、及び遷移金属ドープのGSTに対する領域320を含む。
【0059】
センシングウィンドウ軸305は、左から右への順序で増加するセンシングウィンドウ値を提供する。すなわち、センシングウィンドウ軸305の左側は、小さいセンシングウィンドウに対応する一方、センシングウィンドウ軸305の右側は、より大きな、より望ましいセンシングウィンドウに対応する。本明細書で論じるように、メモリセルに対するセンシングウィンドウは、対応するメモリ素子の閾値電圧ウィンドウに関連し得、例えば、高い閾値電圧ウィンドウを有するメモリ素子は、大きなセンシングウィンドウを有するメモリセルにしばしば対応する。また、メモリ素子の閾値電圧ウィンドウは、メモリ素子のサイズに関連し得、例えば、メモリ素子の閾値電圧ウィンドウは、メモリ素子のサイズが減少すると共にしばしば減少し、メモリ素子内に含まれる組成物、例えば、より大きなバンドギャップを有する組成物のバンドギャップは、より大きな閾値電圧ウィンドウを有するメモリ素子をしばしばもたらす。
【0060】
SET速度軸310は、最上部から底部への順序で減少するSET速度値を提供する。すなわち、SET速度軸310の底部は、より遅い結晶化速度に対応する一方、SET速度軸310の最上部は、より速い、より望ましい結晶化速度に対応する。本明細書で論じるように、メモリセルに対するSET速度は、対応するメモリ素子のバンドギャップに関連し得、例えば、大きなバンドギャップを有するメモリ素子は、遅いSET速度をしばしば有する。
【0061】
幾つかの場合、GST組成物のバンドギャップは、GST組成物のSb-Te結合に基づき得る。幾つかの場合、GST組成物のバンドギャップは、(2.05の電気陰性度を有する)Sb原子を、In原子(Inは1.78の電気陰性度を有する)等の、(2.10の電気陰性度を有する)Teに対してより高い電気陰性度の差を有する原子と置換することによって増加し得る。しかしながら、In等のTeに対してより高い電気陰性度の差を有する元素とSb原子を置換することにより、ドープされた組成物のバンドギャップを増加させることはまた、例えば、結晶化に対する核として機能し得る4員環の数を減少させるInの4面体結合に起因して、ドープされた組成物のSET速度を減少させ得る。したがって、例えば、より多くの4員環を有する組成物は、僅かな4員環を有する組成物よりも速いSET速度を有し得る。
【0062】
したがって、例えば、メモリ素子に対する大きなバンドギャップを有する組成物を選択することによって、メモリ素子の閾値電圧ウィンドウ、及び対応するメモリセルのセンシングウィンドウが増加すると共に、メモリ素子、及び対応するメモリセルのSET速度はしばしば減少する。トレンド線315は、メモリ素子/セルに対するセンシングウィンドウのサイズと結晶化速度との間のこの関係性を説明する。
【0063】
この関係性は、メモリ素子に対して使用するための組成物を選択する場合に、高いバンドギャップを有する組成物と、高いSET速度を有する組成物との間のトレードオフを示唆する。すなわち、幾つかの場合、対応するメモリセルに対してより小さいセンシングウィンドウがもたらされるにもかかわらず、狭いバンドギャップとより高いSET速度とを有する組成物がメモリ素子に対して使用され得る。例えば、トレンド線315により表されるメモリセル内に使用される材料組成物は、純GST組成物(すなわち、Ge、Sb、Teのみを含む)、又はQ-GST組成物(例えば、In-GST)であり得、Qは、3族-TM元素ではない元素であり得る。トレンド線315により表されるメモリ素子/セルに対して使用される幾つかの組成物は、IST、GST、及びIGT等を含み得る。
【0064】
センシングウィンドウ/SET速度の関連性の影響は、メモリセルのサイズが減少すると共に更に強調され得る。本明細書で論じるように、メモリ素子の閾値電圧ウィンドウ、したがって、メモリセルのセンシングウィンドウは、メモリ素子のサイズが減少すると共に減少し得る。したがって、メモリ素子のSET速度が比較的不変であり得ながら、第1の組成物を使用するメモリ素子は、第1のサイズにおいて第1の閾値電圧ウィンドウと、第2のサイズにおいて第2の閾値電圧ウィンドウとを有し得る。また、例えば、メモリアレイの密度を増加させるために、メモリ素子のサイズを減少し続けると共に、対応するメモリセルのセンシングウィンドウを増加させるために、より大きなバンドギャップを有する組成物が使用され得る。しかしながら、本明細書で論じるように、より大きなバンドギャップを有する組成物を使用することは、メモリセルのSET速度を遅くさせ得る。幾つかの場合、メモリセルのSET速度は、アモルファスから結晶相へ対応するメモリ素子を遷移するための期間(SET期間とも称され得る)がメモリ動作に対するタイミング制約を越える程度を遅くし得る。
【0065】
メモリシステムの信頼性及び/又はスループットを増加させるために、メモリシステムは、本明細書に開示するような組成物を用い得、それは、トレンド線315からのメモリセルの逸脱、すなわち、比較的大きなセンシングウィンドウと比較的速いSET速度とを有するメモリセルをもたらす比較的高いバンドギャップと比較的速いSET速度とを有する組成物をもたらす。
【0066】
例えば、本明細書で論じるように、Geと、Sbと、Teと、3族-TM元素との組み合わせを含む組成物を使用するメモリ素子を含有するメモリセルは、領域320に表される、比較的高いセンシングウィンドウと比較的速いSET速度とを有し得、領域320は、Geと、Sbと、Teと、3族-TM元素との組み合わせを使用する組成物によって実現可能なセンシングウィンドウ/SET速度の組み合わせのレンジを包含し得る。本明細書で論じるように、GSTのバンドギャップは、Sb-Te結合に基づき得、Teと比較してより高い電気陰性度の差を有する元素の原子とSb原子を置換することによって増加し得る。(1.22の電気陰性度を有する)Y又は(1.36の電気陰性度を有する)Sc等の3族-TM元素は、SbよりもTeに対してより高い電気陰性度の差をも有し得、GST組成物のバンドギャップを増加させるために使用され得る。しかしながら、Y及びSc等の3族-TM元素は、GST組成物のSET速度に僅かな減少を伴う若しくは何ら減少を伴わない、又は増加を伴うGST組成物を導き得る。3族-TMドープのGSTのSET速度は、結晶化のための核として機能する4員環の形成を低下させない3族-TM元素のd型軌道に起因して維持又は増加し得る。こうした組成物は、本明細書でより詳細に、図4を少なくとも参照しながら論じられる。
【0067】
(例えば、Sc-Sb-Te(ScST)又はY-Sb-Te(YST)を創出するために)3族-TM元素を用いて、SbTe等のSb-Te(ST)組成物をドープすることは、広いバンドギャップと所望のSET速度とを有する組成物を提供し損ね得ることに注目する価値がある。幾つかの場合、3族-TM元素を用いてST組成物をドープすることは、ベースラインのST組成物の比較的より狭いバンドギャップ(例えば、0.55eV辺り)のために、広いバンドギャップの組成物を提供し損ね得る。すなわち、ST組成物上への3族-TMのドープの効果は、(例えば、0.65eVよりも大きな)広いバンドギャップを有する3族-TMドープのST組成物を産出するのに十分強力ではないことがある。
【0068】
例として、領域320内のセンシングウィンドウ/SET速度の組み合わせに対応するメモリ素子内に含まれる組成物は、15at.%~35at.%のレンジの量のGeと、50at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量の、Y及びScを含むグループから選択された少なくとも1つの元素とを有し得る。この組成物は、0.6eV~0.9eVのレンジのバンドギャップエネルギー値と、10μs未満のSET期間に対応するSET速度とを有し得る。幾つかの場合、こうした組成物は、例えば、SET期間を維持又は削減しながらメモリセルのセンシングウィンドウを増加させることによって、対応するメモリアレイの信頼性を増加させるためにメモリセル内に使用され得る。こうした組成物はまた、対応するメモリアレイのサイズが減少すると共に、メモリセルのセンシングウィンドウを維持するために、メモリセル内に使用され得る。
【0069】
図4は、本開示の様々な態様に従った例示的な遷移金属ドープのGST組成物を示す例示的な三角ダイアグラムを説明する。プロット400は、第1の軸405、第2の軸410、及び第3の軸415を説明する。
【0070】
第1の軸405は、Geの原子パーセントを表し得る。第2の軸410は、Sbの原子パーセントを表し得る。第3の軸415は、Teの原子パーセントを表し得る。領域420は、Y又はSc等の3族-TM元素を用いてドープされ得る異なるGST組成物を包含し得る。データポイント425は、3族-TM元素の追加以前のGSTを含む組成物を表し得る。
【0071】
本明細書で説明するように、バンドギャップのエネルギーの増加又は維持、及びSET速度の維持又は増加/SET期間の削減を伴う組成物は、メモリ素子に対して有用であり得、Geと、Sbと、Teと、少なくとも1つの3族-TM元素との幾つかの組み合わせを含み得る。カルコゲナイド材料組成物は、一般式GeSbTeをもたらし得、Qは3族-TM元素の内の1つである。3族-TM元素は、Y又はScを含むグループから選択された少なくとも1つの元素であり得る。本明細書で論じるように、カルコゲナイド材料組成物は、表1で識別される組成物を含み得、表1は、Geと、Sbと、Teと、3族-TM元素との原子パーセントによる組成物のレンジを提供し得る。
【表1】
【0072】
表1に示すように、GST組成物は、遷移金属ドープのGST組成物が0.15at.%~10at.%のレンジの量で3族-TM元素を含むようにドープされ得る。幾つかの場合、組成物のバンドギャップは、0.6電子ボルト~0.9電子ボルトのレンジであり、10μs未満の結晶化速度を有し得る。
【0073】
幾つかの場合、3族-TMドープのGST内の3族-TM元素の原子パーセントの増加は、GST組成物のSbの対応する減少をもたらす。幾つかの例では、GST組成物のSbは、遷移金属ドープのGST組成物内の遷移金属によって完全に置換され得、3族-TMドープのGT組成物(例えば、ScGT又はYGT)をもたらす。GSTのSbがSc又はY等の3族-TM元素によって完全に置換される場合、3族-TMドープのGT組成物内のGe又はTeの量は、それに応じて増加し得、例えば、該組成物は、0.15at.%~20at.%のレンジの量の3族-TM元素を含み得、Ge及びTeのat.%は、3族-TMドープのGT組成物の80at.%以上を共同で含み得る。
【0074】
幾つかの例では、3族-TM元素の量は、遷移金属ドープのGST組成物の5at.%未満である。幾つかの場合、ゲルマニウムの量は、組成物の15at.%~25at.%のレンジである。幾つかの場合、アンチモンの量は、組成物の10at.%~40at.%のレンジである。幾つかの場合、原子パーセントによるテルルの量は、原子パーセントによるゲルマニウムの量よりも多く、原子パーセントによるアンチモンの量よりも多く、原子パーセントによる該少なくとも1つの元素の量よりも多い(Teリッチな組成物と称され得る)。幾つかの場合、テルルの量は、組成物の40at.%~65at.%のレンジである。幾つかの場合、テルルの量は、組成物の45at.%~55at.%のレンジである。
【0075】
幾つかの例では、GST組成物は、4at.%の3族-TM元素を含むようにドープされる。例えば、データポイント425は、4at.%の量のYを用いてドープされた、約22at.%の量のGeと、約32at.%の量のSbと、約46at.%の量のTeとを含むGST組成物に対応し得、それは、約22at.%の量のGeと、約28at.%の量のSbと、約46at.%の量のTeと、4at.%の量のYとを含むY-GST組成物をもたらし得る。こうしたY-GST組成物は、0.67eVのバンドギャップと、10μs未満のSET速度とを有し得る。
【0076】
図5は、本開示の様々な実施形態に従った遷移金属ドープのGSTをサポートする例示的なメモリアレイを説明する。メモリアレイ500は、電子メモリ装置と称され得、図1を参照しながら説明したメモリコントローラ140及びメモリセル105の例示であり得るメモリコントローラ140-a及びメモリセル105-bを含む。メモリアレイ500は、リファレンスコンポーネント520及びラッチ525をも含み得る。メモリアレイ500のコンポーネントは、相互に電子通信し得、図1を参照しながら説明した機能を実施し得る。幾つかの場合、リファレンスコンポーネント520、センスコンポーネント125-a、及びラッチ525は、メモリコントローラ140-aのコンポーネントであり得る。
【0077】
リファレンスコンポーネント520は、センスコンポーネント125-aに対するリファレンス信号を生成するための様々なコンポーネントを含み得る。リファレンスコンポーネント520は、リファレンス信号を生み出すように構成された回路を含み得る。
【0078】
メモリセル105-bは、1つ以上のメモリ素子を含み得る。メモリ素子の各々は、Geと、Sbと、Teと、1つ以上の3族-TM元素との特定の組み合わせを含む組成物を含み得る。該組成物のバンドギャップは、0.6eV~0.9eVの間であり得、該組成物のSET速度は10μs未満であり得る。
【0079】
センスコンポーネント125-aは、(ビット線115-bを通じた)メモリセル105-bからの信号をリファレンスコンポーネント520からのリファレンス信号と比較し得る。論理状態を判定すると、センスコンポーネントは、出力をラッチ525内にその後蓄積し得、それは、メモリアレイ500が一部である電子デバイスの動作に従って使用され得る。
【0080】
メモリコントローラ140-aは、他のコンポーネントと組み合わせて、メモリアレイ500全体に電圧を印加し得、メモリセル105-bにデータを書き込み得、メモリセル105-bからデータを読み出し得、図1で説明したようにメモリアレイ500を一般的に動作し得る。メモリコントローラ140-aは、バイアスコンポーネント510及びタイミングコンポーネント515を含み得る。メモリコントローラ140-aは、図1を参照しながら説明したようなワード線110、ビット線115、及びセンスコンポーネント125の例示であり得るワード線110-b、ビット線115-b、及びセンスコンポーネント125-aと電子通信し得る。
【0081】
メモリコントローラ140-aは、ワード線110-b又はビット線115-bを、それらの様々なノードに電圧を印加することによって活性化するように構成され得る。例えば、バイアスコンポーネント510は、本明細書で説明するようにメモリセル105-bを読み出す又は書き込むようにメモリセル105-bを動作するために電圧を印加するように構成され得る。幾つかの場合、メモリコントローラ140-aは、図1を参照しながら説明したような行デコーダ、列デコーダ、又はそれら両方を含み得る。このことは、メモリコントローラ140-aが1つ以上のメモリセル105にアクセスすることを可能にし得る。バイアスコンポーネント510はまた、センスコンポーネント125-aに対するリファレンス信号を生成するための電位をリファレンスコンポーネント520に提供し得る。また、バイアスコンポーネント510は、センスコンポーネント125-aの動作のための電位を提供し得る。
【0082】
幾つかの場合、メモリコントローラ140-aは、その動作をタイミングコンポーネント515を使用して実施し得る。例えば、タイミングコンポーネント515は、本明細書で論じる、読み出し及び書き込み等のメモリ機能を実施するためのスイッチング及び電圧印加のタイミングを含む、様々なワード線選択又はプレートバイアスのタイミングを制御し得る。幾つかの場合、タイミングコンポーネント515は、バイアスコンポーネント510の動作を制御し得る。
【0083】
幾つかの場合、メモリコントローラ140-aは、(読み出し及び書き込み動作等の)メモリ動作のためにメモリセル105-bにアクセスするために使用され得る。例えば、メモリコントローラ140-aは、15原子パーセント(at.%)~35at.%のレンジの量のゲルマニウムと、50at.%以下の量のアンチモンと、40at.%以上の量のテルルと、0.15at.%~10at.%のレンジの量の、イットリウム及びスカンジウムを含むグループから選択された少なくとも1つの元素とを含む組成物を有するメモリ素子を含むメモリセル105-bをメモリ動作のために選択し得、メモリ動作及び該組成物に少なくとも部分的に基づいてメモリセル105-bに1つ以上の電圧をメモリ動作の間に印加し得る。
【0084】
図6は、本開示の様々な実施形態に従った遷移金属ドープのGSTをサポートする例示的なシステムを説明する。システム600はデバイス605を含み、デバイス605は、様々なコンポーネントを接続し又は物理的にサポートするプリント回路基板であり得、又は該プリント回路基板を含み得る。デバイス605は、図1を参照しながら説明したメモリアレイ100の一例であり得るメモリアレイ100-aを含む。メモリアレイ100-aは、図1及び図5を参照しながら説明したメモリコントローラ140及びメモリセル105の例示であり得るメモリコントローラ140-b及びメモリセル105-cを含み得る。デバイス605はまた、プロセッサ610、BIOSコンポーネント615、周辺コンポーネント620、及び入力/出力制御コンポーネント625を含み得る。デバイス605のコンポーネントは、バス630を通じて相互に電子通信し得る。
【0085】
プロセッサ610は、メモリコントローラ140-bを通じてメモリアレイ100-aを動作するように構成され得る。幾つかの場合、プロセッサ610は、図1及び図5を参照しながら説明したメモリコントローラ140の機能を実施し得る。その他の場合、メモリコントローラ140-bは、プロセッサ610に統合され得る。プロセッサ610は、汎用プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)若しくはその他のプログラミング可能な論理デバイス、別々のゲート又はトランジスタロジック、別々のハードウェアコンポーネントであり得、又はこれらの種類のコンポーネントの組み合わせであり得、プロセッサ610は、本明細書で説明する様々な機能を実施し得る。プロセッサ610は、例えば、様々な機能又はタスクをデバイス605に実施させるための、メモリアレイ100-a内に蓄積されたコンピュータ可読命令を実行するように構成され得る。
【0086】
BIOSコンポーネント615は、ファームウェアとして動作するベーシック入力/出力システム(BIOS)を含むソフトウェアコンポーネントであり得、それは、システム600の様々なハードウェアコンポーネントを初期化し得、稼働し得る。BIOSコンポーネント615は、プロセッサ610と様々な他のコンポーネント、例えば、周辺コンポーネント620、入力/出力制御コンポーネント625等との間のデータの流れをも管理し得る。BIOSコンポーネント615は、リードオンリーメモリ(ROM)、フラッシュメモリ、又は任意のその他の不揮発性メモリ内に蓄積されたプログラム又はソフトウェアを含み得る。
【0087】
周辺コンポーネント620は、任意の入力若しくは出力デバイス、又はそうしたデバイスに対するインタフェースを含み得、デバイス605に統合される。例示として、ディスクコントローラ、音声コントローラ、画像コントローラ、イーサネットコントローラ、モデム、ユニバーサルシリアルバス(USB)コントローラ、シリアル若しくはパラレルポート、又はペリフェラルコンポーネントインタコネクト(PCI)若しくはアクセラレーテッドグラフィックスポート(AGP)スロット等の周辺カードスロットが挙げられ得る。
【0088】
入力/出力制御コンポーネント625は、プロセッサ610と周辺コンポーネント620、入力デバイス635、又は出力デバイス640との間のデータ通信を管理し得る。入力/出力制御コンポーネント625はまた、デバイス605に統合されない周辺装置を管理し得る。幾つかの場合、入力/出力制御コンポーネント625は、外部の周辺装置への物理的接続又はポートを表し得る。
【0089】
入力デバイス635は、デバイス605又はそのコンポーネントへの入力を提供する、デバイス605の外にあるデバイス又は信号を表し得る。これは、ユーザインタフェース、又はその他のデバイスとのインタフェース若しくはその他のデバイス間のインタフェースを含み得る。幾つかの場合、入力デバイス635は、周辺コンポーネント620を介してデバイス605とインタフェースで接続する周辺装置であり得、又は入力/出力制御コンポーネント625により管理され得る。
【0090】
出力デバイス640は、デバイス605又はその何れかのコンポーネントからの出力を受信するように構成された、デバイス605の外にあるデバイス又は信号を表し得る。出力デバイス640の例は、表示装置、音声スピーカ、プリントデバイス、別のプロセッサ、又はプリント回路基板等を含み得る。幾つかの場合、出力デバイス640は、周辺コンポーネント620を介してデバイス605とインタフェースで接続する周辺装置であり得、又は入力/出力制御コンポーネント625により管理され得る。
【0091】
メモリコントローラ140-b、デバイス605、及びメモリアレイ100-aのコンポーネントは、それらの機能を実行するように設計された回路で作られ得る。これは、本明細書で説明される機能を実行するように構成された様々な回路素子、例えば、導電線、トランジスタ、コンデンサ、インダクタ、抵抗器、アンプ、又はその他の能動素子若しくは非能動素子を含み得る。
【0092】
図7は、本開示の様々な実施形態に従った遷移金属ドープのGSTのための1つ以上の方法のフローチャートを説明する。方法700は、3族-TMドープのGST組成物を含むメモリセルの抵抗をプログラミングする態様を説明し得る。
【0093】
ブロック705において、方法は、図1図5を参照しながら説明したように、15原子パーセント(at.%)~35at.%のレンジの量のGeと、50at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量の、Y及びScを含むグループから選択された少なくとも1つの元素と含む組成物を有するメモリ素子を含むメモリセルをメモリ動作のために選択することを含み得る。幾つかの例では、ブロック705の動作は、図1図5、及び図6を参照しながら説明したように、メモリコントローラによって実施又は促進され得る。
【0094】
ブロック710において、方法は、図1図5を参照しながら説明したように、メモリ動作及び該組成物に少なくとも部分的に基づいて、メモリセルに1つ以上の電圧をメモリ動作の間に印加することを含み得る。幾つかの例では、ブロック710の動作は、図1図5、及び図6を参照しながら説明したように、メモリコントローラによって実施又は促進され得る。
【0095】
幾つかの例では、本明細書で説明されるような装置は、方法700等の1つ以上の方法を実施し得る。装置は、15原子パーセント(at.%)~35at.%のレンジの量のGeと、50at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量の、Y及びScを含むグループから選択された少なくとも1つの元素と含む組成物を有するメモリ素子を含むメモリセルをメモリ動作のために選択することと、メモリ動作及び該組成物に少なくとも部分的に基づいて、メモリセルに1つ以上の電圧をメモリ動作の間に印加することとのための機構、手段、又は命令(例えば、プロセッサにより実行可能な命令を蓄積する非一時的コンピュータ可読媒体)を含み得る。
【0096】
上で説明した方法は、可能的実装を説明すること、動作及びステップは、再配置又は、さもなければ変更され得ること、及びその他の実装が可能であることに留意すべきである。更に、方法の内の2つ以上からの実施形態は組み合わせられ得る。
【0097】
幾つかの例では、装置又はデバイスは、汎用、又は専用ハードウェアを使用して、本明細書で説明する機能の態様を実施し得る。例えば、装置又はデバイスは、セレクタデバイスと、セレクタデバイスと結合されたメモリ素子とであって、15at.%~35at.%のレンジの量のGeと、50at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量の、Y及びScを含むグループから選択された少なくとも1つの元素と含む組成物を有する該メモリ素子とを含み得る。
【0098】
装置又はデバイスの幾つかの例では、該グループから選択された少なくとも1つの元素はイットリウムである。装置又はデバイスの幾つかの例では、イットリウムの量は、1at.%~5at.%のレンジである。
【0099】
装置又はデバイスの幾つかの例では、メモリ素子の高さは、20ナノメートル~40ナノメートルのレンジであり、メモリ素子の幅は、5ナノメートル~50ナノメートルのレンジである。
【0100】
装置又はデバイスの幾つかの例では、メモリ素子のバンドギャップは、0.6電子ボルト~0.9電子ボルトのレンジであり、メモリ素子の結晶化速度は、10マイクロ秒未満である。
【0101】
装置又はデバイスの幾つかの例では、セレクタデバイスは、金属-酸化物-半導体電界効果トランジスタ(MOSFET)、バイポーラ接合トランジスタ(BJT)、ダイオード、又はオボニックスレッショルドスイッチの内の何れか1つを含む。
【0102】
別の例では、装置又はデバイスは、第1のアクセス線と、第2のアクセス線と、ゲルマニウム、アンチモン、テルル、並びにイットリウム及びスカンジウムの内の少なくとも1つを含む組成物を含むカルコゲナイド材料を含む第1のメモリセルであって、第1のアクセス線が第1のメモリセルを介して第2のアクセス線と結合される、該第1のメモリセルとを含み得る。
【0103】
装置又はデバイスの幾つかの例では、カルコゲナイド材料を含む組成物は、15at.%~35at.%のレンジの量のGeと、50at.%以下の量のSbと、40at.%以上の量のTeと、0.15at.%~10at.%のレンジの量の、Y及びScを含むグループから選択された少なくとも1つの元素と含む。
【0104】
装置又はデバイスの幾つかの例では、該グループから選択された少なくとも1つの元素はイットリウムである。装置又はデバイスの幾つかの例では、イットリウムの量は、0.5at.%~5at.%のレンジである。
【0105】
幾つかの例では、装置又はデバイスは、第1のメモリセルと結合された第2のメモリセルであって、第2のメモリセルの中央と第1のメモリセルの中央との間の距離は、10ナノメートル~45ナノメートルのレンジである、該第2のメモリセルを含む。
【0106】
装置又はデバイスの幾つかの例では、第1のアクセス線及び第2のアクセス線は、3次元クロスポイント構成で配列され、装置又はデバイスは、第3のアクセス線であって、第1のアクセス線及び第3のアクセス線は、3次元クロスポイント構成で配列され、第2のメモリセルと結合される、該第3のアクセス線を含む。
【0107】
装置又はデバイスの幾つかの例では、第1のメモリセルは、セレクタデバイスと、カルコゲナイド材料を含むメモリ素子であって、メモリ素子の高さは、20ナノメートル~40ナノメートルのレンジであり、メモリ素子の幅は、5ナノメートル~50ナノメートルのレンジである、該メモリ素子とを含む。
【0108】
幾つかの例では、装置又はデバイスは、セレクタデバイスと、セレクタデバイスと結合され、セレクタデバイスによりメモリセルから電気的に絶縁される第3のアクセス線とを含む。
【0109】
本明細書の説明は、例示であり、請求項に記載の範囲、適用可能性、又は例を限定しない。開示の範囲から逸脱することなく、論じられる要素の機能及び配列に変更がなされ得る。様々な例は、適宜、様々な手順又はコンポーネントを省略、代替、又は追加し得る。また、幾つかの例に関して説明された機構は、他の例に結合され得る。
【0110】
添付の図面に関連して本明細書に記載される説明は、例示的構成を説明し、実装され得る又は請求項の範囲内にある全ての例を表さない。本明細書で使用されるとき、用語“例”、“例示的”、及び“実施形態”は、“好適”又は“その他の例よりも有利”ではなく“一例、実例、又は説明として役立つこと”を意味する。詳細な説明は、説明される技術の理解を提供する目的のための具体的詳細を含む。これらの技術は、しかしながら、これらの具体的詳細なしに実践され得る。幾つかの実例では、説明される実施例の内容を不明確にすることを避けるために、周知の構造及びデバイスはブロック図の形式で示される。
【0111】
添付の図において、同様のコンポーネント又は機構は、同じ参照ラベルを有し得る。更に、同じ種類の様々なコンポーネントは、ダッシュと、同様のコンポーネント間で区別する第2のラベルとを参照ラベルに続けることによって区別され得る。明細書中に第1の参照ラベルが使用される場合、説明は、第2の参照ラベルに関係なく、同じ第1の参照ラベルを有する同様のコンポーネントの内の何れか1つに適用可能である。
【0112】
用語“電子通信”及び“結合”は、コンポーネント間の電子流動をサポートするコンポーネント間の関係を指す。これは、コンポーネント間の直接接続を含み得、又は仲介コンポーネントを含み得る。相互に電子通信する又は結合されたコンポーネントは、(例えば、通電された回路内の)電子若しくは信号を能動的に交換し得、又は(例えば、非通電の回路内の)電子若しくは信号を能動的に交換しないことがあるが、回路が通電されると電子若しくは信号を交換するように構成され得、動作可能であり得る。例として、スイッチ(例えば、トランジスタ)を介して物理的に接続された2つのコンポーネントは、スイッチの状態(すなわち、開放又は閉鎖)に関わらず電子通信し、又は結合され得る。
【0113】
用語“絶縁”又は“電気的に絶縁”は、コンポーネント間を電子が現在流れることができないコンポーネント間の関係を指し、コンポーネントは、それらの間に開放回路がある場合に相互から絶縁される。例えば、スイッチにより物理的に接続された2つのコンポーネントは、スイッチが開放された場合に相互から絶縁され得る。
【0114】
本明細書で使用される“レイヤ”は、幾何学的構造の層又はシートを指す。各レイヤは、3つの寸法(例えば、高さ、幅、及び深さ)を有し得、表面の幾らか又は全てを覆い得る。例えば、レイヤは、2つの寸法が3つ目よりも大きい3次元構造体であり得る。レイヤは、異なる素子、コンポーネント、及び/又は材料を含み得る。幾つかの場合、1つのレイヤは、2つ以上のサブレイヤを含み得る。添付の図の内の幾つかでは、説明の目的のために3次元レイヤの2つの寸法が描写されている。しかしながら、該レイヤが本質的に3次元であることは当業者であれば分かるであろう。
【0115】
本明細書で使用されるとき、用語“実質的に”は、修飾される特徴(例えば、該用語により実質的に修正される動詞又は形容詞)が絶対的である必要はないが、該特徴の利点を実現するのに十分近いことを意味する。
【0116】
本明細書で使用されるとき、用語“電極”は、電気伝導体を指し得、幾つかの場合、メモリセル又はメモリアレイのその他のコンポーネントへの電気コンタクトとして用いられ得る。電極は、メモリアレイの素子又はコンポーネント間の導電経路を提供するトレース、ワイヤ、導電線、又は導電レイヤ等を含み得る。
【0117】
用語“フォトリソグラフィ”は、本明細書で使用されるとき、フォトレジスト材料を使用してパターニングすることと、こうした材料を電磁放射線を使用して露出することとのプロセスを指し得る。例えば、フォトレジスト材料は、例えば、ベース材料上のフォトレジストをスピンコーティングすることによって、ベース材料上に形成され得る。フォトレジストを放射線に露出することによってフォトレジスト内にパターンが形成され得る。該パターンは、例えば、放射線がフォトレジストを露出する場所を空間的に描くフォトマスクによって画定され得る。露出されたフォトレジスト地域は、例えば、化学的処置によってその後除去され得、所望のパターンを残す。幾つかの場合、露出された領域が残され、露出されない領域が除去され得る。
【0118】
メモリアレイ100を含む本明細書で論じられるデバイスは、シリコン、ゲルマニウム、シリコン-ゲルマニウム合金、ヒ化ガリウム、窒化ガリウム等の半導体基板上に形成され得る。幾つかの場合、該基板は半導体ウエハである。その他の場合、該基板は、シリコンオングラス(SOG)若しくはシリコンオンサファイア(SOP)等のシリコンオンインシュレータ(SOI)基板、又は別の基板上の半導体材料のエピタキシャル層であり得る。基板又は基板のサブ領域の導電性は、リン、ホウ素、又はヒ素を含むがそれらに限定されない様々な化学種を使用してドープすることを通じて制御され得る。ドープすることは、イオン注入により、又は任意のその他のドープ手段により、基板の初期の形成又は成長の間に実施され得る。
【0119】
カルコゲナイド材料は、S、Se、及びTeの元素の内の少なくとも1つを含む材料又は合金であり得る。本明細書で論じられる相変化材料は、カルコゲナイド材料であり得る。カルコゲナイド材料は、S、Se、Te、Ge、As、Al、Sb、Au、インジウム(In)、ガリウム(Ga)、スズ(Sn)、ビスマス(Bi)、パラジウム(Pd)、コバルト(Co)、酸素(O)、銀(Ag)、ニッケル(Ni)、白金(Pt)の合金を含み得る。例示的なカルコゲナイド材料及び合金は、Ge-Te、In-Se、Sb-Te、Ga-Sb、In-Sb、As-Te、Al-Te、Ge-Sb-Te、Te-Ge-As、In-Sb-Te、Te-Sn-Se、Ge-Se-Ga、Bi-Se-Sb、Ga-Se-Te、Sn-Sb-Te、In-Sb-Ge、Te-Ge-Sb-S、Te-Ge-Sn-O、Te-Ge-Sn-Au、Pd-Te-Ge-Sn、In-Se-Ti-Co、Ge-Sb-Te-Pd、Ge-Sb-Te-Co、Sb-Te-Bi-Se、Ag-In-Sb-Te、Ge-Sb-Se-Te、Ge-Sn-Sb-Te、Ge-Te-Sn-Ni、Ge-Te-Sn-Pd、又はGe-Te-Sn-Ptを含み得るが、それらに限定されない。
【0120】
本明細書で使用されるとき、ハイフンで結んだ化学組成の表記法は、特定の化合物又は合金内に含まれる元素を指し示し、指し示された元素を伴う全ての化学量論を表すことを意図する。例えば、Ge-Teは、x及びyが任意の正の整数であり得るGeTeを含み得る。可変抵抗材料のその他の例は、2つ以上の金属、例えば、遷移金属、アルカリ土類金属、及び/又は希土類金属を含む二元金属酸化物材料又は混合原子価酸化物を含み得る。実施形態は、メモリセルのメモリ素子と関連付けられる特定の1つ以上の可変抵抗材料に限定されない。例えば、可変抵抗材料の他の例は、メモリ素子を形成するために使用され得、とりわけ、カルコゲナイド材料、超巨大磁気抵抗材料、又はポリマーベースの材料を含み得る。
【0121】
本明細書で論じられる1つ以上のトランジスタは、電界効果トランジスタ(FET)を表し得、ソース、ドレイン、及びゲートを含む3端子デバイスを含み得る。端子は、導電材料、例えば金属を通じて他の電子素子に接続され得る。ソース及びドレインは、導電性であり得、高濃度にドープされた、例えば縮退した、半導体領域を含み得る。ソース及びドレインは、低濃度にドープされた半導体領域又はチャネルによって分離され得る。チャネルがn型(すなわち、主たるキャリアが電子)である場合、該FETはn型FETと称され得る。チャネルがp型(すなわち、主たるキャリアがホール)である場合、該FETはp型FETと称され得る。チャネルは、絶縁ゲート酸化物によって覆われ得る。チャネルの導電性は、ゲートに電圧を印加することによって制御され得る。例えば、正の電圧又は負の電圧をn型FET又はp型FETに夫々印加することは、チャネルが導電性になることをもたらし得る。トランジスタの閾値電圧以上の電圧がトランジスタのゲートに印加された場合、トランジスタは“オン”に又は“活性化”され得る。トランジスタの閾値電圧未満の電圧がトランジスタのゲートに印加された場合、トランジスタは“オフ”に又は“不活性化”され得る。
【0122】
添付の図面に関連して本明細書に記載される説明は、例を説明し、実装され得る又は請求項の範囲内にある例のみを表さない。用語“例”及び“例示的”は、この説明で使用される場合、“一例、実例、又は説明として役立つこと”を意味し、“好適”又は“その他の例よりも有利”を意味しない。詳細な説明は、説明される技術の理解を提供する目的のための具体的詳細を含む。これらの技術は、しかしながら、これらの具体的詳細なしに実践され得る。幾つかの実例では、説明される実施例の内容を不明確にすることを避けるために、周知の構造及び装置はブロック図の形式で示される。
【0123】
情報及び信号は、様々な異なる科学技術及び技術の内の何れかを使用して表され得る。例えば、上述の説明全体通じて言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光粒子、又はそれらの任意の組み合わせにより表され得る。
【0124】
本明細書の開示と関連して説明される様々な説明ブロック及びコンポーネントは、本明細書で説明される機能を実施するように設計された汎用プロセッサ、デジタルシグナルプロセッサ(DSP)、ASIC、FPGA若しくはその他のプログラム可能論理デバイス、別々のゲート若しくはトランジスタロジック、別々のハードウェアコンポーネント、又はそれらの任意の組み合わせで実装又は実施され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代わりに、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、又はステートマシーンであり得る。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、DSPとマイクロプロセッサとの組み合わせ、複数のマイクロプロセッサ、DSPコアと連携した1つ以上のマイクロプロセッサ、又は任意のその他のそうした構成として実装され得る。
【0125】
本明細書に説明される機能は、ハードウェア、プロセッサにより実行されるソフトウェア、ファームウェア、又はそれらの任意の組み合わせで実装され得る。プロセッサにより実行されるソフトウェアで実装される場合、機能は、コンピュータ可読媒体上の1つ以上の命令又はコードとして蓄積され得、又は送信され得る。その他の例及び実装は、開示及び添付の請求項の範囲内である。例えば、ソフトウェアの性質に起因して、上で説明した機能は、プロセッサにより実行されるソフトウェア、ハードウェア、ファームウェア、配線、又はこれらの任意の組み合わせを使用して実装できる。機能を実装する機構はまた、機能の(複数の)部分が異なる物理的場所に実装されるように分散されることを含む、様々な位置に物理的に設置され得る。請求項を含む本明細書で使用されるとき、用語“及び/又は”は、2つ以上の項目のリスト内に使用される場合、列挙された項目の何れか1つがそれ自体に用いられ得ること、又は列挙された項目の内の2つ以上の何れかの組み合わせが用いられ得ることを意味する。例えば、構成要素A、B、及び/又Cを含むものとして構成物が説明される場合、該構成物は、A単体、B単体、C単体、A及びBの組み合わせ、A及びCの組み合わせ、B及びCの組み合わせ、又はA、B、及びCの組み合わせを包含し得る。また、請求項を含む本明細書で使用されるとき、項目のリスト(例えば、“少なくとも1つの”又は“の内の1つ以上”等の句により前置きされる項目のリスト)に使用されるような“又は”は、例えば、“A、B、又はCの内の少なくとも1つ”のリストがA又はB又はC又はAB又はAC又はBC又はABC(すなわち、A及びB及びC)を意味するように包含的リストを指し示す。
【0126】
コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含むコンピュータストレージ媒体及び通信媒体の両方を含む。ストレージ媒体は、汎用又は専用のコンピュータによりアクセス可能な任意の利用可能な媒体であり得る。例として、非限定的に、コンピュータ可読媒体は、RAM、ROM、EEPROM、フラッシュメモリ、CD-ROM若しくはその他の光ディスクストレージ、磁気ディスクストレージ若しくはその他の磁気ストレージデバイス、又は所望のプログラムコード手段を命令若しくはデータ構造の形式で搬送若しくは蓄積するのに使用し得、且つ汎用若しくは専用コンピュータ又は汎用若しくは専用プロセッサによりアクセスし得る任意のその他の媒体を含み得る。
【0127】
また、任意の接続は、コンピュータ可読媒体として適切に称される。例えば、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、又は赤外線、無線、及びマイクロ波等の無線技術を使用してウェブサイト、サーバ、又はその他の遠隔ソースからソフトウェアが送られる場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、又は赤外線、無線、及びマイクロ波等の無線技術は媒体の定義に含まれる。本明細書で使用されるとき、ディスク(disk)及びディスク(disc)は、コンパクトディスク(CD)、レーザディスク、光ディスク、デジタル多目的ディスク(DVD)、フロッピーディスク、及びブルーレイディスクを含み、ディスク(disc)がレーザでデータを光学的に再生する一方で、ディスク(disk)はデータを磁気的に通常再生する。上の組み合わせもコンピュータ可読媒体の範囲に含まれる。
【0128】
開示の前述の説明は、当業者が開示を製作又は使用できるように提供される。開示への様々な変更が当業者に容易に分かるであろうし、本明細書で定義される包括的な原理は開示の範囲を逸脱することなくその他の変形に適用され得る。したがって、開示は、本明細書で説明された例及び設計に限定されず、本明細書に開示された原理及び新規の機構と一致する最も広い範囲に一致する。
図1
図2
図3
図4
図5
図6
図7