(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022116192
(43)【公開日】2022-08-09
(54)【発明の名称】営業支援装置、営業支援方法及びプログラム
(51)【国際特許分類】
G06Q 10/00 20120101AFI20220802BHJP
G06Q 40/06 20120101ALI20220802BHJP
【FI】
G06Q10/00
G06Q40/06
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022085930
(22)【出願日】2022-05-26
(62)【分割の表示】P 2019113727の分割
【原出願日】2019-02-28
(71)【出願人】
【識別番号】508289888
【氏名又は名称】ゼネリックソリューション株式会社
(74)【代理人】
【識別番号】110001793
【氏名又は名称】特許業務法人パテントボックス
(72)【発明者】
【氏名】小西 亮介
(57)【要約】 (修正有)
【課題】所定の金融商品にニーズが見込める顧客を精度よく抽出し、金融機関における効率的な営業活動を支援する営業支援装置を提供する。
【解決手段】金融機関システム、営業推進支援システム、管理サーバ、加工DB及び営業端末が、ネットワークを介して接続されている営業支援システムにおいて、営業支援装置の一種である管理サーバ30は、顧客のトランザクションデータに基づき、ターゲットとなる複数の顧客を金融商品の購入経験の有無によりグループに分類し、分類された顧客のトランザクションデータと、候補顧客のトランザクションデータとを用いて、当該候補顧客の金融商品の購入見込みの程度である関連度を判定する関連判定部303と、関連判定部303により関連度を取得した候補顧客について、関連度に基づき優先度順にリストする営業先リスト作成部305と、を含む。
【選択図】
図3
【特許請求の範囲】
【請求項1】
顧客のトランザクションデータに基づき、ターゲットとなる複数の顧客を金融商品の購入経験の有無によりグループに分類する分類手段と、
前記分類手段により分類された顧客のトランザクションデータと、候補顧客のトランザクションデータとを用いて、当該候補顧客の金融商品の購入見込みの程度である関連度を取得する関連度取得手段と、
前記関連度取得手段により関連度を取得した前記候補顧客について、前記関連度に基づき優先度順にリストする営業先優先度リスト作成手段と、
を有する営業支援装置。
【請求項2】
前記候補顧客に関し、複数種類の金融商品のうち、当該顧客にとって購入の可能性が高い金融商品を優先度順にリストする営業商品優先度リスト作成手段と、
を更に備える請求項1に記載の営業支援装置。
【請求項3】
過去の交渉履歴を元に、前記優先度順にリストした前記候補顧客から、営業中又は営業済の顧客を除外する顧客除外手段と、
を更に備える請求項1又は2に記載の営業支援装置。
【請求項4】
前記関連度取得手段は、前記顧客のトランザクションデータと、前記候補顧客のトランザクションデータに加えて、前記顧客及び前記候補顧客の顧客属性情報を更に用いる、
請求項1ないし3のいずれかに一項に記載の営業支援装置。
【請求項5】
前記関連度取得手段は、過去に金融商品の購入経験のない候補顧客について前記関連度を取得する際に、過去に金融商品の購入経験のある顧客のトランザクションデータを用いる、
請求項1ないし4のいずれか一項に記載の営業支援装置。
【請求項6】
営業支援装置が、
顧客のトランザクションデータに基づき、ターゲットとなる複数の顧客を金融商品の購入経験の有無によりグループに分類する分類手順と、
前記分類手順により分類された顧客のトランザクションデータと、候補顧客のトランザクションデータとを用いて、当該候補顧客の金融商品の購入見込みの程度である関連度を取得する関連度取得手順と、
前記関連度取得手順により関連度を取得した前記候補顧客について、前記関連度に基づき優先度順にリストする営業先優先度リスト作成手順と、
を実行する営業支援方法。
【請求項7】
コンピュータに、
顧客のトランザクションデータに基づき、ターゲットとなる複数の顧客を金融商品の購入経験の有無によりグループに分類する分類手段と、
前記分類手段により分類された顧客のトランザクションデータと、候補顧客のトランザクションデータとを用いて、当該候補顧客の金融商品の購入見込みの程度である関連度を取得する関連度取得手段と、
前記関連度取得手段により関連度を取得した前記候補顧客について、前記関連度に基づき優先度順にリストする営業先優先度リスト作成手段と、
して機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、営業支援装置、営業支援方法及びプログラムに関する。
【背景技術】
【0002】
近年、金融機関の間では顧客が必要とする金融商品を適切なタイミングで提案するEBM(イベントベースドマーケティング)に注目がされ始めている。EBMは、顧客(ターゲット)の属性情報や取引行動上の変化を顧客データベースから検知し、これを金融ニーズ発生の契機(イベント)であると予測して、顧客が求める金融商品の提案を実施するマーケティング手法である。
【0003】
従来でもEBMに類する手法として、比較的静的で変化しにくい顧客属性情報、預資産の残高、過去の金融購入履歴などの統計量に対して、任意に設けられた所定の閾値などの抽出条件として見込み顧客を発掘する手法が採用されてきた。例えば、預金額が定量的な閾値として預金額が1000万円以上の顧客を抽出し、抽出した見込み顧客に対し、例えば投資信託商品等の営業アプローチを行う。しかしながら、預金額が1000万円未満の顧客であってもニーズの高い顧客は存在するため、依然として潜在的なニーズのある顧客を逃してしまうことになる。また、顧客グループもあまり変化しないため、日々顧客ニーズの状況変化を適切にとらえられず、このため精度よく見込み顧客を抽出することが困難であった。
【0004】
金融機関のEBMに関する技術として、例えば特許文献1には、今回登録された今回企業固有情報と、前記今回企業固有情報よりも以前に登録されている前回企業固有情報とが異なる企業を対象企業として抽出し、前記対象企業に関する情報を担当者に配信することで営業活動を支援する取引企業開拓支援方法が記載されている。
【0005】
また、例えば特許文献2には、過去の振込履歴を基に、所定の継続的な振込を受けているまたは所定の継続的な振込をしている主口座と、所定の継続的な振込がない副口座とに分類する手段と、主口座に振り込まれた大口入金が、主口座の属性データを基に、所定の目的を持った入金であると判定する手段と、副口座に入金された大口入金が、所定の目的を持った入金である可能性がある候補入金であることを判定する手段と、候補入金の振込元と振込日が、主口座に振り込まれた大口入金の振込元と振込日と一致する場合に、副口座に入金された入金候補が、副口座の属性データを基に、主口座に振り込まれた大口入金と同じ目的の入金であることを判定する手段とを備えるシステムが記載されている。
【0006】
また、例えば特許文献3には、法人営業支援システムの法人抽出手段は、法人の間で行われた決済を示す法人決済情報が示す各決済に係る法人のうちから営業すべき法人を抽出する。法人抽出手段は、対象期間内に行われた各決済の入金側の法人及び受取側の法人の組み合わせと、当該対象期間よりも過去の過去期間内に行われた各決済の入金側の法人及び受取側の法人の組み合わせと、に基づいて、対象期間内に新規取引先に入金した法人と、対象期間内に新規取引先からの入金を受けた法人と、の少なくとも一方を抽出する。営業支援情報出力手段は、法人抽出手段により法人が抽出された場合、当該抽出された法人への営業を支援するための営業支援情報を出力する法人営業支援システムが記載されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許6208907号公報
【特許文献2】特許5850592号公報
【特許文献3】特許5416852号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上記特許文献1-3に記載される発明は、金融機関が保有する顧客情報(例えば、それぞれ企業固有情報、主口座及び副口座の残高、法人決済情報)の変化に着目し、想定ニーズに基づく一定のルールを抽出条件として定め、当該ルールに当てはまる顧客情報の変化が顧客データベースから検知された場合に、当該顧客をターゲット顧客として抽出する。
【0009】
しかしながら、ターゲット顧客の抽出条件は予めシステム管理者側が想定ニーズに基づいて定めた一般化されたルールである。このため言うまでもなく、当該ルールに当てはまらないにも関わらず高いニーズが予測されるターゲット顧客は抽出できない。即ち、顧客のライフスタイルは近年益々多様化してきており、顧客特徴の変化を一般化されたルールを用いるだけでは潜在的な見込み顧客をきめ細かく発掘することが困難である。
【0010】
本発明は、上記の点に鑑み提案されたものであり、一つの側面において、所定の金融商品にニーズが見込める顧客を精度よく抽出し、金融機関における効率的な営業活動を支援することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決するため、本発明に係る営業支援装置は、金融機関における営業支援装置であって、金融機関における顧客のトランザクションデータを取得する取得手段と、過去に金融商品を購入した時点における前記顧客の第1トランザクションデータと、現時点における当該顧客の第2トランザクションデータとの関連を判定する関連判定手段と、前記関連判定手段により前記第1トランザクションデータと第2トランザクションデータとが関連すると判定された顧客を抽出する抽出手段と、前記抽出手段により抽出された顧客を出力する出力手段と、を有する。
【0012】
また、上記の課題を解決するため、本発明に係る営業支援装置は、金融機関における営業支援装置であって、金融機関における顧客のトランザクションデータであって異なる種類のトランザクションデータを少なくとも二種類以上取得する取得手段と、過去に金融商品を購入した時点における前記顧客の第1トランザクションデータのパターンと、現時点における当該顧客の第2トランザクションデータのパターンとの関連を判定する関連判定手段と、前記関連判定手段により前記第1トランザクションデータのパターンと第2トランザクションデータのパターンとが関連すると判定された前記顧客を抽出する抽出手段と、前記抽出手段により抽出された顧客を出力する出力手段と、を有する。
【発明の効果】
【0013】
本発明の実施の形態によれば、一つの側面において、所定の金融商品にニーズが見込める顧客を精度よく抽出し、金融機関における効率的な営業活動を支援することができる。
【図面の簡単な説明】
【0014】
【
図1】本実施形態に係る営業支援システムの構成例を示す図である。
【
図2】本実施形態に係る管理サーバのハードウェア構成例を示す図である。
【
図3】本実施形態に係る管理サーバのソフトウェア構成例を示す図である。
【
図4A】金融機関システム10(例えば、普通預金や定期預金などの各種預金を管理する基幹システム)の有する顧客情報の一例を示す。
【
図4B】金融機関システム10(例えば、普通預金や定期預金などの各種預金を管理する基幹システム)の有する残高情報の一例を示す。
【
図4C】金融機関システム10(例えば、普通預金や定期預金などの各種預金を管理する基幹システム)の有する取引明細情報の一例を示す。
【
図4D】金融機関システム10(投資信託などの金融商品の販売実績を管理する販売管理システム)の有する投資信託情報の一例を示す。
【
図4E】金融機関システム10(顧客毎の資産運用ニーズに応じた金融商品を管理し提案するためのフロントコンプライアンスシステム)の有する資産運用ポリシー情報の一例を示す。
【
図4F】金融機関システム10(交渉履歴を管理する履歴システム)の有する交渉履歴情報の一例を示す。
【
図5】本実施形態に係る見込み顧客抽出処理を示すフローチャートである。
【
図6】過去の投資信託購入の日時における各トランザクションデータのパターン分布を示す。
【
図7】各トランザクションデータのパターン分布の関連を説明する図を示す。
【
図8】各トランザクションデータのパターン分布の関連を説明する図を示す。
【
図9】各トランザクションデータに基づく指標のパターン分布の関連を説明する図を示す。
【
図10】本実施形態に係る営業先優先度リストの一例を示す。
【
図11】本実施形態に係る営業商品優先度リスト(変形例)の一例を示す。
【
図12】各トランザクションデータのパターン分布の関連を説明する図を示す。
【発明を実施するための形態】
【0015】
本発明の実施の形態について、図面を参照しつつ詳細に説明する。
【0016】
<システム構成>
図1は、本実施形態に係る営業支援システムの構成例を示す図である。
図1の営業支援システム100は、金融機関システム10、営業推進支援システム20、管理サーバ30、加工DB40、及び営業端末50を含み、ネットワーク70を介して接続されている。
【0017】
金融機関システム10は、銀行等の金融機関が保有する各種システム及びDB(データベース)ある。金融機関システムは、例えば、普通預金や定期預金などの各種預金を管理する基幹システム、金融商品の販売実績を管理する販売管理システム、顧客毎の資産運用ニーズに応じた金融商品を管理し提案するためのフロントコンプライアンスシステム、交渉履歴を管理する履歴システム(CRM)、及び各システムに伴う各種DBを含む。なお、金融商品の種類としては、例えば投資信託、フリーローン、カードローン、マイカーローン、教育ローンなどが挙げられる。
【0018】
営業推進支援システム20は、金融機関における営業担当者の営業活動を支援・サポートするためのシステムである。例えば、営業担当者の顧客先を管理したり、営業日報などの営業進捗状況を管理する。またシステム上、担当者間で情報を共有し意見交換したり、上司に情報を報告し指示のやり取りも可能である。
【0019】
管理サーバ30は、加工DB40の加工データに基づいて、金融商品(例えば投資信託商品)を購入する可能性が高いと予測される見込み顧客を、その優先度(購入可能の高い順序)とともに共に抽出するサーバ装置である。また管理サーバ30は、優先度に基づいて、営業担当者に用いられる営業先優先度リストを作成(生成)する。
【0020】
更に、営業先優先度リストに基づいて営業担当者が営業活動を行った結果が営業推進支援システム20にフィードバックされると、管理サーバ30はその営業先優先度リスト(予測リスト)と、フィードバックされた結果とを照らし合わせて、予測の確かさを検証し、次回の営業先優先度リスト作成に反映させる。
【0021】
加工DB40は、金融機関により運用中の金融機関システム10のDBから生データ(加工前のためこのように呼ぶ)を逐次取得し、管理サーバ30が計算処理可能な形式に、取得した生データを加工した加工データを蓄積したDBである。機械学習手法は、テキスト、時系列データといった生の入力データはそのまま扱えないことが多いため、このような非構造データについては変換処理をかけてベクトルに変換する。なお、生データと加工データとは形式の違いはあれデータの持つ内容・意味自体は同じである。
【0022】
営業端末50は、例えばPC(パーソナル・コンピュータ)、スマートフォン、タブレット端末などであって、営業所又は外出先において営業担当者が使用するユーザ端末である。営業担当者は営業端末50を用いて管理サーバ10にアクセスし、営業先優先度リストを取得し表示する。上述したように営業先優先度リストは、所定の金融商品(例えば投資信託商品)を購入する可能性が高いと予測される見込み顧客を、優先度順にリスト化したものである。営業担当者は、営業先優先度リスト上の顧客(ターゲット)に優先度順に従ってアプローチしていくことで、限られた時間の中でも効率的な営業活動を行うことが可能となる。なお営業端末50には、管理サーバ30から営業先優先度リストを取得し表示するための所定のアプリケーション・プログラム、又はウェブブラウザ等が予めインストールされる。
【0023】
ネットワーク70は、有線、無線を含む通信ネットワークである。ネットワーク70は、例えば、インターネット、公衆回線網、WiFi(登録商標)などを含む。
【0024】
<ハードウェア構成>
図2は、本実施形態に係る管理サーバのハードウェア構成例を示す図である。
図2に示されるように、管理サーバ30は、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、RAM(Random Access Memory)33、HDD(Hard Disk Drive)34、及び通信装置35を有する。
【0025】
CPU31は、各種プログラムの実行や演算処理を行う。ROM32は、起動時に必要なプログラムなどが記憶されている。RAM33は、CPU11での処理を一時的に記憶したり、データを記憶したりする作業エリアである。HDD34は、各種データ及びプログラムを格納する。通信装置35は、ネットワーク70を介して他装置との通信を行う。
【0026】
<ソフトウェア構成>
図3は、本実施形態に係る管理サーバのソフトウェア構成例を示す図である。管理サーバ30は、主な機能部として、データ取得部301、特徴量算出部302、関連判定部303、抽出部304、営業先リスト作成部305、出力部306を有する。
【0027】
データ取得部301は、加工DB40(又は営業推進支援システム20)から、金融機関における顧客の顧客情報やトランザクションデータを取得する。
【0028】
特徴量算出部302は、顧客のトランザクションデータのパターンから当該トランザクションデータの特徴量(例えば特徴ベクトル)を算出する。
【0029】
関連判定部303は、過去に金融商品を購入した時点における顧客のトランザクションデータと、現時点における当該顧客のトランザクションデータとの関連度に基づいて関連の有無を判定する。例えば、トランザクションデータ間の関連を判定するための一つの手法として、特徴ベクトル化による距離判定を用いることができる。具体的に、顧客が金融商品を購入した過去時点における当該顧客のトランザクションデータのパターンから算出された特徴ベクトルと、現在(現時点)の当該顧客のトランザクションデータのパターンから算出された特徴ベクトルとの距離(関連度に相当)を算出し、当該距離が近いか否かに基づいて、両トランザクションデータにおける関連の有無を判定する。
【0030】
抽出部304は、関連判定部303により、過去に金融商品を購入した時点における顧客のトランザクションデータと、現時点における当該顧客のトランザクションデータとが関連すると判定された当該顧客を、営業先となる顧客として、優先度を示す情報とともに抽出する。
【0031】
営業先リスト作成部305は、抽出部304により抽出された顧客を優先度が大きい順序に並べた営業先リスト情報を作成する。
【0032】
出力部306は、営業端末50に営業先リスト情報を出力する。
【0033】
なお、各機能部は、管理サーバ30を構成するコンピュータのCPU、ROM、RAM等のハードウェア資源上で実行されるコンピュータプログラムによって実現されるものである。これらの機能部は、「手段」、「モジュール」、「ユニット」、又は「回路」に読替えてもよい。また、各DBは、管理サーバ30のHDD34やネットワーク70上の外部記憶装置に配置してもよい。また、管理サーバ30の各機能部は単一のサーバ装置のみにより実現されるのみならず、機能分散させて複数の装置からなるシステムとして実現してもよい。
【0034】
(金融機関システムのDBのデータ項目例)
次いで、金融機関システム10のDB(又は加工DB40)におけるデータ項目の一例を示す。但し言うまでもなく、
図4に示されるデータ項目はあくまで一例であり、その他のデータ項目があってもよい。
【0035】
図4Aは、金融機関システム10(例えば、普通預金や定期預金などの各種預金を管理する基幹システム)の有する顧客情報の一例を示す。顧客毎の顧客属性情報であり、口座開設時等に主に顧客からの申請に基づいて登録される。顧客の種類によって個人顧客用、法人顧客用がある。
【0036】
図4Bは、金融機関システム10(例えば、普通預金や定期預金などの各種預金を管理する基幹システム)の有する残高情報の一例を示す。例えば普通預金口座、当座預金口座、定期預金口座、外貨預金口座、投資信託口座など、顧客毎に保有する各口座の残高情報である。現時点(最新)の残高は言うまでもなく過去の全残高も記録される。
【0037】
図4Cは、金融機関システム10(例えば、普通預金や定期預金などの各種預金を管理する基幹システム)の有する取引明細情報の一例を示す。普通預金取引明細、クレジットカード利用明細、当座預金取引明細、為替取引明細など、顧客毎に発生した各取引の明細情報である。過去から現在迄の全取引が記録される。
【0038】
図4Dは、金融機関システム10(投資信託などの金融商品の販売実績を管理する販売管理システム)の有する投資信託情報の一例を示す。顧客投信口座情報、預り残高情報、分配金償還明細情報、損益情報など、顧客毎の投資信託にかかる各情報である。
【0039】
図4Eは、金融機関システム10(顧客毎の資産運用ニーズに応じた金融商品を管理し提案するためのフロントコンプライアンスシステム)の有する資産運用ポリシー情報の一例を示す。顧客毎の金融資産運用に対するポリシー・資産運用ニーズであり、投資信託口座開設時等に主に顧客からの申請に基づいて登録される。営業担当者は当該ポリシーに準じてポリシーニーズにマッチする金融商品や資産運用の提案等を行う。
【0040】
図4Fは、金融機関システム10(交渉履歴を管理する履歴システム)の有する交渉履歴情報の一例を示す。顧客毎に営業担当者や金融機関窓口担当者が行った交渉、提案又はDM送付履歴が記録される。これにより顧客と金融機関との過去の全交渉履歴が閲覧可能に管理される。
【0041】
ここで、顧客情報及び資産運用ポリシー情報は、比較的静的で変化しにくい情報である。一方、残高情報、取引明細情報、投資信託情報、及び交渉履歴情報は、比較的動的で変化しやすい情報であり、「トランザクションデータ」である。一般に、トランザクションデータとは、企業の情報システムなどが扱うデータの種類の一つで、業務に伴って発生した出来事の詳細を記録したデータのことをいう。
【0042】
本実施形態に係るトランザクションデータは、特に金融機関において預金の残高情報、取引明細情報、及び投資信託情報などのように、顧客の金融サービスの利用に伴い発生した出来事の詳細を記録したデータをいう。また、本実施形態に係るトランザクションデータは、顧客情報のように登録時からそれほど頻繁には情報の変化がない情報と比べて、比較的に日々の情報変化(更新頻度)が多いデータである。但し、更新頻度は個々の顧客単位でみれば、当該顧客の金融サービスの利用頻度に依存する面もあることから、具体的な更新頻度の多寡は問わない。
【0043】
<情報処理>
次いで、管理サーバ30の実行する各種の情報処理について詳しく説明する。
(データ更新処理)
管理サーバ30は、金融機関により運用中の金融機関システム10のDBから逐次の生データを取得し、管理サーバ30が計算処理可能な形式に取得した生データを加工・変換した加工データを加工DB40に更新する。更新のサイクルは、運用に応じて、例えば1秒毎、数秒~数十秒毎、1分毎、数分~数十分毎、1時間毎、数時間毎、1日毎、所定日毎など任意に設定することが可能であるが、更新間隔は短いほどよく、金融機関システム10のDB上の生データの更新とともにリアルタイムに更新されると望ましい。これにより、加工DB40には、生データと加工データとは形式の違いはあるものの、上記更新間隔毎に金融機関システム10のDBと同等のデータを更新する。
【0044】
(前処理)
本実施形態では、金融商品のうち一例として投資信託商品を購入する可能性が高いと予測される見込み顧客を抽出する事例を挙げて説明する。
【0045】
まず管理サーバ30は、顧客のトランザクションデータ(特に投資信託情報)に基づいて、ターゲットとなる顧客を過去に投資信託購入経験の有無によりグループに分類する。分類対象の顧客は、当該金融機関の既存顧客であり少なくとも普通預金等の口座を保有している顧客である。
・顧客グループA:過去に投資信託の購入経験があり実際に現在も投資信託を保有している顧客(投資信託の追加購入先ターゲット)、及び、過去に投資信託の購入経験はあるが現在は投資信託を保有していない顧客(投資信託の再購入先ターゲット)
・顧客グループB:普通預金等の預金口座のみを保有していて、過去に投資信託の購入経験がなく、現時点で投資信託を保有していない顧客(投資信託の新規購入先ターゲット)
【0046】
(投資信託の見込み顧客抽出処理)
次いで、投資信託の見込み顧客となる顧客を判定し抽出する処理について説明する。抽出された当該顧客は営業先として営業先優先度リストにリストアップされる。
【0047】
投資信託の見込み顧客抽出処理において、過去に投資信託の購入経験がある顧客グループAに分類される顧客については、当該顧客自身における過去購入時におけるトランザクションデータの特徴量を示す特徴ベクトルPと、当該顧客自身における現在のトランザクションデータの特徴量を示す特徴ベクトルNとを算出し、特徴ベクトルPと特徴ベクトルNとの距離に基づいて、当該顧客についての現在における投資信託の購入見込みの有無及びその程度を判定する。
【0048】
一方、過去に投資信託の購入経験がない顧客グループBに分類される顧客については、顧客グループAに分類される顧客の過去購入時におけるトランザクションデータの特徴量を示す特徴ベクトルP’と、当該顧客自身における現在時点のトランザクションデータの特徴量を示す特徴ベクトルNとを算出し、特徴ベクトルP’と特徴ベクトルNとの距離に基づいて、当該顧客についての現在における投資信託の購入見込みの有無及びその程度を判定する。以下詳しく説明する。
【0049】
図5は、本実施形態に係る見込み顧客抽出処理を示すフローチャートである。動作主体は管理サーバ30である。
【0050】
S1:管理サーバ30は、抽出対象となる候補顧客の中から、一の候補顧客を取得する。候補顧客は、所定の顧客セグメントである。候補顧客となる顧客セグメントは次のように選択・設定が可能である。例えば当該金融機関の有する全顧客(例えば口座を保有する顧客)であり、営業支店のくくりであれば当該支店の有する全顧客(例えば口座を保有する顧客)であり、又は営業担当者のくくりであれば当該営業担当者が担当する全顧客である。またもしくは過去に投資信託の購入経験がなく口座を保有する顧客(上述の顧客グループBに相当)、過去に投資信託の購入経験があり口座を保有する顧客(上述の顧客グループAに相当)というくくりでもよい。更に当該金融機関の有する全顧客のうち具体的な顧客数で設定することも可能である。候補顧客の1人1人毎に対して見込み顧客であるか否かの判定が実行される。また候補顧客は詳細条件(住居地、年齢、職業、収入等の顧客属性情報)が入力されることで任意に決定されてもよい。
【0051】
S2:管理サーバ30は、S1で取得した候補顧客が、過去に投資信託の購入経験があるか否かを判定する。S1で取得した候補顧客が過去に投資信託の購入経験がある、即ち顧客グループAに分類される場合、S3へ進む。一方、S1で取得した候補顧客が過去に投資信託の購入経験がない、即ち顧客グループBに分類される場合、S21へ進む。
【0052】
S3:管理サーバ30は、加工DB40から、顧客グループAに分類される当該候補顧客が過去に投資信託を購入した時点(又は購入直前に相当する購入前の所定期間)のトランザクションデータを取得する。
【0053】
取得するトランザクションデータは、一種類のトランザクションデータのみではなく、購入日時点における少なくとも二種類以上のトランザクションデータを取得する。また、どの種類のトランザクションデータを取得するかについて、全種類のトランザクションデータを取得することも可能であるが、望ましくは適切な種類のトランザクションデータを選択的に取得するとよい。どの種類のトランザクションデータを選択するか個別具体的には対象の金融商品によるものの、例えば対象の金融商品を購入した顧客のトランザクションデータ履歴分析や、営業活動の結果(即ち営業先優先度リストにリストされた顧客が最終的に投資信託を購入したか否か)に基づいて選択し、また当該選択を変更・修正することも可能である。
【0054】
また、複数の投資信託購入の日時が特定された場合、全ての購入日時におけるトランザクションデータ(トランザクションデータ値)を取得する。またもしくは複数の投資信託購入の日時が特定された場合には、例えば最新の日時など、何れか一の日時におけるトランザクションデータを取得するようにしてもよい。
【0055】
S4:管理サーバ30は、S3で取得した複数のトランザクションデータのパターン(複数のトランザクションデータ(値)の組み合わせ)から特徴ベクトルPを算出する。算出した特徴ベクトルPは、当該候補顧客が過去投資信託を購入した時点における当該候補顧客のトランザクションデータ状況の特徴量を示している。なお、複数の投資信託購入の日時が特定されて複数の購入日時におけるトランザクションデータを取得していた場合には、それぞれの購入日時における特徴ベクトルP(P1、P2、P3・・・)を算出することができる。
【0056】
図6は、過去の投資信託購入の日時における各トランザクションデータのパターン分布を示す。図中、A、B、C、D、Eは、それぞれ異なる種類のトランザクションデータの項目である。当該顧客は、各々のトランザクションデータ値がそれぞれ
図6のパターン分布となったタイミングで過去に投資信託を購入した実績がある。よって特徴ベクトルPは、当該顧客の投資信託需要が高まると予測される状況を、金融機関の有する過去のトランザクションデータのパターン分布(特徴群)をもとに数値化したものである。
【0057】
S5:管理サーバ30は、加工DB40から、今度は当該候補顧客における現在時点のトランザクションデータを取得する。現在時点におけるトランザクションデータは、加工DB40上に最終更新されたトランザクションデータである。また、取得するトランザクションデータは、S3で取得したトランザクションデータと対応させて同じ種類のトランザクションデータを取得する。比較対象となるトランザクションデータの種類を一致させるためである。
【0058】
S6:管理サーバ30は、S5で取得したトランザクションデータのパターン(トランザクションデータ(値)の組み合わせ)から特徴ベクトルNを算出する。算出した特徴ベクトルNは、当該候補顧客の現在時点における当該候補顧客のトランザクションデータ状況の特徴量を示している。
【0059】
S7:管理サーバ30は、特徴ベクトルPと特徴ベクトルNとの関連判定処理を実行する。過去に投資信託の購入経験がある顧客グループAに分類される顧客については、当該顧客自身における過去購入時におけるトランザクションデータの特徴ベクトルPと、当該顧客自身における現在のトランザクションデータの特徴ベクトルNとの距離(関連度に相当)を算出し、算出した距離に基づいて、関連の有無を判定する。
【0060】
具体的には、まず管理サーバ30は特徴ベクトルPと特徴ベクトルNとの距離を算出する。なお、特徴ベクトルの距離は従来手法により算出されうるが、算出された特徴ベクトル間の距離が近いほど関連の度合いが高く(大きく)なり、距離が遠いほど関連の度合いが低く(小さく)なる。
【0061】
次いで、算出された特徴ベクトル間の距離が、基準値よりも小さいか否かを判定する(基準値よりも近いか否かを判定する)。基準値よりも小さい場合、特徴ベクトルPと特徴ベクトルNとの距離が近いため、特徴ベクトルPと特徴ベクトルNとは関連すると判定する。なお、当該基準値は、関連判定処理において特徴ベクトルが関連するか否かを判定するための基準として用いられる値であるが、必ずしも固定的な値ではなく、相対的に算出される動的な値でありうる。
【0062】
そして、特徴ベクトルPと特徴ベクトルNとが関連する場合に、当該候補顧客を投資信託の購入見込みがありと判定するとともに、あわせて関連度として先に算出された特徴ベクトル間の距離を取得する。本実施形態においては、特徴ベクトルPと特徴ベクトルNとの距離の値が小さい(近い)、即ち特徴ベクトルPと特徴ベクトルNとの関連度が高いほど投資信託の購入見込みの程度・期待度が高いことを意味している。
【0063】
図7は、各トランザクションデータのパターン分布の関連を説明する図を示す。同じ顧客(例えば山田花子)であっても各トランザクションデータは日々刻々と変化する。そして、顧客グループAに分類される顧客(例えば山田花子)の日々のトランザクションデータのパターン分布(特徴ベクトルNに対応)が、当該顧客(例えば山田花子)の過去に投資信託を購入したときのトランザクションデータのパターン分布(特徴ベクトルPに対応)と関連する場合、そのときが当該顧客(例えば山田花子)にとって投資信託の購入の可能性が高いタイミングである。
【0064】
図中、例えば2019年1月7日(2週間前時点)、2019年1月14日(1週間前時点)の顧客山田花子におけるトランザクションデータのパターン分布は何れも、顧客山田花子における過去の投資信託購入の日時における各トランザクションデータのパターン分布と関連しない。一方、各トランザクションデータが刻々と時間により変化した結果、2019年1月21日(現時点)において、顧客山田花子におけるトランザクションデータのパターン分布と、顧客山田花子における過去の投資信託購入の日時における各トランザクションデータのパターン分布とが関連する。つまり、2019年1月21日(現時点)において、現時点のトランザクションデータのパターン分布が顧客山田花子自身が過去実際に投資信託を購入したときの状況と同じ状況下にあることを示し、再び投資信託の購入の可能性が高い現在において、顧客山田花子に対して投資信託商品を営業する適切なタイミングであることを意味している。
【0065】
ここで、各トランザクションデータが刻々と変化するため、トランザクションデータが仮にこの後大きく変化したような場合には、顧客山田花子におけるトランザクションデータのパターン分布と、顧客山田花子における過去の投資信託購入の日時における各トランザクションデータのパターン分布とが関連しなくなる。このような場合、既に顧客山田花子は投資信託の購入の可能性が高い状況にはないと考えられ、顧客山田花子に対して投資信託商品を営業すべき適切なタイミングを逸したともいえる。
【0066】
なお、複数の投資信託購入の日時が特定されて複数の購入日時におけるトランザクションデータを取得していた場合、それぞれの購入日時における特徴ベクトルP(P1、P2、P3・・・)と、特徴ベクトルNとの間でそれぞれ関連判定処理を実行し、何れか1つの特徴ベクトルPと特徴ベクトルNとの距離が基準値よりも小さいときには、関連すると判定することができる。更に、複数の特徴ベクトルPと関連すると判定された場合、一層再び投資信託の購入の可能性が高いといえるため、関連すると判定された特徴ベクトルPの数が多いほど、関連度として取得する距離をより大きく変更することができる。またもしくは、関連度として取得する距離を、特徴ベクトルP(P1、P2、P3・・・)と特徴ベクトルNとの関連判定時に取得された複数の距離のうち最大値としたり、取得された複数の距離の平均値とすることもできる。
【0067】
S8:関連判定処理の結果、特徴ベクトルPと特徴ベクトルNとが関連すると判定された場合は、S9へ進む。関連すると判定されない場合は、S10へ進む。
【0068】
S9:当該候補顧客を、現在時点において投資信託の購入可能性が高いと予測される見込み顧客として抽出する。また関連度として先に算出された特徴ベクトル間の距離を取得する。
【0069】
S10:未処理の候補顧客があるか否かを判定する。未処理の候補顧客がある場合は、再びS1へ進む。全ての候補顧客について本処理を実行した場合は、本処理を終了する。
【0070】
S21:一方、S2で候補顧客が過去に投資信託の購入経験がない場合に、管理サーバ30は、過去に投資信託の購入経験がある顧客(顧客グループA)のうち、当該候補顧客と顧客情報(顧客属性情報)が類似したり関連性を有する顧客(類似顧客という)を決定する。例えば、年齢、性別、職業、年収など、近しく同じような顧客属性を有する顧客同士は、似たようなトランザクションデータのパターン状況下において投資信託を購入するタイミングもまた近しい可能性が高いといえるためである。
【0071】
S22:管理サーバ30は、加工DB40から、S21で決定した類似顧客が過去に投資信託を購入した時点(又は購入直前に相当する購入前の所定期間)のトランザクションデータを取得する。取得するトランザクションデータは、一種類のトランザクションデータのみではなく、特定日時点における少なくとも二種類以上のトランザクションデータを取得する。
【0072】
なお、複数の類似顧客が存在する場合、S21で複数の類似顧客を決定し、S22で当該複数の類似顧客が過去に投資信託を購入した時点のトランザクションデータを全て取得してもよい。
【0073】
S23:管理サーバ30は、S22で取得したトランザクションデータのパターン(トランザクションデータ(値)の組み合わせ)から特徴ベクトルP’を算出する。算出した特徴ベクトルP’は、当該類似顧客が過去投資信託を購入した時点における当該類似顧客のトランザクションデータ状況の特徴量を示している。
【0074】
また、S22で当該複数の類似顧客が過去に投資信託を購入した時点のトランザクションデータを取得した場合、複数の特徴ベクトルP’(P’1、P’2、P’3・・・)を算出してもよい。
【0075】
S24:管理サーバ30は、加工DB40から、今度は顧客グループBに分類される当該候補顧客における、現在時点のトランザクションデータを取得する。現在時点におけるトランザクションデータは、加工DB40上に最終更新されたトランザクションデータである。また、取得するトランザクションデータは、S22で取得したトランザクションデータと対応させて同じ種類のトランザクションデータを取得する。
【0076】
S25:管理サーバ30は、S24で取得したトランザクションデータのパターン(トランザクションデータ(値)の組み合わせ)から特徴ベクトルNを算出する。算出した特徴ベクトルNは、当該候補顧客の現在時点における当該候補顧客のトランザクションデータ状況の特徴量を示している。
【0077】
S26:管理サーバ30は、特徴ベクトルP’と特徴ベクトルNとの関連判定処理を実行する。過去に投資信託の購入経験がない顧客グループBに分類される顧客については、顧客グループAに分類される顧客の過去購入時におけるトランザクションデータの特徴ベクトルP’と、当該顧客自身における現在時点のトランザクションデータの特徴ベクトルNとの距離を算出し、算出した距離が基準値よりも小さい場合、特徴ベクトルP’と特徴ベクトルNとの距離が近いため、特徴ベクトルP’と特徴ベクトルNとは関連すると判定する。
【0078】
図8は、各トランザクションデータのパターン分布の関連を説明する図を示す。同じ顧客(例えば鈴木一郎)であっても各トランザクションデータは日々刻々と時間により変化する。顧客グループBに分類される顧客(例えば鈴木一郎)の日々のトランザクションデータのパターン分布(特徴ベクトルNに対応)が、顧客グループAに属し顧客属性が類似したり関連性を有する顧客(例えば山田花子)の過去に投資信託を購入したときのトランザクションデータのパターン分布(特徴ベクトルP’に対応)と関連すると判定されたした場合、このときが当該顧客(例えば鈴木一郎)にとって投資信託の購入の可能性が高いタイミングである。
【0079】
図中、例えば2019年1月7日(2週間前時点)、2019年1月14日(1週間前時点)において、過去に投資信託の購入経験がない顧客鈴木一郎におけるトランザクションデータのパターン分布は何れも、過去に投資信託の購入経験がある顧客山田花子における過去の投資信託購入の日時における各トランザクションデータのパターン分布と関連しない。一方、2019年1月21日(現時点)の顧客鈴木一郎におけるトランザクションデータのパターン分布と、過去に投資信託の購入経験がある顧客山田花子における過去の投資信託購入の日時における各トランザクションデータのパターン分布とが関連する。つまり、2019年1月21日(現時点)において、顧客鈴木一郎における現在のトランザクションデータのパターン分布が類似したり関連性を有する顧客属性を持った顧客山田花子が過去実際に投資信託を購入したときの状況と同じ状況下にあることを示し、投資信託の購入の可能性が高い現在において、顧客鈴木一郎に対して投資信託商品を営業する適切なタイミングであることを意味している。
【0080】
関連判定処理の結果、特徴ベクトルP’と特徴ベクトルNとが関連する場合は(S8:YES)、当該候補顧客を、現在時点において投資信託の購入可能性が高いと予測される見込み顧客として、関連度として先に算出された特徴ベクトル間の距離とともに抽出する(S9)。また、未処理の候補顧客があるか否かを判定し(S10)、未処理の候補顧客がある場合は、再びS1へ進む。全ての候補顧客について本処理を実行した場合は、本処理を終了する。
【0081】
従来、ターゲット顧客とニーズと関係性について、経験や知見に基づいてもしくは一ないし複数のデータ値(例えばデータ値の多寡、又は所定値との一致・不一致等)のみに基づいて判定していたところ、本実施形態においては、様々なトランザクションデータ値の相互パターン(相互的組み合わせ)もしくは相対パターン(相対的組み合わせ)に基づいて判定する。
【0082】
例えば複数のトランザクションデータのうち、1つのトランザクションデータ値(定期預金口座残高等)ともう1つのトランザクションデータ値が高く変化した状況(普通預金口座残高等)とが共に低い範囲で推移変化していたとしても、あるとき両トランザクションデータ値が高いまでとは言えない中程度の高さの値にそれぞれ変化した状況に、顧客の投資信託購買意欲が高まる場合がある。何れか1つのトランザクションデータ値の多寡のみに着目していた場合、この投資信託購買意欲の高まりを見逃してしまう。
【0083】
即ち、本実施形態によれば、従来手法では抽出困難であったにも関わらず高いニーズが予測されるターゲット顧客を抽出することが可能である。また、顧客自身の過去と現在との日々変化するトランザクションデータから、顧客個人毎に金融商品の買いやすさのタイミングを計算により定量化し判定する。このため、営業担当者は、顧客個人に特化した適切なタイミングで金融商品の提案・営業等を行なうことで、営業効率を向上させることが可能となる。
【0084】
(補足1)
図9は、各トランザクションデータに基づく指標のパターン分布の関連を説明する図を示す。
図7、8に示したA~Eのトランザクションデータは、1つ1つのトランザクションデータと必ずしも単独で1対1に対応しなくてもよい。例えば、A~Eを、下記のような指標とする。各指標は、一以上のトランザクションデータ、顧客情報、及び/又は、資産運用ポリシー情報を含んでなる指標データである。
A:「リスク許容度」・・投信信託情報、資産運用ポリシー情報等に基づく指標データ
B:「取引経験」・・各取引履歴、投信信託情報等に基づく指標データ
C:「大口入金」・・普通預金残等に基づく指標データ
D:「投資余力」・・普通預金残、流動性預金残、投資信託残高等に基づく指標データ
E:「投資タイミング」・・顧客情報、普通預金入出金(給与、賞与支給日等)等に基づく指標データ
【0085】
顧客において、各トランザクションデータは顧客個人毎の金融サービスの利用に伴い変化し、指標データもまた変化する。そして、顧客の日々の指標データのパターン分布(特徴ベクトルNに対応)が、当該顧客の過去に投資信託を購入したときの指標データのパターン分布(特徴ベクトルP、特徴ベクトルP’に対応)と関連する場合、そのときが当該顧客にとって投資信託の購入の可能性が高いタイミングである。
【0086】
これにより、一層購入見込みの高い顧客を抽出するという観点から、現在のトランザクションデータ、顧客情報、及び/又は、資産運用ポリシー情報に基づいてより有効性の高く現実的な指標を作成し、当該指標の相互パターン分布に基づいて、当該顧客について投資信託の購入の可能性の高低を判定することが可能となる。
【0087】
(補足2)
所定のトランザクションデータであって、例えば普通預金口座残高が過去300万円のときに投資信託を購入した経験がある顧客の場合、現在の普通預金口座残高が300万円前後であれば、現在と過去のトランザクションデータが一致するため、これらは関連すると判定される。
【0088】
一方、現在の普通預金口座残高が500万円前後の場合、現在と過去のトランザクションデータは関連しないと判定される恐れがある。しかしながら、過去300万円のときに投資信託を購入した経験がある顧客であれば、500万円のときにも投資信託を購入する可能性は高い。このような場合に、預金口座残高が多い分には関連しないとはせずに、過去の購入時の預金残高よりも現在の預金残高が高い分には関連するとみなすようにすることができる。
【0089】
具体的には、この種の所定のトランザクションデータがある場合、過去に投資信託を購入した時点の当該トランザクションデータを取得し、現在時点のトランザクションデータが過去に投資信託を購入した時点の当該トランザクションデータよりも大きい場合は、現在時点のトランザクションデータを過去に投資信託を購入した時点の当該トランザクションデータの値と一致又は近似するよう補正する。その上で、この種の当該トランザクションデータを1つのトランザクションデータとして含んで特徴ベクトルを算出することができる。
【0090】
なお、この種の所定のトランザクションデータが、例えばリスク許容度のように小さいほど望ましい種類である場合には逆もある。即ち、現在時点のトランザクションデータが過去に投資信託を購入した時点の当該トランザクションデータよりも小さい場合は、現在時点のトランザクションデータを過去に投資信託を購入した時点の当該トランザクションデータの値と一致又は近似するよう補正する。その上で、この種の当該トランザクションデータを1つのトランザクションデータとして含んで特徴ベクトルを算出することができる。
【0091】
(営業先優先度リスト作成処理)
管理サーバ30は、営業担当者の営業端末50から営業先優先度リストの取得要求又は表示要求を受信すると、見込み顧客抽出処理(S9)により抽出した候補顧客を、優先度順(取得した関連度の高い順/取得した距離が近い順)に並べた営業先優先度リストを作成する。また、管理サーバは、営業端末50からの取得要求に基づいて、作成した営業先優先度リストを応答する。
【0092】
図10は、本実施形態に係る営業先優先度リストの一例を示す。営業担当者は営業端末50上、管理サーバ10から営業先優先度リスト画面を取得し表示する。営業先優先度リスト51は、例えば、営業支店の選択欄52、営業担当者の選択欄53、金融商品の選択欄54、顧客数指定欄55、リスト56を有する。
【0093】
営業支店の選択欄52は、営業支店を選択する欄である。選択された営業支店に口座を有する顧客が営業先優先度リスト51の対象候補顧客となる。
【0094】
営業担当者の選択欄53は、営業担当者を選択する欄である。選択された営業担当者が担当する顧客が営業先優先度リスト51の対象候補顧客となる。
【0095】
金融商品の選択欄54は、リスト検索のキーとなる金融商品の種類を選択する欄である。選択された金融商品について購入見込みがある顧客が営業先優先度リスト51の対象候補顧客となる。
【0096】
顧客数指定欄55は、リスト56に表示する顧客数(件数)を指定選択する欄である。優先度及びスコアが上位である顧客から指定された顧客数分の顧客がリスト56に表示される。営業担当者が例えばその日にアプローチ可能な顧客数を指定する。
【0097】
リスト56は、選択された営業支店に口座を有し選択された営業担当者が担当する顧客のうち、選択された金融商品に関して見込み顧客抽出処理により抽出した顧客を優先度順に並べた営業先リストである。また、リスト56は、優先度56a、スコア56b、顧客グループ56c、顧客情報56d・・などの項目を有する。
【0098】
優先度56aは、営業すべき優先順序を示す。S9で取得した関連度が高いほど(取得した距離が近いほど)、投資信託の購入見込みが高いため、当該優先度56aは、取得した関連度(距離)に対応する。つまり、リスト56上において顧客は、見込み顧客抽出処理により抽出した顧客とともに取得された関連度が高い順(距離が近い順)に並べられる。優先度56aが上位ほど選択された金融商品に関して購入見込みが高いので、営業担当者は優先度56aの上位から順番に顧客へアプローチすることによって、効率的な営業が可能となる。
【0099】
スコア56bは、関連度(距離)そのものの値又はその補正値である。営業担当者がそれぞれの顧客毎の購入見込みの程度を具体的な数値により把握することができる。
【0100】
顧客グループ56cは、当該顧客による金融商品54の購入経験の有無を示す。例えば上述に即して、過去に投資信託の購入経験があり実際に現在も投資信託を保有している顧客(投資信託の追加購入先ターゲット)はA1、過去に投資信託の購入経験はあるが現在は投資信託を保有していない顧客(投資信託の再購入先ターゲット)はA2、過去に投資信託の購入経験がなく現時点で投資信託を保有していない顧客(投資信託の新規購入先ターゲット)はBとする。営業担当者にとって金融商品の提案・営業時の参考情報である。
【0101】
顧客情報56dは、顧客の顧客番号、氏名、年齢・・などを含む顧客の情報である。営業担当者はリスト56上、当該顧客情報56dを参照しながら顧客へのアプローチ等を行なう。
【0102】
なお、営業先優先度リストの作成処理時に、営業推進支援システム20の過去の交渉履歴をもとに、営業先優先度リスト51(リスト56)から既に営業中又は営業済みの顧客を除外することも可能である。重複営業を避けるためである。
【0103】
また、リスト56中において、顧客のスコア56bとその次の優先度の顧客のスコア56bとのスコアの開きが大きい場合(例えばスコアが0.1以上)、顧客とその次の顧客とを区分する表示56eを例えば矢印、線や色で示す。例えば
図10における表示56eの場合、営業担当者は優先度6と優先度7とのスコアの開きが大きいため、特に営業時間が限られている場合等に、表示56eに従い優先度1~6までの顧客のみに対してアプローチすることで、例えば優先度1~7までの顧客に対してアプローチする場合よりも、時間対効果を最適化することが可能となる。この場合、リスト56内における優先度1~10までの顧客を、表示56eに従い更に第1優先度グループ1~6、第2優先度グループ7~10といったように営業的に優先すべきグループに分けた意味合いとなっている。
【0104】
以上、営業先優先度リスト51によれば、営業先優先度リスト51を作成した現時点においてアプローチすることが適切な顧客をリスト化することが可能である。営業担当者は、営業先優先度リスト51に基づいて、金融商品の提案・営業等を行なうことで、営業効率を向上させることが可能となる。
【0105】
<変形例>
次に、営業商品優先度リストについて説明する。
図10の営業先優先度リストは、いわば金融商品(例えば投資信託)をキーとして、当該金融商品の購入見込みが高い顧客をその優先度を付けてリストとしたものであった。本変形例に係る営業商品優先度リストは、顧客(例えば山田花子)をキーとして、複数種類の金融商品のうち、当該顧客にとって購入の可能性が高い金融商品(金融商品の種類)をその優先度を付けてリストとしたものである。
【0106】
図11は、本実施形態に係る営業商品優先度リスト(変形例)の一例を示す。営業商品優先度リスト61は、例えば、顧客番号の入力欄62、検索ボタン63、顧客情報64、リスト65を有する。
【0107】
例えば顧客窓口において顧客(例えば山田花子)が来店し、当該顧客に対してお勧めの金融商品を提案する場面を想定する。営業担当者は営業端末50上、当該顧客の顧客番号を入力欄62に入力し、検索ボタン63を押下することで、当該顧客の顧客情報64及びリスト65を表示させる。
【0108】
リスト65は、選択された顧客に関して購入見込みが高いとされる各々の金融商品を優先度順に並べた営業商品優先度リストである。
【0109】
優先度65aは、営業すべき優先順序を示す。優先度65aにより顧客は各々の金融商品とともに取得された関連度が高い順(距離が近い順)に並べられる。優先度65aが上位ほど選択されたその金融商品に関して購入見込みが高いので、営業担当者は優先65aの上位から順番に顧客へアプローチすることによって、効率的な商品提案が可能となる。
【0110】
スコア65bは、関連度(距離)そのものの値又はその補正値である。営業担当者がそれぞれの金融商品毎の購入見込みの程度を具体的な数値により把握することができる。
【0111】
金融商品名65cは、当該顧客に営業提案(推奨)すべき具体的な金融商品の種類・名称を示す。また「上限枠」「直近購入日」など具体的な金融商品に応じた関連情報を表示することができる。営業担当者はリスト65上、当該金融商品名65cを参照しながら顧客への商品提案等を行なう。
【0112】
図12は、各トランザクションデータのパターン分布の関連を説明する図を示す。上述したように、同じ顧客であっても各トランザクションデータは日々刻々と変化する。そして、顧客(例えば山田花子)の日々のトランザクションデータのパターン分布が、当該顧客の過去に各々の種類の金融商品(例えば投資信託、マイカーローンとする)を購入したときのトランザクションデータのパターン分布と関連する場合、そのときが当該顧客(例えば山田花子)にとってその種類の金融商品の購入の可能性が高いタイミングである。
【0113】
また、当該顧客(例えば山田花子)が過去に購入したことがない種類の金融商品(例えばフリーローン、カードローン、教育ローンとする)については、過去に当該金融商品を購入したことがあって当該顧客(例えば山田花子)と類似したり関連性を有する顧客属性を持った類似顧客を決定し、類似顧客が過去に各々の種類の金融商品(例えばフリーローン、カードローン、教育ローンとする)を購入したときのトランザクションデータのパターン分布との関連を判定する。
【0114】
具体的に、まず投資信託について、顧客窓口において顧客(例えば山田花子)が来店した2019年1月21日(現時点)において、顧客山田花子におけるトランザクションデータのパターン分布と、顧客山田花子における過去の投資信託購入の日時における各トランザクションデータのパターン分布とは関連しない。
【0115】
次にマイカーローンについて、2019年1月21日(現時点)において、顧客山田花子におけるトランザクションデータのパターン分布と、顧客山田花子における過去のマイカーローン購入の日時における各トランザクションデータのパターン分布とは関連する。
【0116】
次にフリーローンについて、当該顧客(例えば山田花子)は過去にフリーローンを購入したことがないため、過去にフリーローンを購入したことがあり当該顧客(例えば山田花子)と類似したり関連性を有する顧客属性を持った類似顧客(例えば田中太郎)を決定する。2019年1月21日(現時点)において、顧客山田花子におけるトランザクションデータのパターン分布と、顧客田中太郎における過去のフリーローン購入の日時における各トランザクションデータのパターン分布とは関連する。
【0117】
次にカードローンについて、当該顧客(例えば山田花子)は過去にカードローンを購入したことがないため、過去にカードローンを購入したことがあり当該顧客(例えば山田花子)と類似したり関連性を有する顧客属性を持った類似顧客(例えば鈴木二郎)を決定する。2019年1月21日(現時点)において、顧客山田花子におけるトランザクションデータのパターン分布と、顧客鈴木二郎における過去のカードローン購入の日時における各トランザクションデータのパターン分布とは関連する。
【0118】
次に教育ローンについて、当該顧客(例えば山田花子)は過去に教育ローンを購入したことがないため、過去に教育ローンを購入したことがあり当該顧客(例えば山田花子)と類似したり関連性を有する顧客属性を持った類似顧客(例えば佐藤一子)を決定する。2019年1月21日(現時点)において、顧客山田花子におけるトランザクションデータのパターン分布と、顧客佐藤一子における過去の教育ローン購入の日時における各トランザクションデータのパターン分布とは関連しない。
【0119】
以上のように、本変形例に係る管理サーバ30の関連判定部303は、各々の金融商品の種類の毎に、顧客におけるトランザクションデータのパターン分布と、過去の当該金融商品購入の日時における各トランザクションデータのパターン分布との関連を判定する。
【0120】
次に、抽出部304は、関連判定部303により顧客のトランザクションデータのパターン分布が関連している当該金融商品の種類を、営業すべき金融商品として、優先度を示す関連度とともに抽出する。具体的には、金融商品のうちマイカーローン、フリーローン、カードローンを、営業すべき金融商品として、上述した特徴ベクトル間の距離など、関連の度合いを示す関連度とともに抽出する。そして営業先リスト作成部305は、抽出部304により抽出された各々の種類の金融商品を優先度(関連度に対応)が大きい順序に並べた営業商品リスト情報を作成する(
図11)。
【0121】
なお、過去に投資信託を購入したことがあるか否かは例えば
図4Dの投資信託情報の一例を参照できるが、金融商品のうち、例えばフリーローン、カードローン、マイカーローン、教育ローンについても、同様に非図示の金融機関システム10(各種の金融商品の販売実績を管理する販売管理システム)を参照することで、過去に投資信託を購入したことがあるか否かを判定することが可能である。
【0122】
また、投資信託をキーとして、投資信託商品A、投資信託商品B・・といったように、当該顧客にとって購入の可能性が高い具体的な投資信託の商品名をその優先度を付けてリスト(投資信託商品優先度リスト)とすることも可能である。この場合、各々の投資信託商品毎に、顧客におけるトランザクションデータのパターン分布と、過去の当該投資信託商品購入の日時における各トランザクションデータのパターン分布との関連を判定することができる。
【0123】
<総括>
以上、本実施形態に係る営業支援システム100によれば、所定の金融商品にニーズが見込める顧客を精度よく抽出し、金融機関における効率的な営業活動を支援することが可能である。
【0124】
なお、本発明の好適な実施の形態により、特定の具体例を示して本発明を説明したが、特許請求の範囲に定義された本発明の広範な趣旨および範囲から逸脱することなく、これら具体例に様々な修正および変更を加えることができることは明らかである。すなわち、具体例の詳細および添付の図面により本発明が限定されるものと解釈してはならない。
【0125】
管理サーバ30は、当該サーバの機能面から着目することで、営業支援装置、見込み顧客抽出装置、及び営業先リスト作成装置などと称することができる。
【0126】
<本実施形態から抽出される発明群について>
以下、上述の実施形態から抽出される発明群の特徴について記載する。
【0127】
(付記A1)
金融機関における営業支援装置であって、
金融機関における顧客のトランザクションデータを取得する取得手段と、
過去に金融商品を購入した時点における前記顧客の第1トランザクションデータと、現時点における当該顧客の第2トランザクションデータとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータと第2トランザクションデータとが関連すると判定された顧客を抽出する抽出手段と、
前記抽出手段により抽出された顧客を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0128】
(付記A2)
金融機関における営業支援装置であって、
金融機関における顧客のトランザクションデータであって異なる種類のトランザクションデータを少なくとも二種類以上取得する取得手段と、
過去に金融商品を購入した時点における前記顧客の第1トランザクションデータのパターンと、現時点における当該顧客の第2トランザクションデータのパターンとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータのパターンと第2トランザクションデータのパターンとが関連すると判定された前記顧客を抽出する抽出手段と、
前記抽出手段により抽出された顧客を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0129】
(付記A3)
前記出力手段は、前記抽出手段により複数の顧客が抽出された場合に、前記関連判定手段により判定された前記関連の度合いが大きい順序に、前記顧客を出力すること、
を特徴とする付記A1又は付記A2に記載の営業支援装置。
【0130】
(付記A4)
前記出力手段は、前記抽出手段により複数の顧客が抽出された場合に、前記関連判定手段により判定された前記関連の度合いが大きい順序に並べたリストを端末に、前記顧客を出力すること、
を特徴とする付記A1又は付記A2に記載の営業支援装置。
【0131】
(付記A5)
前記出力手段は、前記関連の度合いが大きい順序に前記顧客を出力する際に、第1顧客と、該第1顧客の次に前記関連の度合いが大きい第2顧客とにおいて、該関連の度合いの差が所定以上大きい場合、前記第1顧客と前記第2顧客との区分を示すこと、
を特徴とする付記A3又は付記A4に記載の営業支援装置。
【0132】
(付記A6)
前記顧客のトランザクションデータのうち、所定のトランザクションデータについては、
前記関連判定手段は、前記第1トランザクションデータよりも、前記第2トランザクションデータが大きい場合、該第2トランザクションデータを、前記第1トランザクションデータと一致又は近似させること、
を特徴とする付記A1又は付記A2に記載の営業支援装置。
【0133】
(付記A7)
前記顧客のトランザクションデータのうち、所定のトランザクションデータについては、
前記関連判定手段は、前記第1トランザクションデータよりも、前記第2トランザクションデータが小さい場合、該第2トランザクションデータを、前記第1トランザクションデータと一致又は近似させること、
を特徴とする付記A1又は付記A2に記載の営業支援装置。
【0134】
(付記A8)
前記過去に金融商品を購入した時点が複数存在する場合に、
前記関連判定手段は、複数の前記過去の時点における前記第1トランザクションデータのそれぞれと、前記第2トランザクションデータとの関連を判定し、
前記抽出手段は、前記関連判定手段により少なくとも一以上の前記過去の時点における前記第1トランザクションデータと前記第2トランザクションデータとが関連すると判定された顧客を抽出すること、
を特徴とする付記A1に記載の営業支援装置。
【0135】
(付記A9)
前記過去に金融商品を購入した時点が複数存在する場合に、
前記関連判定手段は、複数の前記過去の時点における前記第1トランザクションデータのパターンそれぞれと、前記第2トランザクションデータのパターンとの関連を判定し、
前記抽出手段は、前記関連判定手段により少なくとも一以上の前記過去の時点における前記第1トランザクションデータのパターンと、前記第2トランザクションデータとが関連すると判定された顧客を抽出すること、
を特徴とする付記A2に記載の営業支援装置。
【0136】
(付記A10)
前記金融商品は、投資信託商品であること、
を特徴とする付記A1ないし9何れか一に記載の営業支援装置。
【0137】
(付記B1)
金融機関における営業支援装置であって、
金融機関における顧客のトランザクションデータを取得する取得手段と、
過去に金融商品を購入した時点における第1顧客の第1トランザクションデータと、現時点における前記金融商品を過去に未購入である第2顧客の第2トランザクションデータとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータと第2トランザクションデータとが関連すると判定された前記第2顧客を抽出する抽出手段と、
前記抽出手段により抽出された前記第2顧客を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0138】
(付記B2)
金融機関における営業支援装置であって、
金融機関における顧客のトランザクションデータであって異なる種類のトランザクションデータを少なくとも二種類以上を取得する取得手段と、
過去に金融商品を購入した時点における第1顧客の第1トランザクションデータのパターンと、現時点における前記金融商品を過去に未購入である第2顧客の第2トランザクションデータのパターンとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータのパターンと第2トランザクションデータのパターンとが関連すると判定された前記第2顧客を抽出する抽出手段と、
前記抽出手段により抽出された前記第2顧客を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0139】
(付記B3)
前記第1顧客は、該第1顧客の顧客情報が、前記第2顧客の顧客情報と関連する顧客であること、
を特徴とする付記B1又は付記B2に記載の営業支援装置。
【0140】
(付記B4)
前記金融商品は、投資信託商品であること、
を特徴とする付記B1ないし3何れか一に記載の営業支援装置。
【0141】
(付記C1)
金融機関における営業支援装置であって、
金融機関における一の顧客のトランザクションデータを取得する取得手段と、
金融商品の種類毎に、過去に金融商品を購入した時点における前記顧客の第1トランザクションデータと、現時点における当該顧客の第2トランザクションデータとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータと第2トランザクションデータとが関連すると判定された種類の金融商品を抽出する抽出手段と、
前記抽出手段により抽出された種類の金融商品を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0142】
(付記C2)
金融機関における営業支援装置であって、
金融機関における一の顧客のトランザクションデータであって異なる種類のトランザクションデータを少なくとも二種類以上取得する取得手段と、
金融商品の種類毎に、過去に金融商品を購入した時点における前記顧客の第1トランザクションデータのパターンと、現時点における当該顧客の第2トランザクションデータのパターンとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータのパターンと第2トランザクションデータのパターンとが関連すると判定された種類の金融商品を抽出する抽出手段と、
前記抽出手段により抽出された種類の金融商品を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0143】
(付記D1)
金融機関における営業支援装置であって、
金融機関における一の第2顧客のトランザクションデータを取得する取得手段と、
金融商品の種類毎に、過去に金融商品を購入した時点における第1顧客の第1トランザクションデータと、現時点における前記金融商品を過去に未購入である前記一の第2顧客
の第2トランザクションデータとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータと第2トランザクションデータとが関連すると判定された種類の金融商品を抽出する抽出手段と、
前記抽出手段により抽出された種類の金融商品を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0144】
(付記D2)
金融機関における営業支援装置であって、
金融機関における一の第2顧客のトランザクションデータであって異なる種類のトランザクションデータを少なくとも二種類以上を取得する取得手段と、
金融商品の種類毎に、過去に金融商品を購入した時点における第1顧客の第1トランザクションデータのパターンと、現時点における前記金融商品を過去に未購入である前記一の第2顧客の第2トランザクションデータのパターンとの関連を判定する関連判定手段と、
前記関連判定手段により前記第1トランザクションデータのパターンと第2トランザクションデータのパターンとが関連すると判定された種類の金融商品を抽出する抽出手段と、
前記抽出手段により抽出された種類の金融商品を出力する出力手段と、
を有することを特徴とする営業支援装置。
【0145】
(付記E1)
金融機関における営業先リスト作成装置であって、
金融機関における顧客の顧客情報を取得する取得手段と、
前記顧客のうち営業先となる複数の顧客を、優先度を示す情報とともに抽出する抽出手段と、
前記複数の顧客を前記優先度が大きい順序に並べた営業先リスト情報を作成する作成手段と、
前記営業先リスト情報を営業端末に出力する出力手段と、
を有することを特徴とする営業先リスト作成装置。
【0146】
(付記E2)
前記複数の顧客は、過去に金融商品を購入した過去時点における当該顧客のトランザクションデータと、現時点における当該顧客のトランザクションデータとが関連する顧客であること、
を特徴とする付記E1に記載の営業先リスト作成装置。
【0147】
(付記E3)
前記複数の顧客は、過去に金融商品を購入した過去時点における当該顧客のトランザクションデータのパターンと、現時点における当該顧客のトランザクションデータのパターンとが関連する顧客であること、
を特徴とする付記E1に記載の営業先リスト作成装置。
【0148】
(付記E4)
前記優先度は、前記関連の度合いであること、
を特徴とする付記E2又は3に記載の営業先リスト作成装置。
【0149】
(付記F1)
金融機関における営業端末であって、
サーバ装置に、営業先リスト情報の取得要求を送信する送信手段と、
営業先となる複数の顧客を優先度が大きい順序に並べた前記営業先リスト情報を受信す
る受信手段と、
を有することを特徴とする営業端末。
【0150】
(付記F2)
前記複数の顧客は、過去に金融商品を購入した過去時点における当該顧客のトランザクションデータと、現時点における当該顧客のトランザクションデータとが関連する顧客であること、
を特徴とする付記F1に記載の営業端末。
【0151】
(付記F3)
前記複数の顧客は、過去に金融商品を購入した過去時点における当該顧客のトランザクションデータのパターンと、現時点における当該顧客のトランザクションデータのパターンとが関連する顧客であること、
を特徴とする付記F1に記載の営業端末。
【0152】
(付記F4)
前記優先度は、前記関連の度合いであること、
を特徴とする付記F2又は3に記載の営業端末。
【0153】
(付記G1)
コンピュータに、
サーバ装置に、営業先リスト情報の取得要求を送信する送信手段と、
営業先となる複数の顧客を優先度が大きい順序に並べた前記営業先リスト情報を受信する受信手段と、
前記営業先リスト情報を表示する表示手段と、
して機能させるための表示プログラム。
【0154】
(付記G2)
前記複数の顧客は、過去に金融商品を購入した過去時点における当該顧客のトランザクションデータと、現時点における当該顧客のトランザクションデータとが関連する顧客であること、
を特徴とする付記G1に記載の表示プログラム。
【0155】
(付記G3)
前記複数の顧客は、過去に金融商品を購入した過去時点における当該顧客のトランザクションデータのパターンと、現時点における当該顧客のトランザクションデータのパターンとが関連する顧客であること、
を特徴とする付記G1に記載の表示プログラム。
【0156】
(付記G4)
前記優先度は、前記関連の度合いであること、
を特徴とする付記G2又は3に記載の表示プログラム。
【0157】
(付記H1)
金融機関のサーバ装置であって、
金融機関における顧客のトランザクションデータを取得し、
取得された顧客のトランザクションデータが、過去に金融商品を購入した時点における当該顧客のトランザクションデータと似ている場合、当該顧客を抽出すること、
を特徴とするサーバ装置。
【0158】
(付記H2)
金融機関のサーバ装置であって、
金融機関における顧客のトランザクションデータを複数種類取得し、
取得された複数種類の顧客のトランザクションデータの状況が、過去に金融商品を購入した時点における当該顧客のトランザクションデータの状況と似ている場合、当該顧客を営業先リストに抽出すること、
を特徴とするサーバ装置。
【0159】
(付記H3)
前記営業先リストに複数の前記顧客が抽出された場合、前記似ている程度が大きい順に、複数の前記顧客を抽出すること、
を特徴とする付記H1又は2に記載のサーバ装置。
【符号の説明】
【0160】
10 金融機関システム
20 営業推進支援システム
30 管理サーバ
40 加工DB
50 営業端末
70 ネットワーク
100 営業支援システム
301 データ取得部
302 特徴量算出部
303 関連判定部
304 抽出部
305 営業先リスト作成部
306 出力部