(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022118218
(43)【公開日】2022-08-12
(54)【発明の名称】混合固形廃棄物からの固体燃料組成物の製造方法
(51)【国際特許分類】
C10L 5/46 20060101AFI20220804BHJP
C10L 5/48 20060101ALI20220804BHJP
C08J 11/04 20060101ALI20220804BHJP
【FI】
C10L5/46
C10L5/48
C08J11/04 ZAB
【審査請求】有
【請求項の数】31
【出願形態】OL
(21)【出願番号】P 2022101090
(22)【出願日】2022-06-23
(62)【分割の表示】P 2020094601の分割
【原出願日】2015-10-30
(31)【優先権主張番号】62/072,822
(32)【優先日】2014-10-30
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】517153594
【氏名又は名称】エコジェンサス エルエルシー
【氏名又は名称原語表記】ECOGENSUS LLC
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【弁理士】
【氏名又は名称】本田 淳
(74)【代理人】
【識別番号】100152489
【弁理士】
【氏名又は名称】中村 美樹
(72)【発明者】
【氏名】ホワイト、ビョルヌルフ
(57)【要約】
【課題】合成ガスを形成することなく、固形廃棄物混合物から固体燃料組成物を製造する方法を提供する。
【解決手段】固形廃棄物混合物を、大気圧未満で、固形廃棄物混合物中の混合プラスチックを溶融するのに十分な最高温度まで加熱し混合することによって固体燃料組成物を製造する方法が開示される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
固体燃料組成物を製造する方法であって、
5重量%~60重量%の混合プラスチックを含む固形廃棄物混合物を、処理容器内で110℃を超えない温度まで加熱し、前記固形廃棄物混合物を、2重量%未満の水を含む乾燥固形廃棄物混合物と気化化合物とに分離する工程、
前記処理容器から前記気化化合物を除去する工程、
前記乾燥固形廃棄物混合物を前記処理容器内で少なくとも160℃かつ大気圧未満で加熱混合して、溶融混合プラスチックを含む加熱固形廃棄物混合物を形成する工程、
前記加熱固形廃棄物混合物を200℃未満で押出して押出固形廃棄物混合物を製造する工程、及び
前記押出固形廃棄物混合物を65℃未満まで冷却して、少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量を有する固体燃料組成物を形成する工程を含む方法。
【請求項2】
前記固形廃棄物混合物は、都市固形廃棄物及び農業廃棄物を含む、請求項1に記載の方法。
【請求項3】
前記固形廃棄物混合物を不燃性固形廃棄物について分析し、存在する場合には不燃性固形廃棄物を除去する工程をさらに含む、請求項2に記載の方法。
【請求項4】
前記固形廃棄物混合物は不燃性金属廃棄物を含まない、請求項3に記載の方法。
【請求項5】
前記固形廃棄物混合物を混合プラスチック成分について分析し、必要であれば、前記固形廃棄物混合物中の混合プラスチックの量を5重量%~60重量%に調整する工程をさらに含む、請求項2に記載の方法。
【請求項6】
前記混合プラスチックは、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、ポリアミド、アクリロニトリルブタジエンスチレン、ポリエチレン/アクリロニトリルブタジエンスチレン、ポリカーボネート、ポリカーボネート/アクリロニトリルブタジエンスチレン、ポリウレタン、マレイミド/ビスマレイミド、メラミンホルムアルデヒド、フェノールホルムアルデヒド、ポリエポキシド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリ乳酸、ポリメチルメタクリレート、ポリテトラフルオロエチレン、及び尿素-ホルムアルデヒドからなる群から選択される1種以上のプラスチックを含む、請求項1に記載の方法。
【請求項7】
前記混合プラスチックは、ポリ塩化ビニル、ポリ塩化ビニリデン、及びそれらの組合せを含み、前記乾燥固形廃棄物混合物は少なくとも190℃に加熱される、請求項6に記載の方法。
【請求項8】
前記固形廃棄物混合物は5重量%~35重量%の混合プラスチックを含む、請求項1に記載の方法。
【請求項9】
前記固体燃料組成物は、
40重量%~80重量%の炭素、
5重量%~20重量%の水素、
5重量%~20重量%の酸素、
2重量%未満の硫黄、及び
2重量%未満の塩素
を含む、請求項1に記載の方法。
【請求項10】
前記処理容器は、少なくとも190℃の壁温度に維持された1つ以上の加熱壁、前記処理容器の内部容積内にあり、前記処理容器に動作可能に接続されたミキサー、前記処理容器内の第1の開口部を通る押出要素、及び前記処理容器内の第2の開口部を通る真空ポートを含み、前記処理容器は前記真空ポートを介して真空ポンプを含む真空システムに取り付けられている、請求項1に記載の方法。
【請求項11】
前記真空システムは、上部ポート、前記上部ポートの下方の下部ポート、前記下部ポートの下方の凝縮水溜め、及び前記凝縮水溜め内の排水路を有する凝縮器を備え、前記凝縮器は、前記凝縮器の上部ポートを介して前記処理容器の真空ポートに動作可能に結合されているとともに、前記凝縮器の下部ポートを介して前記真空ポンプに動作可能に結合されている、請求項10に記載の方法。
【請求項12】
前記真空ポンプは前記真空ポートを介して前記気化化合物を除去し、前記気化化合物は水蒸気、揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せを含む、請求項11に記載の方法。
【請求項13】
前記固形廃棄物混合物を前記処理容器に導入する前に、前記固形廃棄物混合物を5cm(2インチ)の最大寸法又は最大直径を有する小片に細断する工程をさらに含む、請求項1に記載の方法。
【請求項14】
固体燃料組成物を製造する方法であって、
5重量%~60重量%の量の混合プラスチックを含む固形廃棄物混合物を、190℃~280℃の温度を提供する処理容器であって、前記処理容器に動作可能に接続されたミキサー、前記処理容器内の第1の開口部を通る押出要素、及び前記処理容器内の第2の開口部を通る真空ポートを備える処理容器に供給する工程、
前記固形廃棄物混合物を前記処理容器内で90℃~110℃の温度に加熱し、前記固形廃棄物混合物を、2重量%未満の水を含む乾燥固形廃棄物混合物と、水蒸気、揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せを含む気化化合物とに分離する工程、
前記真空ポートに取り付けられた真空システムを用いて前記処理容器内の圧力を6670Pa(50torr)未満に減圧することによって、前記処理容器から前記気化化合物を除去する工程、
前記乾燥固形廃棄物混合物を前記処理容器内で190℃~260℃及び6670Pa(50torr)未満で加熱混合して溶融混合プラスチックを含む加熱固形廃棄物混合物を形成する工程、
前記加熱固形廃棄物混合物を、200℃未満の温度で、押出口を用いて前記処理容器から押出して押出固形廃棄物混合物を製造する工程、及び
前記押出固形廃棄物混合物を65℃未満に冷却して、少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量を有する固体燃料組成物を形成する工程を含む方法。
【請求項15】
前記固形廃棄物混合物は、都市固形廃棄物及び農業廃棄物を含む、請求項14に記載の方法。
【請求項16】
前記混合プラスチックは、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、ポリアミド、アクリロニトリルブタジエンスチレン、ポリエチレン/アクリロニトリルブタジエンスチレン、ポリカーボネート、ポリカーボネート/アクリロニトリルブタジエンスチレン、ポリウレタン、マレイミド/ビスマレイミド、メラミンホルムアルデヒド、フェノールホルムアルデヒド、ポリエポキシド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリ乳酸、ポリメチルメタクリレート、ポリテトラフルオロエチレン、及び尿素-ホルムアルデヒドからなる群から選択される1種以上のプラスチックを含む、請求項14に記載の方法。
【請求項17】
前記処理容器は1つ以上の加熱壁を備え、前記1つ以上の加熱壁は190℃~280℃の壁温度に維持されることで、前記乾燥固形廃棄物混合物を190℃~260℃に加熱する、請求項14に記載の方法。
【請求項18】
前記固形廃棄物混合物を前記処理容器に導入する前に、前記固形廃棄物混合物を5cm(2インチ)の最大寸法又は最大直径を有する小片に細断する工程をさらに含む、請求項14に記載の方法。
【請求項19】
前記処理容器から除去された気化化合物を凝縮させて、揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せからなる群から選択される1種以上の化合物を含む廃水を生成する工程をさらに含む、請求項14に記載の方法。
【請求項20】
前記廃水から前記1種以上の化合物を除去して処理済み廃水を生成する工程をさらに含む、請求項19に記載の方法。
【請求項21】
前記加熱固形廃棄物混合物内で混合プラスチックを軟化させ分散させるために、壁温度は280℃に維持され、前記乾燥固形廃棄物混合物は250℃に加熱される、請求項19に記載の方法。
【請求項22】
前記1つ以上の加熱壁の壁温度を監視し、監視された壁温度を用いて、前記1つ以上の加熱壁に動作可能に結合されたヒータの動作を調節し、前記1つ以上の加熱壁を所望の壁温度に自動的に維持する工程をさらに含む、請求項17に記載の方法。
【請求項23】
前記処理容器内のヘッドスペース容積内のヘッドスペース圧力を監視する工程と、監視されたヘッドスペース圧力を用いて前記処理容器内の減圧を自動的に維持するために前記真空システムの動作を調節する工程とをさらに含む、請求項14に記載の方法。
【請求項24】
前記固形廃棄物混合物が水蒸気を放出するのに十分に加熱されているかを決定するために、前記処理容器から除去された気化化合物内の水分含量を監視する工程をさらに含む、請求項14に記載の方法。
【請求項25】
前記処理容器からの前記加熱固形廃棄物混合物の押出の準備ができているかを決定するために、前記処理容器内の前記加熱固形廃棄物混合物内の混合物温度を監視する工程をさらに含む、請求項14に記載の方法。
【請求項26】
前記気化化合物が前記固形廃棄物混合物から除去されたかを決定するために、前記処理容器内の固形廃棄物混合物の重量を監視する工程をさらに含む、請求項14に記載の方法。
【請求項27】
前記乾燥固形廃棄物混合物は、0.5時間~2時間の範囲の所定の時間、加熱混合される、請求項14に記載の方法。
【請求項28】
冷却中に押出された混合物を小片に切断する工程をさらに含む、請求項14に記載の方法。
【請求項29】
前記固体燃料組成物は、
40重量%~80重量%の炭素;
5重量%~20重量%の水素;
5重量%~20重量%の酸素;
2重量%未満の硫黄;及び
2重量%未満の塩素
を含む、請求項14に記載の方法。
【請求項30】
前記固形廃棄物混合物中の混合プラスチックの量の調整を決定するために、前記固形廃棄物混合物を混合プラスチック成分について分析することをさらに含む、請求項14に記載の方法。
【請求項31】
処理容器内で、固形廃棄物混合物の5重量%~60重量%の量の1種以上のプラスチックを含む固形廃棄物混合物を、乾燥固形廃棄物混合物と気化化合物とに分離されるように加熱する工程、
前記乾燥固形廃棄物混合物から前記気化化合物を分離する工程、
前記処理容器内で、前記乾燥固形廃棄物混合物の前記1種以上のプラスチックを溶融させることにより、加熱固形廃棄物混合物を形成する工程であって、前記乾燥固形廃棄物混合物は少なくとも160℃に加熱され、かつ2重量%未満の水を含むものである工程、
前記加熱固形廃棄物混合物の少なくとも一部を押出して押出生成物を製造する工程、及び
前記押出生成物を冷却して、少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量を有する固体燃料組成物を形成する工程を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、混合固形廃棄物の処理方法に関する。より具体的には、本開示は、とりわけ合成ガスを形成することなく、固形廃棄物混合物から固体燃料組成物を製造する方法に関する。
【背景技術】
【0002】
住宅、施設、商業的供給源からの都市廃棄物、農業廃棄物、及び下水汚泥等のその他の廃棄物といった固形廃棄物の処理は、難しい課題であり続けており、その解決策も絶え間なく進化している。世界中で埋立地が処理能力に達し、それを超えており、また固形廃棄物業界及び社会は一般に埋立地の使用を制限しているため、固形廃棄物を更に処理して埋立地に導入される量を減らすという代替の固形廃棄物処理方法が開発されている。金属、プラスチック、紙製品のリサイクル、及び有機物の堆肥化は、埋立地に運ばれる固形廃棄物の全体量を減らすための比較的一般的な方法である。固形廃棄物のエネルギー含有物を電力などのより使用に適した形態に転換するための廃棄物エネルギー回収(Waste-to-Energy)方法も開発されている。
【0003】
種々の廃棄物エネルギー回収方法では、焼却、熱分解、又はガス化等の熱処理を用いて固形廃棄物流のエネルギー含有物を放出させ、続いてこれを用いて下流の発電器を駆動させる。廃棄物エネルギー回収方法における熱分解及びガス化は、焼却よりも多くの利点をもたらすが、都市固形廃棄物(municipal solid waste,MSW)や農業廃棄物が供給原料に使用される場合、水分含量が高く、密度が低く、さらに均質性がないために、熱分解又はガス化の有効利用は制限される。
【0004】
熱分解又はガス化チャンバの効率的な操作は、典型的には、密度が高く、本質的に水分のない一貫した組成の供給原料を使用する。固形廃棄物流は本質的に密度が低く、組成が変動するため、ほとんどの廃棄物エネルギー回収プラントは、固形廃棄物流を焼却することにより固形廃棄物流のエネルギーを解放する。進歩したガス化等の強化された熱分解手順により、固形廃棄物組成に固有の非一貫性に伴う非効率性が解消される可能性があるが、これらの進歩した手順は特化された設備への相当な投資を必要とする。さらに、それらは依然として供給原料の質による制限を受ける。
【0005】
他の方法は、ペレタイザを使用して、熱分解チャンバの固形廃棄物流をより均一なサイズにする。しかし、ペレット化された固形廃棄物は、固形廃棄物流に固有の組成の変動を保持する。さらに、固形廃棄物流をペレット化することは、固形廃棄物を熱分解(又はガス化)チャンバの効率的な稼働に適した高密度かつ低水分の燃料に変換することができない。
【0006】
固体燃料組成物に対する、また、混合固形廃棄物及び供給原料として使用される他の廃棄物を含んでいてもよい固形廃棄物流から固体燃料組成物を製造する方法に対する必要性が存在する。このような燃料は、高度な機械に追加の設備投資をすることなく、廃棄物エネルギー回収方法の一部としての熱分解(又はガス化)チャンバの効率的な稼働を提供する。さらに、より良好な燃料組成物を提供するため、変動組成の固形廃棄物流を、高密度かつ低水分である比較的一貫した組成の固体燃料組成物に変換する方法の必要性が存在する。さらに、固体燃料組成物を製造するために使用される固形廃棄物流の臭気、細菌、及び他の望ましくない特性をさらに除去することが可能な、固形廃棄物流からの固体燃料組成物の形成方法の必要性が存在する。このような方法から得られる固体燃料組成物は、熱分解又はガス化にすぐに使える、均質な、乾燥した、高密度かつエネルギーの豊富な燃料を提供することによって、廃棄物エネルギー回収方法の一部として高効率の熱分解又はガス化方法の使用を可能にする。
【発明の概要】
【0007】
本明細書に開示された方法は、加工燃料を製造するために一般的に採用されるような大規模な予備分別又は予備乾燥を行うことなく、固形廃棄物混合物を処理する。原材料を乾燥や予備分別する必要がないため(不燃物の金属、ガラス、及び危険物の任意選択的除去を除く)、発生場所、季節、又は天候に基づく含有物の変動は、方法に実質的な影響を与えない。
【0008】
この方法は、有機材料、屑、及びプラスチックを含む固形廃棄物混合物を得ることによって開始する。このシステムは、大気圧以下の処理容器内で固形廃棄物混合物を処理して過剰の水分、揮発性有機化合物(VOC)、塩素化有機物、及び塩素ガスを取り去り、これらのガスを大気に曝すことなく隔離する。そして、水及びVOCの除去後に熱が上昇し、固形廃棄物混合物中の混合プラスチックが溶融する。この工程は、乾燥固形廃棄物混合物中のプラスチック内容物を溶融することによって、固体燃料組成物全体にプラスチックを分布させ、固体燃料組成物の密度を増加させる。これは既存の組成物とは対照的である。最終生成物は熱分解されておらず、有機化合物及びプラスチックを含む。最終生成物はほぼ均質であり、これは、固形廃棄物混合物中の大きい破片が、固形廃棄物混合物中の他の個々の破片と同等以下の平均粒度まで小さくなっていることを意味する。最終生成物はまた、水分含量が低く(<1重量%)、焼却用の燃料としての、又は例えば熱分解又はガス化に供される合成ガス原料としての使用を含む、様々な後処理用途に適している。
【0009】
したがって簡潔には、本開示は固形廃棄物混合物から少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量を有する固体燃料組成物を合成ガスの形成なしに製造する方法を包含する。この方法は、少なくとも5重量%の混合プラスチックを含む固形廃棄物混合物を処理容器内で110℃を超えない温度(例えば約100℃、又は約90℃~約110℃)まで加熱して、固形廃棄物混合物を乾燥固形廃棄物混合物と、加熱された固形廃棄物混合物から放出された気化化合物とに分離することを含む。
【0010】
気化化合物は、水蒸気、少なくとも1種の揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せのいずれか1つ又は複数を含み得る。この方法はまた、真空ポートに取り付けられた真空システムを用いて処理容器内の圧力を約6670Pa(約50torr)未満に減圧することによって、処理容器から気化化合物を除去する工程と;乾燥固形廃棄物混合物を少なくとも160℃の最高温度まで加熱混合して溶融混合プラスチックを含む加熱固形廃棄物混合物を形成する工程と;加熱固形廃棄物混合物を押出口を用いて処理容器から押出す工程と;押出された混合物を約65℃未満に冷却して固体燃料組成物を形成する工程とを含む。固形廃棄物混合物は、約20重量%~約40重量%の混合プラスチックを含み得る。あるいは、固形廃棄物混合物は、約5重量%~約35重量%の混合プラスチックを含み得る。
【0011】
固形廃棄物混合物は、都市固形廃棄物及び農業廃棄物を含む。この方法は、さらに、固形廃棄物混合物を不燃性固形廃棄物について分析し、存在する場合には不燃性固形廃棄物を除去する工程を含んでもよい。最終的には、供給原料は不燃性金属廃棄物を実質的に含まないものでなくてはならない。この方法は、固形廃棄物混合物を混合プラスチック成分について分析し、必要であれば、固形廃棄物混合物中の混合プラスチックの量を約5重量%~約60重量%に調整する工程を更に含んでもよい。
【0012】
混合プラスチックは、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、ポリアミド、アクリロニトリルブタジエンスチレン、ポリエチレン/アクリロニトリルブタジエンスチレン、ポリカーボネート、ポリカーボネート/アクリロニトリルブタジエンスチレン、ポリウレタン、マレイミド/ビスマレイミド、メラミンホルムアルデヒド、フェノールホルムアルデヒド、ポリエポキシド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリ乳酸、ポリメチルメタクリレート、ポリテトラフルオロエチレン、及び尿素-ホルムアルデヒドからなる群から選択される1種以上のプラスチックを含むことができる。特に、混合プラスチックは、ポリ塩化ビニル、ポリ塩化ビニリデン、及びそれらの組合せを含むことができ、乾燥固形廃棄物は、少なくとも約190℃に加熱される。
【0013】
より具体的には、固形廃棄物混合物は、約20重量%~約40重量%の混合プラスチックを含むことができる。あるいは、固形廃棄物混合物は、約5重量%~約35重量%の混合プラスチックを含むことができる。得られた固体燃料組成物は、疎水性、安定性及び非生分解性材料であり得る。この材料は、約40重量%~約80重量%の炭素;約5重量%~約20重量%の水素;約重量%~約20重量%の酸素;約2重量%未満の硫黄;約2重量%未満の塩素;及び約1重量%未満の水を含み得る。得られた固体燃料組成物は、少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量を有することができる。得られた固体燃料組成物は、揮発性有機化合物を実質的に含まなくてもよい。
【0014】
処理容器は、少なくとも約190℃の壁温度に維持された1つ以上の加熱壁、処理容器の内部容積内にあり、処理容器に動作可能に接続されたミキサー、処理容器内の第1の開口部を通る押出要素、及び処理容器内の第2の開口部を通る真空ポートを備えてもよく、ここで処理容器は真空ポートを介して真空ポンプを含む真空システムに取り付けられている。典型的には、気化化合物は下記のうちのいずれかを含む:水蒸気、揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せ。
【0015】
本方法は、固形廃棄物混合物を処理容器に導入する前に、固形廃棄物混合物を約5cm(約2インチ)の最大寸法又は直径を有する小片に細断する工程をさらに含むことができる。この方法は、処理容器から除去された気化化合物を凝縮させて、少なくとも1種の揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せからなる群から選択される1つ以上が凝縮された水蒸気に溶解した廃水を生成する工程をさらに含むことができる。この方法はさらに、廃水から1種以上の揮発性有機化合物、塩素化有機化合物、塩素ガス、及びそれらの任意の組合せを除去して処理済み廃水を生成する工程を含むことができる。塩素ガス、塩素化有機化合物、揮発性有機化合物は、政府規制の対象となる環境汚染物質である。これらの化合物を廃水を介して捕捉して除去することにより、そうでなければ大気中に放出されるであろうこれらの化合物の体積が減少する。
【0016】
壁の温度は約190℃~約280℃に維持されてもよく、固形廃棄物混合物の最高温度は、乾燥固形廃棄物混合物を気化化合物から分離するために、約160℃~約250℃の範囲であってもよい。好ましくは、壁温度は約280℃に維持され、固形廃棄物混合物は約250℃に加熱され、加熱された固形廃棄物混合物内で混合プラスチックを軟化させて分散させる。この方法は、1つ以上の加熱壁の壁温度を監視し、監視された壁温度を用いて、1つ以上の加熱壁に動作可能に結合されたヒータの動作を調節して、1つ以上の加熱壁を所望の壁温度に自動的に維持する工程をさらに含んでもよい。この方法は、処理容器内のヘッドスペース容積内のヘッドスペース圧力を監視する工程と、監視されたヘッドスペース圧力を用いて処理容器内の減圧を自動的に維持するために真空システムの動作を調節する工程とをさらに含むことができる。
【0017】
この方法は、処理容器から除去された気化化合物内の水分含量を監視する工程をさらに含むことができる。水分含量の初期の増加は、固形廃棄物混合物が水蒸気を放出するのに十分に加熱されたことを示し得、その後の安定した最小水分レベルへの減少は、固形廃棄物混合物が約2重量%未満の水、例えば約1重量%未満の水を含むことを示し得る。
【0018】
この方法は、処理容器内の固形廃棄物混合物内の混合物温度を監視する工程をさらに含むことができる。典型的には、所定の温度に等しい監視された混合物温度は、処理容器からの固形廃棄物混合物の押出の準備ができていることを示し得る。この方法は、処理容器内の固形廃棄物混合物の重量を監視する工程をさらに含むことができる。監視された重量の最小重量への減少は、気化化合物が固形廃棄物混合物から完全に除去された可能性があることを示し得る。固形廃棄物混合物は、約0.5時間~約2時間の範囲の所定の時間、加熱混合することができる。この方法は、冷却中に押出された混合物を小片に切断する工程をさらに含むことができる。
【0019】
複数の実施形態が開示されているが、本開示のさらに他の実施形態は、本開示の例示的実施形態を示し説明する以下の詳細な説明から当業者に明らかになるであろう。理解されるように、本発明は、本開示の趣旨及び範囲から逸脱することなく、様々な態様において改変が可能である。したがって、図面及び詳細な説明は、本質的に例示的であり、限定的ではないと見なされるべきである。
【0020】
以下の図は、本開示の様々な態様を例示する。
【図面の簡単な説明】
【0021】
【
図1】固形廃棄物混合物から固体燃料組成物を製造する方法を例示するフローチャートである。
【
図2】固形廃棄物混合物から固体燃料組成物を製造する工程における固形廃棄物混合物の温度プロファイル及び関連する工程を概略的に示すグラフである。
【
図3】加熱固形廃棄物混合物から蒸発した化合物を除去する方法を示すフローチャートである。
【
図4】固形廃棄物混合物から固体燃料組成物を製造するためのシステムのブロック図である。
【発明を実施するための形態】
【0022】
対応する参照符号及びラベルは、図面の図の中の対応する要素を示す。図面に使用されている見出しは、特許請求の範囲を限定するものと解釈されるべきではない。
本開示は、少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量を有する固体燃料組成物を、合成ガスを生成させずに製造するための方法及びシステムを包含する。少なくとも約5重量%のプラスチックを含み得る固形廃棄物混合物から固体燃料組成物を形成するシステム及び方法を下記に示す。固体燃料組成物は、固形廃棄物混合物を処理容器内で少なくとも約100℃の温度に加熱して、固形廃棄物混合物を乾燥固形廃棄物混合物と、水蒸気を含むがこれに限定されない気化化合物とに分離することにより形成され得る。次に気化化合物が付属の真空システムを使用して処理容器から取り除かれ、残りの乾燥固形廃棄物混合物が続いて混合され、約250℃までの最高温度に加熱されてもよい。最高温度で、固形廃棄物混合物中のプラスチックは溶融し、混合物全体に分散される。次いで、加熱された固形廃棄物混合物を約200℃未満で押出し、冷却して固体燃料混合物を形成することができる。
【0023】
得られた固体燃料混合物は、少なくとも18,600J/g(8,000BTU/lb)のエネルギー含量及び少なくとも約481kg/m3(約30lb/ft3)の密度を有し得る。固体燃料混合物はまた、処理容器内の高い最高温度に起因して滅菌されてもよく、固体燃料組成物全体に分散されたプラスチックに起因して疎水性及び非多孔性であってもよい。結果として、固体燃料混合物は、生分解や他の態様による組成の変化のリスクを伴わずに、様々な貯蔵条件で長期間貯蔵することができる。
【0024】
固体燃料組成物の方法及びシステムの詳細な説明、ならびに固体燃料組成物自体の説明は、以下に提供される。
I.固体燃料組成物の形成方法
固形廃棄物混合物から固体燃料組成物を形成する方法であって、固形廃棄物混合物を処理容器内で加熱し、機械的に撹拌して、固形廃棄物の個々の成分を混合し、均質化する工程を含む方法が開示される。さらに、加熱固形廃棄物混合物によって放出された気化化合物は、処理容器内の真空(すなわち、大気圧よりも低い圧力)を用いて除去することができる。得られた処理容器の内容物を押出し、所望の形状に成形し、冷却して固体燃料組成物を形成することができる。
【0025】
この方法は、組成が変化し得る固形廃棄物混合物を、比較的低い組成変動性を有する固体燃料組成物に変換することによって、従来の廃棄物エネルギー回収方法の限界の多くを克服する。加えて、この方法によって製造された固体燃料組成物は、本質的に無菌かつ非多孔質であり、特殊な設備や施設を必要とせずに固体燃料組成物を長期間輸送及び貯蔵することを可能にする。加えて、固体燃料組成物は、より高収率の廃棄物エネルギー回収方法に関連する様々な熱分解プロセスに適合する。
【0026】
いくつかの廃棄物エネルギー回収方法は、固形廃棄物を焼却する。これは本明細書では、酸素の存在下で固形廃棄物を燃焼させることと定義し、これにより熱を発生させて下流の蒸気発生器を駆動するための蒸気を生成する。しかし、焼却工程は、潜在的に有害な排出物も生成する。この排出物は、焼却炉の排出流から取り除かれるか、又は環境に放出される必要がある。一方、本発明は、VOC、塩素化有機化合物、塩素ガスを除去した固体燃料組成物を提供するものであり、この固体燃料組成物を焼却し又は燃焼させても、これらの有害な汚染物質を環境に放出せず、これらの化合物に関して排出流を浄化する必要はない。
【0027】
他の廃棄物エネルギー回収方法は熱分解を使用する。これは、有機物質の揮発性成分の過熱であり、約400°F~約1,400°F(約205℃~約760℃)の範囲の温度でその物質を加熱することによって生成される。熱分解(pyrolysis)は加熱分解(thermolysis)の一種であり、有機物の不可逆的な熱化学分解をもたらす。熱分解は化学組成と物理相の同時変化を伴い、ここでは原料が灰、チャー(バイオチャー等)、合成油(バイオオイル)、合成ガス(バイオガス)に分けられる。熱分解は、燃料が酸素と反応する燃焼(酸化)とも、燃料が水と反応する加水分解とも異なる。焼却と併用される効率の低い蒸気発生器とは対照的に、熱分解から生成された合成ガス及び/又は他の流体は、下流の効率的な発電用の発生器を可能にする。本開示は、熱分解されない固体燃料組成物を提供し、これは、灰、チャー、合成油及び合成ガスに分けられていないことを意味する。むしろ、本固体燃料組成物は、熱分解にすぐに使用できる、均質化され、乾燥した、高密度かつエネルギー豊富な燃料である。
【0028】
ガス化は、酸素をほとんど又は全く伴わずに約900°F~約3,000°F(約480℃~約1,650℃)のさらに高い温度環境で有機物質を加熱することを含むという点で熱分解と類似する。ガス化は、熱分解で残った不揮発性炭素チャーの一部もガス化によって合成ガスに転化する場合があるため、より多くの合成ガスを生成するという利点を有する。本開示は、ガス化される固体燃料組成物であって、ガス化にすぐに使用できる、均質化され、乾燥した、高密度かつエネルギー豊富な燃料である固体燃料組成物を提供する。
【0029】
本明細書に開示の固体燃料組成物は、上記方法のいずれかにおいて使用することができる。本固形廃棄物混合物は、熱分解、ガス化及び/又は焼却に特に適した固体燃料組成物を提供するために化学的及び物理的に変換される。理論に縛られることを望まないが、熱分解は、一般的には、水分のかなりの部分が供給原料から除去されるまで起こり得ない。本明細書に開示の固体燃料組成物は、非常に低い水分含量を有し、直ちに熱分解されることができる。固体燃料組成物は、VOC、塩素化有機化合物、及び塩素ガスを除去するように処理されている。一般に、不燃性廃棄物も除去されている。固形廃棄物混合物は、熱分解が起こる直前の時点まで処理され、この時点で供給原料を高密度化及び冷却することにより反応が止められる。これにより、燃焼可能なガスを固体燃料組成物に「閉じ込めた」状態で維持する。得られた固体燃料組成物は、熱分解及び関連するプロセスにすぐに使用できる。
【0030】
固形廃棄物混合物の混合
図1は、固形廃棄物混合物から固体燃料組成物を形成する方法100を示すフローチャートである。方法100に供される固形廃棄物混合物に応じて、固形廃棄物混合物は、ステップ101において、分別された固形廃棄物を混合プラスチックとブレンドすることによって任意に形成されてもよい。この方法のための供給原料は、少なくとも約20重量%のプラスチックを含む固形廃棄物混合物であってもよい。この方法のための供給原料は、少なくとも約5重量%のプラスチックを含む固形廃棄物混合物であってもよい。
【0031】
「廃棄物」は、一般に、主たる使用の後に廃棄された炭素含有可燃性物質を指し、固形廃棄物を含む。一般に、廃棄物は、不燃性廃棄物の部分を含む、湿っていて不均質なものであってもよい。「固形廃棄物」は、あらゆるごみ、又は塵芥、廃水処理場、上水処理場、又は大気汚染防止施設からの汚泥、及び他の廃棄された物質を指し、工業、商業、鉱業、及び農業の営みにより、ならびに地域活動により発生する固体、液体、半固体、又は封入された気体状物質を含む。
【0032】
固形廃棄物の様々な供給源を使用することができる。固形廃棄物混合物は、都市廃棄物、農業廃棄物、下水汚泥、家庭ごみ、廃棄された二次材料、及び工業固形廃棄物を含むがこれらに限定されない非危険廃棄物源に由来してもよい。本明細書で使用される「都市廃棄物」又は「都市固形廃棄物」(MSW)は、家庭ごみ又は商業固形廃棄物又は工業固形廃棄物を指すことがある。固形廃棄物混合物に含まれ得る廃棄物の非限定的な例には、食品及び生ごみ等の生分解性廃棄物;刈った芝生や生け垣等の植物の廃棄物;紙;混合プラスチック;固形食品廃棄物;固形農業廃棄物;下水汚泥;自動車破砕残渣が挙げられる。
【0033】
「家庭ごみ」又は「住宅ごみ」は、家庭(一戸建て及び集合住宅、ホテル及びモーテル、宿泊小屋、レンジャーステーション、クルー・クォーター、キャンプ場、ピクニック場、及びデイユースのレクリエーション区域を含む)に由来する固形廃棄物(ごみ、屑、及び浄化槽の衛生廃棄物を含む)を指す。
【0034】
「商業固形廃棄物」は、店舗、オフィス、レストラン、倉庫、及び他の非製造活動(住宅ごみ及び工業廃棄物を除く)によって発生するあらゆる種類の固形廃棄物を指す。
「工業固形廃棄物」は、製造又は工業過程によって発生する非有害固形廃棄物を指す。工業固形廃棄物の例としては、以下の製造過程から生じる廃棄物が挙げられるが、これらに限定されない:発電;肥料/農薬;食品及び関連製品/副産物;革及び革製品;有機化学物質;プラスチック及び樹脂製造;パルプ及び製紙業;ゴム及び種々のプラスチック製品;繊維製造;輸送用機器;及び水処理。この用語は、採掘廃棄物及び石油・ガス廃棄物を含まない。
【0035】
固形廃棄物混合物は、廃棄された非危険性二次材料を含むことができ、その場合、それらの固形廃棄物混合物から製造された固体燃料組成物は、法的には「非廃棄物」として分類され得る。「二次材料」とは、製造工程又は商業的過程の主な製品ではない材料を指し、使用済み材料、仕様外の市販化学製品又は化学製造中間体、廃材(post-industrial material)、及びスクラップを含み得る。非危険性二次材料の例としては、車両から除去されたタイヤ及び規格外タイヤを含む、確立されたタイヤ回収プログラムによって廃棄されずに管理されているスクラップタイヤ;樹脂加工された木材;レガシー・パイル(legacy piles)から回収され、現在生成されている石炭屑と同じ方法で処理された石炭屑;及び脱水されたパルプ及び製紙スラッジであって、廃棄されず、そのような材料の大部分を焼却するパルプ製紙工場によってその場で発生し、焼却されるパルプ及び製紙スラッジ(そのような脱水残留物は、材料の有意義な発熱量を保存するように管理される)が挙げられる。
【0036】
「樹脂加工された木材」とは、一次及び二次木材製品の製造によって生産された木材製品(結合剤及び接着剤を含む)を指す。樹脂加工された木材は、ボードの切れ端、研削屑、パネルの切れ端、及び製造品質又は規格に適合していない規格外の樹脂加工木材製品等の、樹脂加工された木材の製造及び使用に由来する残留物を含む。
【0037】
「混合プラスチック」は、多様な形状の固形物に成形可能な展性を有する合成又は半合成有機物の任意の組合せを指し、典型的には都市固形廃棄物に見られる。混合プラスチックの好適な例には、限定するものではないが、ポリエステル(PES)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC、Saran(登録商標))、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアミド(PA)(ナイロン)、アクリロニトリルブタジエンスチレン(ABS)、ポリエチレン/アクリロニトリルブタジエンスチレン(PE/ABS)、ポリカーボネート(PC)、ポリカーボネート/アクリロニトリルブタジエンスチレン(PC/ABS)、ポリウレタン(PU)、マレイミド/ビスマレイミド、メラミンホルムアルデヒド(MF)、フェノールホルムアルデヒド(PF)、ポリエポキシド(Epoxy)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI、Ultem(登録商標))、ポリイミド、ポリ乳酸(PLA)、ポリメチルメタクリレート(PMMA、アクリル)、ポリテトラフルオロエチレン(PTFE)、尿素-ホルムアルデヒド(UF)、及びこれらの組合せが挙げられる。
【0038】
混合プラスチックは、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、ポリアミド、アクリロニトリルブタジエンスチレン、ポリエチレン/アクリロニトリルブタジエンスチレン、ポリカーボネート、ポリカーボネート/アクリロニトリルブタジエンスチレン、ポリウレタン、マレイミド/ビスマレイミド、メラミンホルムアルデヒド、フェノールホルムアルデヒド、ポリエポキシド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリ乳酸、ポリメチルメタクリレート、ポリテトラフルオロエチレン、尿素-ホルムアルデヒド、及びそれらの組合せからなる群から選択される1種以上のプラスチックを含むことができる。
【0039】
混合プラスチックは、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、ポリアミド、ポリカーボネート、ポリウレタン、及びそれらの組合せからなる群から選択される1種以上のプラスチックを含むことができる。混合プラスチックはポリエチレンを含むことができる。
【0040】
混合プラスチックは、ポリ塩化ビニル、ポリ塩化ビニリデン、及びそれらの組合せを含むことができ、乾燥固形廃棄物は、少なくとも約190℃に加熱することができる。
不燃性固形廃棄物を検出するために固形廃棄物混合物を分析してもよい。この分析に基づいて、都市固形廃棄物流を軽度に選別してプラスチックを除去し、さらに、ガラス、金属、コンクリート、レンガ及び任意の他の不活性材料を含むがこれらに限定されない不活性廃棄物を除去して、分別された固形廃棄物を得てもよい。本明細書で使用される場合、不活性材料とは、燃焼又は熱分解工程に供されてもエネルギーを放出しそうにない任意の材料を指す。都市固形廃棄物流から除去されたプラスチックは、固体燃料組成物を形成するための固形廃棄物混合物を形成するために、保持され、分別された固形廃棄物と共に混合されてもよい。不燃性廃棄物は、例えばスクラップ金属や金属塊を含む不燃性金属廃棄物を含んでもよい。不燃性金属廃棄物は、鉄、鋼、及び他の鉄含有合金等の鉄系金属、及び、感知できる量の鉄を含まない金属及び合金である非鉄金属を含むことができる。
【0041】
固形廃棄物混合物を分析して、その中に存在する混合プラスチックの量を決定してもよい。固形廃棄物中に存在する混合プラスチックの量は変動すると考えられる。本明細書に記載の方法に原料として使用される固形廃棄物混合物は、分別された固形廃棄物とプラスチックとを、分析に基づいて所定の比率で混合することによって形成され得る。混合プラスチックは、固形廃棄物流(例えば、MSW)中に通常見られるものであり、更なる比率調整(すなわち、分別及び再混合)なしに使用される。混合プラスチックの量は、本明細書に記載の方法及びシステムで製造される燃料組成物に影響し、経済モデルに基づいて、かつ/又はプロジェクトごとに選択することができる。
【0042】
固形廃棄物混合物は、少なくとも約20重量%の混合プラスチックを含有し得る。固形廃棄物混合物は、約20重量%~約60重量%の混合プラスチックを含有し得る。固形廃棄物混合物は、約20重量%~約40重量%の混合プラスチックを含有し得る。この方法のための供給原料は、約5重量%~約35重量%の混合プラスチックを含有し得る。この方法のための供給原料は、約5重量%~約30重量%の混合プラスチックを含有し得る。この方法のための供給原料は、約5重量%を超えるプラスチックを含有し得る。
【0043】
プラスチックは、本明細書に記載の方法から生じる固体燃料混合物を固めるのを助け、固体燃料組成物の多孔度及び水分活性をさらに低下させることができる。また、固体燃料組成物中のプラスチックは、固体燃料組成物を原料として使用する熱分解工程から生じる生成物の種類に影響を与え得る。特定の理論に限定されないが、より高い割合のプラスチックを有する固体燃料混合物は、熱分解工程を用いてより高い収率の合成油を生成すると考えられる。プラスチックの割合がより低く、紙及びボール紙の割合が高い固体燃料混合物は、熱分解工程を用いてより高い収率の合成ガスを生成すると考えられる。
【0044】
都市固形廃棄物流が本質的に変化しやすいために、固形廃棄物混合物は非常に変動的な組成を有し得る。都市固形廃棄物流は、様々な季節、国の様々な場所(都市部か農村部か)、及び/又は様々な国(先進国か新興国か)を含むがこれらに限定されない種々の要因によって組成が変化し得る。
【0045】
分別された固形廃棄物及び混合プラスチックを含む固形廃棄物混合物内に含まれる水は変動することがあり、本明細書に記載の方法を用いた固体燃料組成物の形成において固形廃棄物混合物から水を除去するのに必要な時間及び/又は最高温度に影響を与え得る。乾燥させるために、固形廃棄物から水を除去するのに十分な時間を選択することができる。
【0046】
例えば、混合固形廃棄物は、約10重量%から約60重量%までの範囲の様々な量の水を含むことができる。具体的には、混合固形廃棄物は、約10重量%~約20重量%の間の範囲の量の水を含むことができ、混合固形廃棄物は、少なくとも10重量%の水、少なくとも20重量%の水、少なくとも30重量%の水、少なくとも40重量%の水、及び少なくとも50重量%の水を含むことができる。
【0047】
利用可能なプラスチックも同様に変化し得る。混合物を形成するために、混合前に固形廃棄物とプラスチックを個別に計量して、固形廃棄物及びプラスチックが所定重量比にある固形廃棄物混合物が確実に形成されるようにしてもよい。固形廃棄物及びプラスチックは、これらが合わせられる際に固形廃棄物及びプラスチックを計量する計量コンベヤを含むがこれに限定されない計量装置を用いて、貯蔵領域から混合領域にそれぞれ移送され、固形廃棄物混合物を形成する。固形廃棄物混合物中のプラスチックは、分別中に都市廃棄物流から取り出されたプラスチック、外部供給源から得たプラスチック、及びそれらの任意の組合せを含むことができる。
【0048】
固形廃棄物混合物の細断
次に、固形廃棄物混合物を細断して、固形廃棄物混合物中の他の個々の小片と同等又はそれ以下の平均粒子サイズまで粒子を小さくしてもよい。再び
図1を参照すると、この方法は、任意選択でステップ102において固形廃棄物混合物を細断する工程をさらに含むことができる。固形廃棄物混合物の細断には任意の既知の細断装置を使用することができ、限定するものではないが、工業用1軸シュレッダー、工業用2軸シュレッダー、工業用3軸シュレッダー、工業用4軸シュレッダー、ハンマーミル、グラインダ、グラニュレータ、チッパー、及び固形廃棄物混合物中の個々の小片のサイズを縮小するための任意の他の適切な装置を含む。固形廃棄物混合物を細断することにより、固形廃棄物混合物中の個々の小片の最大寸法及び最大直径が減少し、それによって方法100のその後の工程における固形廃棄物混合物の個々の成分の混合が促進され、方法100を使用して製造された固体燃料ブロックのより均一な組成が得られる。
【0049】
細断された固形廃棄物混合物は、約10cm(約4インチ)未満の最大寸法又は最大直径を有する複数の小片を含むことができる。複数の小片は、最大寸法又は最大直径が8.9cm(3.5インチ)未満、7.6cm(3インチ)未満、6.4cm(2.5インチ)未満、5.1cm(2インチ)未満、3.8cm(1.5インチ)未満、及び2.5cm(1インチ)未満、及び1.3cm(0.5インチ)未満であってもよい。最大寸法は、約5.1cm(約2インチ)未満であってもよい。
【0050】
固形廃棄物混合物の初期加熱
次に、本方法は、ステップ104において、固形廃棄物混合物を処理容器に導入することを含む。固形廃棄物混合物は、任意の既知の装置及び方法を制限なく用いて処理容器に導入することができる。固形廃棄物混合物は、処理容器の再封止性ハッチその他の開口部を開放し、固形廃棄物混合物を挿入し、再封止性ハッチを閉じ及び/又は再封止することによって導入することができる。このシステムは、固形廃棄物混合物を本明細書に記載の処理容器に導入するためのホッパーを含むが、これに限定されない投入装置を含むことができる。投入装置は、破砕装置に動作可能に連結されてもよく、破砕装置を組み込んでいてもよい。投入装置は、処理容器に導入する前に固形廃棄物混合物中の小片を混和するためのミキサーを含んでもよい。
【0051】
処理容器に入れられた後、固形廃棄物混合物は、ステップ106で約100℃、例えば約90℃~約110℃の温度に加熱される。この温度で、固形廃棄物混合物中の水及び水の沸点以下の沸点を有する揮発性有機化合物が気化される。気化化合物には、限定するものではないが、水、有機溶媒が含まれ、他の化合物が固形廃棄物混合物中で気化されてもよく、これにより固形廃棄物を乾燥固形廃棄物と気化化合物とに分離する。気化化合物は、主として水を含むか又は本質的に水からなっていてもよい。
【0052】
理論に拘束されることを望まないが、低温乾燥を行わずに高温処理に直接進むと、固形廃棄物混合物中の混合プラスチックが溶融し、それによって固形廃棄物混合物内の空隙が減少し、水及びVOCが固形廃棄物混合物内に捕捉される。さらに、いくつかの低融点プラスチック及び可塑剤は、高温で残留水と反応する可能性があり、これは後の方法工程において化学的性質に干渉する可能性がある。そうならないように、固形廃棄物混合物をまず低温(例えば、約90℃~約110℃)で乾燥させて、水を気化させ非水性含有物を加温する。水が気化して処理容器から除去された後、温度が上昇し、プラスチックが低水分の乾燥固形廃棄物混合物内で溶融することが可能になる。
【0053】
固形廃棄物混合物は、ステップ106において加熱されるときに、任意に混合されてもよい。特定の理論に限定されることなく、混合は、固形廃棄物混合物の個々の成分をより一貫した組成に混和することができ、また、固形廃棄物混合物中の空隙又はエアポケットを減少させることができる。加えて、混合は、処理容器の加熱された壁からの、及び容器内の固形廃棄物混合物の熱交換を向上させることができる。混合ブレードによって固形廃棄物混合物に与えられる圧縮及びせん断は、加熱をさらに促進することができる。さらに、混合は、加熱された固形廃棄物混合物からの蒸気及び他の気化化合物の放出を促進し得る。
【0054】
固形廃棄物混合物は、処理容器内で、固形廃棄物の小片又は塊を逐次的により小さい小片又は塊に機械的に分解するのに十分な剪断応力を固形廃棄物混合物に与えるように選択された混合速度で混合することができる。混合速度は少なくともいくつかの更なる要因のうちの任意の1つ又は複数に依存してもよく、これらには、限定するものではないが、処理容器内に設けられたミキサー又は混合ブレードの種類、及び/又は混合時間が含まれる。
【0055】
処理容器は、固形廃棄物混合物が本明細書中に後述されるように容器内で混合される際に、熱を固形廃棄物混合物に移動させるための加熱壁を提供するように設計されてもよい。加熱壁は、固形廃棄物混合物の最終温度に本質的に等しい温度に維持されてもよい。このような温度は、固形廃棄物混合物を固体燃料混合物に変換するのに適している。少なくとも1つの加熱壁は、加熱工程を加速するために、固形廃棄物混合物の所望の最終温度より少なくとも約30℃以上高い温度に維持されてもよい。
【0056】
ステップ106での加熱中に固形廃棄物混合物によって放出された気化化合物は、以下に記載される後続のステップで除去されるべき処理容器のヘッドスペース内に保持されてもよい。ステップ106での加熱中に固形廃棄物混合物によって放出された気化化合物は、処理容器から連続的に除去されてもよい。
【0057】
気化化合物の除去
再び
図1を参照すると、本方法は、ステップ108において、加熱された固形廃棄物混合物によって放出された気化化合物を除去する工程をさらに含むことができる。気化化合物は蒸気(すなわち水蒸気)及び/又は本明細書に記載の1種以上の更なる気化化合物を含み得る。気化化合物は、ステップ106での固形廃棄物混合物の加熱及び任意選択の混合後、処理容器の内部容積に真空を適用することによって除去され得る。真空は、以下に記載するように、処理容器に取り付けられた真空システムによって真空ポートで生成することができる。掃気用空気を処理容器に導入して、気化化合物の容器外への移動を促進してもよい。
【0058】
真空システムは、ステップ106で行われる加熱及び任意選択の混合の期間中、気化化合物を連続的に除去することができる。処理容器内に維持される真空圧力は、乾燥中及び加熱中の固形廃棄物混合物内の物質の燃焼と、それに関連するエネルギー損失を抑制し得る。いかなる特定の理論にも限定されないが、処理容器内の真空圧力は、上記の水及び他の気化化合物の気化温度を低下させ、それにより気化化合物を固形廃棄物混合物から除去するのに必要な時間を短縮する。本明細書で説明するように、掃気用空気を処理容器に導入して、気化化合物の容器外への移動を促進することができる。
【0059】
真空システムは凝縮器を備えてもよい。凝縮器は、上部ポート、上部ポートの下方の下部ポート、下部ポートの下方の凝縮水溜め、凝縮水溜め内の排水路を備えてもよい。存在する場合、凝縮器は、凝縮器の上部ポートを介して処理容器の真空ポートに動作可能に結合され、凝縮器は、凝縮器の下部ポートを介して真空ポンプに動作可能に結合される。真空ポンプと凝縮器は処理中に気化した化合物を急速に除去して凝縮器内に凝縮物を生成し、これにより材料を熱分解することなく熱分解用の燃料組成物を調製する。
【0060】
処理容器内に維持される圧力は、6.67kPa(50torr)、6.00kPa(45torr)、5.33kPa(40torr)、4.67kPa(35torr)、4.00kPa(30torr)、3.33kPa(25torr)、2.67kPa(20torr)、2.00kPa(15torr)、1.33kPa(10torr)、又は0.67kPa(5torr)未満とすることができる。処理容器内に維持される圧力は、約4.67kPa(35torr)未満であってもよい。処理容器内に維持される圧力は、約3.33kPa(25torr)未満であってもよい。
【0061】
処理容器内に維持される圧力の範囲は変動し得る。圧力は、約0.667kPa(約5torr)~約13.3kPa(約100torr)、例えば約0.667kPa(約5torr)~1.33kPa(10torr)、約1.33kPa(約10torr)~2.00kPa(15torr)、約2.00kPa(約15torr)~2.67kPa(20torr)、約2.67kPa(約20torr)~3.33kPa(25torr)、約3.33kPa(約25torr)~4.00kPa(30torr)、約4.00kPa(約30torr)~4.67kPa(35torr)、約4.67kPa(約35torr)~5.33kPa(40torr)、約5.33kPa(約40torr)~6.00kPa(45torr)、約6.00kPa(約45torr)~6.67kPa(50torr)、約6.67kPa(約50torr)~7.33kPa(55torr)、約7.33kPa(約55torr)~8.00kPa(60torr)、約8.00kPa(約60torr)~8.67kPa(65torr)、約8.67kPa(約65torr)~9.33kPa(70torr)、約9.33kPa(約70torr)~10.0kPa(75torr)、約10.0kPa(約75torr)~10.7kPa(80torr)、約10.7kPa(約80torr)~11.3kPa(85torr)、約11.3kPa(約85torr)~12.0kPa(90torr)、約12.0kPa(約90torr)~12.7kPa(95torr)、約12.7kPa(約95torr)~13.3kPa(100torr)である。
【0062】
処理容器内に維持される圧力は、約5.33kPa(約40torr)~約8.00kPa(約60torr)であってもよい。ステップ108で処理容器から除去された気化化合物は、蒸気(水蒸気)及び本明細書に記載の1つ又は複数の更なる気化化合物を含み得る。気化化合物は、
図3に示すように、リサイクル廃水を生成するために追加で処理されてもよい。
【0063】
図3は、処理チャンバから除去された気化化合物の混合物をさらに処理する方法300を示すフローチャートである。方法300は、ステップ302で加熱された固形廃棄物混合物によって放出された気化化合物を除去し、ステップ304で気化化合物を凝縮させて廃水を生成する工程を含む。凝縮された廃水は、塩素及び種々の有機溶媒を含むがこれらに限定されない上記の更なる気化化合物のうちの1種以上を水溶液として含み得る。気化化合物は約100℃以上の温度を有し得る。この温度は、真空システムに含まれる様々な水処理装置の最高動作温度を超えることがある。非限定的な例として、メンブレンフィルタは約85℃の最高動作温度を有する場合があり、活性炭フィルタは約35℃の最高動作温度を有する場合がある。
【0064】
再び
図3を参照すると、凝縮された廃水は、ステップ306で冷却されてもよい。凝縮された廃水は約-40℃(-40°F)から約+40℃(100°F)の範囲の大気温度条件に曝された廃水タンクに貯蔵し、冷却させることができる。廃水タンクは、金属材料を含むがこれに限定されない比較的高い熱伝導率を有する材料で構成することができる。廃水貯蔵タンクは、ステンレス鋼で構成することができる。廃水タンクは、撹拌器又はポンプ等の水循環装置をさらに備え、タンク内の廃水を循環させて冷却速度を高めることができる。凝縮された廃水を本明細書の以下に記載される追加の水処理装置に供する前に、ステップ306において、凝縮された廃水を約85℃未満の温度に冷却してもよい。廃水は、ステップ306において、約80℃未満、約75℃未満、約70℃未満、約65℃未満、約60℃未満、55℃未満、約50℃未満、約45℃未満、約40℃未満、約35℃未満、約30℃未満、及び約25℃未満に冷却されてもよい。
【0065】
再び
図3を参照すると、凝縮された廃水を処理する方法は、ステップ308において、凝縮された廃水をメンブレンフィルタを通して濾過する工程をさらに含むことができる。特定の理論に限定されないが、メンブレンフィルタは、上記の有機溶媒の1種以上を含むがそれらに限定されない溶解された化合物を除去することができる。非対称ポリエーテルスルホンメンブレンフィルタ、ナイロン(商標)(ポリアミド)メンブレンフィルタ、及びテフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)メンブレンフィルタを含むがこれらに限定されない任意の既知のメンブレンフィルタをステップ308で使用することができる。廃水は、ステップ308で膜濾過に供される前に、約85℃未満の温度に冷却されてもよい。廃水は、ステップ308の前に、約80℃未満、約75℃未満、約70℃未満、約65℃未満、約60℃未満、約55℃未満、約50℃未満、約45℃未満、約40℃未満、約35℃未満、約30℃未満、及び約25℃未満の温度に冷却されてもよい。
【0066】
再び
図3を参照すると、凝縮された廃水を処理する方法は、ステップ310で廃水にオゾン処理を施す工程をさらに含むことができる。特定の理論に限定されないが、オゾン処理は廃水中のバクテリアを破壊し、廃水を無菌にすることができる。より低温の水温でオゾンの水への溶解度が高められるので、水はステップ310の前にさらに冷却されてもよい。ステップ310でのオゾン処理の前に、ステップ308で水をメンブレンフィルタを通して濾過してもよく、これにより廃水を冷却するための更なる時間を提供する。ステップ310でオゾン処理された廃水は、約40℃未満の温度に冷却されてもよい。廃水は、ステップ308の前に、約35℃未満、約30℃未満、約25℃未満、及び約20℃未満の温度に冷却されてもよい。
【0067】
再び
図3を参照すると、ステップ312において活性炭フィルタを用いて廃水を濾過することができる。特定の理論に限定されるものではないが、活性炭フィルタは、廃水から塩素ガス、沈殿物、揮発性有機化合物(VOC)、塩素化有機化合物、味及び臭気を除去することができる。さらに、活性炭が廃水から汚染物質を除去する吸着過程は、比較的低い水温で強化され得る。水はステップ308でメンブレンフィルタを通して濾過され、ステップ312での活性炭濾過に先立ってステップ310でオゾン処理され、それにより廃水が冷却される追加の時間を提供する。廃水は、ステップ312の活性炭フィルタを通す濾過の前に、約40℃未満の温度に冷却されてもよい。廃水は、ステップ312の前に、約35℃未満、約30℃未満、約25℃未満、及び約20℃未満の温度に冷却されてもよい。
【0068】
ステップ308、310、及び312で処理された廃水は、下水として排出されてもよいし、ステップ314で次の使用のために保管されてもよい。処理された廃水の適切なその後の使用の非限定的な例には、ダストコントロール、及びエネルギー作物等の非食用作物の灌漑等が挙げられる。
【0069】
乾燥固形廃棄物混合物の加熱及び混合
ステップ108で気化化合物を除去した後に処理容器内に残っている乾燥固形廃棄物混合物を、ステップ109で少なくとも約160℃の最終温度までさらに加熱し混合してもよい。最終温度は、乾燥固形廃棄物混合物中のプラスチック材料を溶融させるのに十分高くなくてはならない。いかなる特定の理論にも限定されないが、溶融プラスチックと固形廃棄物混合物の他の材料との混合は、得られる固体燃料組成物を一つに固めて、その多孔性を低下させることができる。溶融プラスチックは、得られる固体燃料組成物の密度を増加させ、エネルギー含量を増加させ、廃棄物抵抗性(waste resistance)を高め、下流の加工性を向上させる。
【0070】
乾燥固形混合物の最終温度は、固形廃棄物混合物の組成を含むが、これに限定されない少なくともいくつかの因子のうちの任意の1つ以上に依存し得る。固形廃棄物混合物が塩素含有プラスチックを含む場合、最終温度は、本明細書に記載されているように、固形廃棄物混合物から塩素を遊離させるのに十分な温度まで高められる。固形廃棄物混合物中の全てのプラスチックが溶融するのを確実にするため、最終温度は、固形廃棄物混合物に含まれるプラスチック混合物の最高溶融温度により決定され得る。
【0071】
図2は、開始時間t=0において処理容器に導入された後の容器内の固形廃棄物混合物の温度プロファイルを概略的に示すグラフである。第1の温度範囲202において、固形廃棄物混合物は、周囲温度に相当する開始温度から約100℃の温度に加熱される。固形廃棄物の温度が約100℃以上に上昇すると、固形廃棄物混合物内の水分及び他の揮発性化合物が気化し、気化化合物の混合物として放出され、それによって固形廃棄物混合物を気化化合物と乾燥固形廃棄物混合物とに分離する。例えば、観察の結果、約190℃以上の温度で、塩素化有機化合物及び塩素ガスが固形廃棄物混合物から遊離される。
【0072】
固形廃棄物混合物を混合すると、外表面が補充されてそこから蒸気が放出されることにより、また、固形廃棄物混合物が圧縮されて、固形廃棄物混合物内に形成された空隙又は蒸気泡が追い出されることによって、蒸気の放出が促進される。蒸気及び他の気化化合物の放出に加えて、固形廃棄物混合物はまた、第2の温度範囲204内で滅菌されてもよい。
【0073】
再び
図2を参照して、温度が約200℃を超えて上昇するにつれ、固形廃棄物混合物内の様々な有機化合物が分解し得る。約200℃~約240℃の第3の温度範囲内で、固形廃棄物混合物に含まれる任意のプラスチックから様々な揮発性化合物を遊離させ、放出され続ける蒸気に加えて更なる気化化合物として放出することができる。塩素は、ポリ塩化ビニル(PVC)プラスチックを含むがこれに限定されない塩素含有プラスチックから放出され得る。様々な有機溶媒が、加熱された固形廃棄物混合物から放出され得る。
【0074】
固形廃棄物混合物の加熱中に放出され得る他の更なる気化化合物の非限定的な例には、アセトン、ベンゼン、二硫化炭素、クロロメタン、酢酸エチル、2-ヘキサノン、メチルエチルケトン、スチレン、ブチルアルコール、THF、トルエン、ベンジルアルコール、ビス(2-クロロエトキシ)メタン、フタル酸ジエチル、フタル酸ジメチル、ジフェンヒドラジン、ビス(2-エチルヘキシル)フタレート、イソホロン、メチフェノール(methyphenol)、ニトロベンゼン、ニトロフェノール、ニトロソジ-n-プロピルアミン、o-トルイジン、ヘキサン二酸、ビス(2-エチルヘキシル)エステル、テトラコサヘキサエン、及びフランメタノールが挙げられる。
【0075】
温度が約240℃を超えて第4の温度範囲208に上昇すると、固形廃棄物混合物中のプラスチック材料は溶融され、固形廃棄物混合物の他の構成成分と混合される。固形廃棄物混合物の最高温度は、約160℃~約300℃の範囲とすることができる。最高温度は、約160℃、約170℃、約180℃、約190℃、約200℃、約210℃、約220℃、約230℃、約240℃、約245℃、約250℃、約255℃、約260℃、約265℃、約270℃、約275℃、約280℃、約285℃、約290℃、約295℃、及び約300℃であってもよい。最高温度は約190℃であってもよい。最高温度は、
図2に示すように、約260℃であってもよい。最高温度及び処理条件は、固形廃棄物混合物が熱分解しないように制御する必要がある。
【0076】
上記1つ以上の加熱壁は、固形廃棄物混合物の最高温度に相当する温度に維持されてもよい。1つ以上の加熱壁は、固形廃棄物混合物の最高温度よりも高い温度に維持されてもよい。1つ以上の加熱壁をより高い温度に維持することにより、固形廃棄物混合物をより短時間で最高温度まで加熱することができる。
【0077】
1つ以上の加熱壁は、固形廃棄物混合物の最高温度よりも約30℃高い温度に維持されてもよい。1つ以上の加熱壁は、押出前の固形廃棄物混合物の最高温度よりも約30℃高い、約40℃高い、約50℃高い、約60℃高い、約70℃高い、約80℃高い、約90℃高い、約100℃高い、約120℃高い、約140℃高い、約160℃高い、約180℃高い、及び約200℃高い温度に維持されてもよい。最高温度及び処理条件は、固形廃棄物混合物が熱分解しないように制御する必要がある。
【0078】
固形廃棄物混合物を均質化し、混合プラスチックを溶融させるのに十分な時間を確保するために、固形廃棄物混合物を処理容器内で約15分間~約120分間加熱してもよい。加熱の持続時間は、処理容器に導入される固形廃棄物混合物、1つ以上の加熱壁の温度、固形廃棄物混合物の様々な構成成分の比熱、及び混合速度を含むがこれらに限定されない少なくともいくつかの要因のうちの任意の1つ又は複数に依存し得る。固形廃棄物混合物は、約15分~約25分、約20分~約30分、約25分~約35分、約30分~約40分、約35分~約45分、約40分~約50分、約45分~約55分、約50分~約60分、約55分~約65分、約60分~約90分、約75分~約105分、及び約90分~約120分の間加熱されてもよい。固形廃棄物混合物は、処理容器内で約30分間加熱されてもよい。固形廃棄物混合物は、処理容器内で約60分間加熱されてもよい。
【0079】
ステップ109において固形廃棄物混合物に対して実施される混合及び加熱の持続時間は、少なくともいくつかの方法のうちの任意の1つ又は複数によって決定することができる。処理容器は、処理容器内で固形廃棄物混合物が加熱され混合される際にシステムのオペレータが固形廃棄物混合物を視覚的に監視することができる覗きガラスを含むことができる。システムのオペレータは、固形廃棄物混合物が固体燃料組成物に変換されたことを確認したときに、ミキサーを手動で停止させることができる。非限定的な例として、オペレータは、固形廃棄物混合物中のプラスチックが溶融し、固形廃棄物混合物の他の構成成分と混合されたのを確認したとき、手動でミキサーを停止させることができる。
【0080】
この方法は、ステップ109において固形廃棄物混合物が加熱され混合される際の固形廃棄物混合物の温度を監視することを含んでもよい。温度は、本明細書に記載の処理容器に含まれる温度センサを用いて監視することができる。固形廃棄物混合物の監視された温度は、システムのオペレータに表示され、ステップ109における加熱及び混合の持続時間を決定するために使用され得る。非限定的な例として、システムのオペレータは、処理容器内の固形廃棄物混合物の表示温度が本明細書で上述した最高温度を超えたとき、手動でミキサーを停止させることができる。固形廃棄物混合物の測定温度は、自動制御システムに伝達されてもよい。自動制御システムは、固形廃棄物混合物の測定温度が、本明細書で前述した最高温度を超えたとき、ミキサーを停止させることができる。
【0081】
処理容器は、ステップ106及び109の加熱及び混合が行われる単一の内部容積を含むものであってよい。処理容器は、内部容積を乾燥室と混合室とに分割する内壁を含んでもよい。ステップ106での固形廃棄物混合物の加熱は乾燥室内で行われ、続いて同じ乾燥室内において、ステップ108で気化化合物が除去される。また、ステップ108後に乾燥室に残っている乾燥固体混合物は、内壁に含まれる移送開口を介して混合室に移送されてもよい。任意選択で、混合室は、乾燥固形廃棄物混合物の加熱の間に放出された更なる気化化合物を除去するために、混合室に真空を定期的に適用するか、又は混合室内の真空を維持するための、真空アセンブリからの真空の適用を可能にする真空取付け部品を含むこともできる。
【0082】
加熱固形廃棄物混合物の押出
再び
図1を参照すると、ステップ109で乾燥固形廃棄物混合物を加熱及び混合し、最終温度までの加熱中に放出された残留蒸気及び他の気化化合物を任意に除去した後、乾燥固形廃棄物混合物は比較的均一な粘性材料からなる加熱固形廃棄物混合物となり、その中で溶融プラスチックは材料全体に分布している。加熱固形廃棄物混合物は、ステップ110で処理容器から押出されてもよい。
【0083】
加熱固形廃棄物は、当技術分野で知られている無制限の任意の押出法を用いて処理容器から押出すことができる。処理容器は、以下に記載するように押出機出口を備えていてもよい。押出機出口は、様々な形状及び寸法を有する断面輪郭を含むことができる。押出機出口の断面輪郭は、取扱い、輸送、貯蔵、及び/又はその後の使用を容易にする形状を有する固体燃料組成物を生成するように選択することができる。適切な断面輪郭の非限定的な例には、円形、三角形、四角形、又は任意の他の閉じた多角形が含まれる。
【0084】
押出機出口の断面輪郭の最大寸法は、約2.5cm(約1インチ)から約31cm(約12インチ)又はそれ以上まで可変である。最大寸法は、約2.5cm(約1インチ)~約7.6cm(約3インチ)、約5.1cm(約2インチ)~約10cm(約4インチ)、約7.6cm(約3インチ)~約13cm(約5インチ)、約10cm(約4インチ)~約15cm(約6インチ)、約13cm(約5インチ)~約18cm(約7インチ)、約15cm(約6インチ)~約20cm(約8インチ)、約18cm(約7インチ)~約23cm(約9インチ)、約20cm(約8インチ)~約25cm(約10インチ)、約23cm(約9インチ)~約28cm(約11インチ)、及び約25cm(約10インチ)~約31cm(約12インチ)まで可変である。押出機出口の断面輪郭は、最大寸法が5.1cm(2インチ)の正方形であってもよい。
【0085】
処理容器には、押出機出口を通して加熱固形廃棄物混合物を圧縮するための任意の既知の装置を制限なく設けることができる。処理容器は、混合段階中は一方向に操作され、加熱固形廃棄物混合物を押し出す際に逆方向に操作され得るスクリューコンベヤを含むミキサーを備えてもよい。処理容器は、容器壁の底部内の部分的に囲まれたチャネルの中にスクリューコンベヤを含むことができる。スクリューコンベヤは、ステップ110において、加熱固形廃棄物混合物の押出を開始するように稼働されてもよい。
【0086】
加熱固形廃棄物混合物は、温度がより低い処理容器の外側に押出されるにつれて冷却され得る。押出機出口を加熱して、加熱固形廃棄物混合物の温度を押出温度に維持してもよい。いかなる特定の理論にも限定されないが、押出温度は、加熱固形廃棄物混合物を、処理容器に設けられた押出要素を用いた押出に適合する粘度に維持するように選択することができる。押出機出口は、電気抵抗ヒータ、加熱ジャケット、誘導ヒータ、及び任意の他の既知の適切な加熱方法を含むがこれらに限定されない任意の既知の加熱方法を用いて加熱されてもよい。
【0087】
加熱固形廃棄物混合物は、処理容器内の加熱固形廃棄物混合物の最高温度よりも低い温度で押出機出口から出されてもよい。押出された固形廃棄物混合物の温度は、約100℃~約260℃の範囲であり得る。押出された固形廃棄物混合物の温度は、約100℃~約140℃、約120℃~約160℃、約140℃~約180℃、約160℃~約200℃、約180℃~約220℃、約200℃~約240℃、及び約220℃~約260℃の範囲であり得る。
【0088】
押出された固形廃棄物混合物の温度は約200℃であってもよい。押出された固形廃棄物混合物は約200℃未満であってもよい。より高い温度が使用されているが、押出された固形廃棄物混合物の熱分解は200℃を超える押出温度で起きることが観察されている。
【0089】
押出された固形廃棄物混合物は、押出の際に任意に切断して小片にすることができる。押出された材料を切断するための任意の既知の装置を使用して押出された固形廃棄物混合物を切断することができ、これらには、限定するものではないが、レーザーカッター、鋸、ウォータージェットカッター、及び任意の他の適切な切断装置が含まれる。押出された廃棄物混合物は、切断前に材料をわずかに冷却して硬化させてもよい。押出された固形廃棄物混合物は、約61cm(約2フィート)未満の長さの小片に切断されてもよい。
【0090】
押出された固形廃棄物混合物は、処理容器の外側の周囲温度条件で冷却することができる。押出された固形廃棄物混合物の冷却速度は、1つ以上の冷却装置又は方法を用いて加速されてもよい。押出された固形廃棄物混合物は、押出された廃棄物混合物からの熱の移動を促進する1つ以上の装置を用いて冷却することができ、これらには、限定するものではないが、送風扇、ミストファン、水冷タンク、冷却面、冷蔵室、及び任意の他の既知の材料冷却装置が含まれる。水冷式コンベヤ等のコンベヤを用いて、押出された固形廃棄物を冷却して固体燃料組成物を形成させることができる。
【0091】
押出された固形廃棄物混合物は、急速に冷却されてもよい。すなわち、周囲条件下で混合物を放置するよりも速く冷却される。そうすることにより、凝固及び貯蔵安定性が促進され得る。押出された固形廃棄物を冷却するのにかかる時間は変動し得る。押出された固形廃棄物混合物が冷却される時間は、約15分、約14分、約13分、約12分、約11分、約10分、約9分、約8分、約7分、約6分、約5分、約4分、約3分、約2分、約1分、約30秒、又は約15秒であり得る。押出された固形廃棄物混合物は、10分未満で冷却され得る。押出された固形廃棄物混合物は、5分未満で冷却され得る。押出された固形廃棄物混合物は、1分未満で冷却され得る。
【0092】
固形廃棄物混合物は、押出以外の方法を用いて小片に成形することができる。粘性材料を所望の形状に形成する任意の既知の方法を用いて小片を形成することができ、これには、限定するものではないが、圧縮成形が含まれる。非限定的な例として、加熱固形廃棄物混合物を処理容器から取り出し、複数の型に分配し、所望の形状に圧縮することができる。所望の形状は、上記のような押出法を用いて形成された小片の形状に類似していてもよい。所望の形状は、約5cm(約2インチ)の最大断面及び約61cm(約2フィート)のロッド長さを有する棒状であってもよい。所望の形状の断面輪郭は、円形、正方形、又は任意の他の適切な断面輪郭であってもよい。
【0093】
押出された固形廃棄物混合物を冷却して固体燃料組成物を形成することができる。得られた固体燃料組成物は、無菌、疎水性、化学的に安定、かつ/又は非生分解性である。「無菌」とは、製造後の固体燃料組成物が細菌、真菌、及びウイルス等の生きた微生物を実質的に含まないことを指す。「安定」又は「化学的に安定」とは、水、酸素、又は周囲条件との長期接触時、特に通常の貯蔵条件下で、固体燃料組成物がその化学的又は物理的特性又は構造を実質的に変化させないことを指す。固体燃料組成物は、燃焼、熱分解、又は同様のプロセスで供給原料として使用されるまで「安定」である。「非生分解性」とは、固体燃料組成物が通常の生物学的作用(例えば、腐敗や堆肥化)の下で分解又は退位(deposing)しないことを指す。結果として、固体燃料組成物は、広範囲の貯蔵条件で長期間貯蔵することができ、並置された廃棄物エネルギー回収設備への供給原料として使用することができ、遠隔にある廃棄物エネルギー回収設備に輸送することができ、かつ/又は処理容器及び関連する装置にエネルギーを提供するのに用いることができる。
【0094】
固体燃料組成物片は、任意選択で、熱分解反応器への供給原料として使用するのに適したより小さな小片に粉砕することができる。より小さな小片の粒子サイズは、固体燃料組成物が供給原料として使用され得る特定の熱分解反応器に応じて様々であってよい。より小さな小片の粒子サイズは、約0.1mm~約10mmの粒子サイズの範囲であり得る。より小さな小片は、約3mmの最大粒子サイズを有することができる。固体燃料組成物の粉砕片は、既知の設備及び方法を用いて固体燃料組成物を木材の形状に押出することによって建築材料に成形することができる。
【0095】
II.固体燃料組成物を形成するためのシステム
固形廃棄物混合物から固体燃料組成物を製造するためのシステムが提供される。
図7は、本明細書に開示される混合された固形廃棄物を処理するためのシステムの一般化された概略図である。システム700は、処理容器710、ヒータ720、凝縮器730、真空ポンプ740、制御盤750、コンベヤ760、及び1つ以上の任意の水処理装置770を含む。処理容器710は、処理容器710の内部容積に配置され、処理容器710に動作可能に接続されているミキサー712を含む。処理容器710はまた、処理容器710の第1の開口部を通る押出要素716と、処理容器710の第2の開口部を通る真空ポート714とを有する。ヒータ720は、例えば処理容器710の1つ以上の壁を加熱することによって、処理容器710の内部容積を加熱するように、処理容器710に動作可能に接続される。
【0096】
凝縮器730は、上部ポート734及び下部ポート736を備える。凝縮器は、凝縮器730の上部ポート734を介して処理容器710の真空ポート714に動作可能に結合される。真空ポンプ740は、凝縮器730の下部ポート736を介して凝縮器730に動作可能に結合されている。制御盤750は、システム700内のミキサー712、ヒータ720、真空ポンプ740、及び1つ以上の任意選択のセンサに動作可能に接続されている。冷却ユニットとして作用するコンベヤ760が、押出された材料を受け取るために処理容器710の押出ポート716に動作可能に接続されている。更なる詳細は、ここに記載されているサブパーツに見出すことができる。任意選択のフィルタ770が、システム700の動作中に凝縮器730内に形成された凝縮液を処理するために、凝縮器730に動作可能に接続されてもよい。
【0097】
図4は、システム400の要素を示すブロック図である。システム400は、ヒータ405及び真空システム403に動作可能に接続された処理容器401を含むことができる。処理容器は、ヒータ405によって加熱されている間に固形廃棄物混合物を混合するミキサー408を含んでもよい。さらに、真空システム403は、処理容器401内の比較的無酸素の雰囲気を維持し、水蒸気及び他の気化化合物が処理容器401内の加熱固形廃棄物混合物から放出される際にそれらをさらに除去する。このシステムは、本明細書に記載の固体燃料組成物を形成する方法を実施するのに適した装置及び要素を提供する。
【0098】
処理容器
図4を参照すると、システム400は処理容器401を含むことができる。処理容器401は、壁温度に維持された1つ以上の加熱壁と、処理容器の内部容積内にあり、処理容器401に動作可能に接続されたミキサー408と、処理容器401の第1の開口部を通る押出要素と、処理容器の第2の開口部を通る真空ポートとを有する。処理容器401は、ミキサー408を含む内部容積406を包囲する。固形廃棄物混合物を内部容積406に導入し、ミキサー408を用いて撹拌し、容器401に動作可能に結合されたヒータ405を用いて加熱する。内部容積406内の圧力は、真空ポートを介して容器401に動作可能に結合された真空システムを用いて、約6.67kPa(約50torr)未満の真空圧力に維持されてもよい。
【0099】
処理容器401は、適切な強度、非反応性、及び/又は少なくとも約300℃の最高温度までの耐熱性を有する任意の既知の材料で構成することができる。容器401の材料は、ヒータ405による内部容積の加熱を容易にするために高い熱伝導率を有することができる。処理容器401の材料は、伝導加熱及び誘導加熱を含むがこれらに限定されない特定の加熱方法に適合するものであり得る。処理容器401は、ステンレス鋼を含むがこれに限定されない金属で構成することができる。
【0100】
処理容器401は、少なくともいくつかの要因の任意の1つ以上に応じて全体の大きさが様々であってよく、それらには、限定するものではないが、容器401内で混合される固形廃棄物混合物、容器401内に含まれるミキサー408の種類、及び/又はシステム400を作動させる廃棄物エネルギー回収設備又は他の場所における容器401の望ましい設置面積が含まれる。
【0101】
処理容器401は、本質的に長方形の容器として提供されてもよい。処理容器401の長さは、約152cm(約5フィート)~約610cm(約20フィート)の範囲であり得る。処理容器401の高さ及び幅はそれぞれ約152cm(約5フィート)から約305cm(約10フィート)の範囲であってもよい。処理容器401は、約305cm(約10フィート)の長さ、約213cm(約7フィート)の幅及び約213cm(約7フィート)の高さを有することができる。
【0102】
再び
図4を参照すると、処理容器401は、容器401の内部容積406への/からのアクセスを提供し、かつ/又は、真空システムを含むがこれに限定されないシステムに関連する1つ以上の装置の動作可能な結合を提供するための、1つ以上の開口部、ポート、及び/又はハッチをさらに含むことができる。1つ以上の開口部の非限定的な例には、排気ポート420、押出出口434、及び入口444が挙げられる。容器の1つ以上の開口部は、以下にさらに詳細に説明される。
【0103】
再封止性開口部/任意選択のホッパー
固形廃棄物混合物を処理容器401の内部容積406に導入することで、上記の固体燃料組成物の形成方法を開始することができる。固形廃棄物混合物は、ハッチ、ドア、ポート、又は容器壁に形成された任意の他の適切な再封止性開口部を含む再封止性開口部を介して内部容積406に導入されてもよい。再封止性開口部は、固形廃棄物混合物を容器401に挿入するために、また、後に処理容器401内で加熱及び混合を開始する前に、開放することができる。再封止性開口部には、シール、ガスケット、及び/又は再封止性開口部が閉じられたとき気密シールを形成する他の機構が設けられてもよい。
【0104】
再び
図4を参照すると、システム400は、任意選択で、固形廃棄物混合物404を集めて容器401の内部容積406に導入するために、処理容器401に動作可能に結合されたホッパー402を含むことができる。ホッパー402は、容器壁内に設けられた固形廃棄物入口444を介して内部容積406に結合されてもよい。固形廃棄物入口444は、開放されて、ホッパー402から固形廃棄物混合物404を内部空間406に入れて空にするように構成された再封止性ドアであってもよい。再封止性ドアは、固形廃棄物混合物がホッパー402から内部容積406に移されると閉じられて封止を形成してもよい。これらの構成は、バッチ式処理、連続式処理、又は半連続式処理に適している。
【0105】
当分野で既知の任意の既知のホッパー設計を、システム400に含まれるホッパー402として選択することができる。ホッパー402は、固形廃棄物混合物を、本明細書に記載の処理容器401内での混合及び加熱に適した小片に細断するためのシュレッダー(図示せず)をさらに含むことができる。特に、固形廃棄物は、処理容器401内において減圧下で加熱混合されてもよい。シュレッダーは、固形廃棄物入口444を介して容器401に動作可能に結合されてもよい。シュレッダーの出口ポートは、固形廃棄物混合物を内部容積406に供給することができる。任意の既知のシュレッダー設計がシステム400に含めるのに好適であり、これらには、限定するものではないが、1軸回転シュレッダー、2軸回転シュレッダー、グラニュレータ、ハンマーミルシュレッダー等が含まれる。
【0106】
ミキサー
再び
図4を参照すると、処理容器401は、内部容積406内の固体廃棄物混合物を混合するためのミキサー408をさらに含むことができる。任意の既知のミキサー設計を制限なしに処理容器に含めることができる。ミキサー408は、少なくともいくつかの要因のうちの任意の1つ以上に基づいて選択することができ、これらには、限定するものではないが、比較的高密度かつ高粘性の固形廃棄物混合物を撹拌する能力;固形廃棄物混合物にせん断力を付与する能力;ミキサーを駆動するのに必要なエネルギー量が含まれる。ミキサー408は、少なくとも1つのミキサーブレード446を含むことができる。
【0107】
1つ以上のミキサーブレード446は、内部容積406内で、1つ以上のミキサーブレード446の回転軸が容器401の長さに沿って整列されるように配向されてもよい。任意の適切なミキサーブレード設計を、システムに含めるために選択することができ、これらには、限定するものではないが、スクリューコンベヤ及びナーベン(naben)ブレードが含まれる。
【0108】
処理容器401Aは、デュアルミキサーブレード502/504を含むことができる。デュアルミキサーブレード502/504は、内部体積406内の固形廃棄物混合物の混合を促進するために異方向に回転させることができる。非限定的な例として、第1ミキサーブレード502は時計回りに回転し、第2ミキサーブレード504は反時計回りに回転することができる。この例では、異方向回転ミキサーブレード502/504は、固形廃棄物混合物を内部容積406の下部から上部に運び、さらに固形廃棄物混合物を内部容積の上部から下方へ、ミキサーブレード502/504の間で付勢し得る。デュアルミキサーブレード502/504は、ミキサーブレード502/504の間の固形廃棄物混合物の粉砕を可能にする程度の近接を保って横方向に離間させてもよい。ミキサーブレード502/504の横方向の間隔は、金属片やセラミック片等の硬い粒子がミキサーブレード502/504の間に詰まることなく通過可能な僅かな隙間を提供し得る。
【0109】
2室型処理容器
処理容器401の内部容積406は、別個の乾燥室と混合室に分割されてもよい。
図6は、内部容積を乾燥室704と混合室706に分割する内壁702を含む処理容器401Bの断面図である。両室704/706は、乾燥室704及び混合室706の両方の内容物を加熱するための加熱ジャケットに取り囲まれてもよい。内壁702は、乾燥室704の内容物を混合室706に移送するために開放することができる再封止性ドア708をさらに含み得る。
【0110】
2室型処理容器401Bは、混合室706内に配置されたミキサー408をさらに含むことができる。第2ミキサー408A(図示せず)を乾燥室704内に配置してもよい。2室型処理容器401Bは、加熱固形廃棄物混合物が混合室706から容器401Bの外に押し出される導管を提供するための押出機出口434をさらに含んでもよい。
【0111】
真空システム
再び
図4を参照すると、処理容器401は真空システム403に動作可能に結合されてもよい。処理容器401は、真空システム403への動作可能な結合を提供する排気ポート420を含むことができる。排気ポート420は、内側端部440で内部容積406に開口し、外側端部442で容器401の外部に開口するチャネル438を形成し得る。真空システム403は、排気ポート420の外側端部442に取り付けることができる。真空システム403は、真空ホース422を介して排気口420に接続することができる。
【0112】
真空ホース422は、使用中に潰れないように補強されてもよい。真空ホース422はまた、固形廃棄物混合物が加熱され得る最高温度までの温度で安全な動作を確保するように耐熱性であってもよい。真空ホースは、約300℃の温度まで耐熱性であってもよい。真空ホース422は、固形廃棄物混合物の加熱中に内部容積406から除去された気化化合物に由来する分解に抵抗するように、化学的に不活性及び/又は耐腐食性であってもよい。真空ホース422は、厚肉鋼で内張りされた高熱ホースであってもよい。
【0113】
再び
図4を参照すると、真空システム403は真空ポンプ424を含むことができる。真空ポンプ424は、内部容積406内に本明細書に記載されるような十分に低い圧力を維持するように選択されてもよい。また、真空ポンプ424は化学的に不活性、耐熱性、及び/又は耐腐食性であってもよい。さらに、真空ポンプ424は、内部容積406から移送された任意の粒子又は他の固体汚染物質の存在下で動作するように十分に頑丈であってもよい。真空ポンプ424は、偶発的な洪水の際に水に曝されるのを防ぐため、スタンド又は一段高い台の上に配置されてもよい。
【0114】
任意の真空ポンプ設計が、制限なく真空システム403に含まれてもよい。適切な真空ポンプの非限定的な例には、回転式ベーンポンプ、ダイヤフラムポンプ、及び液封式ポンプが挙げられる。真空ポンプ424は液封式ポンプであってもよい。真空ポンプ424は、直列に接続された2つ以上の液封式ポンプであってもよい。上述したように、真空ポンプ424は、内部容積406内に約6670Pa(約50torr)未満の圧力を維持することができ、加熱固形廃棄物混合物によって内部容積406に放出された水蒸気及び/又は他の気化化合物をさらに除去することができる。
【0115】
再び
図4を参照すると、空気源454が空気入口452を介して処理容器401に動作可能に結合されてもよい。空気源は、処理容器401の内部容積406内に掃気用空気を導入して、気化化合物が内部容積406から出て真空システム403に入る動きを促進することができる。空気入口は、真空システム403が稼働した時に、内部容積406内に約6670Pa(約50torr)未満の真空圧力を維持するように選択された流量で空気を供給することができる。空気源は任意の既知の空気源であってよく、これらには、限定するものではないが、圧縮空気タンク、エアコンプレッサ、エアーポンプ、又は大気を吸い込むファン、及び他の既知の空気源が含まれる。空気源は、窒素及びアルゴン等の希ガスを含むがこれらに限定されない無酸素及び非反応性のガスを供給してもよい。
【0116】
空気源454によって供給される掃気用空気は、内部容積406に導入される前に加熱され得る。掃気用空気の温度は、約20℃~約280℃の範囲であり得る。掃気用空気の温度は、少なくとも20℃、少なくとも40℃、少なくとも60℃、少なくとも80℃、少なくとも100℃、少なくとも120℃、少なくとも140℃、及び少なくとも160℃であり得る。掃気用空気は、空気源454に動作可能に結合された専用の掃気用空気ヒータを用いて加熱することができる。掃気用空気は、ヒータ405から掃気用空気に廃熱を移動させるために熱交換器に通してもよい。ヒータ405の高温の排気は、掃気用空気として使用するために、空気源454に送られてもよい。
【0117】
再び
図4を参照すると、真空システム403は、真空ポンプ424に、及び真空ホース422を介して処理容器401に動作可能に接続された凝縮器426をさらに含むことができる。凝縮器426は、真空ポンプ424によって処理容器401から引き出された水蒸気及び/又は他の気化化合物を冷却して廃水を生成する。廃水は、同じく凝縮器428に動作可能に接続された冷却タンク428に移送されてもよい。
【0118】
冷却タンク428は、上述したような気化化合物の1種以上を含み得る加熱液体を保持することができる任意のタンクであり得る。冷却タンク428は、廃水の冷却を促進するために比較的高い熱伝導率を有する耐腐食性かつ非反応性の材料で構成することができる。冷却機又は他の能動冷却装置(図示せず)を冷却タンク428に動作可能に連結して、冷却タンク428内の廃水の冷却速度を高めることができる。
【0119】
真空システムは凝縮器を備えてもよい。凝縮器は、上部ポート、上部ポートの下方の下部ポート、下部ポートの下方の凝縮水溜め、凝縮水溜め内の排水路を備えてもよい。存在する場合、凝縮器は、凝縮器の上部ポートを介して処理容器の真空ポートに動作可能に結合され、凝縮器は、凝縮器の下部ポートを介して真空ポンプに動作可能に結合される。
【0120】
上述したように、凝縮器426によって生成された廃水は、塩素及び種々の有機溶媒を含むがこれらに限定されない更なる気化化合物の1種以上を水溶液として含むことができる。再び
図4を参照すると、真空システム403は、凝縮器426とは反対側の廃水冷却タンク428に直列に動作可能に結合された1つ以上の水処理装置430をさらに含むことができる。1つ以上の水処理装置430は、凝縮された水から更なる気化化合物を除去して処理済み廃水を生成するように構成されてもよい。適切な水処理装置430の非限定的な例には、メンブレンフィルタ、オゾンチャンバ、及び活性炭フィルタが含まれる。
【0121】
1つ以上の水処理装置430は、メンブレンフィルタを含むことができる。任意の適切なメンブレンフィルタを、真空システム403内の水処理装置430として含めることができる。適切なメンブレンフィルタの非限定的な例としては、非対称ポリエーテルスルホンメンブレンンフィルタ;ナイロン(商標)(ポリアミド)メンブレンフィルタ;テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)メンブレンフィルタを含む。メンブレンフィルタは、廃水から除去することが想定される気化化合物に応じて選択することができる。また、メンブレンフィルタは、冷却タンク428を出る廃水の予測される温度に応じて選択することができる。例えば、約180℃の最高動作温度を有するテフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)メンブレンフィルタは、約80℃の最高動作温度を有するナイロン(商標)(ポリアミド)メンブレンフィルタよりも遥かに高い廃水温度に耐え得る。
【0122】
1つ以上の水処理装置430はオゾンチャンバを含むことができる。オゾンチャンバは廃水を滅菌することができる。任意の既知の設計のオゾンチャンバを水処理装置430として選択することができる。上述したように、オゾンチャンバの最高作動温度は約40℃であってもよい。如何なる特定の理論にも限定されないが、低い水温であるほどオゾンの溶解度が増すことから、オゾンチャンバの有効性はより低い水温で高められ得る。
【0123】
1つ以上の水処理装置430は、活性炭フィルタを含むことができる。活性炭フィルタは、廃水からの更なる気化化合物のいずれか1種以上を吸着することができる。上述したように、活性炭への気化化合物の吸着の有効性はより低い水温で高められる。活性炭フィルタの最高動作温度は約35℃である。
【0124】
1つ以上の水処理装置430は、各装置が処理すべき全ての廃水に接触できるように直列配置で動作可能に結合されてもよい。一連の水処理装置430は、最も頑丈な水処理装置を直列の開始部付近に配置し、より感受性の高い水処理装置ほど、直列の終了部側に配置するように構成してもよい。頑丈な水処理装置は、以下のうちの1つ又は複数によって特徴付けられてもよい:相対的に高い動作温度;広範囲の塩分及び/又はpHに対する相対的な非感受性;及び/又は粒子状物質による汚損に対する耐性。1つ以上の水処理装置430の直列配置は、最高動作温度に従って配置されてもよい。比較的高い最高動作温度を有するメンブレンフィルタが直列配置の最初にあり、次にオゾンチャンバ、次に活性炭フィルタが続いてもよい。冷却タンク428は、1つ以上の水処理装置430のうちの最も低い最高動作温度よりも低い温度まで廃水を冷却することができ、また、1つ以上の水処理装置430は任意の所望の順序で配置することもできる。
【0125】
再び
図4を参照すると、真空システム403は、1つ以上の水処理装置430によって処理された廃水を、その後の使用及び/又は廃棄のために貯蔵するように構成された処理済み廃水保持タンク432をさらに含むことができる。任意の適切な水タンク設計を、廃水タンク432に対して制限なく選択することができる。処理済みの廃水は上述したように冷却され精製されているため、廃水保持タンク432は冷却タンク428と比較して、より広範な種類の材料から構成することができる。廃水保持タンク432は、強化ガラス繊維製水タンクであってもよい。上述したように、廃水は、ダストコントロール、非食用作物の灌漑に用いてもよく、かつ/又は下水道システムにおける廃水として処分してもよい。
【0126】
再び
図4を参照すると、気化化合物が凝縮された後に凝縮器426に残っている空気は、真空ポンプ424を通過し、1つ以上のガス洗浄装置456に排出されてもよい。真空ポンプから出るガスは、メタン、塩素ガス、塩素化有機化合物、及び揮発性有機化合物を含むがこれに限定されない更なるガスを含む。1つ以上のガス洗浄装置456は、真空ポンプの排気からメタン及び他の可燃性ガスを分離するための吸着床を含むことができる。吸着床によって捕捉されたメタン及び他の可燃性ガスは、ヒータ405に燃料を供給するのに使用し、後で使用するために貯蔵し、かつ/又は販売することができる。1つ以上のガス洗浄装置456は、活性炭フィルタ、メンブレンフィルタ、及び任意の他の既知のガス濾過装置を含むがこれらに限定されないガスフィルタを含むことができる。1つ以上のガス洗浄装置456の全てによる処理後に残っているガスは、排気ポート458を介して大気に排出されてもよい。
【0127】
ヒータ
再び
図4を参照すると、システム400は、処理容器401に動作可能に結合されたヒータ405を含むことができる。任意の適切なヒータ設計をヒータ405として選択することができ、これらには、限定するものではないが、電気ヒータ、誘導ヒータ、及び加熱オイルジャケット等の対流ヒータが含まれる。ヒータ405は、内部容積408の境界を形成する1つ以上の加熱壁448を介して内部容積408に熱を伝達することができる。固形廃棄物混合物は、ヒータ405から加熱壁448への熱伝導を介して、及び加熱壁448から、加熱壁448に接触する固形廃棄物の混合物の一部への熱伝導を介して、内部容積406内で加熱され得る。
【0128】
ヒータ405は、処理容器401を取り囲む加熱ジャケットであってもよい。加熱ジャケットは、加熱オイル入口414と加熱オイル出口416との間で中空シェル内を循環する加熱オイル412を含む中空シェル410を含むことができる。加熱オイル412の温度は、オイル412が加熱オイル出口416と加熱オイル入口414との間を通過する際にオイル412に熱を伝達するように構成された熱交換器にオイル412を通過させることにより上昇し得る。任意の既知の加熱装置によって熱交換器を加熱することができ、これらには、限定するものではないが、電気ヒータ、ガスヒータ、誘導ヒータ、及び任意の他の適切な加熱装置が含まれる。熱交換器418の動作は、加熱オイル入口414及び加熱オイル出口416を含むがこれらに限定されない、ヒータ内の1つ又は複数の場所に配置された少なくとも1つの温度センサによって得られる加熱オイルの測定値を用いて調節することができる。
【0129】
熱交換器418を出た加熱オイルの温度は、循環して加熱オイル入口414に戻される際に冷却されてもよい。さらに、オイルは、中空シェル内を加熱オイル入口414と加熱オイル出口416との間で循環する際にさらに冷却されてもよい。熱交換器418は、加熱オイル入口414への移動中の冷却の程度に応じて、熱交換器418の出口においてオイルを約500℃又はそれ以上の温度に加熱してもよい。熱交換器418を出るオイルは、少なくとも300℃、少なくとも420℃、少なくとも440℃、少なくとも460℃、及び少なくとも480℃に加熱されてもよい。
【0130】
加熱オイルは、約160℃~約330℃の範囲の温度でオイル入口に導入されてもよい。加熱オイルは、約300℃以上の温度、例えば350℃以上の温度でオイル入口に導入されてもよい。
【0131】
加熱オイルは、オイルが加熱される比較的高い温度で酸化が促進されることから、長期間使用すると劣化することがある。加熱オイルの機能的完全性を維持するための任意の既知の手段が、制限なく使用され得る。オイルの一部は、当技術分野で既知の任意の方法及び装置を使用して、加熱オイル回路内で継続的に廃棄され、交換されてもよい。ヒータを定期的に停止してもよく、この停止期間中にオイルを取り換えてもよい。
【0132】
ヒータ405は、本明細書で説明するように、処理容器401内の固形廃棄物混合物の所望の最高温度に対応する比較的一定の加熱壁温度を維持するように操作されてもよい。加熱壁温度は、約260℃までの壁温度に維持することができる。加熱壁温度は、約160℃~約300℃の範囲の壁温度に維持されてもよい。加熱壁温度は、少なくとも160℃、少なくとも170℃、少なくとも180℃、少なくとも190℃、少なくとも200℃、少なくとも210℃、少なくとも220℃、少なくとも230℃、少なくとも240℃、少なくとも250℃、少なくとも260℃、少なくとも270℃、少なくとも280℃、及び少なくとも290℃の壁温度に維持されてもよい。
【0133】
加熱壁温度は、固形廃棄物混合物が上述したように最終温度まで加熱される速度に影響を与え得る。加熱壁温度は、固形廃棄物混合物の所望の最高温度に維持されてもよい。加熱壁温度は、固形廃棄物混合物の所望の最高温度より少なくとも10℃高く、所望の最高温度より少なくとも20℃高く、所望の最高温度より少なくとも30℃高く、所望の最高温度より少なくとも40℃高く、所望の最高温度より少なくとも50℃高く、所望の最高温度より少なくとも60℃高く、所望の最高温度より少なくとも70℃高く、所望の最高温度より少なくとも80℃高く、所望の最高温度より少なくとも90℃高く、及び所望の最高温度より少なくとも100℃高く維持されてもよい。
【0134】
押出機
システム400は、加熱固形廃棄物混合物を処理容器401から押出機出口434を介して押出すための押出機をさらに含むことができる。
図4を参照すると、処理容器401は、加熱固形廃棄物混合物が容器401の内部容積406から押出される導管を提供する押出機出口434をさらに含むことができる。押出機は、加熱固形廃棄物混合物を押出機出口に向かって圧縮し、それによって押出機出口434を通して固形廃棄物混合物を押出すための圧縮要素を含むことができる。
【0135】
圧縮要素は、ミキサーブレード、スクリューコンベヤ、ピストン、圧縮ポンプ、及び任意の他の適切な圧縮要素を含むがこれらに限定されない当技術分野で既知の任意の適切な圧縮要素とすることができる。圧縮要素は、
図4及び
図6に示すようなミキサーブレード446であってもよい。ミキサー408は、固形廃棄物混合物の加熱及び混合の間は正回転方向に作動され、次いで逆回転方向に作動されて加熱固形廃棄物混合物を押出出口434に向かって圧縮し、押出された固形廃棄物混合物436を押出出口434から出現させることができる。
【0136】
圧縮要素は、ミキサーブレード502/504とは別個の専用圧縮要素510を含んでもよい。圧縮要素510は、容器壁512の下部508内に形成されたチャネル506内に配置されたスクリューコンベヤを含むことができる。押出機出口434は、チャネル506の一端に位置してもよい。使用時、圧縮要素510は、固形廃棄物混合物が約160℃~約250℃の範囲の最高温度に加熱されたときに稼働され得る。圧縮要素510は、加熱固形廃棄物混合物をチャネル506内で、チャネルの押出機出口434に隣接する方の端部に向かって圧縮する。さらに、押出中にミキサーブレード502/504を継続的に作動させることにより、更なる加熱固形廃棄物混合物を、混合ブレード502/504の間をチャネル506に向かって下方に移動させる。
【0137】
図5は押出機出口434の断面図である。押出機出口434は、一方の端部が内部容積406に開口し、反対側の端部が処理容器401の外側に開口する内腔を囲む出口壁602を含むことができる。出口壁602の内表面606は、押出された固形廃棄物混合物の断面形状を形成するための押出ダイとして作用することができる。内表面606は、円形又は正方形の輪郭を含むがこれらに限定されない、上記のような任意の適切な押出断面輪郭を画定することができる。非限定的な例として、押出断面輪郭は、
図5に示すような正方形であってもよい。
【0138】
押出機出口434を加熱して、固形廃棄物混合物の押出を容易にすることができる。押出機出口434は、限定するものではないが、電気ヒータ、誘導ヒータ、及び加熱オイルジャケット等の対流ヒータを含む押出ヒータ(図示せず)に動作可能に接続されてもよい。押出ヒータは、出口壁602を介して内腔604に熱を伝達することができる。押出固形廃棄物混合物は、ヒータから出口壁602への熱伝導を介して、及び出口壁602から、出口壁602に接触する固形廃棄物の混合物の一部への熱伝導を介して、内腔604内で加熱され得る。ヒータは、処理容器401の残りの部分を加熱するために使用される加熱ジャケットの追加部分であってもよい。押出機の動作温度は、本明細書に記載の通りであり、一般に約200℃を超えてはならない。
【0139】
システム400は、押出固形廃棄物混合物が押出される際にそれを小片に切断するように構成されたカッター(図示せず)を任意選択で含んでもよい。押出された材料を切断するための任意の公知の装置をカッターとして使用するために選択することができ、これらには、限定するものではないが、レーザーカッター、鋸、ウォータージェットカッター、及び任意の他の適切な切断装置が含まれる。押出された廃棄物混合物は、切断前に材料をわずかに冷却して硬化させてもよい。押出された固形廃棄物混合物は、約61cm(約2フィート)未満の長さの小片に切断されてもよい。
【0140】
押出された固形廃棄物混合物は空気循環を促進する1つ以上の装置を用いて冷却することができ、これらには、限定するものではないが、送風扇、ミストファン、及び任意の他の既知の適切な空気循環装置が含まれる。押出された固形廃棄物混合物の冷却速度は、押出された固形廃棄物混合物を、冷却面上又は冷却された室内(限定するものではないが、空調された部屋又は冷蔵室を含む)に置くことによって高めることができる。押し出された固形廃棄物混合物は、
図4に示されるような冷却タンク450内の水等の冷却液に浸漬されてもよい。押出固形廃棄物混合物を水冷式コンベヤ等のコンベヤ上に押出すことで押出された固形廃棄物混合物を冷却し、固体燃料組成物を形成してもよい。
【0141】
制御盤
システムは、ミキサー、ヒータ、及び真空ポンプに動作可能に接続された制御盤を備えることができる。制御盤は、存在する場合、混合プラスチックを含む固形廃棄物混合物中の化合物を蒸発させるために内部容積を第1の温度に調節し、蒸発した化合物を固形廃棄物混合物から除去するために内部容積を第1の圧力に調節し、固形廃棄物混合物中の混合プラスチックを溶融させるためにミキサーが作動している間、内部容積を約160℃~約260℃の第2の温度及び約6670Pa(約50torr)未満の第2の圧力に調節する。
【0142】
制御盤は、1つ以上のセンサに動作可能に接続されたフィードバック制御システムをさらに備えてもよい。存在する場合、フィードバック制御システムは、1つ以上のセンサから少なくとも1つの測定値を受け取り、制御盤で実行される少なくとも1つの制御ルールに従って、真空ポンプ、ヒータ、又はミキサーの動作を変調する。1つ以上のセンサは、システムの1つ以上の動作状態を監視する。1つ以上のセンサの適切な例としては、限定するものではないが、処理容器の内部容積内の圧力を監視するための圧力センサ;加熱ジャケットのオイル入口に導入されるオイルの温度、及び内部容積内の固形廃棄物混合物の温度を各々監視するための1つ以上の温度センサ;内部容積から放出された気化化合物の湿度を監視するための湿度センサ;内部容積内の固形廃棄物混合物の重量を監視するための重量センサ、及びそれらの任意の組合せが挙げられる。
【0143】
III.固体燃料組成物
上述の方法及びシステムを使用して固形廃棄物混合物から製造される固体燃料組成物が提供される。固体燃料組成物は、廃棄物エネルギー回収方法の一部として、様々な熱分解チャンバへの供給原料としての使用に適合し得る。固体燃料組成物を形成する方法は、固体燃料組成物の製造に使用される固形廃棄物流に対して比較的均質かつエネルギー含量の変動性の小さい材料をもたらす。
【0144】
固体燃料組成物は、少なくとも23,300J/g(10,000BTU/lb)のエネルギー含量を有し得る。固体燃料組成物は、少なくとも23,300J/g(10,000BTU/lb)、少なくとも25,600J/g(11,000BTU/lb)、少なくとも27,900J/g(12,000BTU/lb)、少なくとも30,300J/g(13,000BTU/lb)、少なくとも32,600J/g(14,000BTU/lb)、少なくとも34,900J/g(15,000BTU/lb)のエネルギー含量を有し得る。
【0145】
固体燃料組成物は、少なくとも約18,600J/g(約8,000BTU/lb)のエネルギー含量を有し得る。固体燃料組成物は、少なくとも約21,000J/g(約9,000BTU/lb)のエネルギー含量を有し得る。固体燃料組成物は、約32,600J/g(約14,000BTU/lb)未満のエネルギー含量を有し得る。固体燃料組成物は、約18,600J/g(約8,000BTU/lb)~約32,600J/g(約14,000BTU/lb)の範囲のエネルギー含量を有し得る。
【0146】
固体燃料組成物は、約481kg/m3(約30lb/ft3)~約1280kg/m3(約80lb/ft3)の範囲の密度を有し得る。固体燃料組成物の密度は、少なくとも481kg/m3(30lb/ft3)、少なくとも641kg/m3(40lb/ft3)、少なくとも801kg/m3(50lb/ft3)、少なくとも961kg/m3(60lb/ft3)、及び少なくとも1120kg/m3(70lb/ft3)であってもよい。固体燃料組成物は、約801kg/m3(約50lb/ft3)の密度を有し得る。
【0147】
本明細書に記載されるように、固体燃料組成物はまた、化学的に安定であり、非生分解性であり、かつ/又は疎水性であることにより、分解又はエネルギー含量の低下を伴うことなく固体燃料組成物を広範囲の貯蔵条件で貯蔵可能である。いかなる特定の理論にも限定されないが、固形廃棄物混合物のプラスチック成分は、溶融して、得られる固体燃料組成物全体に分布し、組成物を非生分解性及び/又は疎水性にする。
【0148】
固体燃料組成物は、約40重量%~約80重量%の炭素を含有し得る。固体燃料組成物は、約40重量%~約44重量%、約42重量%~約46重量%、約44重量%~約48重量%、約46重量%~約50重量%、約48重量%~約52重量%、約50重量%~約54重量%、約52重量%~約56重量%、約54重量%~約58重量%、約56重量%~約62重量%、約60重量%~約64重量%、約62重量%~約66重量%、約64重量%~約68重量%、約66重量%~約70重量%、約68重量%~約72重量%、約70重量%~約74重量%、約72重量%~約76重量%、約74重量%~約78重量%、及び約76重量%~約80重量%の炭素を含有し得る。
【0149】
固体燃料組成物は、約5重量%~約20重量%の水素を含有し得る。固体燃料組成物は、約5重量%~約7重量%の水素、約6重量%~約8重量の水素、約7重量%~約9重量%の水素、約8重量%~約10重量%の水素、約9重量%~約11重量%の水素、約10重量%~約12重量%の水素、約11重量%~約13重量%の水素、約12重量%~約14重量%の水素、約13重量%~約15重量%の水素、約14重量%~約16重量%の水素、約15重量%~約17重量%の水素、約16重量%~約18重量%の水素、約17重量%~約19重量%の水素、及び約18重量%~約20重量%の水素を含有し得る。
【0150】
固体燃料組成物は、約5重量%~約20重量%の酸素を含有し得る。固体燃料組成物は、固体燃料組成物は、約5重量%~約7重量%の酸素、約6重量%~約8重量の酸素、約7重量%~約9重量%の酸素、約8重量%~約10重量%の酸素、約9重量%~約11重量%の酸素、約10重量%~約12重量%の酸素、約11重量%~約13重量%の酸素、約12重量%~約14重量%の酸素、約13重量%~約15重量%の酸素、約14重量%~約16重量%の酸素、約15重量%~約17重量%の酸素、約16重量%~約18重量%の酸素、約17重量%~約19重量%の酸素、及び約18重量%~約20重量%の酸素を含有し得る。
【0151】
固体燃料組成物は、約2重量%未満の硫黄を含有し得る。固体燃料組成物は、約1重量%未満の硫黄、約0.5重量%未満の硫黄、及び約0.1重量%未満の硫黄を含有し得る。
【0152】
固体燃料組成物は、約2重量%未満の塩素を含有し得る。固体燃料組成物は、約1重量%未満の塩素、約0.5重量%未満の塩素、及び約0.1重量%未満の塩素を含有し得る。
【0153】
固体燃料組成物は、約2重量%未満の水を含有し得る。固体燃料組成物は、約1重量%未満の水、約0.5重量%未満の水、及び約0.1重量%未満の水を含有し得る。固体燃料組成物は、約1重量%未満の水を含有し得る。
【0154】
固体燃料組成物は、燃焼した時、未処理の固形廃棄物と比較して燃焼時に著しく低いレベルの毒素を放出し得る。放出される毒素の量は変動し得る。固体燃料組成物は、燃焼させた時、1050MJ(100万BTU)当たり約0.23kg(約0.5lb)未満のアルカリ酸化物、約1.4kg(約3lb)未満の灰分、約0.045kg(約0.1lb)未満のSO2、及び約0.68kg(約1.5lb)未満の塩素を放出し得る。固体燃料組成物は、燃焼させた時、1050MJ(100万BTU)当たり約0.23kg(約0.5lb)未満のアルカリ酸化物を放出し得る。固体燃料組成物は、燃焼させた時、1050MJ(100万BTU)当たり約1.4kg(約3lb)未満の灰分を放出し得る。固体燃料組成物は、燃焼させた時、1050MJ(100万BTU)当たり約0.045kg(約0.1lb)未満の二酸化硫黄(SO2)を放出し得る。固体燃料組成物は、燃焼させた時、1050MJ(100万BTU)当たり約0.68kg(約1.5lb)未満の塩素を放出し得る。
【0155】
固体燃料組成物は、燃焼させた時、1050MJ(100万BTU)当たり約0.45kg(約1lb)~約14kg(約30lb)の範囲の量の灰分、例えば約0.45kg~0.91kg(約1lb~2lb)、約0.91kg~1.4kg(約2lb~3lb)、約1.4kg~1.8kg(約3lb~4lb)、約1.8kg~2.3kg(約4lb~5lb)、約2.3kg~4.5kg(約5lb~10lb)、約4.5kg~6.8kg(約10lb~15lb)、約6.8kg~9.1kg(約15lb~20lb)、約9.1kg~11kg(約20lb~25lb)、又は約11kg~14kg(約25lb~30lb)の灰分を放出し得る。
【0156】
固体燃料組成物は、具体化(incarnation)、熱分解又はガス化プロセスにおける化石燃料、バイオマス燃料又は他の代替燃料に代わる、あるいはそれを補う人工供給原料として使用され得る。
【0157】
実施例
10トンの都市固形廃棄物が送達される。MSWは約20重量%~約40重量%の水分含量を有し、未知の量の不燃性固形廃棄物及び混合プラスチック成分を含む、様々な住宅ごみ及び商業固形廃棄物を含む。MSWを、不燃性固形廃棄物についてスクリーニングする。ガラス、金属、レンガ及び石を含む不燃性固形廃棄物を除去する。次いで、MSWをその混合プラスチック内容物について分析する。MSW中の混合プラスチックの量を約5重量%~約60重量%に調整する。不燃性固形廃棄物を除去し、混合プラスチックの含有量を調整したら、MSWを、MSW中の他の個々の小片と同等以下の平均粒子サイズに細断する。
【0158】
細断されたMSWを、本明細書に記載の処理容器に導入する。MSWを混合しながら約90℃~約110℃の温度に加熱する。この工程は、MSWを乾燥したMSWと気化化合物に分離する。気化化合物は主に水蒸気と、約110℃未満の沸点を有するいくつかの揮発性有機化合物を含む。混合プラスチックが早期に溶融して水を捕捉しないように、MSWの温度は約110℃未満に維持される。
【0159】
真空ポートに取り付けられた真空システムを用いて処理容器内の圧力を約6.67kPa(約50torr)未満に減圧することによって、蒸発した化合物を処理容器から除去する。処理容器と真空システムの真空ポンプとの間の凝縮器が気化化合物を廃水に凝縮することにより、これらを捕捉する。
【0160】
処理容器内で、気化化合物を減圧下で除去しながら混合を続ける。次いで、熱を約190℃~約260℃に上昇させ、乾燥したMSW中のプラスチックを溶融させる。一定した混合によりMSW全体に均等に熱が行き渡るため、処理容器の壁を加熱するために使用されるオイルは、処理容器の内部容積よりも最大30℃高くすればよい。混合工程はまた、MSWをさらに均質化する。温度及び圧力条件はまた、乾燥工程で蒸発しなかった更なる水を遊離させ、他のVOCを遊離させるのに十分である。さらに、これらの処理条件は、MSW中のポリ塩化ビニル(PVC)及びポリ塩化ビニリデン等の塩素含有プラスチックに主に由来する塩素化有機化合物及び塩素ガスを蒸発させる。これら塩素化有機化合物及び塩素ガスも凝縮器で凝縮し、そこにある廃水と合わせられる。
【0161】
まだ高温のうちに(ただし200℃は超えない)、溶融混合プラスチックを含有する乾燥したMSWを押出口を通して押出す。MSWは押出される際に、約5cm(2インチ)の長さのチャック(chuck)に切断される。押出されたMSWは、水冷式コンベヤ上に置かれ、そこで約65℃未満に冷却され、固体燃料組成物を形成する。
【0162】
熱量分析及び密度測定に基づいて、固体燃料組成物は約30,300J/g(約13,000BTU/lb)のエネルギー含量及び約801kg/m3(約50lb/ft3)の密度範囲を有する。元素分析は、得られた固体燃料が約60重量%の炭素、約10重量%の水素、約10重量%の酸素、約2重量%未満の硫黄、約2重量%未満の塩素、及び約1重量%未満の水を有することを示す。
【0163】
この方法において合成ガスは形成されない。観察された気化化合物は、熱分解又はガス化の結果ではない。したがって、得られた固体燃料組成物は熱分解されていない。
上記は単に本発明の原理を説明するに過ぎない。本明細書の教示を考慮すれば、記載された実施形態に対する様々な変更及び改変が当業者には明らかであろう。したがって、当業者であれば、本明細書に明示的に図示又は記載されていないが、本発明の原理を具体化し、したがって本発明の趣旨及び範囲内にある多数のシステム、配置及び方法を考案できることが理解されよう。上記の説明及び図面から、示され説明された特定の実施形態は、例示のみを目的とするものであり、本発明の範囲を限定するものでないことが、当業者に理解されるであろう。特定の実施形態の詳細への言及は、本発明の範囲を限定することを意図するものではない。