(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022126117
(43)【公開日】2022-08-30
(54)【発明の名称】予測装置、予測方法、予測プログラムおよび、学習装置
(51)【国際特許分類】
G06Q 10/04 20120101AFI20220823BHJP
G06Q 40/06 20120101ALI20220823BHJP
【FI】
G06Q10/04
G06Q40/06
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021024004
(22)【出願日】2021-02-18
(11)【特許番号】
(45)【特許公報発行日】2021-07-07
(71)【出願人】
【識別番号】516161242
【氏名又は名称】グリーンモンスター株式会社
(74)【代理人】
【識別番号】100137338
【弁理士】
【氏名又は名称】辻田 朋子
(72)【発明者】
【氏名】小川 亮
【テーマコード(参考)】
5L049
5L055
【Fターム(参考)】
5L049AA04
5L055BB55
(57)【要約】
【課題】
金融商品の価格変動を示すチャート画像を分析し、当該金融商品の将来価格を予測する予測装置、予測方法、予測プログラムおよび、学習装置を提供することを解決すべき課題とする。
【解決手段】
金融商品の価格変動を示すチャート画像を分析し、金融商品の将来価格を予測する予測装置であって、将来価格の予測対象とする予測対象画像を取得する画像取得手段と、予測対象画像を学習済モデルに入力し、学習済モデルより予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、類型データより所定期間経過後の価格に基づいて、将来価格の予測値を出力する予測手段と、を備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測装置であって、
前記将来価格の予測対象とする予測対象画像を取得する画像取得手段と、
前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、
前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測手段と、を備える、予測装置。
【請求項2】
前記予測対象画像における価格変動のトレンドを示すトレンド要素を特定し、特定された前記トレンド要素に基づいて前記予測対象画像に対して補正処理を実行する画像処理手段を備える、請求項1に記載の予測装置。
【請求項3】
前記トレンド要素は、前記価格変動の極値を含み、
前記補正処理は、少なくとも2以上の前記極値を含む直線を付与する処理を含む、請求項2に記載の予測装置。
【請求項4】
前記画像処理手段は、前記予測対象画像における価格変動が所定値以下となる非トレンド要素を特定し、特定された前記非トレンド要素に基づいて前記予測対象画像に対して補正処理を実行する、請求項2又は請求項3に記載の予測装置。
【請求項5】
前記予測対象画像は、時間軸を含むチャート画像である、請求項1~請求項4の何れかに記載の予測装置。
【請求項6】
前記予測対象画像は、株式銘柄または通貨ペアを示す情報を含むチャート画像である、請求項1~請求項5の何れかに記載の予測装置。
【請求項7】
前記類型データは、過去の類型チャート画像であって、
前記学習済モデルは、前記類型チャート画像と、前記類型チャート画像より所定期間経過後の価格と、を含むデータセットにより機械学習される、請求項1~請求項6の何れかに記載の予測装置。
【請求項8】
前記データセットは、前記補正処理と同様の処理を実行した過去の類型チャート画像を含む、請求項7に記載の予測装置。
【請求項9】
前記出力手段は、異なる株式銘柄であって、業種が共通する類型チャート画像を前記データセットとして機械学習された学習済モデルを、前記予測対象画像を入力する学習済モデルとして決定する、請求項7又は請求項8に記載の予測装置。
【請求項10】
前記金融商品の種別が株式銘柄である前記データセットは、前記株式銘柄を発行する企業が所定期間において発信する、決算情報、業績予想情報、プレスリリース情報、知的財産情報、ESGスコア情報から選択される1以上の情報に関する発信数を含む、請求項1~請求項9の何れかに記載の予測装置。
【請求項11】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測方法であって、
前記将来価格の予測対象とする予測対象画像を取得する画像取得ステップと、
前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力ステップと、
前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測ステップと、をコンピュータが実行する予測方法。
【請求項12】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測プログラムであって、
コンピュータを、前記将来価格の予測対象とする予測対象画像を取得する画像取得手段と、
前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、
前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測手段と、として機能させる予測プログラム。
【請求項13】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測するための機械学習済モデルを生成する学習装置であって、
過去の類型チャート画像と、前記類型チャート画像より所定期間経過後の価格と、を含むデータセットにより機械学習済モデルを生成する学習手段を備え、
前記学習済モデルは、前記将来価格の予測対象とする予測対象画像を入力とし、前記予測対象画像に含まれるチャートの類型となる前記過去の類型チャート画像を出力する、学習装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金融商品の価格変動を示すチャート画像を分析し、当該金融商品の将来価格を予測する予測装置、予測方法、予測プログラムおよび、学習装置に関する。
【背景技術】
【0002】
近年、人工知能(AI: Artificial Intelligence)を利用することで、株式や為替をはじめとした金融商品の将来価格を予測する技術が知られている。
【0003】
特許文献1では、為替の増減に関する情報を表示する為替取引情報表示プログラムについて開示されている。為替取引情報表示プログラムは、売買シグナルのチャートパターンの画像を教師データとして用い、入力を各為替のチャートとし、出力を売買シグナルの類型とし、機械学習より生成した判定モデルに基づいて当てはめを行うことで、各為替の増減データを表示することなどが開示されている。
【0004】
特許文献2では、過去の株価情報を用いて機械学習を行う取引管理システムについて開示されている。特許文献2では、機械学習を用いることで、効率的かつ的確に株価を予測し、アルゴリズムトレード戦術の執行成績の向上を支援することを目的になされたものである、と把握される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第6812034号公報
【特許文献2】特開第2017-117152号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述したような先行技術文献に開示される技術では、為替や株価の増減に関する情報を取得するため、複数のシステムと連携することで得られる多くのデータ入力が必要であった。また、チャートデータには、価格に関するデータが時系列データとして含まれ、これらのデータをすべて機械学習モデルに入力しようとすると、ハードウェア資源に大きな負荷が掛かることが課題として挙げられる。
【0007】
本発明は、上述したような実情に鑑みてなされたものであって、金融商品の価格変動を示すチャート画像を分析し、当該金融商品の将来価格を予測する予測装置、予測方法、予測プログラムおよび、学習装置を提供することを解決すべき課題とする。
【課題を解決するための手段】
【0008】
上述した課題を解決するために、本発明は、金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測装置であって、前記将来価格の予測対象とする予測対象画像を取得する画像取得手段と、前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測手段と、を備える。
このような構成とすることで、チャート画像を入力することで、簡単に精度よく金融商品の将来価格の予測値が得られる。また、チャート画像を基にした分析結果が得られるため、ユーザは、チャート画像のどの特徴部分に注目して金融商品の将来価格を予測すればよいのか、投資スキルを身に付けるのに効果的なインターフェイスを提供することができる。
【0009】
本発明の好ましい形態では、予測対象画像における価格変動のトレンドを示すトレンド要素を特定し、特定されたトレンド要素に基づいて前記予測対象画像に対して補正処理を実行する画像処理手段を備える。
このような構成とすることで、類型データを精度よく特定することができる。
【0010】
本発明の好ましい形態では、トレンド要素は、前記価格変動の極値を含み、補正処理は、少なくとも2以上の前記極値を含む直線を付与する処理を含む。
このような構成とすることで、特に重視されるトレンド要素に基づいて画像処理することができる。
【0011】
本発明の好ましい形態では、画像処理手段は、前記予測対象画像における価格変動が所定値以下となる非トレンド要素を特定し、特定された前記非トレンド要素に基づいて前記予測対象画像に対して補正処理を実行する。
このような構成とすることで、非トレンド要素を補正処理することで、その後の画像処理に係るハードウェア資源の負担を低減することができる。
【0012】
本発明の好ましい形態では、予測対象画像は、時間軸を含むチャート画像である。
このような構成とすることで、時間軸を画像認識により簡単に入力することができる。
【0013】
本発明の好ましい形態では、予測対象画像は、株式銘柄または通貨ペアを示す情報を含むチャート画像である。
このような構成とすることで、株式銘柄や為替など、予測に必要な情報を画像認識により簡単に入力することができる。
【0014】
本発明の好ましい形態では、類型データは、過去の類型チャート画像であって、前記学習済モデルは、類型チャート画像と、前記類型チャート画像より所定期間経過後の価格と、を含むデータセットにより機械学習される。
このような構成とすることで、チャート画像の類型データにより機械学習され、予測精度を向上させることができる。
【0015】
本発明の好ましい形態では、データセットは、前記補正処理と同様の処理を実行した過去の類型チャート画像を含む。
このような構成とすることで、精度よく予測対象画像のトレンド要素を特定可能な学習済モデルを生成することができる。
【0016】
本発明の好ましい形態では、出力手段は、異なる株式銘柄であって、業種が共通する類型チャート画像をデータセットとして機械学習された学習済モデルを、予測対象画像を入力する学習済モデルとして決定する。
このような構成とすることで、類型データの類型度が低い場合であっても、異なる学習済モデルを用いることでより高い類型度の類型データを出力することができる。
【0017】
本発明の好ましい形態では、金融商品の種別が株式銘柄である前記データセットは、前記株式銘柄を発行する企業が所定期間において発信する、決算情報、業績予想情報、プレスリリース情報、知的財産申請情報、ESGスコア情報から選択される1以上を含む発信数を含む。
このような構成とすることで、金融商品の価格変動に寄与する情報を分析し、より高精度な価格変動の傾向を分析可能な機械学習済モデルを生成することができる。
【0018】
本発明は、金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測方法であって、前記将来価格の予測対象とする予測対象画像を取得する画像取得ステップと、前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力ステップと、前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測ステップと、をコンピュータが実行する。
【0019】
本発明は、金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測プログラムであって、コンピュータを、前記将来価格の予測対象とする予測対象画像を取得する画像取得手段と、前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測手段と、として機能させる。
【0020】
本発明は、金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測するための機械学習済モデルを生成する学習装置であって、過去の類型チャート画像と、前記類型チャート画像より所定期間経過後の価格と、を含むデータセットにより機械学習済モデルを生成する学習手段を備え、前記学習済モデルは、前記将来価格の予測対象とする予測対象画像を入力とし、前記予測対象画像に含まれるチャートの類型となる前記過去の類型チャート画像を出力する。
【発明の効果】
【0021】
本発明によれば、金融商品の価格変動を示すチャート画像を分析し、当該金融商品の将来価格を予測する予測装置、予測方法、予測プログラムおよび、学習装置を提供することができる。
【図面の簡単な説明】
【0022】
【
図1】本発明の実施形態における、予測システムの機能ブロック図を示す。
【
図2】本発明の実施形態における、予測装置のハードウェア構成図を示す。
【
図3】本発明の実施形態における、教師データのデータ構造例を示す。
【
図4】本発明の実施形態における、画像処理手段の概要を示す。
【
図5】本発明の実施形態における、予測結果のデータ構造例を示す。
【
図6】本発明の実施形態における、機械学習処理のフローチャートを示す。
【
図7】本発明の実施形態における、取引画面の画面表示例を示す。
【
図8】本発明の実施形態における、予測処理のフローチャートを示す。
【発明を実施するための形態】
【0023】
以下、図面を用いて、本発明の実施形態に関する予測システムについて説明する。なお、以下に示す実施形態は本発明の一例であり、本発明を以下の実施形態に限定するものではなく、様々な構成を採用することもできる。
【0024】
本実施形態では、予測システム、予測装置および、予測プログラムの構成、動作等について説明するが、同様の構成の方法、コンピュータのプログラムおよび当該プログラムを記録したプログラム記録媒体等も、同様の作用効果を奏する。プログラム記録媒体を用いれば、例えば、コンピュータに当該プログラムをインストールすることができる。以下で説明する本実施形態にかかる一連の処理は、コンピュータで実行可能なプログラムとして提供され、CD-ROMやフレキシブルディスクなどの非一過性コンピュータ可読記録媒体、更には通信回線を経て提供可能である。
【0025】
予測システムおよび予測装置の各手段と、予測方法の各ステップと、は同様の作用効果を実現する。予測システム、予測プログラムおよび予測プログラム記録媒体のそれぞれにおける各手段は、CPU等の演算装置により実現される。また、予測方法の各ステップも同様に演算装置により実現される。
【0026】
本発明は、取引市場において価格が変動する金融商品の将来価格の予測に用いられる。本発明において将来価格の予測対象とする金融商品には株式、有価証券、為替、不動産などが含まれ、その種別により制限されない。
【0027】
また、本発明は、実際の取引市場において取引される金融商品の将来価格の予測装置、予測方法、予測プログラムおよび、学習装置に限定されず、例えば、取引シミュレーションシステムにおいて取引される仮想的な各種金融商品の将来価格の予測に用いられてもよい。
【0028】
図1は、予測システムの機能ブロック図を示す。
図1において、予測システムは、予測システム1として具体化されている。予測システム1は、金融商品の価格変動を示すチャート画像に基づいて、当該金融商品の将来価格を予測する予測装置2と、金融商品の取引処理に係る処理を実行し、当該金融商品の価格に関するデータを有する金融商品取引システム3と、金融商品の取引を行うユーザにより操作され、金融商品取引システム3を介して金融商品の取引を行うユーザ端末4と、を備える。予測システム1の各構成は、通信ネットワークNWを介して通信可能に構成されている。通信ネットワークNWは、インターネットなどのIP(Internet Protocol)網や専用回線などと構成される。なお、以下の説明では、不明確にならない限り通信ネットワークNWの介在を省略する。
【0029】
金融商品取引システム3は、金融商品の価格に関する金融商品データを有し、提供する。金融商品取引システム3は、例えば、株価に関するデータを有する証券会社や証券取引所のシステムや、為替レートに関するデータを有する銀行などの金融機関のシステムとして構成される。
【0030】
予測装置2は、金融商品取引システム3から金融商品データを取得する。予測装置2は、金融商品データに基づいて金融商品の価格変動を示すチャートを生成する。なお、予測装置2は、金融商品取引システム3において生成されたチャートを取得する構成としてもよい。
【0031】
予測装置2は、各種データを格納する記憶部5を内部または外部に備え、通信可能に構成される。記憶部5は、教師データを格納する教師データDB51と、教師データにより機械学習された学習済モデルを格納するモデルDB52と、金融商品の将来価格を予測する対象となるチャート画像を格納する予測対象画像DB53と、予測対象画像の予測結果を格納する結果DB54と、を備える。
【0032】
予測装置2は、後に詳述する機能構成要素として、予測対象画像を取得する画像取得手段201と、予測対象画像に対し画像処理を実行する画像処理手段202と、予測対象画像を学習済モデルに入力し、学習済モデルより予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段203と、類型データより所定期間経過後の金融商品の価格に基づいて、将来価格の予測値を出力する予測手段204と、教師データを用いた機械学習により学習済モデルを生成する学習手段205と、を備える。
【0033】
ユーザ端末4は、金融商品の価格を予測し、金融商品の取引を行うユーザにより操作される端末装置である。ユーザ端末4は、通信機能を備えた端末装置であり、ハードウェア構成要素として、演算装置(CPU)と、主記憶装置(RAM)と、HDDやSSD、フラッシュメモリ等の補助記憶装置と、外部の装置と通信するための通信装置と、キーボードやマウス、タッチパネル等の入力装置と、ディスプレイやスピーカ等の出力装置と、各構成部を接続するバスと、を備えた一般的なコンピュータ装置を利用することができ、コンピュータ装置としてスマートフォンやタブレット端末、PC(Personal Computer)等を用いることができる。ユーザ端末4は、補助記憶装置においてアプリケーションプログラムを格納し、当該プログラムがCPUにより実行されることで、各手段として機能する。
【0034】
ユーザ端末4は、機能構成要素として、各種データ入力を受け付ける入力手段401と、各種データや指示情報を出力する出力手段402と、金融商品の取引に関する取引処理を実行するための取引手段403と、を備える。本実施形態において、ユーザ端末4は、予測対象画像を予測装置2に送信し、予測装置2より予測対象画像に基づく予測結果を受信することができる。
【0035】
図2は、予測装置2におけるハードウェア構成図を示す。予測装置2は、ハードウェア構成要素として、演算装置(CPU)21と、作業用メモリとしての主記憶装置(RAM)22と、HDDやSSD、フラッシュメモリ等の補助記憶装置23と、外部の装置と通信するための通信装置24と、各構成部をそれぞれ接続するバス25などとを備える。また、補助記憶装置23は、オペレーティングシステム(OS)26と、OS26と協働してその機能を発揮する予測プログラム26と、各種情報(データを含む)などとを記憶している。予測装置2は、予測プログラム26がCPU21により実行されることで、上述した機能構成要素(201-205)を実現する。
【0036】
本実施形態における記憶部5が格納するデータについて説明する。
【0037】
図3は、教師データDB51に格納される教師データのデータ構造例を示す。教師データDB51は、金融商品の商品種別に応じて異なる教師データを格納する。
図3(a)は、商品種別が株式であるデータ構造を示し、
図3(b)は、商品種別が為替であるデータ構造をそれぞれ例として示す。学習手段205は、それぞれの教師データによって機械学習処理を実行し、学習済モデルを生成する。
【0038】
教師データのデータ構造(データセット)は、データに付与されるラベルをキーとして、教師データを一意に識別するための教師データID情報、チャート画像に含まれる特徴量、データ名、などを有する。本実施形態において、教師データのデータ種別は、金融商品のチャートを示す画像データであることが好ましいが、チャートを示す時系列および価格をCSV形式などで格納したファイルであってもよい。予測装置2は、CSV形式のチャートを、チャート画像に変換する変換処理を実行可能に構成される。
【0039】
特徴量は、画像認識処理によって画像データより取得される画素ごとの輝度や色、画素の配列などのデータ群として格納される。学習手段205は、従来技術として知られる画像認識処理を実行可能に構成される。学習手段205は、例えば、ディープラーニングによる機械学習手法により、画像データに含まれる特徴量を自動で取得するが、機械学習手法はこれに限定されず、任意の機械学習モデル等を採用してもよい。ディープラーニングは、ユーザによる特徴量の設定を必要とせず、コンピュータが画像データに含まれる対象物の特徴量を自動で抽出し、対象物を分類・特定することができる。
【0040】
本実施形態において、特徴量は、チャートにおける形状の特徴が含まれる。形状の特徴は、上昇トレンド、下落トレンド、極値(トップ/ボトム)、ダブルトップ/ダブルボトム、V型など、テクニカル分析において着目されるチャート形状を含む。
【0041】
本実施形態において、ラベルは、商品種別に応じて複数の要素ラベルを有する。商品種別が株式である要素ラベルは、チャートのトレンド要素、銘柄、期間、将来価格などを有する。トレンド要素は、テクニカル分析において用いられる価格変動のトレンドを示すチャート形状に関する要素であって、極値(トップ/ボトム)、ダブルトップ/ダブルボトム、V型、ボックス、ペナント、ウェッジ、トライアングルなどを含む。銘柄は、銘柄名または銘柄コードを示す。期間は、データ収集期間であって、分足、時足、日足、週足、月足、年足などを含む。また、分足は、1分足、3分足、5分足など、分単位であってもよく、時足や日足などにおいても任意の単位が設定されてよい。将来価格は、教師データとなるチャート画像より所定期間経過後の金融商品の価格に基づいて設定される。将来価格は、チャート画像における最新の時系列における価格を現在価格とし、例えば、データ収集期間が5分足の場合、現在価格より5分後の価格に基づいて将来価格が設定される。将来価格は、現在価格より将来価格が上昇したか下落したかを含み、上昇値または下落値を含んでもよい。なお、将来価格は、上昇値または下落値が所定値以下の場合、価格が均衡している「もみ合い」としてもよい。
【0042】
また、商品種別が株式である教師データは、より詳細な分析を行うため株式銘柄を発行する企業が発信する、決算情報、業績予想情報、プレスリリース情報、知的財産情報、ESGスコア情報から選択される1以上を要素ラベルとして含むことができる。決算情報は、決算時期、損益データ、資産、負債などを含む情報である。業績予想情報は、次期の売上高、営業利益、経常利益、純利益の予想値などを含む情報である。プレスリリース情報は、新製品や商品等の告知や発表に関する情報を含む。知的財産情報は、知的財産権の出願件数、取得件数、関連予算などを示す情報である。ESGスコア情報は、ESGスコア、ESGスコア算出に係る情報公開数などを示す情報である。これらは、株式発行企業のIR(Investor Relations)活動に関するIR関連情報であって、ユーザの株式取引行動に影響を及ぼす。なお、教師データは、株式発行企業が所定期間内に上述したIR関連情報の中から選択される少なくとも1以上を発信した回数を示す発信数を要素ラベルとしてもよい。
【0043】
商品種別が為替である要素ラベルは、トレンド要素、通貨ペア、期間、将来価格などを有する。通貨ペアは、例えば、日本円―米ドル、日本円―中国元など、国と国の通貨のペアを示す。なお、為替におけるその他の要素ラベルは、株式と同様のため説明を省略する。
【0044】
教師データのラベルにおいて、すべての要素ラベルが入力されている必要はなく、一部が欠落していてもよい。
【0045】
本実施形態において、学習手段205は、教師データDB51に格納される教師データに基づいて機械学習し、チャート画像に含まれる特徴量によって、類型データを特定する特定モデルを生成し、モデルDB52に格納する。また、学習手段205は、チャート画像に含まれる特徴量によって、トレンド要素を特定するトレンド要素特定モデルを生成し、モデルDB52に格納してもよい。
【0046】
続いて、画像取得手段201における処理について説明する。
【0047】
画像取得手段201は、ユーザ端末4より金融商品の予測対象とするチャートを示す予測対象画像を取得し、予測対象画像データとして予測対象画像DB53に格納する。画像取得手段201は、予測対象画像に一意な予測対象画像ID情報をキーとして、データ種別、ファイル名、予測対象画像の取得日時などを含む予測対象画像データを格納する。
【0048】
画像取得手段201は、予測対象画像に付随するチャート情報を取得し、予測対象画像データに紐づけて格納する。チャート情報は、対象となる金融商品を示す情報や情報収集期間や価格情報を含む。金融商品を示す情報は、株式チャートの場合、銘柄名や銘柄コードであって、為替チャートの場合、通貨ペアなどである。情報収集期間は、チャートが取得された日時や日足、時足、月足などの時系列データである。価格情報は、金融商品の時価を示す。画像取得手段201は、予測対象画像に含まれるチャート情報を画像認識により取得する構成とするのが好ましい。
【0049】
また、画像取得手段201は、予測対象画像に付随するIR関連情報を取得し、予測対象画像データに紐づけて格納する。IR関連情報は、企業ウェブサイトなどから取得され、予め記憶部5において格納されており、チャート情報に含まれる銘柄や情報収集期間に応じて抽出され、予測対象画像データに紐づけられる。
【0050】
続いて、画像処理手段202における画像処理を説明する。画像処理手段202は、画像取得手段201により取得された予測対象画像データに含まれる予測対象画像に対して補正処理を実行し、補正された予測対象画像を出力する。
【0051】
画像処理手段202は、予測対象画像に含まれる非トレンド要素を特定し、特定された非トレンド要素に基づいて予測対象画像に対して補正処理を実行する。非トレンド要素は、価格変動のトレンドに影響しない要素であって、トレンド要素の特定や、類型データの出力処理においてノイズとなる要素を示す。非トレンド要素は、例えば、価格変動の上昇値または下落値が所定値以下となるチャート領域を含む。画像処理手段202は、非トレンド要素として特定されたチャート領域を、近似直線または近似曲線として変換する補正処理を実行する。なお、画像処理手段202は、非トレンド要素として特定されたチャート領域を削除する補正処理を実行する構成としてもよい。非トレンド要素に関する補正処理は、その後の画像処理に係るハードウェアによる処理負担を軽減するための処理であれば、上述した処理内容に限定されない。なお、非トレンド要素の特定は、特定モデルを用いず実行可能である。
【0052】
画像処理手段202は、トレンド要素特定モデルを用いて予測対象画像に含まれるトレンド要素を特定し、特定されたトレンド要素に基づいて予測対象画像に対して補正処理を実行する。トレンド要素は、テクニカル分析において用いられる価格変動のトレンドを示すチャート形状に関する要素を示す。トレンド要素は、価格変動を示すチャートにおけるトップ(高値)、ボトム(安値)となる極値を少なくとも含む。また、トレンド要素は、ダブルトップ/ダブルボトム、V型、ボックス、ペナント、ウェッジ、トライアングなどを含む。なお、トレンド要素は、上述した例に限定されず、テクニカル分析において参照されるチャートの特徴となる要素を含むものとする。画像処理手段202は、トレンド要素として特定された予測対象画像に対して補助要素を付与する補正処理を実行する。補助要素は、トレンドライン(ネックライン)、サポートライン、レジスタンスラインなど、テクニカル分析においてチャートに付与される補助線を含む。なお、補助要素は、上述したような補助線に限定されず、テクニカル分析においてチャート画像に付与される補助要素を含むものとする。
【0053】
画像処理手段202は、それぞれのトレンド要素または非トレンド要素に対応付けて、予測対象画像に対して実行する補正処理の内容に関する補正処理データを有する。画像処理手段202は、特定したトレンド要素または非トレンド要素に応じて、予測対象画像に対して補正処理を実行し、補正処理(画像処理)された予測対象画像を予測対象画像DB53に格納する。
【0054】
図4を参照し、画像処理手段202における画像処理を説明する。
図4(a)は、画像処理手段202により画像処理を実行する前の予測対象画像W10を示す。
図4(b)は、非トレンド要素に関する補正処理を実行した予測対象画像W20を示す。
図4(c)は、トレンド要素に関する補正処理を実行した予測対象画像W30を示す。
【0055】
画像処理手段202は、予測対象画像W10における非トレンド要素を示すチャート領域W11を特定する。画像処理手段202は、チャート領域W11を近似直線に変換する補正処理を実行し、予測対象画像W20を取得する。予測対象画像W20は、トレンド要素として、現在最安値W21と、現在最高値W22と、過去最安値W23と、過去準安値W24と、過去最高値W25と、過去準高値W26と、を含み、それぞれチャートにおける極値を示す。画像処理手段202は、現在最安値W21および過去最安値W23を含む直線であるトレンドラインL1と、現在最安値W21および過去準安値W24を含む直線であるトレンドラインL2と、現在最高値W22および過去最高値W25を含む直線であるトレンドラインL3と、現在最高値W22および過去準高値W26を含む直線であるトレンドラインL4と、を付与する補正処理を実行する。画像処理手段202は、安値の極値となる頂点を結ぶ2本のトレンドライン(L1、L2)のうち、頂点間の長さが最長となるトレンドラインを付与する補正処理を少なくとも実行する。なお、トレンドラインの本数に制限はなく、トレンドラインは図示例より増加/減少してもよい。なお、画像処理手段202は、高値の極値となる頂点を結ぶトレンドライン(L3、L4)に関しても同様の補正処理を実行する。画像処理手段202は、トレンドラインのような補助要素を付与する補正処理を実行し、予測対象画像W30を取得する。予測対象画像W30は、頂点間の長さが最長となるトレンドラインL2およびトレンドラインL3を少なくとも付与されたチャート画像となる。上述したような補正処理が実行されることで、予測対象画像に含まれるトレンド要素のチャート形状の特徴が明確となり、特定モデルに入力した際の特定精度を向上させることができる。
【0056】
なお、学習手段205は、画像処理手段202と同様の補正処理を実行されたチャート画像によって、類型データを特定するための特定モデルに関する機械学習処理を更に実行する構成とするのが好ましい。出力手段203は、この特定モデルに対し補正処理を実行された予測対象画像を入力し、類型データを精度よく出力することができる。
【0057】
出力手段203は、画像処理手段202により補正処理された予測対象画像を含む予測対象画像データを特定モデルに入力し、特定モデルより予測対象画像に含まれるチャートの類型となる類型データを出力する。更に、予測手段204は、類型データより所定期間経過後の将来価格に基づいて、予測対象画像に係る金融商品の将来価格の予測値を出力する。予測手段204は、予測結果を結果DB54に格納する。
【0058】
図5は、結果DB54に格納されるデータ構造の例を示す。
図5(a)は、商品種別が株式であるデータ構造を示し、
図5(b)は、商品種別が為替であるデータ構造をそれぞれ例として示す。結果DB54は、予測対象画像に一意な予測対象画像ID情報をキーとして、予測に用いられた予測対象画像データのファイル名と、金融商品の商品種別と、学習済モデルを用いて特定される類型データと、類型データに基づいて予測される将来価格の予測値と、を予測結果として格納する。予測結果における類型データは、教師データDBに格納される累計するチャート画像を有する教師データに相当する。類型データは、当該教師データの教師データID情報を少なくとも含み、教師データID情報を参照することで取得可能な当該教師データの各種ラベルを含んでいてもよい。予測値は、類型データに含まれる将来価格を示す。予測手段204は、類型データに基づいて、当該類型データから所定時間経過後の金融商品の価格を取得し、将来価格の予測値として出力する構成としてもよい。また、将来価格は、上昇値または下落値を含む構成とすることが好ましい。
【0059】
出力手段203は、予測対象画像データに含まれる商品種別、銘柄、通貨ペア、期間などに基づいて、予測対象画像を入力する学習済モデルを決定する。出力手段203は、入力された予測対象画像に基づいて出力される類型データの類型度を出力することができる。出力手段203は、類型度が所定値以下の場合、銘柄の業種が共通する教師データに基づいて機械学習された学習済モデルを、予測対象画像を入力する学習済モデルとして決定することができる。
【0060】
図6は、本実施形態における機械学習の処理フローチャートを示す。本実施形態において、予測装置2において機械学習に関する処理が行われる実施例を説明するが、図示しない外部装置において機械学習に関する処理が行われ、予測装置2に学習済モデルを受け渡す構成としてもよい。
【0061】
はじめに、予測装置2は、教師データとなるチャート画像を含むデータを金融商品取引システム3またはユーザ端末4等より取得し、各種要素ラベルを付与して教師データDB51に格納する(ステップS61)。教師データは、補正処理が実行されたチャート画像を含むものとする。学習手段205は、ラベルを付与された教師データにより機械学習処理を実行することで、チャート画像に含まれる特徴量を抽出する(ステップS62)。学習手段205は、S61、S62の機械学習処理を繰り返すことで、特徴量を更新していく(ステップS63)。これによって、学習済モデル(特定モデル、トレンド要素特定モデル)が生成され、モデルDB52に格納される(ステップS64)。
【0062】
続いて、
図7および
図8を参照し、予測対象画像の取得から将来価格の予測値の出力までの処理の流れを説明する。
図7は、予測対象画像を取得する際の取引画面の画面表示例を示す。
図8は、予測処理に関するフローチャートを示す。
【0063】
本実施形態において、ユーザ端末4は、予測システム1にアクセスすることで、
図7に示す、予測対象画像となるチャート画像を取得するための取引画面W40を表示させる。取引画面W40は、チャート画像表示部W41と、期間設定部W42と、予測指示部W43と、取引指示部W44と、を備える。チャート画像表示部W41は、金融商品の価格変動に関するチャートを表示する。チャート画像表示部W41には、チャート画像と、予測対象となる金融商品(銘柄名、銘柄コード、通貨ペアなど)、価格(縦軸)、期間(横軸)などが含まれる。期間設定部W42は、分足、時足、月足などデータ収集期間の設定入力を受け付け、チャート画像表示部W41の期間に反映させる。予測指示部W43は、押下されることにより、チャート画像表示部W41のチャート画像を予測対象画像として予測装置2に送信することができる。取引指示部W44は、押下されることで、取引手段403により取引画面W40に表示される金融商品の取引処理を実行可能に構成される。取引画面W40は、予測装置2による将来価格の予測値を表示可能に構成され、例えば、ユーザは、表示される予測値に応じて取引指示部W44を押下し、金融商品の取引を開始することができる。
【0064】
なお、ユーザ端末4は、データファイルから予測対象画像を予測装置2に送信する構成としてもよい。例えば、ユーザ端末4は撮像部をハードウェア構成として備え、撮像部により撮影した画像データをデータファイルに保存することで、予測対象画像とすることができる。このような構成により、予測システム1の外部から予測対象画像を簡便に取得することが可能となる。
【0065】
画像取得手段201は、上述した方法により予測対象画像を取得し、予測対象画像データとして予測対象画像DB53に格納する(ステップS81)。このとき、画像取得手段201は、チャート画像表示部W41に含まれる株式銘柄または通貨ペアを示す情報、期間(時間軸)、価格などを画像認識により取得し、予測対象画像データに紐づけて格納することができる。
画像処理手段202は、予測対象画像DB53に格納された予測対象画像データにおける予測対象画像に対し補正処理を実行し、予測対象画像を更新し、予測対象画像DB53に格納する(ステップS82)。
出力手段203は、予測対象画像DB53に格納された予測対象画像データを特定モデルに入力することで、類型データを特定し、出力する(ステップS83)。このとき、特定モデルは、予測対象画像データに含まれる銘柄、期間などに応じて決定される。また、出力手段203は、入力する予測対象画像と、出力する類型データと、の類型度を出力することができ、類型度が所定値以下の場合、異なる特定モデルに予測対象画像を入力することができる。
予測手段204は、特定モデルにより特定された類型データに基づいて、当該類型データの将来価格を、予測する金融商品の将来価格の予測値として出力する(ステップS84)。また、予測手段204は、類型データに基づいて、当該類型データより所定期間経過後の金融商品の価格を取得し、予測値として出力してもよい。
【0066】
学習手段205は、予測手段204により出力された予測値の正誤に関する情報入力を後に受け付けることで、特定モデルに対して機械学習処理を実行可能とする。
【0067】
予測手段204により出力された予測値は、ユーザ端末4において表示され、当該金融商品を取引するか否かの選択の意思決定に活用される。なお、予測手段204は、補正処理した予測対象画像や、特定モデルにより特定されたトレンド要素を併せて出力し、ユーザ端末4に表示してもよい。このような構成とすることで、チャートの何れの特徴部分が金融商品の価格変動に寄与するかを知ることができ、投資に不慣れなユーザであってもテクニカル分析の手法を身に付けることができる。
【0068】
本発明の異なる実施形態について説明する。本実施形態において、予測システムは、更に学習装置6を構成として備える。学習装置6のハードウェア構成は、予測装置2と同様である。学習装置6は、機能構成要素として、学習手段205と同様の学習手段601を備える。学習手段601は、教師データDB51と同様の教師データを用いて機械学習処理を実行し、モデルDB52と同様の学習済モデルを生成する。学習装置6により生成された学習済モデルは、モデルDB52に提供されることで、予測システム1は同様の作用効果を実現することができる。
【符号の説明】
【0069】
1 予測システム
2 予測装置
21 演算装置(CPU)
22 主記憶装置(RAM)
23 補助記憶装置
24 通信装置
25 通信バス
26 オペレーティングシステム(OS)
27 予測プログラム
201 画像取得手段
202 画像処理手段
203 出力手段
204 予測手段
205 学習手段
3 金融商品取引システム
4 ユーザ端末
401 入力手段
402 出力手段
403 取引手段
5 記憶部
51 教師データDB
52 モデルDB
53 予測対象画像DB
54 結果DB
6 学習装置
601 学習手段
【手続補正書】
【提出日】2021-05-18
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測装置であって、
前記将来価格の予測対象とする予測対象画像を取得する画像取得手段と、
前記予測対象画像における価格変動が所定値以下となる非トレンド要素を特定し、特定された前記非トレンド要素に基づいて前記予測対象画像に対して第1の補正処理を実行し、前記予測対象画像における価格変動のトレンドを示すトレンド要素を特定し、特定された前記トレンド要素に基づいて前記予測対象画像に対して第2の補正処理を実行する画像処理手段と、
前記第1の補正処理および前記第2の補正処理が実行された前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、
前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測手段と、を備える、予測装置。
【請求項2】
前記トレンド要素は、前記価格変動の極値を含み、
前記第2の補正処理は、少なくとも2以上の前記極値を含む直線を付与する処理を含む、請求項1に記載の予測装置。
【請求項3】
前記予測対象画像は、時間軸を含むチャート画像である、請求項1又は請求項2に記載の予測装置。
【請求項4】
前記予測対象画像は、株式銘柄または通貨ペアを示す情報を含むチャート画像である、請求項1~請求項3の何れかに記載の予測装置。
【請求項5】
前記類型データは、過去の類型チャート画像であって、
前記学習済モデルは、前記類型チャート画像と、前記類型チャート画像より所定期間経過後の価格と、を含むデータセットにより機械学習される、請求項1~請求項4の何れかに記載の予測装置。
【請求項6】
前記データセットは、前記第1の補正処理および前記第2の補正処理と同様の処理を実行した過去の類型チャート画像を含む、請求項5に記載の予測装置。
【請求項7】
前記出力手段は、異なる株式銘柄であって、業種が共通する類型チャート画像を前記データセットとして機械学習された学習済モデルを、前記予測対象画像を入力する学習済モデルとして決定する、請求項5又は請求項6に記載の予測装置。
【請求項8】
前記金融商品の種別が株式銘柄である前記データセットは、前記株式銘柄を発行する企業が所定期間において発信する、決算情報、業績予想情報、プレスリリース情報、知的財産情報、ESGスコア情報から選択される1以上の情報に関する発信数を含む、請求項5~請求項7の何れかに記載の予測装置。
【請求項9】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測方法であって、
前記将来価格の予測対象とする予測対象画像を取得する画像取得ステップと、
前記予測対象画像における価格変動が所定値以下となる非トレンド要素を特定し、特定された前記非トレンド要素に基づいて前記予測対象画像に対して第1の補正処理を実行し、前記予測対象画像における価格変動のトレンドを示すトレンド要素を特定し、特定された前記トレンド要素に基づいて前記予測対象画像に対して第2の補正処理を実行する画像処理ステップと、
前記第1の補正処理および前記第2の補正処理が実行された前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力ステップと、
前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測ステップと、をコンピュータが実行する、予測方法。
【請求項10】
金融商品の価格変動を示すチャート画像を分析し、前記金融商品の将来価格を予測する予測プログラムであって、
コンピュータを、前記将来価格の予測対象とする予測対象画像を取得する画像取得手段と、
前記予測対象画像における価格変動が所定値以下となる非トレンド要素を特定し、特定された前記非トレンド要素に基づいて前記予測対象画像に対して第1の補正処理を実行し、前記予測対象画像における価格変動のトレンドを示すトレンド要素を特定し、特定された前記トレンド要素に基づいて前記予測対象画像に対して第2の補正処理を実行する画像処理手段と、
前記第1の補正処理および前記第2の補正処理が実行された前記予測対象画像を学習済モデルに入力し、前記学習済モデルより前記予測対象画像に含まれるチャートの類型となる類型データを出力する出力手段と、
前記類型データより所定期間経過後の価格に基づいて、前記将来価格の予測値を出力する予測手段と、として機能させる、予測プログラム。