(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022134102
(43)【公開日】2022-09-14
(54)【発明の名称】パルス渦電流システムを使用した厚さ測定
(51)【国際特許分類】
G01B 7/06 20060101AFI20220907BHJP
【FI】
G01B7/06 M
【審査請求】未請求
【請求項の数】7
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022010883
(22)【出願日】2022-01-27
(31)【優先権主張番号】21160295.8
(32)【優先日】2021-03-02
(33)【優先権主張国・地域又は機関】EP
(71)【出願人】
【識別番号】505056845
【氏名又は名称】アーベーベー・シュバイツ・アーゲー
【氏名又は名称原語表記】ABB Schweiz AG
【住所又は居所原語表記】Bruggerstrasse 66, 5400 Baden, Switzerland
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100199565
【弁理士】
【氏名又は名称】飯野 茂
(74)【代理人】
【識別番号】100212705
【弁理士】
【氏名又は名称】矢頭 尚之
(74)【代理人】
【識別番号】100219542
【弁理士】
【氏名又は名称】大宅 郁治
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100162570
【弁理士】
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】ステン・リンデル
(72)【発明者】
【氏名】ヤール・ソベル
(72)【発明者】
【氏名】アンデシュ・エデンビル
(72)【発明者】
【氏名】マルティン・ハルディン
(72)【発明者】
【氏名】アレクサンダー・ジエンチョウ
【テーマコード(参考)】
2F063
【Fターム(参考)】
2F063AA16
2F063BB02
2F063BB05
2F063BC05
2F063CA11
2F063DA01
2F063GA08
2F063KA02
2F063LA09
2F063LA13
2F063LA18
(57)【要約】 (修正有)
【課題】トランスミッタコイルとレシーバコイルとを備えるPECシステムによる、導電性材料の物体の厚さの非接触測定の方法の提供。
【解決手段】トランスミッタコイル内の電流をオフにした後、レシーバコイルにおいて、磁界の減衰によって誘発された電圧を第1の時間点、第2の時間点、および第3の時間点において測定する。第1の時間点における測定された磁束と、物体が存在しないときに所定の全磁束とを比較することによって、第1の時間点において物体内に渦電流によって生成され、レシーバコイルによってピックアップされた全磁束を算出し、算出された全磁束を正規化係数として使用して、レシーバコイルによってピックアップされた磁束を正規し、正規化された渦電流磁束は、物体1とトランスミッタおよびレシーバのコイルとの間の距離とは無関係となる。第1、第2、および第3の時間点における測定に基づいて、物体の厚さdおよび抵抗率を決定する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
トランスミッタコイル(2)とレシーバコイル(3)と
を備えるパルス渦電流(PEC)システム(10)による、導電性材料の物体(1)の厚さ(d)の非接触測定の方法であって、該方法は、
所定の供給時間期間中、一定の電流を前記トランスミッタコイル(2)に供給すること(S1)と、ここで、前記供給された電流は、前記物体(1)に浸透する電磁界(B)を生成し、
開始時間点t
0後の前記供給時間期間後、前記供給された電流をオフにすること(S2)と、その結果、前記物体内の渦電流の誘発、および磁界(B)の減衰が生じ、
前記レシーバコイル(3)において、前記開始時間点t
0において開始する所定の測定時間期間中、前記磁界の減衰によって誘発された電圧を第1の時間点t
1、第2の時間点t
2、および少なくとも1つのその後の時間点t
3において測定すること(S3)と、
前記第1の時間点t
1における測定された磁束Φ
plateと、物体(1)が存在しないときに前記レシーバコイルによってピックアップされた所定の全磁束Φ
0とを比較することによって、前記第1の時間点t
1において前記渦電流によって生成され、前記レシーバコイル(3)によってピックアップされた全磁束Φ
1を算出すること(S4)と、ここで、前記第1の時間点t
1は、物体が存在しないときに前記第1の時間点t
1における前記磁束Φ(t
1)がゼロであるという条件を満たす最初の時間に設定され、Φ
1は、Φ
0-Φ
plateとして算出され(S4)、
前記算出された(S4)全磁束Φ
1を正規化係数として使用して、前記渦電流から生じ、前記レシーバコイル(3)によってピックアップされた、測定された磁束Φ
ecを正規化すること(S5)と、それにより、前記正規化された渦電流磁束
【数1】
は、前記物体(1)と前記トランスミッタコイル(2)および前記レシーバコイル(3)との間の距離(D)とは無関係となり、それによって前記正規化された渦電流磁束
【数2】
は、前記第1の時間点t
1においてゼロであり、前記渦電流が消失した後の時間において1であり、
時間定数Tを正規化係数として使用して、前記正規化された渦電流磁束
【数3】
を正規化された時間τに関連付けること(S6)と、それにより、実時間t=t
1であるときにτ=0となり、前記供給された電流のオフ後、前記渦電流が拡散して前記トランスミッタコイル(2)とは反対側の前記物体(1)の表面に到着したばかりのときの時間においてτ=1となり、それによって前記正規化された渦電流磁束
【数4】
は、τ=0からτ=1の前記正規化された時間間隔内では前記厚さ(d)とは無関係であり、τ=1以降の時間では前記物体(1)の抵抗率(ρ)とは無関係であり、ここで、前記時間定数Tは、
【数5】
として算出され、式中、dは、事前に推定された前記物体の前記厚さであり、ρは、事前に推定された前記物体の抵抗率であり、μ
0は、真空の透磁率であり、
前記第1、第2、およびその後の時間点における前記測定に基づいて、前記物体(1)の厚さ(d)および抵抗率(ρ)を決定すること(S7)と、ここで、前記第2の時間点t
2は、τ=0からτ=2の前記正規化された時間間隔内に設定され、この場合前記正規化された渦電流磁束
【数6】
は、前記プレートの抵抗率のみに依存し、前記少なくとも1つのその後の時間点t
3は、τ>2になるように設定され、この場合前記正規化された渦電流磁束
【数7】
は、前記プレートの厚さのみに依存する、
を備える、方法。
【請求項2】
前記第2の時間点t2が、τ=0.8からτ=1の範囲内に設定される、請求項1に記載の方法。
【請求項3】
前記少なくともその後の時間点t3が、τ=3からτ=10、たとえばτ=4からτ=7の前記正規化された時間間隔内に設定される、請求項1または2に記載の方法。
【請求項4】
前記物体(1)が、プレートである、請求項1から3のいずれか一項に記載の方法。
【請求項5】
前記少なくとも1つのその後の時間点t3が、第1のその後の時間点と、第2のその後の時間点とを含む、請求項1から4のいずれか一項に記載の方法。
【請求項6】
コンピュータ実行可能な構成要素(63)を備えるコンピュータプログラム製品(62)であって、前記コンピュータ実行可能な構成要素が、コントローラ(6)内に含まれた処理回路(61)上で実行されるとき、PECシステム(10)の前記コントローラに請求項1から5のいずれか一項に記載の方法を実行させる、コンピュータプログラム製品(62)。
【請求項7】
トランスミッタコイル(2)と、レシーバコイル(3)と、コントローラ(6)とを備える、導電性材料の物体(1)の厚さ(d)の非接触測定のためのPECシステム(10)であって、
処理回路(61)と、
前記処理回路(61)によって実行可能な命令(63)を記憶する記憶装置(62)とを備え、
それによって前記コントローラは、
所定の供給時間期間中、一定の電流を前記トランスミッタコイル(2)に供給することと、ここで、前記供給された電流は、前記物体(1)に浸透する電磁界(B)を生成し、
開始時間点t
0後の前記供給時間期間後、前記供給された電流をオフにすることと、その結果、前記物体内の渦電流の誘発、および磁界(B)の減衰が生じ、
前記レシーバコイル(3)において、前記開始時間点t
0において開始する所定の測定時間期間中、前記磁界の減衰によって誘発された電圧を第1の時間点t
1、第2の時間点t
2、および少なくとも1つの第3の時間点t
3において測定することと、
前記第1の時間点t
1における測定された磁束Φ
plateと、物体(1)が存在しないときに前記レシーバコイルによってピックアップされた所定の全磁束Φ
0とを比較することによって、前記第1の時間点t
1において前記渦電流によって生成され、前記レシーバコイル(3)によってピックアップされた全磁束Φ
1を算出することと、ここで、前記第1の時間点t
1は、物体が存在しないときに前記第1の時間点t
1における前記磁束Φ(t
1)がゼロであるという条件を満たす最初の時間に設定され、Φ
1は、Φ
0-Φ
plateとして算出され(S4)、
前記算出された全磁束Φ
1を正規化係数として使用して、前記渦電流から生じ、前記レシーバコイル(3)によってピックアップされた測定された磁束Φ
ecを正規化することと、それにより、前記正規化された渦電流磁束
【数8】
は、前記物体(1)と前記トランスミッタおよびレシーバのコイル(2、3)との間の距離(D)とは無関係となり、それによって前記正規化された渦電流磁束
【数9】
は、前記第1の時間点t
1においてゼロであり、前記渦電流が消失した後の時間において1であり、
時間定数Tを正規化係数として使用して、前記正規化された渦電流磁束
【数10】
を正規化された時間τに関連付けることと、それにより、実時間t=t
1であるときにτ=0となり、前記供給された電流のオフ後、前記渦電流が拡散して前記トランスミッタコイル(2)とは反対側の前記物体(1)の表面に到達したばかりのときの時間においてτ=1となり、それによって前記正規化された渦電流磁束
【数11】
は、τ=0からτ=1の前記正規化された時間間隔内では前記厚さ(d)とは無関係であり、τ=1以降の時間では前記物体(1)の抵抗率ρとは無関係であり、ここで、前記時間定数Tは、
【数12】
として算出され、式中、dは、事前に推定された前記物体の厚さであり、ρは、事前に推定された前記物体の抵抗率であり、μ
0は、真空の透磁率であり、
前記第1、第2、および第3の時間点における前記測定に基づいて、前記物体(1)の厚さ(d)および抵抗率(ρ)を決定することと、ここにおいて、前記第2の時間点t
2は、τ=0からτ=2の前記正規化された時間間隔内に設定され、この場合前記正規化された渦電流磁束
【数13】
は、前記プレートの抵抗率のみに依存し、前記第3の時間点t
3は、τ>2になるように設定され、この場合前記正規化された渦電流磁束
【数14】
は、前記プレートの厚さのみに依存する、
を行うように動作可能である、PECシステム(10)。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]本開示は、電磁界内に配置された物体内に渦電流を誘発する、電磁界の変化を生成するように構成されたトランスミッタと、渦電流によって生成された電磁界の変化を検出するように構成されたレシーバとを備える、パルス渦電流(PEC)システムによる導電性材料の物体の厚さの非接触測定に関する。
【背景技術】
【0002】
[0002]たとえば、米国特許第5,059,902号に説明するようなPECは、非鉄金属シートの電気抵抗率、厚さ、およびエッジ位置などの機械的量の測定にうまく適用されてきている。
【0003】
[0003]この方法は、トランスミッタコイル内のDC電流を用いて測定下のプレート内に静磁界を作り出すことによって機能する。磁界は、その後、電流をオフにすることによって急激に除去され、適切な負荷抵抗器内に磁気エネルギーを堆積する。電流切断の結果生じる最初のパルスが測定され、その積分が、プレートとコイルとの間の距離を決定するために使用され得る。
【0004】
[0004]トランスミッタコイル内の電流が減衰された後、印可された磁界の急激な変化によってプレート内に誘発された渦電流の測定を開始することが可能である。プレート内の渦電流の急な減衰による磁界の変化は、小さい信号を誘発することができ、この信号は、プレートの抵抗率および厚さを推測するために測定および分析され得る。
【0005】
[0005]渦電流の減衰の初めの部分は、厚さとは無関係であり、この部分は、プレートの抵抗率の測定値を得るために使用され得る。その後の部分は、シート抵抗に依存するため、これは、厚さで割った抵抗率に依存する。抵抗率およびシート抵抗を計算した後、プレートの厚さが、たとえば米国特許第6,661,224号に説明されるように推測され得る。
【0006】
[0006]米国特許第7,701,205号は、プレート厚さの測定のPEC方法を開示しており、この場合、プレートの一方の側にトランスミッタコイルが置かれ、プレートの他方の側にレシーバコイルが置かれる。
【0007】
[0007]上記で言及された文献内に説明される技術に伴う潜在的な欠点は、物体、たとえばプレートの両側にコイルシステムが必要とされることである。PECに基づく測定システム内のコイルシステムと物体との間の距離は、根本的な理由により、非常に小さく(20mm未満)なければならず、コイルシステム間に物体を物理的に嵌める必要があることにより、一般的適用性が制限される。上記の技術が使用可能でない1つの重要な例は、管壁の測定であり、この場合、コイルシステムの一方を管内に有することは通常可能ではない。別の重要な例は、圧延中の幅広い(1.5mを上回る)金属帯の中央における厚さの測定であり、この場合、2つのコイルシステムを、厚さ測定の所望の正確性に到達するのに十分な高い精度で相互に関連して一定の位置に保つことは、実際には不可能である。これまで、上記で説明された技術をこれらの測定用途に使用できないことにより、金属産業における厚さおよび抵抗率測定へのPEC技術の一般的適用性が、影響を受けてきた。
【0008】
[0008]米国特許第5,059,902号では、物体の抵抗率および厚さを決定するための一般的技術が、説明されている。この技術は、種々のタイプの材料および厚さでの一般的状況に対して比較的より低い正確性で、またはより高い正確性でより限定された範囲の材料および厚さに対してのいずれかで、物体の厚さを決定するのに使用するのが可能である。その理由は、位置、抵抗率、および厚さのセットごとに3つの測定された値が与えられ、測定された値と物理的パラメータとの間のすべての関係が非線形であり、未知である、米国特許第5,059,902号の方法は、実施しにくいためである。3つの可変の位置、抵抗率、および厚さを決定するために測定された値を使用するには、その関係を確立し、それらを説明し、その後それらを使用して物理的パラメータを決定するために、種々の試験プレートを用いた試験測定が行われなければならない。一例として、物体の厚さが係数10で、たとえば0.5mmから5mmで変化し得る場合、抵抗率は、係数10で、たとえば20nΩmから200nΩnで変化し得る。物理的パラメータの測定の所望の正確性が、現在金属業界では通常の正確性のレベルである0.1%である場合、物理的パラメータと測定との間の関係は、極めて非線形であり、未知であるため、その関係を確立する試験測定は、物理的パラメータ値が少なくとも2%変化するたびに行われなければならない。この結果、この例では、異なる値のパラメータ抵抗率および厚さを用いた約14000回の試験を実行する必要があり、これは、十分な情報を提供するには、同じ数の試験物体、プレートを製造し、試験しなければならないことを意味する。実用的および経済的な理由で、それほどの大量の試験物体を取り扱うことは不可能になり得る。米国特許第5,059,902号に基づく機能する測定方法を作り出すには、より低い正確性を許容するか、またはより制限されたパラメータ領域内で方法を使用するかのいずれかが、必要である。
【発明の概要】
【0009】
[0009]本発明の目的は、パルス渦電流測定によって導電性材料の物体oの厚さを決定する改良された方法を提供することである。
【0010】
[0010]本発明の態様によれば、トランスミッタコイルとレシーバコイルとを備えるPECシステムによる、導電性材料の物体の厚さの非接触測定の方法が、提供される。本方法は、所定の供給時間期間中、一定の電流をトランスミッタコイルに供給することを含み、前記供給された電流は、物体に浸透する電磁界を生成する。本方法はまた、開始時間点t
0後の供給時間期間後、供給された電流をオフにすることを含み、その結果、物体内の渦電流の誘発、および磁界の減衰が生じる。本方法はまた、レシーバコイルにおいて、前記開始時間点t
0において開始する所定の測定時間期間中、磁界の減衰によって誘発された電圧を測定することを含む。電圧は、積分によって磁束に変換され、第1の時間点t
1、第2の時間点t
2、および少なくともその後の時間点t
3において測定される。本方法はまた、第1の時間点t
1における測定された磁束Φ
plateと、物体が存在しないときにレシーバコイルによってピックアップされた所定の全磁束Φ
0とを比較することによって、第1の時間点t
1において渦電流によって生成され、レシーバコイルによってピックアップされた全磁束Φ
1を算出することを含み、ここにおいて、第1の時間点t
1は、物体が存在しないときに第1の時間点t
1における磁束Φ(t
1)がゼロであるという条件を満たす最初の時間に設定される。方法はまた、算出された全磁束Φ
1を正規化計数として使用して、渦電流から生じ、レシーバコイルによってピックアップされた、測定された磁束Φ
ecを正規化することを含み、それにより、正規化された渦電流磁束
【数1】
は、物体とトランスミッタおよびレシーバのコイルとの間の距離とは無関係となり、それによって正規化された渦電流磁束
【数2】
は、第1の時間点t
1においてゼロであり、渦電流が消失した後の時間において1である。方法はまた、時間定数Tを正規化係数として使用して、正規化された渦電流磁束
【数3】
を正規化された時間τに関連付けることを含み、それにより、実時間t=t
1であるときにτ=0となり、供給された電流のオフ後、渦電流が放散してトランスミッタコイルとは反対側の物体の表面に到達したばかりのときの時間においてτ=1となり、それによって正規化された渦電流磁束
【数4】
は、τ=0からτ=1の正規化された時間間隔内では厚さとは無関係であり、τ=1以降の時間では物体の抵抗率とは無関係である。本方法はまた、第1、第2、およびその後の時間点における測定に基づいて、物体の厚さおよび抵抗率を決定することを含み、ここにおいて、第2の時間点t
2は、τ=0からτ=2の正規化された時間間隔内に設定され、少なくとも1つのその後の時間点t
3は、τ>2になるように設定される。
【0011】
[0011]本発明の別の態様によれば、コンピュータ実行可能な構成要素を備えるコンピュータプログラム製品であって、コンピュータ実行可能な構成要素が、コントローラ内に含まれた処理回路上で実行されるとき、PECシステムの実施形態のコントローラに本開示の方法を実行させる、コンピュータプログラム製品が、提供される。
【0012】
[0012]本発明の別の態様によれば、導電性材料の物体の厚さの非接触測定のためのPECシステムが、提供される。PECシステムは、トランスミッタコイルと、レシーバコイルと、コントローラとを備える。コントローラは、処理回路と、前記処理回路によって実行可能な命令を記憶する記憶装置とを備え、それによって前記コントローラは、本開示の方法の実施形態を動作可能に実行する。
【0013】
[0013]本開示によれば、磁束を正規化し、これを正規化された時間に関連付けることにより、物体の厚さおよび抵抗率が、異なる時間点におけるPEC測定によって明確に決定され得る。
【0014】
[0014]適切な場合、いずれの態様のいずれの特徴も任意の他の態様に適用され得ることを留意されたい。同様に、いずれの態様のいずれの利点も、他の態様の任意のものに適用され得る。開示される実施形態の他の目的、特徴、および利点が、以下の詳細な開示から、添付の従属する特許請求の範囲から、ならびに図から明確になるであろう。
【0015】
[0015]通常、特許請求の範囲において使用されるすべての用語は、本明細書において別途明白に定義されない限り、技術分野における通常の意味に従って解釈されるものとする。「1つ/その要素、装置、構成要素、手段、ステップなど」へのすべての参照は、別途明白に延べられない限り、要素、装置、構成要素、手段、ステップなどの少なくとも1つの場合を参照するものとして非制限的に(openly)解釈されるものとする。明白に述べられない限り、本開示に開示されるいずれの方法のステップも、開示される順序通りに実行される必要はない。本開示の異なる特徴/構成要素に対する「第1」、「第2」などの使用は、その特徴/構成要素を他の類似の特徴/構成要素から区別するようにのみ意図され、特徴/構成要素にいかなる順序または階層を付与するようには意図されない。
【0016】
[0016]実施形態が、例を用いて、添付の図を参照して説明される。
【図面の簡単な説明】
【0017】
【
図1】本発明のいくつかの実施形態によるPECシステムの概略ブロック図。
【
図2】本発明の一部の実施形態による、PECシステムのトランスミッタコイルを通る一定のトランスミッタ電流によって生成された磁界の、このトランスミッタ電流がプレートを完全に貫通した後の、すなわち渦電流の影響が消失し、磁界の分布がプレートの存在とは無関係であるときを示す図。
【
図3】本発明のいくつかの実施形態による、トランスミッタ電流が切断された直後に
図1のPECシステムにおいてプレート内の渦電流によって生成された磁界を示す図。
【
図4】本発明のいくつかの実施形態による、異なる抵抗率(ρ)および異なる厚さ(d)を有するプレートの、実時間(t)の関数とする正規化された渦電流磁束
【数5】
を示すグラフ。
【
図5】本発明のいくつかの実施形態による、
図4の同じプレートに対する、τ=1からτ=10の正規化された時間(τ)の関数とする正規化された渦電流磁束
【数6】
を示すグラフ。
【
図6】本発明の方法のいくつかの実施形態の概略フローチャート。
【
図7】本発明のいくつかの実施形態による、PECシステムのコントローラの概略ブロック図。
【発明を実施するための形態】
【0018】
[0017]次に、これ以後、特定の実施形態が示される添付の図を参照して、実施形態がより完全に説明される。しかし、多くの異なる形態の他の実施形態が、本開示の範囲内で可能である。どちらかといえば以下の実施形態は、本開示が完全で完璧であり、本開示の範囲を当業者に十分に伝えるように、例として提供される。説明を通じて、同じ番号は同じ要素を指す。
【0019】
[0018]
図1は、物体1、通常、導電性材料の、通常はA1などの非鉄導電性材料の(シート金属または金属ストリップとも呼ばれ得る)プレートの厚さを測定するように配置されたPECシステム10の実施形態を示しており、物体は、第1の(ここでは下側の)側部4aと、第2の(ここでは上側の)側部4bとを有する。図では、プレートの形態の物体1は、図の平面に対して垂直である長手方向軸線を有する。本明細書では、物体1は、プレートとして例示されるが、物体は、いくつかの実施形態では他の形状を有することができる。
【0020】
[0019]PECシステム10は、トランスミッタのトランスミッタコイル2と、レシーバのレシーバコイル3とを備える。図では、トランスミッタコイル2とレシーバコイル3の両方は、物体1の同じ側に配置され、これは、いくつかの実施形態では好ましい。しかし、いくつかの他の実施形態では、レシーバコイル3は、トランスミッタコイル2に関して物体1の反対側に配置されてもよい。
【0021】
[0020]トランスミッタコイル2は、供給された電磁界の急激な変化を生成するように構成され、この急激な変化により、電磁界内に配置された物体1内に渦電流が誘発される。レシーバコイル3は、電磁界の変化によって電圧がその内部に誘発されることを可能にするように構成され、電磁界の変化は、たとえば、最初に、トランスミッタコイルを通る電流がオフにされたときに磁界が崩壊することによって、次いで、渦電流によって生成される。
【0022】
[0021]PECシステム10は、たとえば図の点線によって示されるような制御信号を介して、トランスミッタおよびレシーバを制御するためのコントローラ6を備えることができる。コントローラ6はまた、以下でさらに説明されるように、物体の厚さdを決定するために、物体1内の渦電流によってレシーバコイル3内に誘発された電圧を分析するための回路を備えて構成され得る。コントローラは、別個のデバイスとして形成されてもよく、またはトランスミッタおよび/またはレシーバと部分的もしくは完全に一体化されてもよい。コントローラ6は、たとえば、中央コントローラデバイスを備えることができ、この中央コントローラデバイスは、トランスミッタおよびレシーバ、ならびにトランスミッタおよび/またはレシーバと一体化された分散コントローラデバイスとは別個に配置される。
渦電流の正規化
【0023】
[0022]渦電流の測定から厚さdおよび抵抗率ρを計算することができるように、これらの電流の大きさを知ることが望ましい。トランスミッタ電流ITrがオフにされたときにプレート1内に生成される渦電流の大きさは、トランスミッタコイル2の寸法、トランスミッタ電流ITrの大きさ、およびコイル2とプレート1との間の距離Dに依存する。本発明によって渦電流の大きさを測定するために、レシーバコイル3によってピックアップされた、トランスミッタ電流ITrによって生成された全磁束Φ0が、以下で説明されるように測定される。
【0024】
[0023]
図2は、トランスミッタコイル2を通って流れるトランスミッタ電流I
Trによって生成された磁界B(Bは、一般的に磁界とも呼ばれる磁束/磁界密度を示す)の断面図を示す。トランスミッタコイルの断面は、2つの内側の(非充填の)点として示され、コイルの巻きが図の平面を垂直に通るところを記号で表している。レシーバコイル3の断面は、2つの外側の(充填された/黒の)点として見られる。
図2および
図3の例では、トランスミッタコイル2は、こうしてレシーバコイル3内に、たとえば同心に配置されるが、本発明の他の実施形態では、トランスミッタおよびレシーバのコイルは、別の形で相互に関連して、たとえばプレート1に平行な軸線に沿って隣り合わせに配置されてもよい。好ましくは、トランスミッタコイルとレシーバコイルの両方は、使用時にプレートの同じ側に配置される。磁界線は、単一の巻きを有する円形トランスミッタコイル2に従うものであるが、トランスミッタおよびレシーバのコイルのいずれも、用途に応じて、任意の適切な形状および/または任意の数の巻きを有してもよい。
【0025】
[0024]
図2の例では、磁界の分布は、一定の(DC)トランスミッタ電流の印可から十分長い時間が経過した後であるように示されており、このとき可能性のある渦電流の影響は、消失している。そのため、磁界Bの分布は、プレート1の存在とは無関係である。
【0026】
[0025]レシーバコイル3の各巻きによってピックアップされた全磁束Φは、定義上では、レシーバコイル3の巻きによって取り囲まれた表面S上の磁界密度Bの面積分に等しい:
【数7】
【0027】
[0026]レシーバコイル3の各巻き内で誘発された電圧Vの大きさは、磁束の時間微分としてファラデーの法則によって得られる:
【数8】
【0028】
[0027]プレート1が存在しないとき、トランスミッタ電流が切断されるとすぐに、磁界は消える。電流切断の直前の時間t
0から、時間t1において電流がうまくオフにされるまでにレシーバコイル3内に誘発された電圧を積分することにより(この場合、プレート1が存在しない場合はΦ(t
1)=0である)、(上記の)面積分によって定義されたような、レシーバコイル3によってピックアップされた全磁束Φ
0は、以下によって得られる:
【数9】
上記で述べられたように、第1の時間点t
1は、プレート1が存在しない場合に磁束Φ(t
1)がゼロであるときに設定される。しかし、トランスミッタコイル内の電流がオフにされたとき、トランスミッタコイルを通る電流は指数関数的に減少し、数学的意味でゼロに到達しないことに留意されたい。したがって、磁束Φ(t
1)がゼロであることは、磁束が、無視でき、検出閾値以下であり、または実質的にゼロであることを意味する。
【0029】
[0028]実際には、トランスミッタ電流は、すぐにオフにできない。必要とされる時間t1は、PECシステム10のインダクタンス、静電容量、および任意のダンピング抵抗の値に依存する。時間t1は、したがって、システム10の設計パラメータに依存する定数である。
【0030】
[0029]プレート1が存在するとき、プレート内に誘発された渦電流は、プレート内で、トランスミッタ電流I
Trが切断される直前まで存在した磁界Bを維持しようとする。この場合、時間t
1における磁界は、
図3に示すようなものになる。
【0031】
[0030]プレート1の上方の
図3の磁界Bは、
図2と同じである。この磁界は、プレート内の渦電流の対称性によってプレート1の下方で鏡像化される。
図3の磁界Bは、渦電流のみによって生成され、これらの大きさに比例する。
【0032】
[0031]プレート1が存在するときの、レシーバコイル3によってピックアップされた、時間t
1において渦電流によって生成された全磁束Φ(t
1)は、Φ
1として示される。ここではプレート1の存在下で時間t
0からt
1までにレシーバコイル3内で誘発された電圧Vを再度積分することにより、以下が得られる:
【数10】
【0033】
[0032]この関係から、Φ
1を得ることができ、Φ
1は、プレート1とシステム10のコイル2および3との間の距離Dに対する測定の依存を取り除くための正規化係数として働く。
【数11】
磁束の正規化
【0034】
[0033]渦電流(ec)の時間依存を測定するために、時間t
1において積分が開始され、追加の時間tの間積分される:
【数12】
【0035】
[0034]このようにして測定された量は、t→t
1の間はゼロに等しく、渦電流および磁束がプレート1の抵抗率によって拡散されるにつれて時間の経過と共に増大する。距離Dへの依存を解消するために、これは、測定の開始時に全磁束Φ
1に正規化される:
【数13】
【0036】
[0035]これにより、正規化された渦電流磁束が生み出され、正規化された渦電流磁束は、ゼロ(t=t1の場合)において開始し、すべての電流が消失した後にユニティ(unity)(すなわち1)に到達する。
【0037】
[0036]次に、PEC測定の時間依存が、この正規化された渦電流磁束
【数14】
に関して説明される。
【0038】
[0037]時間t
1において、渦電流は、トランスミッタコイル2に最も近いプレート1の表面(底面4a、
図1、
図2、および
図3を参照されたい)に集中される。これらは、次いで、プレートの電気抵抗率ρの影響によって拡散され広げられる。最初、プレートの厚さdからの影響は無いため、時間依存は抵抗率のみに依存する。その後、時間依存は、より複雑になり、抵抗率と厚さの両方に依存する。
【0039】
[0038]例として、
図4は、3つの異なる厚さd1.5、3、および4.5mmであり、それぞれが2つの異なる抵抗率ρ、28および56nΩmそれぞれを有する6つのプレート1に対する正規化された渦電流磁束
【数15】
の時間依存を説明している。
【0040】
[0039]
図4で見られ得るように、10μs秒を下回る時間の間、原点がt
1に設定される場合、同じ抵抗率のプレートに対応するすべての曲線は、一致する。この時間範囲中、測定は、抵抗率のみに依存する。その後、時間がたつにつれて、曲線は互いに分離する。
時間の正規化
【0041】
[0040]数理物理学的に問題を解決するとき、関係する異なるパラメータへの依存を簡易化するための手段として正規化された可変数を導入することが、一般的には標準的な手順である。これについて、PEC技術に適用されるそのような手順により、測定されたサンプルから厚さおよび抵抗率を計算するために使用されるモデルを較正するのに必要な情報を供給するために必要である試験物体の数が、大幅に低減される。
【0042】
[0041]この場合、トランスミッタ電流I
Trを切断することによって生成された渦電流の拡散は、三次元拡散方程式によって説明され、時間は、問題の特徴的時間スケールに正規化され得る:すなわち、
【数16】
であり、式中、Tは拡散率に対応する時間定数であり、dは、プレートの厚さであり、ρはプレートの抵抗率であり、μ
0は真空の透磁率である。物体1の厚さdおよび抵抗率ρが決定される前、時間定数Tは、たとえば物体の製造者によって与えられた物体1の公称厚さ、および物体に対するPEC測定から反復的に推定された抵抗率に基づいて推測および/または算出され得る。ρの第1の仮定値により、Tの推定値が与えられ、その結果、新しいρが決定され、この新しいρは、さらに、新しいTを推測するために使用可能であり、そのようにしてTが所望の精度で算出され得るまで続く。
【0043】
[0042]特徴的時間スケールは、渦電流が拡散し、トランスミッタコイル2とは反対側の表面(すなわち上面4b、
図1、
図2、および
図3を参照)に到達するのにかかる時間を説明する。これはまた、正規化された渦電流磁束
【数17】
の時間依存がプレート1の厚さdによって影響を受けるまでの時間でもある。
【0044】
[0043]正規化された渦電流磁束
【数18】
が、正規化された時間τに対してプロットされる場合、
図5に示されるより簡単な関係が得られ、この場合τは:
【数19】
によって定義され、式中、tは、トランスミッタ電流が完全にオフにされた後の実時間、すなわちt
1である。そのため、実時間t=t
1のとき正規化された時間τ=0となる。たとえば2のτの値は、実時間t(通常マイクロ秒単位)が、測定されたプレート1の2つの時間定数Tに対応することを意味する。
【0045】
[0044]
図5では、
図4のような同じ6つのプレート1に関して、抵抗率ρへの依存が解消され、測定は、厚さdのみに依存する。このようにして、正規化された渦電流磁束の測定からの抵抗率および厚さの導きが、大幅に簡易化される。これは、厚さdが、たとえば事前準備された標準的または較正曲線を参照して明白に決定され得ることを示す。たとえば、知られている厚さおよび異なる抵抗率を有する複数の物体(通常はプレート)に対する古い測定値が、当技術分野で一般的に知られている適切なブラックボックスモデルに入力され得る。
【0046】
[0045]正規化された時間に関して表現すると、第1の測定が、早い時間τ
2において実行され、このとき、正規化された渦電流磁束
【数20】
は、プレートの抵抗率のみに依存している。これを果たすために、正規化された時間τ
2は、ユニティ(すなわち1)未満、またはその程度でなければならない。本発明のいくつかの実施形態では、第2の時間点t
2は、τ=0からτ=2、好ましくはτ=0.8からτ=1の範囲内に設定される。
【0047】
[0046]次いで、第2の測定が、その後の正規化された時間τ
3において実行され、このとき、正規化された渦電流磁束
【数21】
は、プレートの厚さのみに依存している。この正規化された時間τ
3の値は、レシーバコイル3における信号対ノイズ比などのシステム10の性能を決定する他の基準に基づいて選択され得る。少なくとも2および/または10未満の値が、τ
3に適切である。本発明のいくつかの実施形態では、第3の時間点t
3は、τ=3からτ=10、好ましくはτ=4からτ=7の正規化された時間間隔内に設定される。
【0048】
[0047]測定された信号からの厚さおよび抵抗率の計算を容易にするために、または信号対ノイズ比を改善するために、第3の時間点t3における1回だけの測定ではなく、第3の時間点に関する正規化された時間のこうした範囲内のそれぞれその後の時間点において複数の測定を実行することが、適切となり得る。したがって、本発明のいくつかの実施形態では、(ここでは少なくとも1つの)第3の時間点t3における磁界の減衰によって誘発された電圧の測定は、それぞれのその後(第3の)時間点において少なくとも2つの測定値を含み、たとえば、これらの測定値は、通常はいずれもτ=3からτ=10、好ましくはτ=4からτ=7の正規化された時間間隔内にある、第1のその後の時間点および第2のその後の時間点(第2のその後の時間点は第1のその後の時間点とは異なる)などのその後の時間点における2つの測定値を含むか、またはこれらからなる。
【0049】
[0048]物体1の厚さ測定は、時間と共に変化する厚さを有する物体の緻密なサンプルを与えるために、できる限り反復され得る。これは、たとえば、圧延機において製造された材料の厚さを測定する場合にあてはまる。厚さ測定間の間隔は、先行する厚さ測定に関連して物体内に誘発された渦電流の影響がその後の厚さ測定を妨げないように十分な長さでなければならない。
【0050】
[0049]経験により、供給時間期間が、電流がオフにされたときに正規化された渦電流磁束
【数22】
がおよそ3分の2に到達しているような長さである場合、速度と正確性との間の適切な妥協点が得られることが、示される。
【0051】
[0050]このプロセスに対する時間スケールは、いわゆる、物体1、通常はプレートのシート抵抗率によって決定され得る。シート抵抗率は、物体の抵抗率をその厚さで割ったものとして定義される。次いで、マイクロ秒単位の適切な供給時間が、プレート厚さ、通常は物体1のμm単位の公称厚さをnΩm単位の抵抗率で割り、17をかけたものとして計算され得る。
【0052】
[0051]特徴的時間スケールを決定するために、測定されるプレートの抵抗率ρおよび厚さdの知識が便利であり得る。通常、プレートの公称厚さは知られており、その抵抗率は、測定から得られてもよく、それによって正しい時間スケールが、反復的に得られ得る。厚さが事前に知られていない場合でも、厚さ測定は、反復によって依然として可能である。
【0053】
[0052]
図6は、本発明の方法のいくつかの実施形態を示すフローチャートである。本方法は、トランスミッタコイル2とレシーバコイル3とを備えるPECシステム10による、導電性材料の物体1の厚さdの非接触測定のためのものである。本方法は、所定の供給時間期間の間、一定の電流をトランスミッタコイル2に供給することS1を含み、前記供給された電流は、物体1に浸透する電磁界Bを生成する。本方法はまた、開始時間点t
0後の供給時間期間後、供給された電流をオフにすることS2を含み、その結果、物体内の渦電流の誘発、および磁界Bの減衰が生じる。本方法はまた、レシーバコイル3において、前記開始時間点t
0において開始する所定の測定時間期間中、磁界の減衰によって誘発された電圧を第1の時間点t
1、第2の時間点t
2、および少なくとも1つのその後のまたは第3の時間点t
3において測定することS3を含む。本方法はまた、第1の時間点t
1における測定された磁束Φ
plateと、物体1が存在しないときにレシーバコイルによってピックアップされた所定の全磁束Φ
0とを比較することによって、第1の時間点t
1において渦電流によって生成され、レシーバコイル3によってピックアップされた全磁束Φ
1を算出することS4を含み、ここにおいて、第1の時間点t
1は、第1の時間点t
1の磁束Φ(t1)が、物体が存在しないときにゼロであるという条件を満たす最初の時間に設定される。本方法はまた、算出されたS4の全磁束Φ1を正規化係数として使用して、渦電流から生じ、レシーバコイル3によってピックアップされた、測定された磁束Φ
ecを正規化することS5を含み、それにより、正規化された渦電流磁束
【数23】
は、物体1とトランスミッタおよびレシーバのコイルとの間の距離Dとは無関係となり、それによって正規化された渦電流磁束
【数24】
は、第1の時間点t
1においてゼロであり、渦電流が消失した後の時間において1である。本方法はまた、時間定数Tを正規化係数として使用して、正規化された渦電流磁束
【数25】
を正規化された時間τに関連付けることS6を含み、それにより、実時間t=t
1であるときにτ=0となり、供給された電流のオフ後、渦電流が拡散してトランスミッタコイル2とは反対側の物体1の表面4bに到達したばかりのときの時間においてτ=1となり、それによって、正規化された渦電流磁束
【数26】
は、τ=0からτ=1の正規化された時間間隔内では厚さdとは無関係であり、τ=1以降の時間では物体1の抵抗率ρとは無関係である。本方法はまた、第1、第2、およびその後の時間点における測定に基づいて、物体1の厚さdおよび抵抗率ρを決定することS7を含み、ここにおいて、第2の時間点t
2は、τ=0からτ=2の正規化された時間間隔内に設定され、少なくとも1つのその後の時間点t
3は、τ>2になるように設定される。
【0054】
[0053]
図7は、本開示のコントローラ6の実施形態を概略的に示す。コントローラ6は、処理回路61、たとえば中央処理ユニット(CPU)を備える。処理回路61は、マイクロプロセッサの形態の1つまたは複数の処理ユニットを備えることができる。しかし、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、または複合プログラマブル論理デバイス(CPLD)などの計算能力を有する他の適切なデバイスが、処理回路61内に含まれ得る。処理回路61は、1つまたはいくつかの記憶ユニットの記憶装置62、たとえばメモリ内に記憶された、1つまたはいくつかのコンピュータプログラムまたはソフトウエア(SW)63を実行するように構成される。記憶ユニットは、本明細書で論議されるように、コンピュータ実行可能構成要素として記憶ユニット上に記憶されたSW63と一緒になってコンピュータプログラム製品62を形成する、コンピュータ可読手段としてみなされ、たとえば、ランダムアクセスメモリ(RAM)、フラッシュメモリもしくは他のソリッドステートメモリ、またはハードディスク、またはその組み合わせの形態であってもよい。処理回路61はまた、必要に応じて、記憶装置62内にデータを記憶するように構成され得る。コントローラ6は、本開示の方法を実行するように構成され得る。
【0055】
[0054]本開示は、主に、いくつかの実施形態を参照して上記で説明されてきた。しかし、当業者によって容易に理解されるように、上記で開示されたもの以外の他の実施形態が、付属の特許請求の範囲によって定義されるような本開示の範囲内で同様に可能である。
【外国語明細書】