(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022138500
(43)【公開日】2022-09-26
(54)【発明の名称】レーザ加工装置
(51)【国際特許分類】
B23K 26/53 20140101AFI20220915BHJP
B23K 26/064 20140101ALI20220915BHJP
H01L 21/301 20060101ALI20220915BHJP
【FI】
B23K26/53
B23K26/064 A
H01L21/78 B
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021038416
(22)【出願日】2021-03-10
(71)【出願人】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(72)【発明者】
【氏名】荻原 孝文
(72)【発明者】
【氏名】山田 丈史
【テーマコード(参考)】
4E168
5F063
【Fターム(参考)】
4E168AE01
4E168CA06
4E168CA07
4E168DA43
4E168EA05
4E168EA11
4E168HA01
4E168JA12
5F063AA04
5F063BA33
5F063DD29
5F063DD31
5F063DD32
(57)【要約】
【課題】変調パターンの位相変調量の鈍りの影響、及び、変調パターンにおける位相変調量の折り返し部分の偏在を抑制可能なレーザ加工装置を提供する。
【解決手段】レーザ加工装置1は、支持部2と光源3と空間光変調器5と集光部6とを備える。制御部10は、画像信号を空間光変調器5に入力することにより、画像信号に応じた変調パターンを空間光変調器5に表示させる。制御部10は、X方向に沿ってレーザ光Lの集光点Cを相対移動させつつウェハ20にレーザ光Lを照射する加工処理を実行する。加工処理では、制御部10は、第1方向における変調パターンの一端に対応する画像信号の領域から、第1方向における変調パターンの他端に対応する画像信号の領域に向けて、最小値から最大値にわたって一定の傾きで階調値が変化する第1信号を含む前記画像信号を空間光変調器5に入力する。
【選択図】
図13
【特許請求の範囲】
【請求項1】
対象物にレーザ光を照射することで前記対象物に改質領域を形成するためのレーザ加工装置であって、
前記対象物を支持するための支持部と、
前記レーザ光を出射するための光源と、
前記光源から出射された前記レーザ光を変調パターンに応じて変調して出射するための空間光変調器と、
前記空間光変調器から出射された前記レーザ光を前記対象物に向けて集光するための集光レンズを含む集光部と、
画像信号を前記空間光変調器に入力することにより、前記画像信号に応じた前記変調パターンを前記空間光変調器に表示させる制御部と、
を備え、
前記制御部は、前記支持部及び前記集光部の少なくとも一方の移動を制御することにより、前記対象物のレーザ光入射面に沿うX方向に沿って前記レーザ光の集光点を前記対象物に対して相対移動させつつ、前記対象物に前記レーザ光を照射する加工処理を実行し、
前記画像信号を構成する領域のそれぞれには、前記変調パターンにおける位相変調量に対応した階調値が設定されており、
前記加工処理では、前記制御部は、第1方向における前記変調パターンの一端に対応する前記領域から、前記第1方向における前記変調パターンの他端に対応する前記領域に向けて、最小値から最大値にわたって一定の傾きで階調値が変化する第1信号を含む前記画像信号を前記空間光変調器に入力することにより、前記第1信号に応じた第1パターンを含む前記変調パターンを前記空間光変調器に表示させる、
レーザ加工装置。
【請求項2】
前記加工処理では、前記制御部は、前記レーザ光を複数の加工光に分岐するための第2パターンを含む前記変調パターンを前記空間光変調器に表示するように、前記第2パターンに対応する第2信号を含む前記画像信号を前記空間光変調器に入力する、
請求項1に記載のレーザ加工装置。
【請求項3】
前記第1方向は、前記レーザ光の分岐方向に交差する方向に対応する方向である、
請求項2に記載のレーザ加工装置。
【請求項4】
前記加工処理では、前記制御部は、前記集光レンズの径方向における位置に応じて前記レーザ光の集光位置を変化させるための第3パターンを含む前記変調パターンを前記空間光変調器に表示するように、前記第3パターンに対応する第3信号を含む前記画像信号を前記空間光変調器に入力する、
請求項1~3のいずれか一項に記載のレーザ加工装置。
【請求項5】
前記制御部は、前記第1信号において、前記第1方向に交差する第2方向における前記変調パターンの一端に対応する前記領域から、前記第2方向における前記変調パターンの他端に対応する前記領域に向けて、最小値から最大値にわたって一定の傾きで階調値を変化させる、
請求項1~4のいずれか一項に記載のレーザ加工装置。
【請求項6】
前記制御部は、前記第1信号において、少なくとも一方向に複数の周期を有するように階調値を変化させる、
請求項1~5のいずれか一項に記載のレーザ加工装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ加工装置に関する。
【背景技術】
【0002】
特許文献1には、レーザ加工装置が記載されている。このレーザ加工装置は、光源から出射されたレーザ光を変調するための空間光変調器を備えている。空間光変調器では、液晶層に付与する電圧に基づいて変調パターンを液晶層に表示させることにより、レーザ光を変調している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1では、空間光変調器は、半導体基板上に、駆動回路層、画素電極層、反射膜、配向膜、液晶層、配向膜、透明導電膜及び透明基板がこの順序で積層されることで構成されている。このような空間光変調器では、変調パターンを示す信号が駆動回路層に入力されると、当該信号に応じた電圧が各画素電極に印加され、各画素電極と透明導電膜との間に電界が形成される。当該電界が形成されると、液晶層において、各画素電極に対応する領域(以下、「画素」という場合がある)ごとに液晶分子の配列方向が変化し、各画素電極に対応する領域ごとに屈折率が変化する。この状態が、液晶層に変調パターンが表示された状態である。
【0005】
液晶層に変調パターンが表示された状態で、レーザ光が、外部から透明基板及び透明導電膜を介して液晶層に入射し、反射膜で反射されて、液晶層から透明導電膜及び透明基板を介して外部に出射させられると、液晶層に表示された変調パターンに応じて、レーザ光が変調される。このように、空間光変調器によれば、液晶層に表示する変調パターンを適宜設定することで、レーザ光の変調が可能である。
【0006】
なお、空間光変調器に変調パターンを表示させるための信号としては、画像信号を用いることができる。この場合、液晶層に対して、空間光変調器に入力される画像信号の階調値に応じた電圧が印加され、その電圧の値に応じた屈折率変化が生じることにより、変調パターンが表示される。そして、空間光変調器に入射したレーザ光に対しては、この変調パターンに応じた位相変調がなされる。したがって、この場合、画像信号と変調パターン、及び、画像信号の階調値と変調パターンによりレーザ光に付与される位相変調量は、互いに対応している。また、以下では、変調パターンによりレーザ光に付与される位相変調量を、単に、変調パターンの位相変調量といったように省略して称する場合がある。
【0007】
ところで、変調パターンの実際の位相変調量は、理想的な状態に対して鈍りが生じる場合がある。本発明者は、この位相変調量の鈍りが、次のような問題を生じさせる場合があるとの知見を得た。
【0008】
すなわち、上限2πの位相変調能力を有する空間光変調器に対して、2πよりも大きな位相変調量となる領域を含む変調パターンを表示しようとする場合、当該2πを超えた領域を折り返すことで当該変調パターンを再現することとなる。この場合、位相変調量の鈍りに起因して、変調パターンのうちの折り返しが生じた領域(反転領域)と折り返しが生じていない領域(正転領域)とで、レーザ光の変調状態が異なる場合がある。このため、変調パターンにおいて反転領域と正転領域との割合に偏りが生じていると、変調パターンが変化した際に当該割合の変化が大きくなり、結果的に、レーザ光の変調状態の変化も大きくなる。なお、レーザ光の変調状態とは、一例として、変調パターンが回折格子状のパターンである場合には、レーザ光の回折効率である。
【0009】
他方、本発明者によれば、位相変調量の折り返し部分が変調パターンの一部に偏って存在することに起因して、以下の問題が生じる場合があるとの知見を得ている。すなわち、位相変調量の折り返し部分が変調パターンの一部に偏って存在すると、レーザ光のうちの当該折り返しが偏在する部分を介して変調された部分と、当該折り返しが偏在する部分を介さずに変調された部分とで、レーザ光の集光状態にばらつきが生じる場合がある。したがって、変調パターンの位相変調量の鈍りの影響、及び、変調パターンにおける位相変調量の折り返し部分の偏在を抑制することが求められる。
【0010】
そこで、本発明は、変調パターンの位相変調量の鈍りの影響、及び、変調パターンにおける位相変調量の折り返し部分の偏在を抑制可能なレーザ加工装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明に係るレーザ加工装置は、対象物にレーザ光を照射することで対象物に改質領域を形成するためのレーザ加工装置であって、対象物を支持するための支持部と、レーザ光を出射するための光源と、光源から出射されたレーザ光を変調パターンに応じて変調して出射するための空間光変調器と、空間光変調器から出射されたレーザ光を対象物に向けて集光するための集光レンズを含む集光部と、画像信号を空間光変調器に入力することにより、画像信号に応じた変調パターンを空間光変調器に表示させる制御部と、を備え、制御部は、支持部及び集光部の少なくとも一方の移動を制御することにより、レーザ光入射面に沿うX方向に沿ってレーザ光の集光点を対象物に対して相対移動させつつ、対象物にレーザ光を照射する加工処理を実行し、画像信号を構成する領域のそれぞれには、変調パターンにおける位相変調量に対応した階調値が設定されており、加工処理では、制御部は、第1方向における変調パターンの一端に対応する領域から、第1方向における変調パターンの他端に対応する領域に向けて、最小値から最大値にわたって一定の傾きで階調値が変化する第1信号を含む画像信号を空間光変調器に入力することにより、第1信号に応じた第1パターンを含む変調パターンを空間光変調器に表示させる。
【0012】
このレーザ加工装置では、制御部が、空間光変調器に画像信号を入力することにより、空間光変調器に変調パターンを表示させ、当該変調パターンに応じてレーザ光の変調を行いつつ加工処理を実行する。画像信号では、画像信号を構成する各領域に対して、変調パターンの各位置の位相変調量に対応した階調値が設定されている。すなわち、空間光変調器では、変調パターンの各位置の位相変調量が画像信号の各領域の諧調値に応じた量とされることにより、全体として所望のパターンが表示される。そして、その画像信号は、変調パターンの一端に対応する領域から、変調パターンの他端に対応する領域に向けて、一定の傾きで階調値が変化する第1信号を含む。この結果、空間光変調器に表示される変調パターンが、この第1信号に応じて位相変調量が一方向に一定の傾きで変化する第1パターンを含むこととなる。本発明者によれば、変調パターンがこのような第1パターンを含む場合、変調パターンの位相変調量の鈍りの影響、及び、変調パターンにおける位相変調量の折り返し部分の偏在が抑制される。
【0013】
本発明に係るレーザ加工装置では、加工処理において、制御部は、レーザ光を複数の加工光に分岐するための第2パターンを含む変調パターンを空間光変調器に表示するように、第2パターンに対応する第2信号を含む画像信号を空間光変調器に入力するしてもよい。この場合、変調パターンにおいて第2パターンが重畳されることとなる。このような場合には、複数の加工光の間のばらつきが抑制される。
【0014】
本発明に係るレーザ加工装置では、第1方向は、レーザ光の分岐方向に交差する方向に対応する方向であってもよい。この場合、より効果的に加工光の間のばらつきを抑制可能である。
【0015】
本発明に係るレーザ加工装置では、加工処理において、制御部は、集光レンズの径方向における位置に応じてレーザ光の集光位置を変化させるための第3パターンを含む変調パターンを空間光変調器に表示するように、第3パターンに対応する第3信号を含む画像信号を空間光変調器に入力してもよい。この場合、第3パターンにおいて、集光レンズの径方向の特定の位置に対応するように位相変調量の折り返し部分が偏在することを抑制し、レーザ光の集光状態のバラつきを抑制することが可能となる。
【0016】
本発明に係るレーザ加工装置では、制御部は、第1信号において、第1方向に交差する第2方向における変調パターンの一端に対応する領域から、第2方向における変調パターンの他端に対応する領域に向けて、最小値から最大値にわたって一定の傾きで階調値を変化させてもよい。この場合、画像信号の階調値が、互いに交差する2方向について一定の傾きで変化することとなる。したがって、当該2方向に対応する空間光変調器の面内について、位相変調量の鈍りの影響、及び、位相変調量の折り返し部分の偏在を抑制可能である。
【0017】
本発明に係るレーザ加工装置では、制御部は、第1信号において、少なくとも一方向に複数の周期を有するように階調値を変化させてもよい。この場合、位相変調量の鈍りの影響、及び、位相変調量の折り返し部分の偏在をより確実に抑制可能である。
【発明の効果】
【0018】
本発明によれば、変調パターンの位相変調量の鈍りの影響、及び、変調パターンにおける位相変調量の折り返し部分の偏在を抑制可能なレーザ加工装置を提供できる。
【図面の簡単な説明】
【0019】
【
図1】
図1は、本実施形態に係るレーザ加工装置を示す模式図である。
【
図2】
図2は、
図1に示された空間光変調器の一部分の断面図である。
【
図3】
図3は、一実施形態の対象物であるウェハの平面図である。
【
図4】
図4は、
図3に示されるウェハの一部分の断面図である。
【
図5】
図5は、3点分岐の場合のレーザ加工装置の動作の一例を説明するためのウェハの断面図である。
【
図6】
図6は、変調パターンの一例を示す模式図である。
【
図7】
図7は、変調パターンの一例を示す模式図である。
【
図8】
図8は、回折格子パターンを含む変調パターンの一例を示す模式図である。
【
図9】
図9は、回折格子パターンの一例を示す図である。
【
図10】
図10は、回折格子パターンに歪補正パターンを重畳した状態を示す図である。
【
図13】
図13は、回折格子パターンに対して平均化パターンを重畳して構成される変調パターンの一例を示す図である。
【
図14】
図14は、歪補正パターンに平均化パターンを重畳して構成された変調パターンの一例を示す図である。
【
図15】
図15は、集光レンズとレーザ光との関係を示す模式図である。
【
図17】
図17は、
図16に示された整形パターンを利用した場合の加工結果を示す断面写真である。
【
図18】
図18は、
図16に示された整形パターンに
図12に示された平均化パターンを重畳して構成される変調パターンを示す図である。
【
図19】
図19は、
図16に示された整形パターン及び
図18に示された変調パターンを利用した場合の加工結果を示す断面写真である。
【
図21】
図21は、整形パターンの変形例を説明するための図である。
【発明を実施するための形態】
【0020】
以下、一実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
【0021】
図1は、本実施形態に係るレーザ加工装置を示す模式図である。
図1に示されるように、レーザ加工装置1は、支持部2と、光源3と、光軸調整部4と、空間光変調器5と、集光部6と、光軸モニタ部7と、可視撮像部8と、赤外撮像部9と、制御部10と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することで対象物11に改質領域12を形成する装置である。以下の説明では、互いに直交する3方向を、それぞれ、X方向、Y方向及びZ方向という。本実施形態では、X方向は第1水平方向であり、Y方向は第1水平方向に垂直な第2水平方向であり、Z方向は鉛直方向である。
【0022】
支持部2は、例えば対象物11に貼り付けられたフィルム(図示省略)を吸着することで、対象物11の表面11aがZ方向と直交するように対象物11を支持する。支持部2は、X方向及びY方向のそれぞれの方向に沿って移動可能であり、Z方向に平行な軸線を中心線として回転可能である。
【0023】
光源3は、例えばパルス発振方式によって、レーザ光Lを出射する。レーザ光Lは、対象物11に対して透過性を有している。
【0024】
光軸調整部4は、光源3から出射されたレーザ光Lの光軸を調整する。本実施形態では、光軸調整部4は、光源3から出射されたレーザ光Lの進行方向をZ方向に沿うように変更しつつ、レーザ光Lの光軸を調整する。光軸調整部4は、例えば、位置及び角度の調整が可能な複数の反射ミラーによって構成されている。
【0025】
空間光変調器5は、筐体H内に配置されている。空間光変調器5は、光源3から出射されたレーザ光Lを変調する。本実施形態では、光軸調整部4からZ方向に沿って下側に進行したレーザ光Lが筐体H内に入射し、筐体H内に入射したレーザ光LがミラーM1によってY方向に対して角度を成すように水平に反射され、ミラーM1によって反射されたレーザ光Lが空間光変調器5に入射する。空間光変調器5は、そのように入射したレーザ光LをY方向に沿って水平に反射しつつ変調する。
【0026】
集光部6は、筐体Hの底壁に取り付けられている。集光部6は、空間光変調器5によって変調されたレーザ光Lを、支持部2によって支持された対象物11に、Z方向に沿って表面11a側から集光する。本実施形態では、空間光変調器5によってY方向に沿って水平に反射されたレーザ光LがダイクロイックミラーM2によってZ方向に沿って下側に反射され、ダイクロイックミラーM2によって反射されたレーザ光Lが集光部6に入射する。集光部6は、そのように入射したレーザ光Lを対象物11に集光する。本実施形態では、集光部6は、集光レンズユニット61が駆動機構62を介して筐体Hの底壁に取り付けられることで構成されている。駆動機構62は、例えば圧電素子の駆動力によって、集光レンズユニット61をZ方向に沿って移動させる。
【0027】
なお、筐体H内において、空間光変調器5と集光部6との間には、結像光学系(図示省略)が配置されている。結像光学系は、空間光変調器5の反射面と集光部6(後述する集光レンズ61a)の入射瞳面とが結像関係にある両側テレセントリック光学系を構成している。これにより、空間光変調器5の反射面でのレーザ光Lの像(空間光変調器5によって変調されたレーザ光Lの像)が集光部6の入射瞳面に転像(結像)される。
【0028】
筐体Hの底壁には、X方向において集光レンズユニット61の両側に位置するように1対の測距センサS1,S2が取り付けられている。各測距センサS1,S2は、対象物11の表面11aに対して測距用の光(例えば、レーザ光)を出射し、表面11aで反射された測距用の光を検出することで、表面11aの変位データを取得する。
【0029】
光軸モニタ部7は、筐体H内に配置されている。光軸モニタ部7は、ダイクロイックミラーM2を透過したレーザ光Lの一部(例えば、ダイクロイックミラーM2に入射したレーザ光Lのうちの0.5~5%)を検出する。光軸モニタ部7による検出結果は、例えば、集光レンズユニット61に入射するレーザ光Lの光軸と集光レンズユニット61の光軸との関係を示す。
【0030】
可視撮像部8は、筐体H内に配置されている。可視撮像部8は、可視光Vを出射し、可視光Vによる対象物11の像を画像として取得する。本実施形態では、可視撮像部8から出射された可視光VがダイクロイックミラーM2及び集光部6を介して対象物11の表面11aに照射され、表面11aで反射された可視光Vが集光部6及びダイクロイックミラーM2を介して可視撮像部8で検出される。
【0031】
赤外撮像部9は、筐体Hの側壁に取り付けられている。赤外撮像部9は、赤外光を出射し、赤外光による対象物11の像を画像として取得する。本実施形態では、筐体H及び赤外撮像部9は、Z方向に沿って一体的に移動可能である。
【0032】
制御部10は、レーザ加工装置1の各部の動作を制御する。制御部10は、処理部101と、記憶部102と、入力受付部103と、を有している。処理部101は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。処理部101では、プロセッサが、メモリ等に読み込まれたソフトウェア(プログラム)を実行し、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信を制御する。記憶部102は、例えばハードディスク等であり、各種データを記憶する。入力受付部103は、オペレータから各種データの入力を受け付けるインターフェース部である。本実施形態では、入力受付部103は、GUI(Graphical User Interface)を構成している。
【0033】
以上のように構成されたレーザ加工装置1では、対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが吸収され、対象物11の内部に改質領域12が形成される。改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。改質領域12は、改質領域12からレーザ光Lの入射側及びその反対側に亀裂が延び易いという特性を有している。このような改質領域12の特性は、対象物11の切断に利用される。
【0034】
一例として、対象物11を切断するためのライン15に沿って、対象物11の内部に改質領域12を形成する場合におけるレーザ加工装置1の動作について説明する。
【0035】
まず、レーザ加工装置1は、対象物11に設定されたライン15がX方向に平行となるように、Z方向に平行な軸線を中心線として支持部2を回転させる。続いて、レーザ加工装置1は、赤外撮像部9によって取得された画像(例えば、対象物11が有する機能素子層の像)に基づいて、Z方向から見た場合にレーザ光Lの集光点Cがライン15上に位置するように、X方向及びY方向のそれぞれの方向に沿って支持部2を移動させる。以下、このような「ライン15上の加工開始位置に対する集光部6の位置合せ」を「アライメント」という。
【0036】
続いて、レーザ加工装置1は、可視撮像部8によって取得された画像(例えば、対象物11の表面11aの像)に基づいて、レーザ光Lの集光点Cが表面11a上に位置するように、Z方向に沿って筐体H(すなわち、集光部6)を移動させる。以下、このような「表面11aに対する集光部6の位置合せ」を「ハイトセット」という。続いて、レーザ加工装置1は、その位置を基準として、レーザ光Lの集光点Cが表面11aから所定深さに位置するように、Z方向に沿って筐体H(すなわち、集光部6)を移動させる。
【0037】
続いて、レーザ加工装置1は、光源3からレーザ光Lを出射させると共に、レーザ光Lの集光点Cがライン15に沿って相対的に移動するように、X方向に沿って支持部2を移動させる。以下、「対象物11に対するレーザ光Lの相対的移動方向」を「レーザ光Lの相対的移動方向A」という。このとき、レーザ加工装置1は、1対の測距センサS1,S2のうちレーザ光Lの相対的移動方向Aにおける前側に位置する測距センサによって取得された表面11aの変位データに基づいて、レーザ光Lの集光点Cが表面11aから所定深さに位置するように、集光部6の駆動機構62を動作させる。
【0038】
以上により、ライン15に沿って且つ対象物11の表面11aから一定深さに、1列の改質領域12が形成される。パルス発振方式によって光源3からレーザ光Lが出射されると、複数の改質スポット12sがX方向に沿って1列に並ぶように形成される。1つの改質スポット12sは、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット12sの集合である。隣り合う改質スポット12sは、レーザ光Lのパルスピッチ(対象物11に対する集光点Cの相対的な移動速度をレーザ光Lの繰り返し周波数で除した値)によって、互いに繋がる場合も、互いに離れる場合もある。
[空間光変調器の構成]
【0039】
本実施形態の空間光変調器5は、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。
図2は、
図1に示された空間光変調器の一部分の断面図である。
図2に示されるように、空間光変調器5は、半導体基板51上に、駆動回路層52、画素電極層53、反射膜54、配向膜55、液晶層56、配向膜57、透明導電膜58及び透明基板59がこの順序で積層されることで、構成されている。
【0040】
半導体基板51は、例えば、シリコン基板である。駆動回路層52は、半導体基板51上において、アクティブ・マトリクス回路を構成している。画素電極層53は、半導体基板51の表面に沿ってマトリックス状に配列された複数の画素電極53aを含んでいる。各画素電極53aは、例えば、アルミニウム等の金属材料によって形成されている。各画素電極53aには、駆動回路層52によって電圧が印加される。
【0041】
反射膜54は、例えば、誘電体多層膜である。配向膜55は、液晶層56における反射膜54側の表面に設けられており、配向膜57は、液晶層56における反射膜54とは反対側の表面に設けられている。各配向膜55,57は、例えば、ポリイミド等の高分子材料によって形成されており、各配向膜55,57における液晶層56との接触面には、例えば、ラビング処理が施されている。配向膜55,57は、液晶層56に含まれる液晶分子56aを一定方向に配列させる。
【0042】
透明導電膜58は、透明基板59における配向膜57側の表面に設けられており、液晶層56等を挟んで画素電極層53と向かい合っている。透明基板59は、例えば、ガラス基板である。透明導電膜58は、例えば、ITO等の光透過性且つ導電性材料によって形成されている。透明基板59及び透明導電膜58は、レーザ光Lを透過させる。
【0043】
以上のように構成された空間光変調器5では、変調パターンを示す画像信号が制御部10から駆動回路層52に入力されると、当該画像信号に応じた電圧が各画素電極53aに印加され、各画素電極53aと透明導電膜58との間に電界が形成される。当該電界が形成されると、液晶層56において、各画素電極53aに対応する領域(画素56p)ごとに液晶分子216aの配列方向が変化し、各画素電極53aに対応する領域ごとに屈折率が変化する。この状態が、液晶層56に変調パターンが表示された状態である。
【0044】
液晶層56に変調パターンが表示された状態で、レーザ光Lが、外部から透明基板59及び透明導電膜58を介して液晶層56に入射し、反射膜54で反射されて、液晶層56から透明導電膜58及び透明基板59を介して外部に出射させられると、液晶層56に表示された変調パターンに応じて、レーザ光Lが変調される。このように、空間光変調器5によれば、液晶層56に表示する変調パターンを適宜設定することで、レーザ光Lの変調(例えば、レーザ光Lの強度、振幅、位相、偏光等の変調)が可能である。
[対象物の構成]
【0045】
図3は、一実施形態の対象物であるウェハの平面図である。
図4は、
図3に示されるウェハの一部分の断面図である。本実施形態の対象物11は、
図3及び
図4に示されるように、ウェハ20である。ウェハ20は、第1表面20a及び第1表面20aとは反対側の第2表面(レーザ光入射面)20bを有している。ウェハ20は、半導体基板21上に機能素子層22が積層されることで、構成されている。
【0046】
半導体基板21は、例えば、シリコン基板である。半導体基板21は、第1表面21a及び第1表面21aとは反対側の第2表面21bを有している。第2表面21bは、ウェハ20の第2表面20bである。半導体基板21には、結晶方位を示すノッチ21cが設けられている。なお、半導体基板21には、ノッチ21cの替わりにオリエンテーションフラットが設けられていてもよい。
【0047】
機能素子層22は、半導体基板21の第1表面21aに設けられている。機能素子層22は、半導体基板21の第1表面21aに沿ってマトリックス状に配列された複数の機能素子22aを含んでいる。各機能素子22aは、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。各機能素子22aは、複数の層がスタックされて3次元的に構成される場合もある。
【0048】
ウェハ20は、複数のライン15のそれぞれに沿って機能素子22aごとに切断される。複数のライン15は、ウェハ20の厚さ方向から見た場合に複数の機能素子22aのそれぞれの間(より具体的には、隣り合う機能素子22aの間を通るように延在するストリート領域23の中央)を通るように、ウェハ20の第2表面21bに沿って格子状に延在している。各ライン15は、レーザ加工装置1によってウェハ20に設定された仮想的なラインである。なお、各ライン15は、ウェハ20に実際に引かれたラインであってもよい。
[レーザ加工装置の動作の一例]
【0049】
図5は、3点分岐の場合のレーザ加工装置の動作の一例を説明するためのウェハの断面図である。
図5に示されるように、レーザ加工装置1では、ウェハ20の第2表面20bがZ方向と直交するように、支持部2によってウェハ20が支持される。そして、制御部10によって空間光変調器5が制御され、空間光変調器5の液晶層56に所定の変調パターン(例えば、回折パターンを含む変調パターン)が表示される。この状態で、光源3からレーザ光Lが出射され、集光部6によってレーザ光Lが第2表面20b側からウェハ20に集光される。つまり、空間光変調器5によってレーザ光Lが変調され、変調されたレーザ光Lが集光部6によって第2表面20b側からウェハ20に集光される。
【0050】
これにより、レーザ光Lが0次光を含む複数の加工光L1,L2,L3に分岐(回折)され、複数の加工光L1,L2,L3の複数の集光点C1,C2,C3がZ方向及びX方向のそれぞれの方向において互いに異なる箇所に位置させられる。本実施形態では、加工光L2が0次光である。加工光L1の集光点C1は、0次光である加工光L2の集光点C2よりもレーザ光Lの相対的移動方向Aにおける前側に位置し、加工光L3の集光点C3は、0次光である加工光L2の集光点C2よりもレーザ光Lの相対的移動方向Aにおける後側に位置する。一例として、加工光L1は+1次光であり、加工光L3は-1次光である。
【0051】
本実施形態では、複数の集光点C1,C2,C3が、レーザ光Lの相対的移動方向Aにおける前側ほどZ方向におけるウェハ20の第1表面20a側に位置する位置関係を有するように、空間光変調器5によってレーザ光Lが変調される。つまり、集光点C2が集光点C3よりもZ方向におけるウェハ20の第1表面20a側に位置し、且つ集光点C1が集光点C2よりもZ方向におけるウェハ20の第1表面20a側に位置するように、空間光変調器5によってレーザ光Lが変調される。更に、本実施形態では、複数の加工光L1,L2,L3においてレーザ光Lの相対的移動方向Aにおける最も前側に分岐される加工光L1が最も大きい出力(エネルギー、強度)を有するように、空間光変調器5によってレーザ光Lが変調される。なお、複数の加工光L1,L2,L3の中に、加工光L1の出力と等しい出力を有する加工光が存在したとしても、それ以外の加工光の出力が加工光L1の出力未満である場合は、加工光L1が最も大きい出力を有する場合に含まれる。
【0052】
レーザ光Lが0次光を含む複数の加工光L1,L2,L3に分岐された状態で、X方向がライン15の延在方向に一致し且つ複数の集光点C1,C2,C3がライン15に沿って相対的に移動するように、制御部10によって支持部2が制御される。これにより、1本のライン15に沿って3列の改質領域12が形成される。ウェハ20の第2表面20bから各改質領域12までの距離は、互いに異なっており、各改質領域12が形成される深さは、各集光点C1,C2,C3が合わされる深さに対応している。以上が、レーザ加工装置1の動作の一例であり、制御部10が実行する加工処理の一例である。なお、上記の例では、レーザ光Lを3つの加工光L1,L2,L3に分岐する例について説明したが、加工処理では、これに限定されず、レーザ光Lを2つまたは4つ以上の加工光に分岐したり、レーザ光Lを分岐させずに使用したりしてもよい。
[空間光変調器の課題、及び解決手法に係る知見]
【0053】
引き続いて、上述したような空間光変調器5を用いた場合の第1の課題と、その第1の課題の解決手法に係る本発明者の知見について説明する。
図6は、空間光変調器に表示された変調パターンの一例を示す図である。
図6の(a)は理想的な変調パターンPiを示し、
図6の(b)は実際の変調パターンPrを示している。
図6に示されるように、例えば画素ピッチDで隣り合う画素56pの間において、理想的な変調パターンPiの位相変調量に対して実際の変調パターンPrに鈍りが生じる場合がある。本発明者は、この位相変調量の鈍りが、次のような問題を生じさせる場合があるとの知見を得た。
【0054】
すなわち、
図7に示されるように、上限2πの位相変調能力を有する空間光変調器5に対して、2πよりも大きな位相変調量(例えば2π~6π)となる領域を含む変調パターンPlを表示しようとする場合(
図7の(a)参照)、当該2πを超えた領域を折り返すことで変調パターンPlを再現することとなる(
図7の(b)参照)。この場合、位相変調量の鈍りに起因して、変調パターンPlのうちの折り返しが生じた領域(反転領域)と折り返しが生じていない領域(正転領域)とで、レーザ光Lの変調状態が異なる場合がある。この点について、より具体的に説明する。
【0055】
まず、空間光変調器5に変調パターンを表示させるための信号としては、画像信号を用いることができる。この場合、液晶層56に対して、空間光変調器5に入力される画像信号の階調値に応じた電圧が印加され、その電圧の値に応じた屈折率変化が生じることにより変調パターンが表示される。そして、空間光変調器5に入射したレーザ光に対しては、この変調パターンに応じた位相変調がなされる。したがって、この場合、画像信号と変調パターン、及び、画像信号の階調値と変調パターンによりレーザ光Lに付与される位相変調量は、互いに対応している。このため、以下では、階調値と位相変調量とを同様の意味で記載する場合がある。
【0056】
ここでは、変調パターンが、レーザ光Lを3つの加工光L1,L2,L3に分岐するための回折格子パターンを含むものとする。
図8は、回折格子パターンを含む変調パターンの一例を示す模式図である。
図8の例では、いずれも、空間光変調器5が2πの位相変調能力を有する場合であり、階調値が0のときに位相変調量(位相差)が0[rad]、階調値が256のときに位相変調量(位相差)が2π[rad]となるようにされている。
【0057】
図8の(a)に示される例では、階調値T1が82である回折格子パターンPgのみが示されている。この場合、回折格子パターンPgでは、階調値T1が256を超えない、すなわち、位相変調量が2πを超えないため、反転領域は生じない。
【0058】
また、
図8の(b)に示される例では、階調値T1が82である回折格子パターンPgに対して、オフセット値Q1が100で一定であるオフセットパターンPb1が重畳されて構成される変調パターンPc1が示されている。この場合にも、変調パターンPc1における合計の階調値T2(階調値T1+オフセット値Q1)が182であり、256を超えない、すなわち位相変調量が2πを超えないため、反転領域は生じない。なお、オフセットパターンとは、ある変調パターン(例えば回折格子パターン)に別の変調パターン(例えば空間光変調器5の歪補正パターンや収差補正パターン)が重畳される場合を模式的に示すためのものである。
【0059】
一方、
図8の(c)に示される例では、階調値T1が82である回折格子パターンPgに対して、オフセット値Q2が200で一定であるオフセットパターンPb2が重畳されて構成される変調パターンPc2が示されている。この場合には、変調パターンPc2における合計の階調値(階調値T1+オフセット値Q2)が282となり、256を超える超過分T3(すなわち位相変調量が2πを超える部分)が生じる。この超過分T3は、「オフセット値Q2+階調値T1-256」として算出される。このため、この変調パターンPc2では、位相変調量の折り返しが発生して反転領域が生じる。
【0060】
反転領域における変調パターンPc2の階調値T4は、オフセット値Q2から超過分T3を減じることにより算出される。すなわち、変調パターンPc2の階調値T4は、「オフセット値Q2-(オフセット値Q2+階調値T1-256)」として算出される。これによれば、ここでの階調値T4は174である。なお、以下では、階調値T1を正転領域の階調値と称し、階調値T4を反転領域の階調値と称する場合がある。
【0061】
レーザ光Lを3つの加工光L1,L2,L3に分岐する場合であって、位相変調量の鈍りがない場合、回折格子パターンPgの正転領域での階調値T1が82であるとき(位相変調量が0.64πであるとき)、±1次光である加工光L1,L3の回折効率と0次光である加工光L2の回折効率が一致し、加工光L1,L2,L3の出力バランスがとれる。また、同様の場合には、反転領域での階調値T4が174であるとき(位相変調量が1.36πであるとき)についても、加工光L1,L2,L3の回折効率が一致して出力バランスがとれることになる。
【0062】
一方、位相変調量の鈍りがある実際の場合には、正転領域での階調値T1が89であるとき(位相変調量が0.70πであるとき)、±1次光である加工光L1,L3の回折効率と0次光である加工光L2の回折効率が一致し、加工光L1,L2,L3の出力バランスがとれる。正転領域での階調値T1が89であるとき、この階調値T1に相当する反転領域の階調値T4は167である(上記の計算式参照)。そして、反転領域での階調値T4が167であるとき(位相変調量が1.30πであるとき)については、3つの加工光L1,L2,L3の出力バランスが大きく崩れ、0次光が相対的に弱くなる。つまり、位相変調量に鈍りがある場合、正転領域と反転領域との間で回折効率にばらつきが生じることとなる。
【0063】
ここで、
図9に示される回折格子パターンPgに対して、少なくとも部分的に上記のオフセットパターンPb1,Pb2として作用する(回折格子パターンPgに対してオフセット値Q1,Q2を付加する)歪補正パターンPdを重畳して構成される変調パターンPc3の場合(
図10参照)、正転領域R1と反転領域R2とが混在することとなる。上記のように正転領域R1と反転領域R2とで回折効率にばらつきが生じるとしても、回折格子パターンPgを単体で使用したり、変調パターンの全体で階調値が一定であったりする場合等には、実測に基づいて階調値を求め直して補正を行うことができる。
【0064】
しかし、
図10に示されるように、実際には複数の変調パターンを合成したり、様々な変調パターンを切り替えたりして使用するため、このような補正が困難である。なお、レーザ光Lを等比率で2つの加工光に分岐する場合、正転領域R1での階調値T1及び反転領域R2での階調値T4がいずれも128となり、問題が生じないが、レーザ光Lを異なる比率で2つの加工光に分岐する場合には同様の問題が生じる。
【0065】
特に、
図11の(a)に示される回折格子パターンPgに対して、比較的に小さいオフセット値が付与された変調パターンPc1では(
図11の(b)参照)、正転領域R1と反転領域R2との割合が1:0である(全体が正転領域R1である)のに対して、比較的に大きいオフセット値が付与された変調パターンPc2では(
図11の(c)参照)、正転領域R1と反転領域R2との割合が0:1となり(全体が反転領域R2となり)、回折格子パターンPgに重畳するパターンや領域によって回折効率のバラつきが大きくなる。なお、
図11の各グラフの横軸は、変調パターンの位置として、液晶層56の画素56pの数(番号)を示している。すなわち、横軸の256とは、液晶層56の一端から256番目の画素56pに対応する変調パターンの位置を示す。
【0066】
このような観点から、正転領域R1と反転領域R2との割合の偏りを抑制すれば、合成される変調パターンの種類に応じた回折効率のばらつきや、変調パターンの各領域に応じた回折効率のばらつきが抑制されて、位相変調量の鈍りの影響が緩和されると考えられる。そこで、ここでは、正転領域R1と反転領域R2との割合を平均化するための平均化パターンを利用する。
【0067】
図12は、平均化パターンの一例を示す図である。
図12に示されるように、平均化パターンPsは、当該平均化パターンPsの一端から他端に向けて、階調値が最小値(0)から最大値(256)にわたって(位相変調量が0から2πにわたって)一定の傾きで変化する変調パターンである。
【0068】
図13は、回折格子パターンに対して平均化パターンを重畳して構成される変調パターンの一例を示す図である。
図13の(a)は、回折格子パターンPgに対して平均化パターンPsを重畳して構成される変調パターンPc4を示し、
図13の(b)は、回折格子パターンPgに対してオフセットパターンPb1と平均化パターンPsとを重畳して構成される変調パターンPc5を示し、
図13の(c)は、回折格子パターンPgに対してオフセットパターンPb2と平均化パターンPsとを重畳して構成される変調パターンPc6を示している。
【0069】
変調パターンPc4では、正転領域R1と反転領域R2との割合が0.67対0.33となり、変調パターンPc5では、正転領域R1と反転領域R2との割合が0.67対0.33となり、変調パターンPc6では、正転領域R1と反転領域R2との割合が0.73対0.27となり、いずれの場合であっても、平均化パターンPsを用いない場合と比較して正転領域R1と反転領域R2との割合が平均化されている。この結果、正転領域R1と反転領域R2との割合の偏りが抑制され、合成される変調パターンの種類に応じた回折効率のばらつきや、変調パターンの各領域に応じた回折効率のばらつきが抑制されて、位相変調量の鈍りの影響が緩和されるのである。
【0070】
ここで、平均化パターンPsにおける階調値の傾き(折り返し周期)を変更することにより、平均化の度合いを調整することが可能である。
図12の例は、平均化パターンPsの位置が0~512まで変化する間に階調値が0~256まで増加するような傾きが0.5、周期が1の例である。一方、周期が2である場合には、平均化パターンPsにおける階調値の傾きが2倍となり、平均化パターンPsの位置が0~256まで変化する間に階調値が0~256まで増加し、平均化パターンPsの位置が257から512まで変化する間に階調値が再び0~256まで増加することとなる。
【0071】
図14は、歪補正パターンに平均化パターンを重畳して構成された変調パターンの一例を示す図である。
図14の(a)は、平均化パターンPsを用いない場合、
図14の(b)は、周期が1の平均化パターンPsを用いた場合、
図14の(c)は、周期が2の平均化パターンPsを用いた場合、
図14の(d)は、周期が4の平均化パターンPsを用いた場合、
図14の(e)は、周期が8の平均化パターンPsを用いた場合を示している。
図14に示されるように、平均化パターンPsの周期が大きくなるほど(階調値の傾きが大きくなるほど)、位相変調量の折り返しが増加し、正転領域R1と反転領域R2との割合の偏りが分散されて平均化される。なお、平均化パターンPsは、一例として、レーザ光Lの集光点Cをシフトさせる機能を有するシフトパターンである。
【0072】
引き続いて、空間光変調器5を用いた場合の第2の課題と、その第2の課題の解決手法に係る本発明者の知見について説明する。
図15は、集光レンズとレーザ光との関係を示す模式図である。
図15に示されるように、集光部6の集光レンズユニット61は、レーザ光Lをウェハ20に向けて集光するための集光レンズ61aを含む。レーザ加工装置1では、空間光変調器5によってレーザ光Lを変調することにより、集光レンズ61aにおけるレーザ光Lの入射するNA領域(集光レンズ61aの径方向Kdの位置)に応じてレーザ光Lの集光位置を変更し、レーザ光Lの集光点Cを長尺状に整形することができる。
【0073】
ここでは、
図16に示される整形パターンPfを用いてレーザ光Lを変調することにより、集光レンズ61aにおけるレーザ光Lの入射位置が径方向Kdについて中心から離れるにつれて、レーザ光Lの集光位置がZ方向のより深い位置(集光レンズ61aからより離れた位置)となるように、レーザ光Lの集光位置をZ方向に変更することにより、Z方向に長尺状となるようにレーザ光Lの集光点Cを整形している。この整形パターンPfでは、当該整形パターンPfにおけるレーザ光Lが入射する領域(集光レンズ61aの入射瞳面に対応する領域)に対して、位相変調量の折り返し部分Bが同心円状に形成されている。つまり、このような整形パターンPfでは、位相変調量の折り返し部分Bが整形パターンPfの一部に偏在している。
【0074】
このため、レーザ光Lのうち、整形パターンPfにおける折り返し部分Bが偏在する部分を介して変調された部分と、当該折り返し部分Bが偏在する部分を介さずに変調された部分とで、レーザ光Lの集光状態にばらつきが生じる場合がある。この結果、整形パターンPfに別の変調パターンが重畳され、整形パターンPfの位相変調量にオフセットが付与されると、そのオフセット値の大きさに応じて加工結果が変化することがあるのである。
【0075】
図17の(a)は、オフセット値が64である場合の加工結果を示す例であり、
図17の(b)は、オフセット値が96である場合の加工結果を示す例である。
図17に示されるように、オフセット値の大きさに応じて加工結果が変化している。これは、整形パターンPfにおける折り返し部分Bが偏在する部分で変調されたレーザ光Lが、意図しない集光状態となるためであると考えられる。
【0076】
これに対して、
図18は、
図16に示された整形パターンに
図12に示された平均化パターンを重畳して構成される変調パターンを示す図である。
図18に示されるように、整形パターンPfに平均化パターンPsを重畳して構成される変調パターンPeでは、整形パターンPfと比較して、位相変調量の折り返し部分Bが変調パターンPeにおけるレーザ光Lが入射する領域の全体に分散され、折り返し部分Bが形成された位置が平均化されている。
【0077】
図19は、
図16に示された整形パターン及び
図18に示された変調パターンのそれぞれを利用した場合の加工結果を示す断面写真である。
図19の(a)は、整形パターンPfに64のオフセット値を付与した場合の加工結果を示し、
図19の(b)は、整形パターンPfに96のオフセット値を付与した場合の加工結果を示す。また、
図19の(c)は、変調パターンPeに64のオフセット値を付与した場合の加工結果を示し、
図19の(d)は、変調パターンPeに96のオフセット値を付与した場合の加工結果を示す。
【0078】
図19の(a),(b)に示されるように、整形パターンPfに平均化パターンPsが重畳されていない場合には、オフセット値が変化すると加工結果も変化する。これに対して、
図19の(c),(d)に示されるように、整形パターンPfに平均化パターンPsが重畳されている場合には、オフセット値の変化に対する加工結果の変化が小さい。このように、平均化パターンPsを利用することで、変調パターンにおける位相変調量の折り返し部分Bの偏在をも抑制可能であり、この結果、加工結果のばらつきが抑制されるのである。本実施形態に係るレーザ加工装置1では、以上の知見を利用して、以下のようなレーザ加工を行うことができる。
[本実施形態に係るレーザ加工の一例]
【0079】
まず、本実施形態に係るレーザ加工装置1は、上述したように、対象物11(ここではウェハ20)を支持するための支持部2と、レーザ光Lを出射する光源3と、光源3から出射されたレーザ光Lを変調パターンに応じて変調して出射するための空間光変調器5と、空間光変調器5から出射されたレーザ光Lをウェハ20に向けて集光するための集光レンズ61aを含む集光部6と、レーザ加工装置1の各部の制御を行う制御部10と、を備えている。制御部10は、画像信号を空間光変調器5に入力することにより、画像信号に応じた変調パターンを空間光変調器5に表示させる。
【0080】
このようなレーザ加工装置1では、レーザ加工の際に、まず、ウェハ20の第2表面20bがZ方向と直交するように、支持部2によってウェハ20が支持される。続いて、制御部10が、空間光変調器5に画像信号を入力することにより、空間光変調器5の液晶層56に所定の変調パターンを表示させる。この状態で、制御部10が、光源3を制御することにより、光源3からレーザ光Lを出射させ、集光レンズ61aによってレーザ光Lを第2表面20b側からウェハ20に向けて集光させる。つまり、空間光変調器5によってレーザ光Lが変調され、変調されたレーザ光Lが集光レンズ61aによって第2表面20b側からウェハ20に集光される。これにより、ウェハ20の内部にレーザ光Lの集光点Cが形成される。
【0081】
これと共に、制御部10が、レーザ光Lの集光点CがX方向に沿うライン15に沿ってウェハ20に対して相対移動するように、ここでは支持部2の移動を制御する。これにより、X方向に沿ってレーザ光Lの集光点Cをウェハ20に対して相対移動させつつ、ウェハ20にレーザ光Lが照射される(加工処理が実行される)。
【0082】
レーザ光Lを分岐しての加工が望まれる場合には、制御部10は、この加工処理において、レーザ光Lを複数の加工光L1,L2,L3に分岐するための回折格子パターンPg(第2パターン)を含む変調パターンを空間光変調器5に表示するように、回折格子パターンPgに対応する第2信号を含む画像信号を空間光変調器5に入力することができる。このときのレーザ光Lの分岐方向は、例えば加工進行方向であるX方向である。なお、ある変調パターンに対応する画像信号とは、空間光変調器5の液晶層56のそれぞれの画素56pに対応する当該画像信号のそれぞれの領域に、当該それぞれの画素56pにおける位相変調量に対応した階調値が設定された画像信号である。
【0083】
一方、レーザ光Lの集光点Cを長尺状としての加工が望まれる場合には、制御部10は、加工処理において、集光レンズ61aの径方向Kdにおける位置に応じてレーザ光Lの集光位置を変化させるための整形パターンPf(第3パターン)を含む変調パターンを空間光変調器5に表示するように、整形パターンPfに対応する第3信号を含む画像信号を空間光変調器5に入力することができる。
【0084】
制御部10は、上記のいずれの場合であっても、加工処理において、第1方向における変調パターンの一端に対応する領域から、第1方向における変調パターンの他端に対応する領域に向けて、最小値から最大値にわたって一定の傾きで階調値が変化する第1信号を含む画像信号を空間光変調器に入力することにより、第1信号に応じた平均化パターンPs(第1パターン)を含む変調パターンを空間光変調器5に表示させる。したがって、このとき、空間光変調器5に表示される変調パターンは、少なくとも、回折格子パターンPg及び/又は整形パターンPfと平均化パターンPsとが重畳されて構成される変調パターンとなる。同様に、このとき、空間光変調器5に入力される画像信号では、少なくとも第2信号及び/又は第3信号の階調値と第1信号との階調値が重畳された階調値が設定される。
【0085】
特に、制御部10は、加工処理において、レーザ光Lを複数の加工光L1,L2,L3に分岐した場合には、平均化パターンPsの階調値の変化方向である第1方向を、レーザ光Lの分岐方向に交差する方向に対応する方向とすることができる(分岐方向に平行な方向に対応する方向であってもよい)。すなわち、レーザ光Lの分岐方向がX方向である場合、第1方向は、X方向に交差するY方向に対応する方向とすることができる(X方向に対応する方向であってもよい)。
【0086】
また、制御部10は、第1信号において、第1方向に交差する第2方向における平均化パターンPsの一端に対応する領域から、第2方向における平均化パターンPsの他端に対応する領域に向けて、最小値から最大値にわたって一定の傾きで階調値を変化させてもよい。上記のとおり第1方向がY方向に対応する方向である場合、第2方向は、一例としてX方向に対応する方向である。この場合、少なくとも2方向について、一定の傾きで位相変調量が変化する平均化パターンPsを空間光変調器5に表示させることができる。なお、第1方向における階調値の傾きと、第2方向における階調値の傾きとは、同一であってもよいし異なっていてもよい。例えば、空間光変調器5の液晶層56の画素56pの数が2方向で異なっている場合には、それぞれの方向の一端から他端に向けて、最小値から最大値にわたって一定の傾きで(同一の周期で)位相変調量を変化させる場合には、画像信号において、第1方向における階調値の傾きと第2方向における階調値の傾きとが異なることとなる。
【0087】
さらに、制御部10は、加工処理において、空間光変調器5の歪補正パターンや収差補正パターンといった別の変調パターンが重畳されるように画像信号を生成・入力することができる。この場合、空間光変調器5では、これらの別の変調パターンに応じたオフセットが、回折格子パターンPgや整形パターンPfに対して付与されると共に、さらに、平均化パターンPsが重畳されることとなる。
【0088】
なお、加工処理において、空間光変調器5に表示させる変調パターンに、シフトパターンである平均化パターンPsを重畳すると、結果的に、ウェハ20内においてレーザ光Lの集光点Cがライン15からシフトされる場合がある。したがって、この場合には、制御部10は、レーザ光Lの集光点Cがライン15上に位置するように光軸調整部4を制御することができる。このとき、制御部10は、可視撮像部8によって取得された画像(例えば、ウェハ20の第2表面20bの像)を参照することができる。
【0089】
以上説明したように、レーザ加工装置1では、制御部10が、空間光変調器5に画像信号を入力することにより、空間光変調器5に変調パターンを表示させ、当該変調パターンに応じてレーザ光Lの変調を行いつつ加工処理を実行する。画像信号では、画像信号を構成する各領域に対して、変調パターンの各位置の位相変調量に対応した階調値が設定されている。すなわち、空間光変調器5では、変調パターンの各位置の位相変調量が画像信号の各領域の諧調値に応じた量とされることにより、全体として所望の変調パターンが表示される。そして、その画像信号は、変調パターンの一端に対応する領域から、変調パターンの他端に対応する領域に向けて、一定の傾きで階調値が変化する第1信号を含む。この結果、空間光変調器5に表示される変調パターンが、この第1信号に応じて位相変調量が一方向に一定の傾きで変化する平均化パターンPs(第1パターン)を含むこととなる。上述したように、変調パターンがこのような平均化パターンPsを含む場合、変調パターンの位相変調量の鈍りの影響、及び、変調パターンにおける位相変調量の折り返し部分Bの偏在が抑制される。
【0090】
また、レーザ加工装置1では、加工処理において、制御部10は、レーザ光Lを複数の加工光に分岐するための回折格子パターンPg(第2パターン)を含む変調パターンを空間光変調器5に表示するように、回折格子パターンPgに対応する第2信号を含む画像信号を空間光変調器5に入力するしてもよい。この場合、変調パターンにおいて回折格子パターンPgが重畳されることとなる。このような場合には、複数の加工光L1,L2,L3の間のばらつきが抑制される。
【0091】
また、レーザ加工装置1では、第1方向は、レーザ光Lの分岐方向に交差する方向に対応する方向であってもよい。この場合、より効果的に加工光L1,L2,L3の間のばらつきを抑制可能である。
【0092】
また、レーザ加工装置1では、加工処理において、制御部10は、集光レンズ61aの径方向Kdにおける位置に応じてレーザ光Lの集光位置を変化させるための整形パターンPf(第3パターン)を含む変調パターンを空間光変調器5に表示するように、整形パターンPfに対応する第3信号を含む画像信号を空間光変調器5に入力してもよい。この場合、整形パターンPfにおいて、集光レンズ61aの径方向Kdの特定の位置に対応するように位相変調量の折り返し部分Bが偏在することを抑制し、レーザ光Lの集光状態のバラつきを抑制することが可能となる。
【0093】
また、レーザ加工装置1では、制御部10は、第1信号において、第1方向に交差する第2方向における変調パターンの一端に対応する領域から、第2方向における変調パターンの他端に対応する領域に向けて、最小値から最大値にわたって一定の傾きで階調値を変化させてもよい。この場合、画像信号の階調値が、互いに交差する2方向について一定の傾きで変化することとなる。したがって、当該2方向に対応する空間光変調器5の面内について、位相変調量の鈍りの影響、及び、位相変調量の折り返し部分の偏在を抑制可能である。
【0094】
さらに、レーザ加工装置1では、制御部10は、第1信号において、少なくとも一方向に複数の周期を有するように階調値を変化させてもよい。この場合、位相変調量の鈍りの影響、及び、位相変調量の折り返し部分の偏在をより確実に抑制可能である。
【0095】
以上の実施形態は、本発明の一態様を説明するものである。したがって、本発明は、上述した態様に限定されることなく変形され得る。
【0096】
例えば、上記実施形態では、
図12において、階調値の傾きが0.5であり周期が1である例を挙げた。しかし、平均化パターンPsはこれに限定されない。
図20は、平均化パターンの変形例を示す図である。
図20の(a)の変形例に係る平均化パターンPsは、平均化パターンPsの位置が0~1024まで変化する間に階調値が0~256まで増加するような傾きが0.25であり、周期が1の例である。
図20の(b)の変形例に係る平均化パターンPsは、平均化パターンPsの位置が0~256まで変化する間に階調値が0~256まで増加し、平均化パターンPsの位置が257~512まで変化する間に階調値が再び0~256まで増加するような傾きが1、周期が2の例である。この例では、1か所の折り返し部が生じている。同様に、
図20の(c)では、傾きが2、周期が4の例が示されている。このように、平均化パターンPsの傾き及び周期は任意に設定され得る。また、周期を有する方向も1方向に限らずに2方向であってもよい。
【0097】
また、上記実施形態では、
図16において、レーザ光Lの集光点CをZ方向に長尺状に整形するための整形パターンPfを例示した。しかし、整形パターンPfはこれに限定されず、
図21の各図に示されるように集光点Cを整形するように任意に変形可能である。
【0098】
ここで、上述したようにレーザ光Lを複数の加工光に分岐して加工を行う場合、各加工光の間の出力バランスのばらつきに対する上述した対策(第1の対策)が有効である。一方で、このように分岐加工を行う場合、分岐されて生成された各加工光のうちの0次光(例えば加工光L2)に対して、レーザ光Lのうちの空間光変調器5によって変調されなかった非変調光が集光状態に及ぼす影響の対策(第2の対策)が有効となる。
【0099】
平均化パターンPsは、レーザ光Lの集光点Cをシフトさせる機能を有する。加工処理において、ウェハ20のストリート領域23がX方向に沿うようにウェハ20が配置され、そのストリート領域23内においてレーザ光Lの集光点CをX方向に相対移動させる場合、上記の第1の対策及び第2の対策の両方について、平均化パターンPsをY方向に集光点Cをシフトさせるようなものとすることで、対応可能である。
【0100】
ただし、第1の対策の対応としては、平均化パターンPsは、集光点CをY方向に2μm程度といった比較的に小さいシフト量でシフトさせるものでよいのに対して、第2の対策の対応としては、平均化パターンPsを、集光点CをY方向に5μm程度以上の比較的に大きなシフト量でシフトさせることがより有効となる。そして、第2の対策は、0次光と非変調光との干渉を抑制する観点から、0次光を使用する場合にのみ必要となる。
【0101】
したがって、分岐加工を行わない第1の場合、分岐加工を行うが0次光を使用しない第2の場合、0次光を使用しつつ分岐加工を行う第3の場合で、Y方向のシフト量の要求がことなる場合がある。より具体的には、第1の場合には、少なくとも第1の対策及び第2の対策の対応のために集光点CをY方向にシフトさせる必要はなく、第2の場合には、第2の対策が不要であるため、第1の対策のためにY方向のシフト量を2μm程度に抑えることができ、第3の場合には、さらに第2の対策を考慮してY方向のシフト量を5μm程度以上とすることが望ましい。したがって、レーザ加工装置1は、そのような第1~第3の場合に対応可能なように構成されている。
【0102】
すなわち、レーザ加工装置1では、Y方向のシフト量が5μmである平均化パターンPsを使用した状態をデフォルトとして光軸調整しておくことで、レーザ光Lの全ての集光点が5μmだけY方向にシフトされた状態を基準位置とする。これにより、第1~第3の場合の全てにおいて、第1及び第2の対策のうちの必要なものに対応可能となる。
【0103】
ただし、このような場合には、次のような新たな課題が生じ得る。すなわち、ストリート領域23のY方向についての幅が狭い場合、
図22に示されるように、レーザ光Lの複数の加工光L1,L2,L3の集光点C1,C2,C3をY方向に6μm程度のシフト量Dsでシフトさせると、非変調光の集光点C0が当該ストリート領域23に臨む機能素子22a(アクティブエリア)上に位置させられてしまい、抜け光が問題となるおそれがあるのである。
【0104】
このような新たな課題に対する対策として、レーザ加工装置1では、まず、Y方向のシフト量が2μmである平均化パターンPsを使用した状態をデフォルトとして光軸調整しておくことで、第1の対策に対応可能としておくことができる。これにより、分岐加工を行わない第1の場合と0次光を使用しない第2の場合に好適に対応可能である。一方、レーザ加工装置1では、0次光を使用する分岐加工を行う第3の場合では、2μm程度のY方向のシフト量を発生させるデフォルトの平均化パターンPsに対して、さらに、5μm程度のX方向のシフト量を発生させるように階調値を設定することで、
図23に示されるようにX方向とY方向との両方に集光点C1,C2,C3をシフトさせることができる。この場合、Y方向のシフト量を抑えつつ、X方向とY方向との合計のシフト量Dsを十分に大きくして第2の課題に対応可能となる。
【0105】
なお、レーザ加工装置では、集光点Cの移動方向(加工進行方向)がX正方向である場合とX負方向である場合とで、例えば平均化パターンPsの階調値の傾きの符号を反転させることにより、集光点CのX方向についてのシフト方向を切り替えることができる。一例として、加工進行方向がX正方向である場合には、集光点Cのシフト方向もX正方向とし、加工進行方向がX負方向である場合には、集光点Cのシフト方向もX負方向とすることができる。
【0106】
さらに、上記実施形態では、平均化パターンPsが、レーザ光Lの集光点CをX方向やY方向に沿ってシフトさせる機能を有するものとして説明したが、平均化パターンPsは、レーザ光Lの集光点CをZ方向に沿ってシフトさせる機能を有していてもよい。
【符号の説明】
【0107】
1…レーザ加工装置、2…支持部、5…空間光変調器、6…集光部、10…制御部、61a…集光レンズ。