(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022138625
(43)【公開日】2022-09-26
(54)【発明の名称】モニタ装置、生体信号処理装置、およびコンピュータプログラム
(51)【国際特許分類】
A61B 5/0245 20060101AFI20220915BHJP
A61B 5/02 20060101ALI20220915BHJP
A61B 5/352 20210101ALI20220915BHJP
A61B 5/33 20210101ALI20220915BHJP
【FI】
A61B5/0245 100B
A61B5/02 310A
A61B5/352
A61B5/33 200
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2021038608
(22)【出願日】2021-03-10
(71)【出願人】
【識別番号】000230962
【氏名又は名称】日本光電工業株式会社
(74)【代理人】
【識別番号】110001416
【氏名又は名称】特許業務法人 信栄特許事務所
(72)【発明者】
【氏名】竒藤 圭人
(72)【発明者】
【氏名】原田 喜晴
(72)【発明者】
【氏名】宮田 賢治
【テーマコード(参考)】
4C017
4C127
【Fターム(参考)】
4C017AA02
4C017AA09
4C017AA10
4C017BC16
4C017BC20
4C017BD01
4C017EE15
4C017FF05
4C127AA02
4C127GG05
(57)【要約】
【課題】被検者の体動などに起因する脈拍基本周波数の推定精度の低下を抑制する。
【解決手段】受付部111は、第一波長を含む第一の光を被検者20の身体に照射することにより取得された第一光電脈波信号PS1、および被検者20の心拍に対応する心拍信号HSを受け付ける。処理部112は、心拍信号HSに基づいて被検者20の心拍数に対応する心拍基本周波数fhを算出し、心拍基本周波数fhを第一光電脈波信号PS1の周波数成分と比較することにより、被検者20の脈拍基本周波数fpを推定する。情報提供部12は、脈拍基本周波数fpに基づいて取得された情報を提供する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
第一波長を含む第一の光を被検者の身体に照射することにより取得された第一光電脈波信号、および当該被検者の心拍に対応する心拍信号を受け付ける受付部と、
前記心拍信号に基づいて前記被検者の心拍数に対応する心拍基本周波数を算出し、当該心拍基本周波数を前記第一光電脈波信号の周波数成分と比較することにより、前記被検者の脈拍基本周波数を推定する処理部と、
前記脈拍基本周波数に基づいて取得された情報を提供する情報提供部と、
を備えている、
モニタ装置。
【請求項2】
前記心拍信号は、前記被検者から取得された心電図信号に基づいている、
請求項1に記載のモニタ装置。
【請求項3】
前記処理部は、所定の時間内に有効なRR間隔が所定数以上含まれている前記心電図信号に基づいて前記心拍基本周波数の算出を行なう、
請求項2に記載のモニタ装置。
【請求項4】
前記処理部は、前記RR間隔が不整脈と関連付けられているか、前記RR間隔が所定値範囲に含まれているか、および前記RR間隔のゆらぎが所定値未満であるかに基づいて前記RR間隔が有効であることを判断する、
請求項3に記載のモニタ装置。
【請求項5】
特定の周波数帯域の信号を通過させるフィルタを備えており、
前記処理部は、推定された前記脈拍基本周波数を含むように前記周波数帯域を設定するとともに、前記フィルタを通過させた前記第一光電脈波信号に基づいて前記被検者の脈拍数を算出し、
前記情報提供部は、前記情報として、算出された前記脈拍数を提供する、
請求項1から4のいずれか一項に記載のモニタ装置。
【請求項6】
特定の周波数帯域の信号を通過させるフィルタを備えており、
前記受付部は、前記被検者の血中吸光物質による吸光度が前記第一波長と異なる第二波長を含む第二の光を前記身体に照射することにより取得された第二光電脈波信号を受け付け、
前記処理部は、推定された前記脈拍基本周波数を含むように前記周波数帯域を設定するとともに、前記フィルタを通過させた前記第一光電脈波信号と前記第二光電脈波信号に基づいて前記血中吸光物質の濃度を算出し、
前記情報提供部は、前記情報として、算出された前記血中吸光物質の濃度を提供する、
請求項1から4のいずれか一項に記載のモニタ装置。
【請求項7】
前記処理部は、推定された前記脈拍基本周波数に基づいて前記第一光電脈波信号における前記被検者の脈拍に対応している部分を特定し、
前記情報提供部は、前記情報として、前記脈拍に対応している部分を表すアノテーションが付与された前記第一光電脈波信号を視認可能な態様で提供する、
請求項1から6のいずれか一項に記載のモニタ装置。
【請求項8】
前記処理部は、前記心拍数に対応する周波数と前記第一光電脈波信号の周波数成分を比較することにより前記第一光電脈波信号を取得するためのプローブが前記被検者に正規に装着されているかの判断を行い、
前記情報提供部は、前記情報として、前記判断の結果を提供する、
請求項1から7のいずれか一項に記載のモニタ装置。
【請求項9】
前記第一の光は、赤外光である、
請求項1から8のいずれか一項に記載のモニタ装置。
【請求項10】
第一波長を含む第一の光を被検者の身体に照射することにより取得された第一光電脈波信号、および当該被検者の心拍に対応する心拍信号を受け付ける受付部と、
前記心拍信号に基づいて前記被検者の心拍数に対応する心拍基本周波数を算出し、当該心拍基本周波数を前記第一光電脈波信号の周波数成分と比較することにより、前記被検者の脈拍基本周波数を推定する処理部と、
を備えている、
生体信号処理装置。
【請求項11】
生体信号処理装置の処理部により実行可能なコンピュータプログラムであって、
実行されることにより、前記生体信号処理装置に、
第一波長を含む第一の光を被検者の身体に照射することにより取得された第一光電脈波信号を受け付けさせ、
前記被検者の心拍に対応する心拍信号を受け付けさせ、
前記心拍信号に基づいて前記被検者の心拍数に対応する心拍基本周波数を算出させ、
前記心拍基本周波数を前記第一光電脈波信号の周波数成分と比較することにより、前記被検者の脈拍基本周波数を推定させる、
コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検者の脈拍基本周波数に基づいて取得された情報を提供するモニタ装置に関連する。本発明は、当該基本周波数を推定するために光電脈波信号と心拍信号を処理する生体信号処理装置、および当該生体信号処理装置の処理部により実行可能なコンピュータプログラムにも関連する。
【背景技術】
【0002】
特許文献1は、被検者から取得された光電脈波信号に基づいて当該被検者の脈拍数を算出する装置が開示している。脈拍数の算出にあたっては、過去に算出された脈拍数を基準にして光電脈波信号の周波数成分を分析し、脈拍基本周波数を推定している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の目的は、被検者の体動などに起因する脈拍基本周波数の推定精度の低下を抑制することである。
【課題を解決するための手段】
【0005】
上記の目的を達成するための一態様は、モニタ装置であって、
第一波長を含む第一の光を被検者の身体に照射することにより取得された第一光電脈波信号、および当該被検者の心拍に対応する心拍信号を受け付ける受付部と、
前記心拍信号に基づいて前記被検者の心拍数に対応する心拍基本周波数を算出し、当該心拍基本周波数を前記第一光電脈波信号の周波数成分と比較することにより、前記被検者の脈拍基本周波数を推定する処理部と、
前記脈拍基本周波数に基づいて取得された情報を提供する情報提供部と、
を備えている。
【0006】
上記の目的を達成するための一態様は、生体信号処理装置であって、
第一波長を含む第一の光を被検者の身体に照射することにより取得された第一光電脈波信号、および当該被検者の心拍に対応する心拍信号を受け付ける受付部と、
前記心拍信号に基づいて前記被検者の心拍数に対応する心拍基本周波数を算出し、当該心拍基本周波数を前記第一光電脈波信号の周波数成分と比較することにより、前記被検者の脈拍基本周波数を推定する処理部と、
を備えている。
【0007】
上記の目的を達成するための一態様は、生体信号処理装置の処理部により実行可能なコンピュータプログラムであって、
実行されることにより、前記生体信号処理装置に、
第一波長を含む第一の光を被検者の身体に照射することにより取得された第一光電脈波信号を受け付けさせ、
前記被検者の心拍に対応する心拍信号を受け付けさせ、
前記心拍信号に基づいて前記被検者の心拍数に対応する心拍基本周波数を算出させ、
前記心拍基本周波数を前記第一光電脈波信号の周波数成分と比較することにより、前記被検者の脈拍基本周波数を推定させる。
【0008】
第一光電脈波信号に含まれるノイズ成分が比較的小さい場合、第一光電脈波信号の周波数成分は脈動成分に対応する顕著な単一のピーク周波数を有するので、当該周波数を被検者の脈拍基本周波数とみなすことができる。しかしながら、被検者の体動などにより第一光電脈波信号に比較的大きなノイズ成分が重畳すると、第一光電脈波信号の周波数成分は複数のピーク周波数を含みうる。この場合、何らかの手法を通じて脈拍基本周波数を推定する必要が生じる。
【0009】
上記の各態様に係る構成においては、被検者の心拍と脈拍は相関している蓋然性が高いという着想に基づき、心拍信号に基づいて算出される心拍基本周波数と第一光電脈波信号周波数成分との比較に基づいて脈拍基本周波数が推定される。これにより、被検者の体動などに起因する脈拍基本周波数の推定精度の低下を抑制できる。
【図面の簡単な説明】
【0010】
【
図1】一実施形態に係るモニタ装置の機能構成を例示している。
【
図2】
図1の処理部により実行される処理の流れを例示している。
【
図3】
図1の処理部により実行される処理を説明するための図である。
【
図4】
図1の処理部により実行される処理を説明するための図である。
【
図5】
図1の処理部により実行される処理を説明するための図である。
【
図6】
図1の処理部により実行される処理を説明するための図である。
【
図7】
図1のモニタ装置と生体信号処理装置の別構成例を示している。
【発明を実施するための形態】
【0011】
添付の図面を参照しつつ、実施形態の例を以下詳細に説明する。各図面においては、説明対象の各要素を認識可能な大きさとするために縮尺を適宜変更している。
【0012】
図1は、一実施形態に係るモニタ装置10の機能構成を例示している。モニタ装置10は、被検者20の脈拍基本周波数に基づいて取得された情報をユーザに提供する装置である。モニタ装置10は、生体信号処理装置11と情報提供部12を備えている。
【0013】
生体信号処理装置11は、被検者20から取得された脈波と心拍に係る情報に基づいて脈拍基本周波数を推定するように構成されている。生体信号処理装置11は、受付部111と処理部112を備えている。
【0014】
受付部111は、第一光電脈波信号PS1と心拍信号HSを受け付けるインターフェースとして構成されている。第一光電脈波信号PS1と心拍信号HSの各々は、アナログ信号であってもよいし、デジタル信号であってもよい。第一光電脈波信号PS1と心拍信号HSの各々がアナログ信号である場合、受付部111は、A/Dコンバータを含む適宜の変換回路を備える。
【0015】
第一光電脈波信号PS1は、被検者20に装着されたプローブ30を通じて取得される。プローブ30は、発光素子と受光素子を備えている。発光素子は、被検者20の身体に赤外光を照射する。赤外光は、第一の光の一例である。身体を透過した赤外光または身体により反射された赤外光は、受光素子に入射する。受光素子は、当該赤外光に感度を有しており、入射光の強度に対応する振幅を有する第一光電脈波信号PS1を出力する。
【0016】
赤外光は当該身体に含まれる血管を流れる血液による吸収を受けるので、受光素子に入射する赤外光の強度は、発光素子から出射された赤外光の強度よりも低下する。心臓の拍動に伴って血管が脈動すると、吸収に係る光路長が変化するので、受光素子における入射光強度も変化する。すなわち、第一光電脈波信号PS1の振幅は、血管の脈動に対応して増減する。発光素子からの出射光強度と受光素子への入射光強度の比も同様に変化するので、当該比を第一光電脈波信号PS1の振幅に対応させてもよい。
【0017】
心拍信号HSは、被検者20の心拍に対応する振幅の経時変化を呈する信号である。本例においては、心拍信号HSは、被検者20の身体に接続された心電計40から出力される心電図信号に対応している。
【0018】
図2から
図4を参照しつつ、処理部112により行なわれる処理について説明する。
【0019】
処理部112は、所定の期間にわたって第一光電脈波信号PS1を取得する(STEP1)。前述の通り、第一光電脈波信号PS1は、受付部111を通じて取得される。
図3においては、取得された第一光電脈波信号PS1が実線で例示されている。
【0020】
続いて、処理部112は、取得された第一光電脈波信号PS1に対して周波数分析を実行する(STEP2)。
図4においては、
図3の第一光電脈波信号PS1に対して周波数分析が実行された結果として得られた周波数スペクトルが例示されている。
【0021】
取得される第一光電脈波信号PS1には、
図3において破線で示される呼吸性ノイズ成分が重畳している。呼吸性ノイズは、被検者20の呼吸に伴う体動や血管内の血液量の変化などに起因して発生し、純粋な血管の脈動成分に重畳する。呼吸性ノイズ成分の基本周波数と脈動成分の基本周波数は異なるので、
図4に例示される周波数スペクトルにおいては、呼吸性ノイズ成分を反映しているピーク周波数f1と脈動成分を反映しているピーク周波数f2とが現れている。
【0022】
他方、
図2に例示されるように、処理部112は、第一光電脈波信号PS1と同じタイミングで心拍信号HSを取得する(STEP3)。前述の通り、心拍信号HSは、受付部111を通じて取得される。
【0023】
続いて、処理部112は、取得された心拍信号HSに基づいて被検者20の心拍数に対応する心拍基本周波数fhを算出する(STEP4)。心電図波形から心拍基本周波数fhを算出する演算は、周知の手法が用いられうる。
【0024】
図2において、STEP1の処理とこれに後続して行なわれるSTEP2の処理の第一組と、STEP3の処理とこれに後続して行なわれるSTEP4の処理の第二組とは、少なくとも一部が並行して行なわれてもよい。また、第二組の処理が先行して開始され、第一組の処理が後続して開始されてもよい。
【0025】
続いて、処理部112は、被検者20の脈拍基本周波数を推定する(STEP5)。具体的には、STEP4で算出された心拍基本周波数fhをSTEP2で取得された第一光電脈波信号PS1の周波数成分(周波数スペクトル)と比較し、心拍基本周波数fhに最も近いピーク周波数を、脈拍基本周波数と推定する。
【0026】
図4においては、STEP4で算出された心拍基本周波数fhがSTEP2で取得された第一光電脈波信号PS1の周波数スペクトルに重畳表示されている。本例においては、ピーク周波数f2が心拍基本周波数fhに最も近い。したがって、ピーク周波数f2が、被検者20の脈拍基本周波数fpであると推定される。
【0027】
第一光電脈波信号PS1に含まれるノイズ成分が比較的小さい場合、第一光電脈波信号PS1の周波数成分は脈動成分に対応する顕著な単一のピーク周波数を有するので、当該周波数を被検者20の脈拍基本周波数とみなすことができる。しかしながら、被検者20の体動などにより第一光電脈波信号PS1に比較的大きなノイズ成分が重畳すると、第一光電脈波信号PS1の周波数成分は複数のピーク周波数を含みうる。この場合、何らかの手法を通じて脈拍基本周波数を推定する必要が生じる。
【0028】
本実施形態においては、被検者20の心拍と脈拍は相関している蓋然性が高いという着想に基づき、心拍信号HSに基づいて算出される心拍基本周波数fhと第一光電脈波信号PS1の周波数成分との比較に基づいて脈拍基本周波数が推定される。これにより、被検者20の体動などに起因する脈拍基本周波数の推定精度の低下を抑制できる。
【0029】
例えば、
図4に例示された周波数スペクトルについてスペクトル強度が最も高いピーク周波数を脈拍基本周波数と推定するような処理が適用された場合、呼吸性ノイズ成分に対応するピーク周波数f1に基づいて脈拍基本周波数と推定されてしまう。他方、本実施形態に係る手法によれば、脈動成分に対応するピーク周波数f2に基づいて脈拍基本周波数が推定されうる。
【0030】
なお、脈拍基本周波数の推定に際しては、「心拍基本周波数fhに最も近いピーク周波数」という条件に加えて、「心拍基本周波数fhとの差異が所定値未満であるピーク周波数」という条件が付与されることが好ましい。この条件によれば、脈動成分に対応する顕著なピーク周波数が得られていない状況下で偶然に心拍基本周波数fhの近くに得られたノイズ成分に対応するピーク周波数に基づいて推定がなされる可能性を低減できる。
【0031】
本実施形態においては、処理部112は、脈拍基本周波数の推定のために心電図信号における「RR間隔」という指標を用いる。「RR間隔」とは、心電図信号に現れる特定のR波から次のR波までの間隔を表している。
【0032】
具体的には、処理部112は、心電図信号において所定の時間T内に有効なRR間隔が所定数N以上含まれている場合に、心拍基本周波数fhの算出を行なうように構成されうる。所定の時間Tは、例えば8秒間である。所定数Nは、例えば5である。
【0033】
図5は、被検者から取得された心電図信号を例示している。時間軸に沿って並んでいる複数の縦棒は、QRS波を模式的に表している。同図においては、有効と判断されたRR間隔に番号(#)が付与されている。本例に係る心電図信号においては所定の時間T内に6個の有効なRR間隔が含まれているので、処理部112は、当該心電図信号に対応する心拍信号HSに基づいて心拍基本周波数fhの算出が行なわれる。
【0034】
具体的には、有効と判断されたN個以上のRR間隔の平均値に対応する心拍数が算出され、その逆数に基づいて心拍基本周波数fhが算出される。なお、取得された複数のRR間隔のうち、最大値と最小値を除いた(N-2)個以上のRR間隔の平均値が取得されることが好ましい。この場合、ノイズの影響をさらに抑制できる。
【0035】
特定のRR間隔が有効であるかは、以下に列挙される複数の条件に基づいて判断されうる。具体的には、特定のRR間隔について以下に列挙される複数の条件の全てが満足された場合、当該RR間隔は有効であると判断される。
条件1:当該RR間隔が不整脈と関連付けられていない。
条件2:当該RR間隔が所定値範囲に含まれている。
条件3:当該RR間隔のゆらぎが所定値未満である。
【0036】
RR間隔に基づいて不整脈を判断するアルゴリズムは、心電計40に実装されていることが一般的である。したがって、心拍信号HSは、RR間隔が検出されるごとに付与される不整脈との関連に係る情報を含みうる。処理部112は、当該情報を参照することによって条件1が満足されているかを判断しうる。
【0037】
条件2に係る所定値範囲は、生体の心拍数がとりうる値(30~300など)に対応するRR間隔として定められる。
【0038】
条件3に係る「ゆらぎ」は、ある時点で取得されたRR間隔の当該時点の直前に取得されたRR間隔に対する比として算出される。例えば、
図5において時点t3において取得されたRR間隔の場合、時点t2において取得されたRR間隔に対する比が算出される。処理部122は、当該比の値が所定値未満であるかを判断する。
【0039】
図5に示される例においては、時点t4、時点t5、および時点t6の各々において取得されたRR間隔が上記の条件1~3の全てが満足されておらず、処理部112により有効でないと判断されている。
【0040】
このような構成によれば、適切な心拍基本周波数fhの算出に寄与しない情報を排除できるので、ノイズに起因する脈拍基本周波数の推定精度の低下を抑制できる。
【0041】
処理部112は、所定の時間Tの経過ごとに上記の処理を行なうのではなく、処理に供される区間の重複を許容するように所定の時間Tに対応する枠を移動させつつ上記の処理を行なう。例えば、
図5に示される例の場合、時点t0~t9を含む所定の時間Tについて上記の処理が行なわれた後、時点t1~t10を含む所定の時間Tについて上記の処理が行なわれる。枠の移動量(時間)は、適宜に定められうる(例えば1秒)。
【0042】
図2に例示されるように、処理部112は、推定された脈拍基本周波数に基づいて被検者20に係る所定の情報を取得し(STEP6)、当該情報をモニタ装置10のユーザに提供する(STEP7)。
【0043】
被検者20に係る情報の一例として、脈拍数が算出されうる。この場合、
図1に例示されるように、生体信号処理装置11は、フィルタ113を備えうる。フィルタ113は、特定の周波数帯域の信号を通過させるディジタルフィルタである。以降の説明においてはフィルタ帯域と称される当該特定の周波数帯域は、可変とされている。処理部112は、上記の処理を通じて推定された脈拍基本周波数fpを含むように、フィルタ113のフィルタ帯域を設定する。
【0044】
フィルタ周波数の設定後、処理部112は、受付部111により受け付けられた第一光電脈波信号PS1を、フィルタ113に通過させる。
図4に示される例の場合、第一光電脈波信号PS1のうちピーク周波数f2付近の帯域はフィルタ113を通過し、ピーク周波数f1付近の帯域は除去される。結果として、
図1に例示されるように、脈動成分以外の周波数成分が低減された第一光電脈波信号PS1’が得られる。
【0045】
処理部112は、第一光電脈波信号PS1’に基づいて被検者20の脈拍数を算出する。算出は、周知の手法を用いて行なわれうる。
【0046】
生体信号処理装置11は、出力部114を備えている。出力部114は、上記のように算出された被検者20の脈拍数を情報提供部12に提供させる制御信号CSを出力するインターフェースとして構成されている。制御信号CSは、アナログ信号であってもよいし、デジタル信号であってもよい。制御信号CSがアナログ信号である場合、出力部114は、D/Aコンバータを含む適宜の変換回路を備える。
【0047】
制御信号CSを受け付けた情報提供部12は、算出された脈拍数を、視覚的手法と聴覚的手法の少なくとも一方を用いてモニタ装置10のユーザに提供する。例えば、情報提供部12は、スクリーンを備えうる。算出された脈拍数は、当該スクリーンに表示されうる。脈拍数に対応する色で発光する発光装置により視覚的情報提供がなされてもよい。例えば、情報提供部12は、スピーカーを備えうる。算出された脈拍数に対応する音声が、当該スピーカーを通じて出力されうる。
【0048】
上記のような構成によれば、被検者20の体動などの影響を抑制しつつ推定された脈拍基本周波数fpに基づいてフィルタ113のフィルタ帯域が設定され、当該フィルタ113により脈動成分以外の周波数成分が低減された第一光電脈波信号PS1’に基づいて被検者20の脈拍数が算出されるので、脈拍数の算出精度を高めることができる。
【0049】
被検者20に係る情報の別例として、第一光電脈波信号PS1における被検者20の脈拍に対応している部分が特定されうる。具体的には、第一光電脈波信号PS1において脈拍基本周波数fpに対応する周期で現れるピーク波形部分が、被検者20の脈拍に対応する部分として特定される。
【0050】
この場合、出力部114は、脈拍に対応している部分を表すアノテーションが付与された第一光電脈波信号PS1を情報提供部12のスクリーンに表示させる制御信号CSを出力する。
図6においては、第一光電脈波信号PS1の波形の下方に、複数の縦棒としてアノテーションが表示されている。
【0051】
このような構成によれば、ノイズ成分が重畳した第一光電脈波信号PS1からユーザが被検者20の脈拍に対応する部分を特定する作業を支援できる。特に、被検者20の体動などの影響を抑制しつつ推定された脈拍基本周波数fpに基づいてアノテーションが付与されるので、脈拍に対応する部分の特定精度を高めることができる。
【0052】
被検者20に係る情報の別例として、プローブ30が被検者20に装着されているかが判断されうる。
【0053】
プローブ30が被検者20の身体に適切に装着されていない場合においても、周期的に振幅が増減する第一光電脈波信号PS1が出力される場合がある。処理部112は、第一光電脈波信号PS1の周波数スペクトルに現れるピーク周波数と、心拍信号HSに基づいて算出された心拍基本周波数fhとを比較する。両者の間に相関が見られない場合、第一光電脈波信号PS1の振幅の増減は、脈動ではなくプローブ30が被検者20の身体に適切に装着されていないことに起因してもたらされている蓋然性が高い。したがって、処理部112は、第一光電脈波信号PS1の周波数成分と心拍基本周波数fhの比較結果に基づいて、プローブ30が被検者20に正規に装着されているかを判断できる。
【0054】
出力部114は、処理部112による判断結果を情報提供部12に提供させる制御信号CSを出力する。例えば、当該制御信号CSを受け付けた情報提供部12は、プローブ30が正規に装着されていないという判断結果に基づくアラームを、視覚的手法と聴覚的手法の少なくとも一方を用いてモニタ装置10のユーザに提供する。例えば、アラームは、情報提供部12のスクリーンに表示されうる。アラームに対応する色で発光する発光装置により視覚的情報提供がなされてもよい。これに加えてあるいは代えて、アラームに対応する音声が、情報提供部12のスピーカーを通じて出力されうる。
【0055】
このような構成によれば、被検者20の体動などの影響を抑制しつつ推定された脈拍基本周波数fpに基づいてプローブ30が正規に装着されているかの判断がなされるので、ユーザにプローブ30の再装着を促すための判断精度を高めることができる。
【0056】
被検者20に係る情報の別例として、経皮的動脈血酸素飽和度(SpO2)が算出されうる。SpO2は、被検者20の動脈血における酸素化ヘモグロビンの濃度に対応している。酸素化ヘモグロビンは、血中吸光物質の一例である。この場合、
図1に例示されるように、プローブ30は、第二光電脈波信号PS2を出力するように構成される。第二光電脈波信号PS2もまた、受付部111により受け付けられる。
【0057】
具体的には、プローブ30は、赤色光を出射する発光素子と、赤色光に感度を有する受光素子を備える。赤外光と赤色光の双方に感度を有する受光素子が共用されてもよい。赤色光は、第二の光の一例である。赤外光の波長と赤色光の波長は、酸素化ヘモグロビンによる吸光度が相違する二波長として適宜に選択される。赤外光の波長は、第一波長の一例である。赤色光の波長は、第二波長の一例である。受光素子は、入射光の強度に対応する振幅を有する第二光電脈波信号PS2を出力する。
【0058】
心臓の拍動に伴って血管が脈動すると、赤色光の吸収に係る光路長が変化するので、受光素子における入射光強度も変化する。すなわち、第二光電脈波信号PS2の振幅は、血管の脈動に対応して増減する。発光素子からの出射光強度と受光素子への入射光強度の比も同様に変化するので、当該比を第二光電脈波信号PS2の振幅に対応させてもよい。
【0059】
処理部112は、推定された脈拍基本周波数fpを含むようにフィルタ113のフィルタ帯域を設定した後、受付部111により受け付けられた第二光電脈波信号PS2を、フィルタ113に通過させる。結果として、脈動成分以外の周波数成分が低減された第二光電脈波信号PS2’が得られる。
【0060】
処理部112は、第一光電脈波信号PS1’と第二光電脈波信号PS2’に基づいて被検者20のSpO2を算出する。SpO2は、受光素子における赤色光の受光強度と赤外光の受光強度の比に対応する第一光電脈波信号PS1’の振幅と第二光電脈波信号PS2’の振幅の比に基づいて、周知の手法により算出される。
【0061】
出力部114は、上記のように算出された被検者20のSpO2を情報提供部12に提供させる制御信号CSを出力する。制御信号CSを受け付けた情報提供部12は、算出されたSpO2を、視覚的手法と聴覚的手法の少なくとも一方を用いてモニタ装置10のユーザに提供する。例えば、情報提供部12は、スクリーンを備えうる。算出されたSpO2は、当該スクリーンに表示されうる。SpO2に対応する色で発光する発光装置により視覚的情報提供がなされてもよい。例えば、情報提供部12は、スピーカーを備えうる。算出されたSpO2あるいはSpO2に対応する音声が、当該スピーカーを通じて出力されうる。
【0062】
SpO2の算出に際しては、血管の脈動に伴う赤色光と赤外光の各減光度変化が考慮される場合がある。上記のような構成によれば、被検者20の体動などの影響を抑制しつつ推定された脈拍基本周波数fpに基づいてフィルタ113のフィルタ帯域が設定され、当該フィルタ113により脈動成分以外の周波数成分が低減された第一光電脈波信号PS1’と第二光電脈波信号PS2’に基づいて被検者20のSpO2が算出されるので、SpO2の算出精度を高めることができる。
【0063】
これまで説明した各種の機能を有する処理部112は、汎用メモリと協働して動作する汎用マイクロプロセッサにより実現されうる。汎用マイクロプロセッサとしては、CPU、MPU、GPUが例示されうる。汎用メモリとしては、ROMやRAMが例示されうる。この場合、ROMには、上述した処理を実行するコンピュータプログラムが記憶されうる。ROMは、コンピュータプログラムが記憶された非一時的なコンピュータ可読媒体の一例である。汎用マイクロプロセッサは、ROM上に記憶されたコンピュータプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上述した処理を実行する。上記のコンピュータプログラムは、汎用メモリにプリインストールされてもよいし、
図7に例示される通信ネットワーク50を介して外部サーバ装置60からダウンロードされて汎用メモリにインストールされてもよい。この場合、外部サーバ装置60は、コンピュータプログラムが記憶された非一時的なコンピュータ可読媒体の一例である。
【0064】
これまで説明した各種の機能を有する処理部112は、マイクロコントローラ、ASIC、FPGAなどの上記のコンピュータプログラムを実行可能な専用集積回路によって実現されてもよい。この場合、当該専用集積回路に含まれる記憶素子に上記のコンピュータプログラムがプリインストールされる。当該記憶素子は、コンピュータプログラムが記憶された非一時的なコンピュータ可読媒体の一例である。処理部112は、汎用マイクロプロセッサと専用集積回路の組合せによっても実現されうる。
【0065】
上記の実施形態は、本発明の理解を容易にするための例示にすぎない。上記の実施形態に係る構成は、本発明の趣旨を逸脱しなければ、適宜に変更・改良されうる。
【0066】
上記の実施形態においては、体動に起因するノイズへの耐性が比較的強いことで知られている赤外光を用いて生成される第一光電脈波信号PS1が生体信号処理装置11による処理の対象とされている。しかしながら、必要に応じて、赤色光を用いて生成される第一光電脈波信号PS1が処理の対象とされてもよい。
【0067】
上記の実施形態においては、赤外光と赤色光を用いて被検者20のSpO2が算出されている。しかしながら、SpO2を算出するために用いられる少なくとも二つの波長は、酸素飽和度によって血液の吸光係数の比が異なる組み合わせであれば、ともに赤外光であってもよいし、ともに赤色光であってもよい。同様に、他の血中吸光物質の濃度を算出するために用いられる少なくとも二つの波長は、当該血中吸光物質の吸光特性に応じて適宜に定められうる。他の血中吸光物質の例としては、一酸化炭素ヘモグロビン、メトヘモグロビンなどの被検者20の体内で生成される物質だけでなく、造影検査などの目的で血管に注入される色素も含まれうる。
【0068】
上記の実施形態においては、心電計40を通じて取得される心電図信号に基づいて心拍信号HSが生成されている。この場合、前述の通り不整脈に係る情報を心拍信号HSに含めうる点において有利である。なお、心電計40により心電図信号に基づいて心拍数が算出され、当該心拍数に対応する心拍信号HSが生成されてもよい。心電図信号に代えて、カテーテルを通じて取得される観血血圧信号に基づいて心拍信号HSが生成されてもよい。観血血圧信号の振幅もまた、心臓の拍動に対応して増減する。
【0069】
上記の実施形態においては、生体信号処理装置11は、モニタ装置10に搭載されている。しかしながら、生体信号処理装置11は、
図7に例示される通信ネットワーク50を介してモニタ装置10と通信可能な外部サーバ装置60に搭載されてもよい。モニタ装置10と外部サーバ装置60の間の通信は、有線通信によりなされてもよいし、無線通信によりなされてもよい。この場合、モニタ装置10は、第一光電脈波信号PS1、第二光電脈波信号PS2、および心拍信号HSを外部サーバ装置60へ送信し、制御信号CSを外部サーバ装置60から受信するための通信インターフェースを備えるように構成される。
【符号の説明】
【0070】
10:モニタ装置、11:生体信号処理装置、111:受付部、112:処理部、113:フィルタ、12:情報提供部、20:被検者、30:プローブ、HS:心拍信号、PS1:第一光電脈波信号、PS2:第二光電脈波信号、fh:心拍基本周波数、fp:脈拍基本周波数