IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝メディカルシステムズ株式会社の特許一覧

特開2022-139613医用情報処理装置及び医用情報処理システム
<>
  • 特開-医用情報処理装置及び医用情報処理システム 図1
  • 特開-医用情報処理装置及び医用情報処理システム 図2
  • 特開-医用情報処理装置及び医用情報処理システム 図3
  • 特開-医用情報処理装置及び医用情報処理システム 図4
  • 特開-医用情報処理装置及び医用情報処理システム 図5
  • 特開-医用情報処理装置及び医用情報処理システム 図6
  • 特開-医用情報処理装置及び医用情報処理システム 図7
  • 特開-医用情報処理装置及び医用情報処理システム 図8
  • 特開-医用情報処理装置及び医用情報処理システム 図9
  • 特開-医用情報処理装置及び医用情報処理システム 図10
  • 特開-医用情報処理装置及び医用情報処理システム 図11
  • 特開-医用情報処理装置及び医用情報処理システム 図12
  • 特開-医用情報処理装置及び医用情報処理システム 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022139613
(43)【公開日】2022-09-26
(54)【発明の名称】医用情報処理装置及び医用情報処理システム
(51)【国際特許分類】
   G16H 50/20 20180101AFI20220915BHJP
   A61B 5/16 20060101ALI20220915BHJP
【FI】
G16H50/20
A61B5/16 100
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2021040085
(22)【出願日】2021-03-12
(71)【出願人】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100075672
【弁理士】
【氏名又は名称】峰 隆司
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100162570
【弁理士】
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】高橋 徹
(72)【発明者】
【氏名】杉山 敦子
(72)【発明者】
【氏名】寺西 功一
【テーマコード(参考)】
4C038
5L099
【Fターム(参考)】
4C038PP03
4C038PS09
5L099AA04
(57)【要約】      (修正有)
【課題】患者の治療法の選択を支援する医用情報処理装置及び医用情報処理システムを提供する。
【解決手段】医用情報処理装置1は、インタフェース部10、データ処理部20及び表示部30を含む。インタフェース部10は、取得部11、入力部12及び出力部13を含む。データ処理部20は、対象患者データ2及び過去患者データ3に対して種々の処理を実行することで、支援情報4を生成する。支援情報4は、患者特性特定機能21、類似患者群抽出機能22、類似患者群分析機能23、比較情報生成機能24、類似度計算機能25、及び出力態様決定機能26により生成された種々の情報を含む。出力部13は、データ処理部20が生成した支援情報4を表示部30に出力する。
【選択図】図1
【特許請求の範囲】
【請求項1】
第1患者に関する生物的要因と、前記第1患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む第1データに基づいて、前記第1患者に類似する1以上の第2患者から成る第2患者群を抽出する抽出部と、
前記第2患者群に属するそれぞれの前記第2患者が選択した治療法に関する第2データを分析することで、前記第2患者群の治療法の選択における傾向に関する第1情報を算出する分析部と、
前記第1情報を出力する出力部と、
を具備する医用情報処理装置。
【請求項2】
ユーザからの指定を受け付ける入力部と、
前記ユーザが指定した1以上の前記第2患者に関する生物的要因と、前記指定された第2患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む第3データを、前記第1データと比較するための第2情報を生成する生成部と、
をさらに具備し、
前記出力部は、前記第2情報を出力する、
請求項1に記載の医用情報処理装置。
【請求項3】
前記第3データと前記第1データとの類似度を計算する計算部と、
をさらに具備し、
前記出力部は、前記類似度を出力する、
請求項2に記載の医用情報処理装置。
【請求項4】
前記分析部は、前記第2患者群に属するそれぞれの前記第2患者が選択した治療法による治療後の予後に関する第4データを分析することで、前記第2患者群の治療後の予後における傾向に関する第3情報を算出し、
前記出力部は、前記第3情報を出力する、
請求項1から請求項3のいずれか1項に記載の医用情報処理装置。
【請求項5】
前記第1患者の社会的要因により規定される前記第1患者の社会的特性と、前記第1患者の心理的要因により規定される前記第1患者の心理的特性とのうち少なくとも一つに基づいて、前記第1情報の出力態様を決定する決定部と、
をさらに具備し、
前記出力部は、前記決定された出力態様で前記第1情報を出力する、
請求項1から請求項4のいずれか1項に記載の医用情報処理装置。
【請求項6】
前記決定部は、前記第1患者の心理的特性として前記第1患者の認知特性が視覚型、言語型、又は聴覚型であるか否かに応じて、前記第1情報の出力態様として画像、テキスト、及び音声のうち少なくとも一つを採用して決定する、
請求項5に記載の医用情報処理装置。
【請求項7】
前記決定部は、前記第1患者の心理的特性として前記第1患者の性格特性が悲観型又は楽観型であるか否かに応じて、前記第1情報の出力態様として肯定的表現及び否定的表現のうちいずれか一つを採用して決定する、
請求項5又は請求項6に記載の医用情報処理装置。
【請求項8】
前記決定部は、前記第1患者の社会的特性として前記第1患者の学歴が閾値以上であるか否かに応じて、前記第1情報の出力態様として数値を図式化するか否かと、漢字に読み仮名を付けるか否かとのうち少なくとも一つを判定して決定する、
請求項5から請求項7のいずれか1項に記載の医用情報処理装置。
【請求項9】
前記第1患者に関する生物的要因、社会的要因、及び心理的要因を含む第1患者データを取得する取得部と、
前記第1患者データに基づいて、前記第1患者の心理的特性を特定する特定部と、
をさらに具備する請求項1から請求項8のいずれか1項に記載の医用情報処理装置。
【請求項10】
前記出力された第1情報を表示する表示部と、
をさらに具備する請求項1から請求項9のいずれか1項に記載の医用情報処理装置。
【請求項11】
端末と、医用情報処理装置と、サーバとを具備する医用情報処理システムであって、
前記端末は、第1患者に関する生物的要因と、前記第1患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む第1データを、前記医用情報処理装置に送信する第1送信部と、
を具備し、
前記医用情報処理装置は、前記第1データに基づいて、前記第1患者に類似する1以上の第2患者から成る第2患者群を抽出する抽出部と、
前記第2患者群に属するそれぞれの前記第2患者が選択した治療法に関する第2データを分析することで、前記第2患者群の治療法の選択における傾向に関する第1情報を算出する分析部と、
前記第1情報を前記サーバに出力する出力部と、
を具備し、
前記サーバは、前記第1情報を記憶する記憶部と、
前記第1情報を前記端末に送信する第2送信部と、
を具備する医用情報処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書及び図面に開示の実施形態は、医用情報処理装置及び医用情報処理システムに関する。
【背景技術】
【0002】
近年の高齢化社会の進展や医療の進歩による予後の向上に伴い、急性疾患よりも、がん、腰痛、糖尿病、高血圧症などの生活習慣病を含む慢性疾患に対するアプローチの比重が増大している。これを背景として、患者の生物的要因のみに着目したアプローチでは、患者の疾患を治療するのに不十分である事例が増加している。よって、患者の生物的要因のみならず、患者の社会的要因及び心理的要因にもさらに着目して治療法が選択されることが重要である。
【0003】
慢性疾患の場合には、医療従事者のみならず患者も治療法の選択に関与する機会が多い。例えば、患者は自身と同一又は類似の疾患を持つ患者たちのコミュニティ(患者会)等を通じて、自身の疾患に対する理解を深め、治療法を選択することがある。しかし、患者が自身の生物的要因、社会的要因、及び心理的要因を考慮しつつ、自身と類似する患者たちの情報を収集し、収集された情報を統合的に評価した上で治療法を選択することは容易ではない。また、患者ごとに健康や医療に関する情報を運用する能力(ヘルスリテラシー)や、思考及び認知の特性が異なるため、全ての患者に対する画一的な情報提供では、患者それぞれが提供された情報を理解し、適切に評価した上で治療法を選択することは困難である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11-353183号公報
【非特許文献】
【0005】
【非特許文献1】Norem, J. K. (2001). Defensive pessimism, optimism, and pessimism. In E. C. Chang. (Ed.), Optimism and pessimism: Implications for theory, research, and practice. Washington. DC: American Psychological Association Press. pp. 77-100.
【発明の概要】
【発明が解決しようとする課題】
【0006】
本明細書及び図面に開示の実施形態が解決しようとする課題の一つは、患者の治療法の選択を支援することである。ただし、本明細書及び図面に開示の実施形態により解決しようとする課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を他の課題として位置づけることもできる。
【課題を解決するための手段】
【0007】
実施形態に係る医用情報処理装置は、抽出部と、分析部と、出力部とを具備する。抽出部は、第1患者に関する生物的要因と、前記第1患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む第1データに基づいて、前記第1患者に類似する1以上の第2患者から成る第2患者群を抽出する。分析部は、前記第2患者群に属するそれぞれの前記第2患者が選択した治療法に関する第2データを分析することで、前記第2患者群の治療法の選択における傾向に関する第1情報を算出する。出力部は、前記第1情報を出力する。
【図面の簡単な説明】
【0008】
図1図1は、第1実施形態に係る医用情報処理装置の構成例を示す図である。
図2図2は、第1実施形態に係る医用情報処理装置の動作例を示す図である。
図3図3は、患者データの一例を示す図である。
図4図4は、特定された対象患者の心理的特性の一例を示す図である。
図5図5は、抽出された類似患者群の一例を示す図である。
図6図6は、分析された類似患者群の治療情報の一例を示す図である。
図7図7は、対象患者と類似患者との比較情報の一例を示す図である。
図8図8は、対象患者と類似患者との類似度の一例を示す図である。
図9図9は、出力態様の決定方法の一例を示す図である。
図10図10は、表示された支援情報の一例を示す図である。
図11図11は、肯定的表現及び否定的表現の対応関係の一例を示す図である。
図12図12は、第1実施形態に係る医用情報処理装置のハードウェア構成例を示す図である。
図13図13は、第2実施形態に係る医用情報処理システムの構成例を示す図である。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら実施形態に係る医用情報処理装置及び医用情報処理システムについて説明する。以下の実施形態では、同一の参照符号を付した部分は同様の動作を行うものとして、重複する説明を適宜、省略する。また、実施形態に係る医用情報処理装置に含まれる各部は、ハードウェア又はソフトウェアの態様で実装され得る。
【0010】
(第1実施形態)
図1は、第1実施形態に係る医用情報処理装置1の構成例を示す図である。
医用情報処理装置1は、医療に関する種々の情報を処理する装置である。医用情報処理装置1は、インタフェース部10、データ処理部20、及び表示部30を含む。インタフェース部10は、取得部11、入力部12、及び出力部13を含む。データ処理部20は、患者特性特定機能21、類似患者群抽出機能22、類似患者群分析機能23、比較情報生成機能24、類似度計算機能25、及び出力態様決定機能26を含む。医用情報処理装置1は、種々の情報処理を実行可能な装置(例:サーバPC、ノートPC、タブレット端末、スマートフォン)に搭載されてもよい。医用情報処理装置1の動作例については図2に後述する。医用情報処理装置1のハードウェア構成例については図12に後述する。
【0011】
インタフェース部10は、医用情報処理装置1の内部と外部との間で種々のデータ、情報、及びコマンドを通信する。データの通信規格としては、任意の規格が使用可能である。例えば、医用文字情報に関する通信規格にはHL7(Health Level 7)が使用可能であり、医用画像情報に関する通信にはDICOM(Digital Imaging and Communications in Medicine)が使用可能である。データの通信方式としては、有線又は無線の種別を問わない。
【0012】
取得部11は、医用情報処理装置1の外部から種々のデータを取得する。例えば、取得部11は、医用情報処理装置1による処理の対象となる患者(以降、対象患者)に関する種々のデータ(以降、対象患者データ2)と、過去に医療機関において診療を受けたことがある患者(以降、過去患者)に関する種々のデータ(以降、過去患者データ3)とを取得する。対象患者は、第1患者又は現在の患者とも呼ぶ。複数の過去患者のうち、対象患者に類似する患者を第2患者とも呼ぶ。また、取得部11は、取得したデータをデータ処理部20に転送する。
【0013】
対象患者データ2は、対象患者に関する生物的要因、社会的要因、及び心理的要因を含むデータである。例えば、対象患者データ2は、対象患者が現在診療を受けている医療機関の診療記録や、過去に診療を受けた別の医療機関の診療記録に保管されたデータであってもよい。また、対象患者データ2は、医師、看護師、及びケースワーカーを含む医療従事者(Healthcare Professionals)が対象患者に対して問診を行うことで得られたデータであってもよい。診療記録は、例えば電子カルテ及び看護記録を含む。対象患者データ2の一例については、図3に後述する。
【0014】
また、対象患者データ2は、医療従事者に限らず、AI(Artificial Intelligence:人工知能)が対象患者に対して問診を行うことで得られたデータであってもよい。例えば、対象患者データ2は、AIがWebカメラを介して対象患者の身体や、対象患者の診療記録に関する画像データを取得した後、当該画像データを画像分析することで得られたデータであってもよい。なお、AIは対象患者の診療記録に関する画像データは、画像の状態に限らず、HL7に準拠したデータの状態でデータサーバから取得してもよい。第一に、AIは、対象患者の顔に関する画像データを分析することで、対象患者の性別、年齢などの生物的要因に関するデータを取得してもよい。第二に、AIは、対象患者の診療記録に関する画像データを分析することで、対象患者の疾患名、病期、サブタイプなどの生物的要因に関するデータを取得してもよい。同様に、AIは、対象患者の社会的要因及び心理的要因に関するデータを取得してもよい。もちろん、医用情報処理装置1が上記のAIを搭載することで、医用情報処理装置1が上記の動作を実行して対象患者データ2を取得してもよい。
【0015】
あるいは、対象患者データ2は、AIが音声又はテキストを介して対象患者との間で行った対話に関する対話データを取得した後、当該対話データをテキスト分析することで得られたデータであってもよい。対話データが音声データである場合、AIは、当該音声データに対して音響分析、音声モデル、発音辞書、及び言語モデルを用いる既存の音声認識技術を適用することで、当該音声データをテキストデータに変換してもよい。続いて、AIは、テキストデータとしての対話データから、対象患者に関する生物的要因、社会的要因、及び心理的要因に関するデータを取得してもよい。もちろん、医用情報処理装置1が上記のAIを搭載することで、医用情報処理装置1が上記の動作を実行して対象患者データ2を取得してもよい。
【0016】
過去患者データ3は、過去患者に関する生物的要因、社会的要因、及び心理的要因を含むデータである。例えば、過去患者データ3は、過去患者が診療を受けた医療機関の診療記録に保管されたデータであってもよい。また、過去患者データ3は、医師、看護師、及びケースワーカーを含む医療従事者(Healthcare Professionals)が過去患者に対して問診を行うことで得られたデータであってもよい。診療記録は、例えば電子カルテ及び看護記録を含む。すなわち、過去患者データ3は、対象患者データ2と同様なデータであるといえる。過去患者データ3の一例については、図3に後述する。
【0017】
なお、過去患者データ3は、1以上の過去患者に関するデータを含むものとする。また、過去患者データ3は、対象患者の生物的要因、社会的要因、及び心理的要因に対応する要因を持つ1以上の過去患者を含むものとする。
【0018】
入力部12は、医用情報処理装置1を利用するユーザからの入力を受け付ける。例えば、入力部12は、ユーザからの入力として、所定の対象を指定する指定コマンドを受け付ける。また、入力部12は、受け付けた入力をデータ処理部20に転送する。ユーザは、例えば対象患者、対象患者の家族、及び対象患者の治療に関わる医療従事者を含む。
【0019】
出力部13は、医用情報処理装置1の内部で生成された種々の情報を、医用情報処理装置1の外部、又は医用情報処理装置1の内部における他の構成に出力する。例えば、出力部13は、データ処理部20が生成した支援情報4を表示部30に出力する。また、出力部13は、データ処理部20により決定された出力態様で支援情報4を出力する。
【0020】
データ処理部20は、インタフェース部10から転送されたデータに対して種々の処理を実行する。例えば、データ処理部20は、対象患者データ2及び過去患者データ3に対して種々の処理を実行することで、支援情報4を生成する。また、データ処理部20は、生成した支援情報4を出力部13に転送する。
【0021】
支援情報4は、医用情報処理装置1を利用するユーザの意思決定を支援するための情報である。支援情報4は、データ処理部20により生成された種々の情報を含む。すなわち、支援情報4は、患者特性特定機能21、類似患者群抽出機能22、類似患者群分析機能23、比較情報生成機能24、類似度計算機能25、及び出力態様決定機能26により生成された種々の情報を含む。
【0022】
患者特性特定機能21は、対象患者の特性を特定する。例えば、患者特性特定機能21は、対象患者データ2に基づいて、対象患者の心理的特性を特定する。なお、患者特性特定機能21は、過去患者の特性を特定してもよい。特定された対象患者の心理的特性の一例については、図4に後述する。
【0023】
類似患者群抽出機能22は、対象患者データ2に基づいて、対象患者に類似する類似患者群を過去患者データ3から抽出する。例えば、類似患者群抽出機能22は、対象患者に関する生物的要因と、対象患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む対象患者データ2に基づいて、対象患者に類似する1以上の類似患者から成る類似患者群を抽出する。抽出された類似患者群の一例については、図5に後述する。
【0024】
類似患者群分析機能23は、類似患者群に対して種々の分析を実行することで、種々の分析結果を算出する。例えば、類似患者群分析機能23は、類似患者群に属するそれぞれの類似患者が選択した治療法に関するデータを分析することで、類似患者群の治療法の選択における傾向に関する治療情報を算出する。また、類似患者群分析機能23は、類似患者群に属するそれぞれの類似患者が選択した治療法による治療後の予後に関するデータを分析することで、類似患者群の治療後の予後における傾向に関する治療情報を算出してもよい。分析された類似患者群の治療情報の一例については、図6に後述する。
【0025】
比較情報生成機能24は、対象患者と類似患者とを比較した種々の情報を生成する。例えば、比較情報生成機能24は、ユーザが指定した1以上の類似患者に関する生物的要因と、指定された類似患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む過去患者データ3を、対象患者データ2と比較するための比較情報を生成する。対象患者と類似患者との比較情報の一例については、図7に後述する。
【0026】
類似度計算機能25は、対象患者と類似患者との類似度を計算する。例えば、類似度計算機能25は、過去患者データ3と対象患者データ2との類似度を計算する。対象患者と類似患者との類似度の一例については、図8に後述する。
【0027】
出力態様決定機能26は、支援情報4を出力する際の態様を決定する。例えば、出力態様決定機能26は、対象患者の社会的要因により規定される対象患者の社会的特性と、対象患者の心理的要因により規定される対象患者の心理的特性とのうち少なくとも一つに基づいて、支援情報4の出力態様を決定する。出力態様の決定方法の一例については、図9に後述する。
【0028】
表示部30は、種々の情報を表示する。例えば、表示部30は、出力された支援情報4を表示する。なお、表示部30は、医用情報処理装置1と通信可能な別体として、医用情報処理装置1の外部に設置されてもよい。表示部30において表示された支援情報4は、ユーザにより確認される。したがって、医用情報処理装置1は、ユーザの意思決定を支援するといえる。表示された支援情報4の一例については、図10に後述する。
【0029】
図2は、第1実施形態に係る医用情報処理装置1の動作例を示す図である。
ステップS101において、医用情報処理装置1は、患者データを取得する。具体的には、取得部11は、患者データとして対象患者データ2及び過去患者データ3を取得する。例えば、取得部11は、医用情報処理装置1が設置される医療機関における電子カルテシステムから、対象患者データ2及び過去患者データ3を取得してもよい。
【0030】
図3は、患者データの一例を示す図である。
患者の生物的要因は、患者の身体や疾患に関する種々の要因を含む。例えば、生物的要因は、患者の身体に関する要因として性別、年齢、身長、体重、肥満度/BMI、視力、聴力、血圧、血糖値、心拍、既往歴、持病、及び生活習慣(例:睡眠時間、喫煙、飲酒、運動)を含む。また、生物的要因は、患者の疾患に関する要因として疾患名、病期、サブタイプ、罹患部位、腫瘍サイズ、及び腫瘍マーカを含む。これらの要因により、患者の生物的特性が規定される。なお、これらの要因は医療従事者などにより客観的に評価され得るという性質を持つため、生物的要因は、客観的な要因であるといえる。
【0031】
患者の社会的要因は、患者の社会的条件に関する種々の要因を含む。例えば、社会的要因は、既婚/未婚、子供の有無、家族形態、家族構成、学歴、職業、役職、所得/年収、住所、住宅形態、加入保険、及び人間関係(例:兄弟姉妹、親戚、知人、友人、配偶者、同僚、上司、部下)を含む。これらの要因により、患者の社会的特性が規定される。なお、これらの要因は第三者により客観的に評価され得るという性質を持つため、社会的要因は、客観的な要因であるといえる。
【0032】
患者の心理的要因は、患者の心理状態や心理傾向に関する種々の要因を含む。例えば、心理的要因は、思考、感情、ストレス、及び幸福度を含む。これらの要因により、患者の心理的特性が規定される。なお、これらの要因は患者の主観に依存するため、心理的要因は、主観的な要因であるといえる。
【0033】
本実施形態において、心理的特性は、性格特性及び認知特性を含むものとする。性格特性は、MBTI(Myers-Briggs Type Indicator:マイヤーズ・ブリッグスタイプ指標)による個人のタイプ分類や、ユングのタイプ論などにより定義される。性格特性は、例えば「悲観型又は楽観型」、「外向型又は内向型」、及び「思考型、感情型、感覚型、又は直感型」の種別を含む。一方、認知特性は、「視覚型、言語型、又は視覚型」の種別を含む。認知特性は、人間が外界からの情報を理解し、記憶し、表現する際の能力を指し、当該能力の種別に応じて、「視覚型(視覚優位)」、「言語型(言語優位)」、「聴覚型(聴覚優位)」の三種に大別される。より詳しくは、「視覚型」は「写真タイプ、三次元映像タイプ」のサブタイプに、「言語型」は「言語映像タイプ、言語抽象タイプ」のサブタイプに、「聴覚型」は「聴覚言語タイプ、聴覚&音タイプ」のサブタイプにさらに分類される。例えば「視覚型」の人間は見た情報(視覚情報)を処理することが得意であり、「言語型」の人間は読んだ情報(言語情報)を処理することが得意であり、「聴覚型」の人間は聞いた情報(聴覚情報)を処理することが得意である。
【0034】
なお、上記に述べた各要因は、複数の「値」により規定される。例えば、生物的要因である「性別」は、その値として「男、女」を有する。また例えば、生物的要因である「年齢」は、その値として「30、40、50、・・・」などの任意の数値を有する。換言すれば、一つの患者特性(生物的特性、社会的特性、又は心理的特性)は、複数の要因により規定され、当該複数の要因のそれぞれは、複数の値により規定される。上記の「値」は、文字列又は数字で表される値であってもよい。
【0035】
ステップS102において、医用情報処理装置1は、対象患者の心理的特性を特定する。具体的には、患者特性特定機能21は、ステップS101で取得された対象患者データ2に基づいて、対象患者の心理的特性を特定する。このとき必要な情報は、例えば、前述のMBTI(Myers-Briggs Type Indicator:マイヤーズ・ブリッグスタイプ指標)診断や、DPQ(Defensive Pessimism Questionnaire)を含む種々の性格診断テスト又は認知特性分析ツールに入力される情報である。すなわち、既存の技術により対象患者の心理的特性が特定されればよい。特定された心理的特性は、例えば「悲観型」又は「楽観型」のように二分法的に示されてもよいし、「悲観型75%、楽観型25%」のように割合で示されてもよい。
【0036】
なお、対象患者データ2に、上記のような対象患者の心理的特性に関するデータが既に含まれる場合、患者特性特定機能21は、ステップS102を実行しなくともよい。また、患者特性特定機能21は、対象患者データ2が取得されるたびに、ステップS102を実行してもよい。これにより、対象患者の心理的特性が随時、変更されてもよい。
【0037】
図4は、特定された対象患者の心理的特性の一例を示す図である。
図4(a)において、特定された対象患者の心理的特性が棒グラフ210により示される。棒グラフ210は、対象患者の性格特性が「悲観型75%、楽観型25%」であることを模式的に示す。換言すれば、棒グラフ210は、対象患者は悲観的な心理傾向のほうが、楽観的な心理傾向よりも強いことを示す。棒グラフ210の各部分(すなわち、悲観型又は楽観型)の割合は、棒グラフ210に付随するバー211により示されてもよい。
【0038】
図4(b)において、特定された対象患者の心理的特性が円グラフ220により示される。円グラフ220は、対象患者の性格特性が「悲観型75%、楽観型25%」であることを模式的に示す。すなわち、円グラフ220は、棒グラフ210に示す対象患者の性格特性を別の形態で示す。具体的には、円グラフ220の四分の一を占める部分が「楽観型」に相当し、円グラフ220の四分の三を占める部分が「悲観型」に相当する。
【0039】
図4(c)において、特定された対象患者の心理的特性がレーダーチャート230により示される。レーダーチャート230は、対象患者の認知特性として「視覚型」、「言語型」、及び「聴覚型」のうち、「言語型」が最も優勢又は支配的であることを示す。なお、レーダーチャート230は、三角形のみならず、表示される項目の数に応じた多角形により表示されればよい。もちろん、前述した認知特性の各サブタイプ(写真タイプ、三次元映像タイプ、言語映像タイプ、言語抽象タイプ、聴覚言語タイプ、聴覚&音タイプ)が、当該表示される項目であってもよい。
【0040】
なお、図4(a)-図4(c)に示す各形態で、対象患者の心理的特性が表示部30において表示されてもよい。これにより、医用情報処理装置1を利用するユーザが、表示部30に表示された対象患者の心理的特性を確認することができる。
【0041】
ステップS103において、医用情報処理装置1は、対象患者の特性に類似の特性を持つ類似患者群を抽出する。具体的には、類似患者群抽出機能22は、ステップS101で取得された対象患者データ2及び過去患者データ3に基づいて、対象患者の特性に類似の特性を持つ類似患者群を抽出する。例えば、類似患者群抽出機能22は、対象患者に関する生物的要因と、対象患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む対象患者データ2に基づいて、対象患者に類似する1以上の類似患者から成る類似患者群を過去患者データ3から抽出する。すなわち、類似患者群抽出機能22は、過去患者データ3に含まれる1以上の過去患者から、対象患者データ2に含まれる対象患者の特性をキーとして1以上の類似患者を抽出した後、抽出された類似患者をクラスタリングすることで、1以上の類似患者群を抽出する。つまり、類似患者のクラスタリングは、1人の類似患者を抽出し、1人の患者を類似患者群とすることも含む。本実施形態において、医用情報処理装置1は、既存の非階層的クラスタリング(例:K平均法)を利用するものとする。
【0042】
例えば、対象患者の一例として患者Xを想定する。患者Xの生物的特性は、「女性、42歳、乳がん、ステージ2a、トリプルネガティブ」であり、患者Xの社会的特性は、「既婚、子供あり(0歳、4歳)、核家族、高卒、パート従業員」であるとする。このとき、医用情報処理装置1は、患者Xの生物的特性及び社会的特性に基づいて、過去患者データ3から患者Xに類似する類似患者群を抽出する。
【0043】
まず、医用情報処理装置1は、患者Xの生物的特性を規定する複数の生物的要因(女性、42歳、乳がん、ステージ2a、トリプルネガティブ)と、患者Xの社会的特性を規定する複数の社会的要因(既婚、子供あり(0歳、4歳)、核家族、高卒、パート従業員)とのうち、少なくとも一つの要因をキーとして複数の類似患者を抽出する。例えば、医用情報処理装置1は、患者Xの疾患名「乳がん」をキーとして、「乳がん」を持つ複数の類似患者を抽出する。次に、医用情報処理装置1は、抽出された複数の類似患者を、患者Xの生物的要因及び社会的要因をキーとしてクラスタリングする。例えば、医用情報処理装置1は、患者Xの要因「年齢」及び「既婚/未婚」をキーとして、抽出された「乳がん」患者をクラスタリングする。これにより、患者Xと同一の疾患である「乳がん」を持つ複数の類似患者から、患者Xの要因「年齢」及び「既婚/未婚」に基づいた類似患者群が抽出される。なお、類似患者を抽出する際に用いられるキーと、クラスタリングの際に用いられるキーとは、異なっていればよい。
【0044】
なお、上記の例においては、対象患者と年齢が完全に同一である複数の過去患者が類似患者として抽出されてもよいし、対象患者と年齢が近い複数の過去患者、つまり対象患者の年齢を含む所定範囲の年齢層における複数の過去患者が類似患者として抽出されてもよい。例えば、患者Xの場合、「42歳」と同一の年齢である複数の過去患者、「42歳」との年齢差がN歳以内(Nは自然数)である複数の過去患者、又は「42歳」と同年代にある「40代」である複数の過去患者が抽出されてもよい。もちろん、「年齢」以外の生物的要因である「病期、腫瘍サイズ、腫瘍マーカ」についても、一定の許容範囲を持って複数の過去患者が抽出されてもよい。例えば、患者Xの場合、「ステージ2a」と同一の病期である複数の過去患者、又は「ステージ2a」と病期が近い「ステージ2b」及び「ステージ2c」に属する複数の過去患者が抽出されてもよい。
【0045】
また、生物的要因である「腫瘍サイズ」及び「腫瘍マーカ」の値は、腫瘍の進行に伴い経時的に変化すると考えられる。類似患者群抽出機能22は、対象患者における「腫瘍サイズ」及び「腫瘍マーカ」の値に関する経時的な変化と類似する経時的な変化を示した複数の過去患者を抽出してもよい。換言すれば、類似患者群抽出機能22は、対象患者における経時的な変化を示すデータと類似するデータを持つ複数の過去患者を抽出してもよい。
【0046】
また、クラスタリングにおいては、「乳がん」や「脳卒中」といった「疾患名」をキーとして抽出された複数の類似患者に対してクラスタリングされてもよい。他にも、「化学療法」や「摘出手術」、「血栓溶解剤治療」といった「治療法」などの「治療情報」をキーとして抽出された複数の類似患者に対してクラスタリングされてもよい。本実施形態において、治療情報は、過去患者データ3に含まれる過去患者が選択した治療法や、治療の結果に関する種々の情報を含むものとする。
【0047】
図5は、抽出された類似患者群の一例を示す図である。
図5(a)において、抽出された類似患者群が散布図310により示される。散布図310は、パラメータp1を横軸にとり、パラメータp2を縦軸にとる二次元の散布図である。パラメータp1及びp2はそれぞれ、対象患者に関する生物的要因、社会的要因、又は心理的要因である。具体的には、パラメータp1及びp2は、クラスタリングのキーとして用いられた要因である。また、各要因に関する値の範囲が、横軸では約20-120の範囲で示され、縦軸では約0-80の範囲で示される。さらに、抽出された類似患者群の詳細が、散布図310に付随するラベル311により示されてもよい。ラベル311は、「抽出された群は乳がん患者である」旨を示す。
【0048】
散布図310において、3つの類似患者群が示される。各類似患者群は、それぞれ特有の患者特性(患者特性1、患者特性2、患者特性3)を有する。散布図310に示すプロットは、それぞれ類似患者を示す。具体的には、患者特性1を有する類似患者群はバツ印(×)で示され、患者特性2を有する類似患者群は三角印(△)で示され、患者特性3を有する類似患者群は丸印(○)で示される。上記のように、各類似患者群は、互いに異なる記号により識別可能に示されてもよい。これに限らず、各類似患者群は、同じ記号であっても互いに異なる色(例:青色、緑色、赤色)により識別可能に示されてもよい。
【0049】
なお、各類似患者群のうち、いずれの類似患者群に対象患者が属するかを示す情報が、散布図310とともに示されてもよい。当該情報は、例えば対象患者を示すプロットが散布図310に置かれることで表現されてもよい。このとき、対象患者を示すプロットの記号が、対象患者が属する類似患者群を示すプロットの記号と同一であってもよい。もちろん、対象患者を示すプロットの色が、各類似患者群を示すプロットの色とは異なることで識別可能に示されてもよい。
【0050】
なお、図5(a)に示す散布図310が、表示部30に表示されてもよい。このとき、医用情報処理装置1を利用するユーザは、散布図310に示される各類似患者群のうち、所望の類似患者群を選択するコマンド(指定コマンド)を、入力部12を介して入力してもよい。類似患者群抽出機能22は、入力されたコマンドに応じて、選択された類似患者群を拡大して表示部30に表示させる。例えば、患者特性3を有する類似患者群が選択された場合、表示部30は、図5(a)から図5(b)に切り替えて表示する。
【0051】
図5(b)において、患者特性3を有する類似患者群が拡大された拡大図320が示される。拡大図320において、患者特性3を有する複数の類似患者のプロットが拡大して示される。さらに、選択された類似患者群の詳細が、拡大図320に付随するラベル321により示されてもよい。ラベル321は、「選択された群は患者特性3である」旨を示す。
【0052】
また、医用情報処理装置1を利用するユーザは、拡大図320に示される複数の類似患者のうち、所望の類似患者を選択するコマンドを、入力部12を介して入力してもよい。さらに、選択された類似患者を示すエリア322が、拡大図320に重畳して示されてもよい。ここでは、エリア322における選択された類似患者の一例を患者Aとする。
【0053】
ステップS104において、医用情報処理装置1は、類似患者群に関するデータを分析する。具体的には、類似患者群分析機能23は、ステップS103で抽出された類似患者群を分析することで、種々の情報を分析結果として算出する。例えば、類似患者群分析機能23は、類似患者群に属するそれぞれの類似患者が選択した治療法に関するデータを分析することで、類似患者群の治療法の選択における傾向に関する治療情報を算出する。また、類似患者群分析機能23は、類似患者群に属するそれぞれの類似患者が選択した治療法による治療後の予後に関するデータを分析することで、類似患者群の治療後の予後における傾向に関する治療情報を算出してもよい。
【0054】
図6は、分析された類似患者群の治療情報の一例を示す図である。
図6において、分析された類似患者群の治療情報が分析表400により示される。分析表400は、図5において選択された群(患者特性3)の治療情報と、当該群において選択された患者(患者A)の治療情報を示す。例えば、選択された群の治療情報として、「70%の人は化学療法を選択し、30%の人は摘出手術を選択した」旨が示される。すなわち、対象患者の類似患者群は、「摘出手術」に比べ、「化学療法」を治療法として選択する傾向があるといえる。一方、選択された患者の治療情報として、「選択された患者は化学療法を選択した」旨が示される。他にも、分析表400において、選択された群、又は選択された患者における「生存率」、「予後」、「合併症」、及び「再発」に関する治療情報が示される。なお、分析表400において、図5に示す3つの類似患者群の治療情報が同時に表示されてもよい。もちろん、分析表400が表示部30に表示されてもよい。
【0055】
ステップS105において、医用情報処理装置1は、対象患者と類似患者との比較情報を生成する。具体的には、比較情報生成機能24は、ステップS103で抽出された類似患者に基づいて、対象患者との比較情報を生成する。例えば、比較情報生成機能24は、ユーザが指定した1以上の類似患者に関する生物的要因と、指定された類似患者に関する社会的要因及び心理的要因のうち少なくとも一つとを含む過去患者データ3を、対象患者データ2と比較するための比較情報を生成する。
【0056】
図7は、対象患者と類似患者との比較情報の一例を示す図である。
図7において、対象患者と類似患者との比較情報が、比較表500により示される。比較表500は、対象患者(患者X)の特性と、図5において選択された群(患者特性3)の特性と、当該群において選択された患者(患者A)の特性を示す。具体的には、比較表500は、対象患者に関する各要因を、選択された群及び選択された患者において比較する。例えば、「性別」については、対象患者、選択された群、及び選択された患者のいずれにおいても「女性」であることが分かる。また、「年齢」については、対象患者は「42歳」であり、選択された群は「37-47歳」であり、選択された患者は「38歳」であることが分かる。もちろん、比較表500が表示部30に表示されてもよい。
【0057】
ステップS106において、医用情報処理装置1は、対象患者と類似患者との類似度を算出する。具体的には、類似度計算機能25は、ステップS103で抽出された類似患者に基づいて、対象患者と類似患者との類似度を算出する。例えば、類似度計算機能25は、過去患者データ3と対象患者データ2との類似度を計算する。
【0058】
図8は、対象患者と類似患者との類似度の一例を示す図である。
図8において、対象患者と類似患者との類似度が類似度表600により示される。類似度表600において、対象患者(患者X)の各要因と、図5において選択された患者(患者A)の各要因がそれぞれ数値化される。例えば「性別」に関しては、「男性:1、女性:1、その他:0」という基準に基づいて数値化される。「年齢」に関しては、年齢に係る数値が抽出されて数値化される。すなわち、各要因に固有の基準に基づいて数値化されればよい。例えば、類似度表600に基づいて、各項目の類似度を平均した値が類似度として算出されてもよいし、各項目の重み付け和を計算して類似度が算出されてもよい。ここでは、対象患者の特性と選択された患者の特性との類似度(相関度)が99.94%であると算出される。さらに、算出された類似度の定性的な評価として「とても似ている」が、類似度表600に対応付けられてもよい。もちろん、類似度表600が表示部30に表示されてもよい。
【0059】
ステップS107において、医用情報処理装置1は、対象患者の心理的特性に基づいて出力態様を決定する。具体的には、出力態様決定機能26は、ステップS102において特定された対象患者の心理的特性に基づいて、ステップS104で分析されたデータの出力態様を決定する。当該分析されたデータは、分析表400における治療情報を含む。また、出力態様決定機能26は、対象患者の生物的要因により規定される対象患者の生物的特性と、対象患者の社会的要因により規定される対象患者の社会的特性と、対象患者の心理的要因により規定される対象患者の心理的特性とのうち少なくとも一つに基づいて、分析されたデータの出力態様を決定してもよい。なお、医用情報処理装置1のユーザが対象患者ではなく、対象患者の家族である場合、出力態様決定機能26は、当該家族の心理的特性に基づいて出力態様を決定してもよい。
【0060】
図9は、出力態様の決定方法の一例を示す図である。
図9は、ステップS107における詳細なフローを示す図である。図9において、ステップS106に続く一連のステップ(ステップS201-S227)が示される。
【0061】
ステップS201において、出力態様決定機能26は、対象患者の性格特性が、悲観型又は楽観型であるかを判定する。例えば、出力態様決定機能26は、ステップS102において対象患者に対して実施された前述のDPQ(Defensive Pessimism Questionnaire)の結果を用いることで、対象患者の性格特性を判定すればよい。対象患者の性格特性が「悲観型」である場合、出力態様決定機能26はステップS212に進む。一方、対象患者の性格特性が「楽観型」である場合、出力態様決定機能26はステップS222に進む。
【0062】
ステップS212において、出力態様決定機能26は、出力態様として肯定的表現を採用する。換言すれば、出力態様決定機能26は、対象患者に対して行動経済学における「ポジティブフレーム」に則して情報を提示することを採用する。
【0063】
ステップS213において、出力態様決定機能26は、対象患者の認知特性が、視覚型、言語型、又は聴覚型であるかを判定する。例えば、出力態様決定機能26は、ステップS102において対象患者に対して実施された前述の認知特性分析ツールの結果を用いることで、対象患者の認知特性を判定すればよい。対象患者の認知特性が「視覚型」である場合、出力態様決定機能26はステップS214に進む。一方、対象患者の認知特性が「言語型」である場合、出力態様決定機能26はステップS215に進む。一方、対象患者の認知特性が「聴覚型」である場合、出力態様決定機能26はステップS216に進む。
【0064】
ステップS214において、出力態様決定機能26は、出力態様として視覚表現を採用する。視覚表現は、例えば静止画や動画を含む画像である。視覚表現は、視覚型の人間にとって理解しやすい態様の表現であるといえる。
【0065】
ステップS215において、出力態様決定機能26は、出力態様として言語表現を採用する。言語表現は、例えばテキストを含む文字である。言語表現は、言語型の人間にとって理解しやすい態様の表現であるといえる。
【0066】
ステップS216において、出力態様決定機能26は、出力態様として聴覚表現を採用する。聴覚表現は、例えば音声である。聴覚表現は、聴覚型の人間にとって理解しやすい態様の表現であるといえる。
【0067】
ステップS217において、出力態様決定機能26は、本ステップに至るまでに採用された表現を出力態様として決定する。例えば、ステップS212、S213、S214の順に処理が実行された場合、出力態様決定機能26は、肯定的表現及び視覚表現を出力態様として決定する。一方、ステップS212、S213、S215の順に処理が実行された場合、出力態様決定機能26は、肯定的表現及び言語表現を出力態様として決定する。一方、ステップS212、S213、S216の順に処理が実行された場合、出力態様決定機能26は、肯定的表現及び聴覚表現を出力態様として決定する。ステップS217の後、ステップS108が実行される。
【0068】
ステップS222において、出力態様決定機能26は、出力態様として否定的表現を採用する。換言すれば、出力態様決定機能26は、対象患者に対して行動経済学における「ネガティブフレーム」に則して情報を提示することを採用する。
【0069】
ステップS223において、出力態様決定機能26は、対象患者の認知特性が、視覚型、言語型、又は聴覚型であるかを判定する。ステップS223は、ステップS213と同様である。対象患者の認知特性が「視覚型」である場合、出力態様決定機能26はステップS224に進む。一方、対象患者の認知特性が「言語型」である場合、出力態様決定機能26はステップS225に進む。一方、対象患者の認知特性が「聴覚型」である場合、出力態様決定機能26はステップS226に進む。
【0070】
ステップS224において、出力態様決定機能26は、出力態様として視覚表現を採用する。ステップS224は、ステップS214と同様である。
【0071】
ステップS225において、出力態様決定機能26は、出力態様として言語表現を採用する。ステップS225は、ステップS215と同様である。
【0072】
ステップS226において、出力態様決定機能26は、出力態様として聴覚表現を採用する。ステップS226は、ステップS216と同様である。
【0073】
ステップS227において、出力態様決定機能26は、本ステップに至るまでに採用された表現を出力態様として決定する。例えば、ステップS222、S223、S224の順に処理が実行された場合、出力態様決定機能26は、否定的表現及び視覚表現を出力態様として決定する。一方、ステップS222、S223、S225の順に処理が実行された場合、出力態様決定機能26は、否定的表現及び言語表現を出力態様として決定する。一方、ステップS222、S223、S226の順に処理が実行された場合、出力態様決定機能26は、否定的表現及び聴覚表現を出力態様として決定する。ステップS227の後、ステップS108が実行される。
【0074】
以上のように、出力態様決定機能26は、対象患者の心理的特性に基づいて出力態様を決定する。上記のフローにおいて、出力態様決定機能26は、対象患者が「悲観型」である場合に肯定的表現を採用する。「悲観型」の対象患者は事実を悲観的に認知する傾向があるため、医用情報処理装置1は、肯定的表現により情報を提示することで、対象患者がさらに悲観するのを防ぎ、対象患者を励ますことができる。一方、出力態様決定機能26は、対象患者が「楽観型」である場合に否定的表現を採用する。「楽観型」の対象患者は事実を楽観的に認知する傾向があるため、医用情報処理装置1は、否定的表現により情報を提示することで、対象患者が事実を過小評価するのを防ぎ、対象患者に注意を促すことができる。
【0075】
また、前述のように、「視覚型」、「言語型」、及び「聴覚型」の対象患者はそれぞれ視覚情報、言語情報、及び聴覚情報をそれぞれ処理するのが得意である。医用情報処理装置1は、対象患者の認知特性に応じて適切な態様で情報を提示することで、対象患者が提示されたデータを容易に理解するのを支援することができる。
【0076】
なお、ステップS212とステップS222を入れ替えて、出力態様決定機能26は、対象患者の性格特性が「悲観型」である場合に、否定的表現を採用する一方、対象患者の性格特性が「楽観型」である場合に、肯定的表現を採用してもよい。このように、対象患者の性格特性ごとに、採用される表現が異なっていればよい。例えば「悲観型」に否定的表現で伝え、「楽観型」に肯定的に伝えることで、医用情報処理装置1は、同装置が対象患者に提示した選択肢を対象患者が選択する尤度を下げる、ということも可能である。
【0077】
また、上記のフローにおいて、ステップS201における「対象患者の性格特性の判定」と、ステップS213又はS223における「対象患者の認知特性の判定」とは、いずれか一方のみが実行されてもよい。また、後者の判定が前者の判定よりも先に実行されてもよい。
【0078】
ステップS108において、医用情報処理装置1は、分析されたデータを決定された出力態様で出力する。具体的には、出力部13は、ステップS104で分析されたデータを、ステップS107で決定された出力態様で出力する。また、出力部13は、当該分析されたデータを含む支援情報4を、表示部30に出力する。具体的には、支援情報4は、ステップS102において特定された対象患者の心理的特性に関する情報と、ステップS103において抽出された類似患者群に関する情報と、ステップS104において分析された類似患者群に関する治療情報と、ステップS105において生成された比較情報と、ステップS106において算出された類似度とを含む。
【0079】
ステップS109において、医用情報処理装置1は、出力された支援情報4を表示する。具体的には、表示部30は、出力部13から出力された支援情報4を表示する。前述の通り、表示された支援情報4は、医用情報処理装置1を利用するユーザにより確認される。
【0080】
図10は、表示された支援情報4の一例を示す図である。
図10(a)-図10(c)は、対象患者が「悲観型」であると判定された後、当該対象患者が「視覚型」、「言語型」、又は「聴覚型」であると判定されたそれぞれの場合における支援情報4の出力態様を示す。すなわち、図10(a)は、図9においてステップS212、S213、S214の順に処理が実行された場合における、肯定的表現及び視覚表現による出力態様である。一方、図10(b)は、図9においてステップS212、S213、S215の順に処理が実行された場合における、肯定的表現及び言語表現による出力態様である。一方、図10(c)は、図9においてステップS212、S213、S216の順に処理が実行された場合における、肯定的表現及び聴覚表現による出力態様である。
【0081】
図10(a)は、ブロック331、ピクトグラム332、テキスト333を含む。ブロック331は、対象患者の心理的特性として「悲観型-視覚型」を示す。ピクトグラム332は、類似患者群の分析結果である治療情報に対応するテキスト333を視覚的に表現する。具体的には、ピクトグラム332は、テキスト333に表される「化学療法で90%の人は生存する」という旨を、10人のうち9人の棒人間を、残り1人の棒人間とは異なる態様で強調することで表現する。なお、テキスト333は、治療情報を肯定的に表現する。テキスト333は、図6に示す分析表400の「生存率」に関する治療情報に対応する。
【0082】
図10(b)は、ブロック341、描画ツール342、テキスト343を含む。ブロック341は、対象患者の心理的特性として「悲観型-言語型」を示す。描画ツール342は、医用情報処理装置1のユーザにより操作される描画機能であり、ユーザは描画ツール342を介して表示部30の画面上に任意の図形や文字を描画することができる。テキスト343は、治療情報を言語的に表現したものである。テキスト343は、テキスト333と同様である。
【0083】
図10(c)は、ブロック351、音声マーク352、テキスト353を含む。ブロック351は、対象患者の心理的特性として「悲観型-聴覚型」を示す。音声マーク352は、テキスト353に対応する音声が再生されていることを示す。具体的には、音声マーク352は、「化学療法で90%の人は生存する」という音声が医用情報処理装置1により再生されていることを示す。もちろん、ユーザが入力部12を介して音声マーク352を選択した際に、上記の音声が再生されてもよい。テキスト353は、テキスト333と同様である。
【0084】
図10(d)-図10(f)は、対象患者が「楽観型」であると判定された後、当該対象患者が「視覚型」、「言語型」、又は「聴覚型」であると判定されたそれぞれの場合における支援情報4の出力態様を示す。すなわち、図10(d)は、図9においてステップS222、S223、S224の順に処理が実行された場合における、否定的表現及び視覚表現による出力態様である。一方、図10(e)は、図9においてステップS222、S223、S225の順に処理が実行された場合における、否定的表現及び言語表現による出力態様である。一方、図10(f)は、図9においてステップS222、S223、S226の順に処理が実行された場合における、否定的表現及び聴覚表現による出力態様である。
【0085】
図10(d)は、ブロック361、ピクトグラム362、テキスト363を含む。ブロック361は、対象患者の心理的特性として「楽観型-視覚型」を示す。ピクトグラム362は、類似患者群の分析結果である治療情報に対応するテキスト363を視覚的に表現する。具体的には、ピクトグラム362は、テキスト363に表される「化学療法で10%の人は死亡する」という旨を、10人のうち1人の棒人間を、残り9人の棒人間とは異なる態様で強調することで表現する。なお、テキスト363は、治療情報を否定的に表現する。テキスト363は、図6に示す分析表400の「生存率」に関する治療情報に対応する。
【0086】
図10(e)は、ブロック371、描画ツール372、テキスト373を含む。ブロック371は、対象患者の心理的特性として「楽観型-言語型」を示す。描画ツール372は、描画ツール342と同様である。テキスト373は、テキスト363と同様である。
【0087】
図10(f)は、ブロック381、音声マーク382、テキスト383を含む。ブロック381は、対象患者の心理的特性として「楽観型-聴覚型」を示す。音声マーク382は、テキスト383に対応する音声が再生されていることを示す。具体的には、音声マーク382は、「化学療法で10%の人は死亡する」という音声が医用情報処理装置1により再生されていることを示す。もちろん、ユーザが入力部12を介して音声マーク382を選択した際に、上記の音声が再生されてもよい。テキスト383は、テキスト363と同様である。
【0088】
以上のように、医用情報処理装置1は、対象患者の心理的特性に応じた出力態様で、支援情報4を提示する。もちろん、医用情報処理装置1はテキスト、図、動画、音声、描画ツールの全てを提供し、対象患者が提供された情報の方式のうち所望の方式を選択してもよい。なお、医用情報処理装置1は、対象患者の心理的特性に基づいて肯定的表現及び否定的表現のうちいずれを使用するかを選択する際に、以下に示す表現対応表700を利用すればよい。
【0089】
図11は、肯定的表現及び否定的表現の対応関係の一例を示す図である。
図11において、肯定的表現と、当該表現に対応する否定的表現とのペアを複数格納する表現対応表700が示される。例えば、表現対応表700は、ペアaとして「90%の人は生存する」及び「10%の人は死亡する」を有する。図10におけるテキスト333及びテキスト363は、ペアaに基づいて選択される。
【0090】
図12は、第1実施形態に係る医用情報処理装置1のハードウェア構成例を示す図である。
医用情報処理装置1は、処理回路51、メモリ52、ディスプレイ53、入力インタフェース54、及び通信インタフェース55を含む。各構成は、共通の信号伝送路であるバスを介して互いに通信可能に接続される。なお、各構成は個々のハードウェアにより実現されなくともよい。例えば、各構成のうち少なくとも2つが1つのハードウェアにより実現されてもよい。
【0091】
処理回路51は、医用情報処理装置1を制御することで種々の動作を実行させる。処理回路51は、ハードウェアとしてCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサを有する。処理回路51は、プロセッサを介してメモリ52に展開されたプログラムを実行することで、各プログラムに対応する各機能を実現する。なお、各機能は単独のプロセッサから成る処理回路51により実現されなくともよい。例えば、各機能は複数のプロセッサを組み合わせた処理回路51により実現されてもよい。処理回路51は、データ処理部20の一例である。処理回路51は、患者特性特定機能21、類似患者群抽出機能22、類似患者群分析機能23、比較情報生成機能24、類似度計算機能25、及び出力態様決定機能26を実行する。
【0092】
メモリ52は、処理回路51が使用するデータやプログラム等の情報を記憶する。メモリ52は、ハードウェアとしてRAM(Random Access Memory)等の半導体メモリ素子を有する。なお、メモリ52は、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスク)、光磁気ディスク(MO)、光学ディスク(CD、DVD、Blu-ray(登録商標))、フラッシュメモリ(USBフラッシュメモリ、メモリカード、SSD)、磁気テープ等の外部記憶装置との間で情報を読み書きする駆動装置であってもよい。なお、メモリ52の記憶領域は、医用情報処理装置1内部にあってもよいし、外部記憶装置にあってもよい。メモリ52は、処理回路51が実行する各機能(患者特性特定機能21、類似患者群抽出機能22、類似患者群分析機能23、比較情報生成機能24、類似度計算機能25、及び出力態様決定機能26)に対応する各プログラム、対象患者データ2、過去患者データ3、及び支援情報4を記憶してもよい。
【0093】
ディスプレイ53は、処理回路51が生成したデータやメモリ52に格納されるデータなどを表示する。ディスプレイ53として、例えば、ブラウン管(CRT:Cathode Ray Tube)ディスプレイ、液晶ディスプレイ(LCD:Liquid Crystal Display)、プラズマディスプレイ、有機ELディスプレイ(OELD:Organic Electro-Luminescence Display)、及びタブレット端末等のディスプレイが使用可能である。ディスプレイ53は、表示部30の一例である。
【0094】
入力インタフェース54は、医用情報処理装置1を利用するユーザからの入力を受け付け、受け付けた入力を電気信号に変換して処理回路51に出力する。入力インタフェース54として、マウス、キーボード、トラックボール、スイッチ、ボタン、ジョイスティック、タッチパッド、タッチパネルディスプレイ等の物理的な操作部品が使用可能である。なお、入力インタフェース54は、医用情報処理装置1とは別体である外部の入力装置から入力を受け付け、受け付けた入力を電気信号に変換して処理回路51に出力する装置であってもよい。入力インタフェース54は、入力部12の一例である。
【0095】
通信インタフェース55は、外部装置との間でデータを通信する。通信インタフェース55は、取得部11及び出力部13の一例である。なお、以上に述べた医用情報処理装置1が行う処理は、特定の医療機関内で実行されてもよいし、クラウド上で実行されてもよい。例えば、クラウド上に設置された医用情報処理装置1が、対象患者が有する端末又は医療機関からネットワークを介して受信した対象患者データ2に対して、上述したデータの分析処理及び出力態様の決定処理などの情報処理を行い、その処理結果である支援情報4を端末又は医療機関に返してもよい。すなわち、医用情報処理装置1が外部のサーバに組み込まれることで、上記のクラウドサービスが実現されてもよい。
【0096】
(変形例)
なお、医用情報処理装置1は、対象患者に類似する類似患者に関する種々の情報のみならず、対象患者にとっての標準治療を提示してもよい。例えば、医用情報処理装置1が、対象患者の疾患に関する標準治療が記載された診療ガイドラインを参照することで、当該標準治療に関する情報を提示してもよい。これにより、対象患者は、類似患者が選択した治療法とともに、自身にとって標準的な治療法を確認することができる。
【0097】
なお、医用情報処理装置1は、対象患者の社会的特性に基づいて支援情報4を提示してもよい。例えば、対象患者の社会的特性として対象患者の学歴が閾値以上であるか否かに応じて、支援情報4の出力態様として数値を図式化するか否かと、漢字に読み仮名を付けるか否かとのうち少なくとも一つを判定して決定してもよい。このとき、例えば学歴が「中学生」であるとは、対象患者が中学生である場合も含むし、実際には中学生でなくとも、教育水準が中学生レベルである場合も含むものとする。もちろん、動画などの手段により支援情報4が提示されてもよい。これにより、対象患者の教育水準に応じて適切な態様で情報が提示されるため、対象患者は、提示された情報を容易に理解することができる。
【0098】
なお、医用情報処理装置1は、対象患者とAIとの間で行われた問診に関する対話データに対して、形態素解析、構文解析、意味解析、及び文脈解析を用いる既存の自然言語処理を適用することで、当該対話データから対象患者が知りたい類似患者の特性に関する情報を取得してもよい。ひいては、医用情報処理装置1は、当該情報に基づいて類似患者群を抽出してもよい。
【0099】
以上説明した第1実施形態によれば、医用情報処理装置1は、患者の生物的要因、社会的要因、及び心理的要因を考慮しつつ、当該患者と類似する他の患者たちが選択した治療に関するデータを分析した情報を、当該患者に提示する。また、医用情報処理装置1は、患者の生物的特性、社会的特性、又は心理的特性に則した適切な態様で、当該情報を当該患者に提示する。これにより、患者は、自身と類似する背景を持つ他の患者たちがどのような選択をしたかに関する情報を、共感を持って、患者が理解しやすい形式で参照することができる。また、患者は自身の疾患への理解を深めることができる。すなわち、医用情報処理装置1は、患者、患者の家族、及び医療従事者が、従来よりも納得し、後悔の少ない臨床上の意思決定をするのを支援することができる。
【0100】
また、医用情報処理装置1が提供する生物社会心理的モデルによる臨床上の意思決定支援技術により、患者に関する種々の要因を総合的に考慮した全人的医療の実践が推進される。これにより、医用情報処理装置1は、生物医学モデルでは解決できない問題解決の支援をすることができる。
【0101】
さらに、患者は、自身が陥っている状況に近い状況にある他の患者たちの意思決定を参照することで、自身が罹患している疾患に関する知恵を獲得することができる。すなわち、医用情報処理装置1は、患者や患者の家族に疾患に向き合うための情報や精神的な支えを提供することができる。
【0102】
(第2実施形態)
図13は、第2実施形態に係る医用情報処理システム100の構成例を示す図である。
医用情報処理システム100は、医療に関する種々の情報を処理するシステムである。医用情報処理システム100は、医用情報処理装置1、患者端末5、過去患者DB6、及びサーバ7を含む。本実施形態において、医用情報処理装置1は、患者端末5、過去患者DB6、及びサーバ7と通信可能に接続される。また、患者端末5は、サーバ7と通信可能に接続される。
【0103】
患者端末5は、対象患者により操作される端末である。本実施形態において、対象患者は、患者端末5を介して対象患者データ2を医用情報処理装置1に送信する。なお、患者端末5に代えて、対象患者が所属する医療機関に設置された院内端末から、対象患者データ2が送信されてもよい。患者端末5は、種々の情報処理を実行可能な装置(例:ノートPC、タブレット端末、スマートフォン)であればよい。患者端末5は、携行可能であるのが望ましい。
【0104】
医用情報処理装置1は、医用情報処理システム100の機能的中心として働く。第2実施形態における医用情報処理装置1は、第1実施形態における医用情報処理装置1と同様であるため、その説明を省略する。本実施形態において、医用情報処理装置1は、患者端末5から対象患者データ2を取得したことを契機として、過去患者DB6にアクセスし、過去患者データ3を取得する。医用情報処理装置1は、対象患者データ2及び過去患者データ3に基づいて第1実施形態と同様な処理を行い、支援情報4をサーバ7に出力する。
【0105】
過去患者DB6は、過去患者データ3を格納する。過去患者DB6は、種々の医療機関や研究機関に設置されたデータベースであってもよい。過去患者DB6は、複数あってもよい。なお、過去患者DB6は、サーバ7に搭載されてもよい。
【0106】
サーバ7は、医用情報処理装置1から送信された支援情報4を記憶する。サーバ7は、支援情報4を記憶するための記憶領域を有する。また、サーバ7は、任意のタイミングで支援情報4を患者端末5に送信する。例えば、サーバ7は、患者端末5からアクセスされたタイミングで、支援情報4を患者端末5に送信してもよい。
【0107】
以上説明した第2実施形態によれば、医用情報処理システム100において、患者端末5から送信された対象患者データ2と、過去患者DB6から取得された過去患者データ3に対する情報処理を、医用情報処理装置1が専門的に行う。また、医用情報処理システム100において、情報処理の結果である支援情報4をサーバ7が記憶し、サーバ7は、支援情報4を患者端末5に送信する。これにより、医用情報処理システム100は、任意の場所に存在する患者端末5に対して支援情報4を提供することができる。なお、医用情報処理装置1が支援情報4を記憶し、患者端末5に送信してもよい。
【0108】
以上説明した少なくとも1つの実施形態によれば、患者の治療法の選択を支援することができる。
【0109】
いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0110】
1 医用情報処理装置
2 対象患者データ
3 過去患者データ
4 支援情報
5 患者端末
6 過去患者DB
7 サーバ
10 インタフェース部
11 取得部
12 入力部
13 出力部
20 データ処理部
21 患者特性特定機能
22 類似患者群抽出機能
23 類似患者群分析機能
24 比較情報生成機能
25 類似度計算機能
26 出力態様決定機能
30 表示部
51 処理回路
52 メモリ
53 ディスプレイ
54 入力インタフェース
55 通信インタフェース
100 医用情報処理システム
210 棒グラフ
211 バー
220 円グラフ
230 レーダーチャート
310 散布図
311,321 ラベル
320 拡大図
322 エリア
331,341,351,361,371,381 ブロック
332,362 ピクトグラム
333,343,353,363,373,383 テキスト
342,372 描画ツール
352,382 音声マーク
400 分析表
500 比較表
600 類似度表
700 表現対応表
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13