(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022140949
(43)【公開日】2022-09-29
(54)【発明の名称】X線検査装置およびX線検査方法
(51)【国際特許分類】
G01N 23/046 20180101AFI20220921BHJP
【FI】
G01N23/046
【審査請求】未請求
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2021041046
(22)【出願日】2021-03-15
(71)【出願人】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(74)【代理人】
【識別番号】110002860
【氏名又は名称】特許業務法人秀和特許事務所
(72)【発明者】
【氏名】七呂 真
(72)【発明者】
【氏名】笠原 啓雅
【テーマコード(参考)】
2G001
【Fターム(参考)】
2G001AA01
2G001BA11
2G001CA01
2G001DA09
2G001HA14
2G001JA01
2G001LA11
2G001SA13
2G001SA29
2G001SA30
(57)【要約】
【課題】X線検査装置における検査対象や装置内部材の被曝量を低減できる技術を提供する。
【解決手段】X線源(10)と、X線源のX線照射を制御するX線源制御部と、X線カメラ(20)と、検査対象を保持する保持部(40)を備え、X線源とX線カメラと保持部のいずれかが、旋回部(10、20、40)として旋回運動してX線画像を撮影し、検査対象を検査するX線検査装置であり、旋回部は、複数の場所で順次旋回運動し、一の旋回円から次の旋回円へ移動運動を行い、旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを所定時間で移動するように、次の旋回開始点及び、旋回終了点と旋回開始点とを結ぶ特定移動軌跡を決定する軌跡算出部を(111b)さらに備え、X線源制御部(105)は、所定時間の中の少なくとも一部において、X線源からのX線の照射を停止し、または照射量を低減する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
検査対象に照射するX線を発生するX線源と、
前記X線源からのX線の照射を制御するX線源制御部と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを、所定時間で移動するように、前記次の旋回運動の旋回開始点及び、前記一の旋回運動の旋回終了点と前記次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定する軌跡算出部をさらに備え、
前記X線源制御部は、前記所定時間の中の少なくとも一部の時間において、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、X線検査装置。
【請求項2】
前記X線源制御部は、前記X線源における管電流及び管電圧の少なくとも一方を停止あるいは低減することで、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項1に記載のX線検査装置。
【請求項3】
前記X線源制御部は、前記所定時間が、前記X線源における管電流及び管電圧の少なくとも一方が停止あるいは低減した状態から使用可能な状態に回復する昇圧時間より長い場合に、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項2に記載のX線検査装置。
【請求項4】
前記X線源制御部は、前記X線源のX線照射口を遮蔽することで、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項1に記載のX線検査装置。
【請求項5】
前記次の旋回運動の旋回開始点は、前記次の旋回運動の旋回円上に配置するように設定された複数の候補点のうち、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、前記特定移動軌跡に沿って、前記一の旋回運動の旋回円から前記次の旋回運動の旋回円まで最短の移動時間で移動可能な点として算出されることを特徴とする、請求項1から4のいずれか一項に記載のX線検査装置。
【請求項6】
前記特定移動軌跡は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度または、線速度及び加速度または、線速度、加速度及び躍度が連続となる軌跡であることを特徴とする、請求項1から5のいずれか一項に記載のX線検査装置。
【請求項7】
前記特定移動軌跡は、多項式として、または三角関数に対して媒介変数を用いて算出されることを特徴とする、請求項1から5のいずれか一項に記載のX線検査装置。
【請求項8】
前記旋回部は、前記X線源と前記X線カメラであり、前記保持部はX線検査装置内の所定位置に保持されることを特徴とする、請求項1から7のいずれか一項に記載のX線検査装置。
【請求項9】
検査対象に照射するX線を発生するX線源と、
前記X線源からのX線の照射を制御するX線源制御部と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置を用いたX線検査方法であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを、所定時間で移動可能なように、前記次の旋回運動の旋回開始点及び、前記一の旋回運動の旋回終了点と前記次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定し、
前記所定時間の中の少なくとも一部の時間において、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、X線検査方法。
【請求項10】
前記X線源における管電流または管電圧の少なくとも一方を停止あるいは低減することで、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項9に記載のX線検査方法。
【請求項11】
前記X線源制御部は、前記所定時間が、前記X線源における管電流または管電圧の少なくとも一方が停止あるいは低減した状態から使用可能な状態に回復する昇圧時間より長い場合に、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項10に記載のX線検査方法。
【請求項12】
前記X線源のX線照射口を遮蔽することで、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項9に記載のX線検査方法。
【請求項13】
前記次の旋回運動の旋回開始点は、前記次の旋回運動の旋回円上に配置するように設定された複数の候補点のうち、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、前記特定移動軌跡に沿って、前記一の旋回運動の旋回円から前記次の旋回運動の旋回円まで最短の移動時間で移動可能な点として算出されることを特徴とする、請求項9から12のいずれか一項に記載のX線検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査対象のX線画像を複数取得して3次元データを作成するX線検査装置に関する。
【背景技術】
【0002】
従前より、基板表面等の検査対象のX線画像を複数の方向から撮影し、撮影された複数のX線画像から3次元データを作成し、検査箇所の内部構造の検査を行う技術がある。この例としては、トモシンセシスやCTなどの技術を挙げることができる。この技術においては、検査対象の検査箇所に対して、X線源からX線を照射し、透過したX線をX線カメラで撮影する。そして、X線源、検査対象、X線カメラの位置関係を相対的に変化させつつ複数枚のX線画像を撮影する。
【0003】
その際、X線源、検査対象、X線カメラの少なくともいずれかを旋回運動させることにより互いの相対位置を変化させ、一回の旋回運動が終わり当該検査箇所の撮影が終わると、次の検査箇所を撮影するための撮影位置へ移動運動を行い、さらに旋回運動させる。よって、検査対象の検査時間を短縮するためには、上記した旋回運動と移動運動とを効率的に行う必要がある。ここで、旋回運動とは、等速で円旋回する運動を示し、円旋回の前の加速助走運動や、円旋回の後の減速制動運動を含まない。一方、移動運動は、旋回円から次の旋回円に移動する運動を示す。例えば、移動運動に係る運動距離は旋回円間の移動距離となる。
【0004】
また、従来は、検査対象の検査時間を短縮するために、X線画像の撮影中は連続で画像を取り込む連続撮像方式を採用していた。そのためにはX線源は、実際に画像を取得している以外の動作においても連続照射していた。そのため、検査対象やX線カメラに対しても不要な被曝をさせる場合があった。一方、近年の電子部品などは被曝量が許容範囲を超えると故障することがわかっており、基板上に実装されるSoPやBGAなど高性能化したチップにおいても、メーカのデータシートで被曝量が制約される場合が増加している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011-209054号公報
【特許文献2】特開2013-247228号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、X線検査装置における検査対象や装置内部材の被曝量を低減できる技術を提供することである。
【課題を解決するための手段】
【0007】
上記の課題を解決するための本発明は、検査対象に照射するX線を発生するX線源と、
前記X線源からのX線の照射を制御するX線源制御部と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを、所定時間で移動可能なように、前記次の旋回運動の旋回開始点及び、前記一の旋回運動の旋回終了点と前記次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定する軌跡算出部をさらに備え、
前記X線源制御部は、前記所定時間の中の少なくとも一部の時間において、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、X線検査装置である。
【0008】
すなわち、本発明におけるX線検査装置においては、X線源と、X線カメラと、保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ検査箇所のX線画像を撮影して、該検査箇所の3次元画像を取得して検査する。そして、旋回部は、複数の検査箇所について3次元画像を取得するために、異なる場所において順次旋回運動を行う。また、旋回部は、各旋回運動中と、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行う。
【0009】
そして、その際、旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを所定時間で移動可能なように、軌道算出部が、次の旋回運動の旋回開始点及び、一の旋回運動の旋回終了点と次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定する。これにより、旋回部の移動運動は時間基準で管理されることになる。
【0010】
さらに、本発明においては、X線源制御部は、上述の所定時間の中の少なくとも一部の時間において、X線源からのX線の照射を停止し、または照射量を低減する。すなわち、旋回部が移動運動を行う時間中の少なくとも一部の時間において、X線源からのX線の照射が停止され、または照射量が低減される。これにより、旋回部の移動運動中の不要なX線照射を抑制することができ、検査対象や装置内の部材の被曝量を低減することができる。
【0011】
また、本発明においては、前記X線源制御部は、前記X線源における管電流または管電圧の少なくとも一方を停止あるいは低減することで、前記X線源からのX線の照射を停止し、または照射量を低減してもよい。ここで、X線源のX線照射量を制御する場合に、X線源の管電流を制御する場合と管電圧を制御する場合が考えられる。このいずれを制御してもX線源のX線照射量を良好に制御できるため、本発明においては、管電流または管電圧の少なくとも一方を制御することとした。これによれば、より簡単な制御で、X線源のX線の照射を停止し、または照射量を低減することが可能である。なお、管電流を制御する場合は、管電圧を制御する場合と比較して、X線の照射を停止し、または照射量を低減した後に、X線源が使用可能な状態まで回復(昇圧)させるのに必要な時間が短いことが分かっている。
【0012】
従って、本発明においては、X線源制御部は、X線源における管電流を停止あるいは低減することで、X線源からのX線の照射を停止し、または照射量を低減することとしてもよい。これによれば、X線源からのX線の照射を停止し、または照射量を低減した後に、より短時間でX線源を使用可能な状態にまで回復させることができる。その結果、移動運動に係る所定時間中において、より長い時間、X線源からのX線の照射を停止し、または照射量を低減することが可能となる。よって、より効果的に、検査対象や装置内の部材の被曝量を低減することができる。
【0013】
また、本発明においては、前記X線源制御部は、前記所定時間が、前記X線源における管電流または管電圧の少なくとも一方が停止あるいは低減した状態から使用可能な状態に
回復する昇圧時間より長い場合に、前記X線源からのX線の照射を停止し、または照射量を低減するようにしてもよい。
【0014】
これによれば、X線源が移動運動中(すなわち、所定時間中)に、X線の照射を停止し、または照射量を低減した状態からX線源が使用可能な状態に回復できないという状況を、より確実に防止できる。その結果、旋回部が旋回運動を開始時する際に、X線源が使用可能な状態でないことによる、検査時間の増加や検査精度の低下を防止することができる。
【0015】
また、本発明においては、前記X線源制御部は、前記X線源のX線照射口を遮蔽することで、前記X線源からのX線の照射を停止し、または照射量を低減するようにしてもよい。これによれば、X線源制御部が、X線源のX線照射口を遮蔽し、あるいは遮蔽を解除するだけで、X線源からのX線の照射を停止しまたは照射量を低減する状態と、X線源が使用可能な状態とを、即時に切換えることができる。これによれば、X線源が移動運動中(すなわち、所定時間中)に、より長い時間、X線源からのX線の照射を停止し、または照射量を低減することが可能となる。
【0016】
また、本発明においては、前記次の旋回運動の旋回開始点は、前記次の旋回運動の旋回円上に配置するように設定された複数の候補点のうち、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、前記特定移動軌跡に沿って、前記一の旋回運動の旋回円から前記次の旋回運動の旋回円まで最短の移動時間で移動可能な点として算出されることとしてもよい。
【0017】
これによれば、旋回部が一の旋回運動の旋回終了点から次の旋回運動の旋回開始点に移動する際に、次の旋回運動の旋回円上に配置された複数の候補点の中から、最短の移動時間で移動可能な旋回開始点を選択することができる。その結果、より確実に、旋回部が一の旋回運動の旋回終了点から次の旋回運動の旋回開始点に早期に移動することが可能となる。その結果、より確実に、X線検査装置における検査対象の検査時間を短縮することが可能となる。ここで、旋回部(X線源と、X線カメラと、保持部のうち、旋回運動するもの)は、移動運動時には次の旋回運動の旋回開始点に同着するように制御される。そして、上記における最短の移動時間とは、例えば旋回部であるX線源とX線カメラとが、次の旋回運動の旋回開始点に同着するような移動時間の時間候補を各候補点について算出し、算出された時間候補の中で、最も早い移動時間である。
【0018】
また、本発明においては、前記特定移動軌跡は、前記旋回終了点および/または前記旋回開始点において前記旋回部の線速度または、線速度及び加速度または、線速度、加速度及び躍度が連続となる軌跡であることとしてもよい。
【0019】
すなわち、本発明の特定移動軌跡においては、旋回終了点および/または旋回開始点において旋回部の線速度が連続となることが要求される。そして、線速度及び加速度が連続であることが望ましい。また、線速度、加速度及び躍度が連続であることが理想である。これによれば、旋回運動から移動運動へ、または移動運動から旋回運動へ移行する際に旋回部に作用する加速や衝撃を緩和することができる。その結果、検査時間をより短縮することが可能となる。ここにおいても上述のとおり、旋回運動とは、等速で円旋回する運動を示し、円旋回の前の加速助走運動や、円旋回の後の減速制動運動を含まない。一方、移動運動は、旋回円から次の旋回円に移動する運動を示す。
【0020】
また、本発明においては、前記特定移動軌跡は、多項式として、または三角関数に対して媒介変数を用いて算出されるようにしてもよい。これによれば、特定移動軌跡を一般的な数学的解法により取得することが可能である。なお、前記特定移動軌跡は、その他の数
式によって定義されてもよく、特に制限されない。
【0021】
また、本発明においては、前記旋回部は、前記X線源と前記X線カメラであり、前記保持部はX線検査装置内の所定位置に保持されるようにしてもよい。この場合には、検査対象を固定し、検査対象の上下においてX線カメラとX線源に旋回運動と移動運動を行わせることで検査を行うことができ、X線検査装置内における非検査物の移動機構、搬入機構等を単純化することが可能である。
【0022】
また、本発明は、検査対象に照射するX線を発生するX線源と、
前記X線源からのX線の照射を制御するX線源制御部と、
前記X線源から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラと、
前記検査対象を保持する保持部と、を備え、
前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、旋回部として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置を用いたX線検査方法であって、
前記旋回部は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを、所定時間で移動可能なように、前記次の旋回運動の旋回開始点及び、前記一の旋回運動の旋回終了点と前記次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定し、
前記所定時間の中の少なくとも一部の時間において、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、X線検査方法であってもよい。
【0023】
また、本発明は、前記X線源における管電流または管電圧の少なくとも一方を停止あるいは低減することで、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、上記のX線検査方法であってもよい。
【0024】
また、本発明は、前記X線源制御部は、前記所定時間が、前記X線源における管電流または管電圧の少なくとも一方が停止あるいは低減した状態から使用可能な状態に回復する昇圧時間より長い場合に、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、請求項10に記載のX線検査方法であってもよい。
【0025】
また、本発明は、前記X線源のX線照射口を遮蔽することで、前記X線源からのX線の照射を停止し、または照射量を低減することを特徴とする、上記のX線検査方法であってもよい。
【0026】
また、本発明は、前記次の旋回運動の旋回開始点は、前記次の旋回運動の旋回円上に配置するように設定された複数の候補点のうち、前記旋回部である前記X線源と、前記X線カメラと、前記保持部のうちのいずれかが、前記特定移動軌跡に沿って、前記一の旋回運動の旋回円から前記次の旋回運動の旋回円まで最短の移動時間で移動可能な点として算出されることを特徴とする、上記のX線検査方法であってもよい。
【0027】
以上のように本発明は、上記手段の少なくとも一部を含むX線検査装置として捉えることができる。また、本発明は、上記手段が行う処理の少なくとも一部を含むX線検査方法として捉えることもできる。また、これらの方法の各ステップをコンピュータに実行させるためのコンピュータプログラムや、当該プログラムを非一時的に記憶したコンピュータ読取可能な記憶媒体として捉えることもできる。上記構成および処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
【発明の効果】
【0028】
本発明によれば、X線検査装置における検査対象や装置内部材の被曝量を低減することが可能となる。
【図面の簡単な説明】
【0029】
【
図1】本発明の実施例におけるX線検査装置の概要を示す図である。
【
図2】本発明の実施例におけるX線源またはX線カメラの旋回運動と移動運動の関係を示す図である。
【
図3】本発明1の実施例におけるX線源またはX線カメラの旋回運動と移動運動の軌跡の例を示す図である。
【
図4】本発明の実施例における低被曝制御と、X線源またはX線カメラの旋回運動と移動運動の関係を示す図である。
【
図5】本発明の実施例2における次の旋回運動の旋回開始点を決定するする方法について説明するための図である。
【
図6】本発明の実施例2におけるX線源及びX線カメラの制御を示すフローチャートである。
【
図7】本発明の実施例2におけるX線源及びX線カメラの制御を示すフローチャートの続きである。
【
図8】本発明の実施例に2おけるX線源及びX線カメラの制御を示すフローチャートの続きである。
【
図9】本発明の実施例2におけるX線源及びX線カメラの制御を示すフローチャートの続きである。
【
図10】本発明の実施例2における低被曝制御の効果を示すグラフである。
【
図11】本発明の実施例3における次の旋回運動の旋回開始点を決定する方法について説明するための図である。
【
図12】本発明におけるX線検査装置の別例を示す図である。
【発明を実施するための形態】
【0030】
〔適用例〕
以下に本発明の適用例について一部の図面を用いて説明する。本発明は
図1に示すようなX線検査装置1に適用される。X線検査装置1では、X線源10から検査対象SにX線を照射し、透過量によるX線画像をX線カメラ20によって撮影する。X線源10およびX線カメラ20はそれぞれ旋回円121,122上を旋回運動し、軌跡上の複数の位置において検査対象SのX線画像の撮影を行う。その後、別の検査箇所を検査するために、X線源10、X線カメラ20はともに、次の旋回円まで移動運動を行い、さらに旋回円上を旋回運動しつつX線画像の撮影を行う。
【0031】
ここで、X線源10、X線カメラ20が旋回運動から移動運動に移行する場合には、
図2(a)に示すように、一旦停止する停止区間が設けられていた。これに伴い、旋回運動の前後において旋回円上の加速運動及び減速運動が追加されていた。本適用例では、
図2(b)に示すように、X線源10、X線カメラ20が旋回運動から移動運動に移行する場合の停止区間を無くした。これにより、余分な停止状態や余分な旋回運動が省略され、X線源10、X線カメラ20がより迅速に旋回円から次の旋回円に移動することが可能となる。
【0032】
また、本適用例では、
図3に示すように、n回目の旋回円122n(122a)からn+1回目の旋回円122n+1(122b)に移動する際の移動運動の軌跡として、n回目の旋回円122nとn+1回目の旋回円122n+1とを、旋回終了点と旋回開始点において滑らかに結び、最短の時間で移動可能な軌跡を用いることとした。これにより、X線源10、X線カメラ20に過度な加速度や衝撃を与えることなく、より迅速に移動する
ことが可能となる。なお、上記の、旋回終了点と旋回開始点において滑らかに結び、最短の時間で移動可能な軌跡は、後述のように、X線源10及び/またはX線カメラの線速度、軸速度、加速度及び移動範囲が、許容値を超えない(オーバーリミットにならない)範囲内のものである必要がある。
【0033】
さらに、本適用例では、
図4(b)に示したように、n回目の旋回運動からn+1回目の旋回運動に移行する際の、実際に画像を取得している動作以外の動作である移動運動に係る移動時間中の少なくとも一部について、低被曝制御を行うこととした。この低被曝制御は、X線源10からのX線照射をOFFにするか、X線照射量を低減する制御である。この制御によれば、X線源10からの不要なX線照射を低減することができ、検査対象Sは当然、X線カメラ20をはじめとする、X線検査装置1内の部材における被曝量も低減
することが可能である。
【0034】
なお、本適用例における低被曝制御は、
図3に示したような、n回目の旋回円122n(122a)における旋回終了点と、n+1回目の旋回円122n+1(122b)における旋回開始点が予め固定されている場合の他、移動時間が最短になるように都度、n+1回目の旋回円122n+1(122b)における旋回開始点を決める場合にも適用可能である。
【0035】
その場合には、
図4に示すような方法で、n+1回目の旋回円122n+1における旋回開始点を決定してもよい。より具体的には、n+1回目の旋回円122n+1上に配置された例えばm個(mは所定の整数)の候補点を設定する。その際、n+1回目の旋回円122n+1においてX線カメラ20が時計回りに旋回する場合と、反時計回りに旋回する場合とを想定する。
【0036】
そして、この時計回りの場合と反時計回り場合の合計2m個(mの2倍)の候補点につ
いて、n回目の旋回円122nにおける旋回終了点とn+1回目の旋回円122n+1における旋回開始点とを滑らかに結び最短の時間で移動可能な曲線を求め、移動時間を算出する。そして、移動時間が最短となる候補点をn+1回目の旋回円122n+1における旋回開始点とする。これにより、n回目の旋回円122nにおける旋回終了点とn+1回目の旋回円122n+1における旋回開始点の間の移動時間をより確実に最短とし、検査時間の短縮を図ることが可能である。
【0037】
以下に各図面(上記の適用例で一旦説明した図も含む)を順次参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている具体的構成は、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0038】
〔実施例1〕
本発明の実施例1に係るX線検査装置は、例えば、プリント基板にはんだ付けされた電子部品のはんだ付け状態やボールグリッドアレイ(BGA)のバンプ等の良否判定をする装置である。より具体的には、X線源と検査対象とを相対的に移動させて複数回のX線撮影を行い、検査対象場所の内部の状態を取得し、適切な位置での断面画像を生成して、当該断面画像に基づいて良否を検査する。
【0039】
<装置構成>
図1には、本発明の実施例1に係るX線検査装置1における、X線源10、検査対象Sを保持する保持部40、X線カメラ20の配置図を示す。X線検査装置1においては、搬送ローラ(不図示)によって搬送され保持部40に保持される検査対象Sにおける各検査箇所について、複数の撮影位置においてX線画像を撮影して3次元データを取得する。具
体的には、X線源10から検査対象SにX線を照射し、透過光によるX線画像をX線カメラ20によって撮影する。X線源10、X線カメラ20はともに、ステージ(不図示)によって移動可能である。X線源10およびX線カメラ20はこれらのステージによってそれぞれ旋回円121,122上を移動し、旋回円上の複数の位置において撮影が行われる。
【0040】
X線検査装置1における各部の制御は制御部100からの制御信号に基づいて行われる。X線検査装置1は、制御部100として、カメラ用XYステージ制御部101、カメラ制御部102、X線源用XYステージ制御部107を備える。加えて、高さ計測部103、検査対象位置制御部104、X線源制御部105、撮像高さ制御部106を備える。さらに、X線検査装置1は、演算部111、主記憶部112、補助記憶部113、入力部114、出力部115を備える。
【0041】
カメラ用XYステージ制御部101は、カメラ用XYステージ(不図示)を駆動しX線カメラ20の水平方向の移動を行うための制御信号を送信する。カメラ制御部102は、X線カメラ20によるX線画像の撮影を行うための制御信号を送信する。高さ計測部103は、変位計30からの信号を受信して検査対象Sの被検箇所の高さを計測する。検査対象位置制御部104は、搬送ローラ及び検査対象Sの保持部40に制御信号を送信し検査対象Sの水平方向位置及び鉛直方向位置を撮影に最適な位置に制御する。
【0042】
X線源制御部105は、X線源10によるX線の照射の開始、終了の他、X線強度を調整するための信号を送信する。撮像高さ制御部106は、X線源10及びX線カメラ20の高さ制御用の信号を送信する。X線源用XYステージ制御部107は、X線源用XYステージ(不図示)を駆動しX線源10の水平方向の移動を行うための信号を送信する。カメラ用XYステージ制御部101、カメラ制御部102、検査対象位置制御部104、X線源制御部105、撮像高さ制御部106、X線源用XYステージ制御部107から出力される信号は演算部111の演算結果及び、主記憶部112、補助記憶部113に記憶された情報に基づいて決定される。
【0043】
特に演算部111の撮像命令部111aは、カメラ制御部102を含む各部に対し、X線画像取得に必要な情報を送信する。また、軌跡算出部111bは、後述する手法により、X線源10やX線カメラ20が沿うべき軌跡を算出するとともに、旋回運動の旋回開始点を選択する。また、ユーザとの間の設定情報、検査結果等の情報の授受は、入力部114及び出力部115を介して行われる。
【0044】
X線カメラ20は、X線源10から照射され、検査対象Sを透過したX線を検出する2次元X線検出器である。X線カメラ20としては、I.I.(Image Intensifier)管や
、FPD(フラットパネルディテクタ)を用いることができる。ここでは1つのみのX線カメラ20が採用されているが、複数個のX線カメラを用いても構わない。
【0045】
変位計30は、検査対象Sまでの距離を、検査対象Sの複数の位置について計測する。したがって、変位計30によって検査対象Sの反りや傾きを計測することが可能である。検査対象Sの製造過程においては、反りや傾きが生じることがあり、その量は個体によって異なる。そこで、それぞれの検査対象Sの反りや傾きを計測して、保持部40の高さ位置を調整して適切なX線撮影が行えるようにする。保持部40は高さ位置を調整後、固定される。この保持部40が固定される位置は、本実施例における所定位置に相当する。
【0046】
以上の構成により、X線検査装置1は、様々な方向から基板を撮像できるように、X線源10とX線カメラ20の位置を制御することができる。本実施例では、このように様々な方向からの撮像結果を基に、CT(Computed Tomography)と呼ばれる3次元データ生
成手法を用いて、検査対象Sの被検箇所の3次元データを生成する。
【0047】
なお、演算部111としては、CPU(中央演算処理装置)と呼ばれる一般的な汎用演算装置を用いることができる。主記憶部112としてはRAMなどのメモリを用いることができる。補助記憶部113は、ROMやHDDなどを用いることができる。入力部114は、キーボード、ボタン、スイッチ、マウスなど、ユーザが演算部111に対して指示を入力可能な任意の装置である。出力部115は、ディスプレイ、スピーカなど、映像や音声等によって演算部111からの出力をユーザに提示可能な任意の装置である。
【0048】
すなわち、一般的なコンピュータシステムを用いて、これらの機能を実現することができる。補助記憶部113に格納されたプログラムを演算部111が読み込んで実行することにより、以下に示す、X線源10およびX線カメラ20の移動制御が行われる。なお、本実施例における演算部111は、並列演算が可能であり、複数のCPUを含んでいてもよいし、一つのCPU中に複数の並列演算機能を含んでいてもよい。
【0049】
ここで、
図1に示すように、X線源10およびX線カメラ20は、X線源用XYステージ制御部107及びカメラ用XYステージ制御部101からの制御信号に基づいて、それぞれ旋回円121,122上を移動し、軌跡上の複数の位置においてX線画像の撮影が行われる。そして、検査対象S上の各検査箇所に対して旋回円121、122上を旋回運動することで、当該検査箇所の3次元画像の作成が可能となる。そして、検査対象Sの検査を行う場合には、検査箇所の位置が複数あるために、X線源10およびX線カメラ20は一回の360度に亘る旋回運動(n回目の旋回運動ともいう)を行って当該検査箇所のX線画像を取得した後に、次の被検箇所を撮影可能な位置まで移動運動を行う。そして、その位置から次の360度に亘る旋回運動(n+1回目の旋回運動ともいう)を開始する。
【0050】
図2には、X線源10またはX線カメラ20が、n回目の旋回運動を行い、移動運動を行い、n+1回目の旋回運動を行う場合のX線源10またはX線カメラ20の軌跡を示す。その際、従来の技術によれば、
図2(a)に示すように、n回目の旋回運動を行う前に加速運動が行われ、n回目の旋回運動は等速で行われ、n回目の旋回運動(360度)が完了した後に、減速運動が行われ一旦停止する。そして、その後に、予め決められた軌跡に沿って移動運動が行われる。これは、X線源10またはX線カメラ20の旋回運動中は、高速で高画質なX線画像の撮影を行うため、高速で等速円運動を行う必要があるからである。
【0051】
そして、同様に、X線源10またはX線カメラ20が、移動運動が終了して停止後に、再度加速運動が行われ、X線源10またはX線カメラ20は旋回運動の開始点に到達する前に所定の速度まで加速され、その後n+1回目の旋回運動(360度)が開始される。換言すると、X線源10またはX線カメラ20は、n回目の旋回運動における撮像が終了
したのちに減速制動距離を設け一旦停止し、n+1回目の旋回に備え、加減速を伴う移動
運動を行い移動後に停止する。そののちに、n+1回の撮影ができるように旋回軌道に沿
って加速を行う。
【0052】
それに対し、本実施例においては、
図2(b)に示すように、n回目の旋回運動からn+1回目の旋回運動への移動運動中において停止区間を無くし、X線画像の撮影のための旋回運動の他に、停止前後の加減速のための旋回運動を行わない。
【0053】
そして、本実施例では、移動運動の軌跡を、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円とを、旋回終了点と旋回開始点において滑らかに繋ぐ軌跡のうち、最短の時間で移動可能な軌跡とする。ここで、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円を滑らかに繋ぐ軌跡とは、旋回終了点および/または旋回開始点においてX
線源10またはX線カメラ20の線速度が連続となる軌跡であってもよい。または、旋回終了点および/または旋回開始点においてX線源10またはX線カメラ20の線速度及び加速度が連続となる軌跡であることが望ましい。または、旋回終了点および/または旋回開始点においてX線源10またはX線カメラ20の線速度、加速度及び躍度が連続であることが理想である。また、加速度が連続の場合には、加速度が0であることが理想である。
【0054】
図3には、その場合の移動運動の軌跡の例を示す。図中の矢印と丸1~丸3の番号は、各々n回目の旋回運動、移動運動、n+1回目の旋回運動に相当する。
図3(a)は、X線カメラ20の移動運動の軌跡の例を示す。
図3(a)に示すように、X線カメラ20の移動運動の軌跡123aは、n回目の旋回運動の旋回円122aと、n+1回目の旋回運動の旋回円122bとを、両者の最上の点(以下、この点を0度位置または360度位置ともいう)において繋ぐ曲線のうち最短の時間で移動可能な曲線となっている。
【0055】
図3(b)には、同様に、X線源10の移動運動の軌跡の例を示す。
図3(b)に示すように、X線源10の移動運動の軌跡123bは、n回目の旋回運動の旋回円121aと、n+1回目の旋回運動の旋回円121bとを、両者の最下の点(以下、この点を180度位置ともいう)において滑らかに結び最短の時間で移動可能な曲線となっている。ここで、
図3(a)と
図3(b)とで、移動運動の軌跡と各旋回運動の旋回円とが繋がる場所が180度異なっているのは、X線源10とX線カメラ20は、検査対象Sの検査箇所を挟んで点対称となる位置に配置される必要があるからである。この場合、X線カメラ20が0度位置または360度位置に配置された場合には、X線源10は180度位置に配置される必要がある。
【0056】
なお、
図3に示すような、n回目の旋回運動の旋回円と、n+1回目の旋回運動の旋回円とを、所定の点において滑らかに結び最短の時間で移動可能な曲線は、公知の数学的な手法によって多項式として導出可能であるので、ここでは曲線の導出方法については特に説明しない。また、n回目の旋回運動の旋回終了点と、n+1回目の旋回運動の旋回開始点を滑らかに結ぶ曲線のうち、最短の時間で移動可能な曲線を導出する方法については、公知の方法で求まった多項式の曲線の各項の係数等の数学的パラメータを振り、繰り返し演算により移動時間が最短のものを選択しても良い。
【0057】
なお、
図3においては、X線カメラ20が
図3(a)に示す軌跡123aに沿って移動運動した場合の移動時間と、X線源10が
図3(b)に示す軌跡123bに沿って移動運動した場合の移動時間が一致するようにしても構わない。すなわち、両者のうち移動時間が長い方の移動運動における速度を高めて両者が同時に移動完了するようにする。そうすることで、両者が同時に移動運動を完了し、次の旋回運動に移行することが可能となる。
【0058】
以上のように、本実施例においては、X線源10とX線カメラ20が、n回目の旋回運動から移動運動に移行し、移動運動からn+1回目の旋回運動に移行する際の停止区間を無くし、X線源10とX線カメラ20が停止しない。これにより、X線画像の撮影のための旋回運動において、停止区間の前後に加減速のための旋回運動を付加する必要がなくなり、旋回運動の終了後、直ちに次の旋回運動への移動運動に移行することができ、移動運動の終了後、直ちに次の旋回運動に移行することができる。その結果、X線検査装置1における検査時間を短縮することが可能となる。
【0059】
また、本実施例においては、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動運動の軌跡を、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円とを、旋回終了点と旋回開始点において結び最短の時間で移動可能な曲線とした。これにより、X線源10とX線カメラ20を、旋回運動から移動運動に、または移動運動から旋回運動
に、より円滑に(過度な加速度や衝撃がX線源10やX線カメラ20に作用することなく)移行することができる。その結果、旋回運動における速度が高い場合でも、より確実に、移動運動の途中で加減速運動を行うことが可能となる。
【0060】
また、X線源10とX線カメラ20を、旋回運動から移動運動に、または移動運動から旋回運動に、より迅速に移行することが可能となる。ここで、
図3におけるX線カメラ20の移動運動の軌跡123a及びX線源10の移動運動の軌跡123bは、本実施例において特定移動軌跡に相当する。この点は以下の実施例についても同じである。また、本実施例においては、X線カメラ20の移動運動の軌跡123a及びX線源10の移動運動の軌跡123bは、旋回円どうしを滑らかに結び最短の時間で移動可能な曲線としたが、必ずしも正確に最短である必要はない。旋回円どうしを滑らかに結ぶ曲線のうち充分に検査時間を短縮できるものであれば良い。なお、ここにおいて、n回目の旋回運動からn+1回目の旋回運動に移行する際のX線カメラ20の移動時間は所定時間に相当する。
【0061】
次に、
図4を用いて、本実施例における、検査対象Sや、X検査装置1における各部材のX線の被曝量を低減する制御について説明する。従来は、検査対象Sの検査時間を短縮するために、
図4(a)に示すように、X線画像の撮影中は連続で画像を取り込む連続撮像方式を採用していた。すなわち、旋回部の旋回運動中の他、実際に画像を取得している動作以外の動作である移動運動中もX線源10からX線を連続照射していた。そのため、検査対象SやX線カメラ20に対しても不要な被曝をさせてしまう場合があった。一方、近年の電子部品などは被曝量が許容範囲を超えると故障することがわかっており、検査対象Sである基板上に実装されるSoPやBGAなど高性能化したチップにおいても被曝量が制約される場合が増加している。
【0062】
それに対し、本実施例においては、
図4(b)に示すように、n回目の旋回運動からn+1回目の旋回運動に移行する際の、実際に画像を取得している動作以外の動作である移動運動に係る移動時間中の少なくとも一部について、低被曝制御を行うこととした。この低被曝制御は、X線源10からのX線照射をOFFにするか、X線照射量を低減する制御である。以下では、低被曝制御が、X線源10からのX線照射をOFFにする制御として説明を続ける。この制御によれば、X線源10からの不要なX線照射を低減することができ、検査対象Sは当然、X線カメラ20をはじめとする、X線検査装置1内の部材におけ
る被曝量も低減することが可能である。
【0063】
その際、X線源10におけるX照射量の制御は、前述のようにX線源制御部105によって行われる。また、本実施例において、X線源10からのX線照射をOFFにする制御ととしては、X線源10に印加する管電流または管電圧の少なくとも一方の制御が行われる。ここで、X線源10のX線照射を制御する場合に、X線源10の管電流をしてもよいし管電圧を制御してもよい。
【0064】
管電流を制御する場合は、管電圧を制御する場合と比較して、X線照射をOFFした後に、X線源10が使用可能な状態になるまで回復(昇圧)させるのに必要な時間(昇圧時間)が短いことが分かっている。従って、本発明においては、X線源制御部105は、X線源10における管電流を制御することで、X線源10からのX線照射をOFFするようにしてもよい。この場合には、X線源10からのX線照射をOFFした後に、より短時間でX線源10を使用可能な状態にまで回復させることができる。その結果、移動運動に係る所定時間中において、より長い時間、X線源10からのX線照射をOFF停止することができ、より効果的に、検査対象SやX線カメラ20等、X線検査装置1内の部材の被曝量を低減することができる。
【0065】
実際に低被曝制御が行われる時間は、移動時間からX線源10の昇圧時間を差し引いた
時間としてもよい。これによれば、移動運動と次の旋回運動との間に、X線源10を使用可能な状態にまで回復させるための待ち時間が発生する等の非効率を防止することができる。また、本実施例においては、旋回部であるX線源10及びX線カメラ20が、移動運動を行う際に、移動時間がX線源10の昇圧時間以上か否かを判断し、移動時間がX線源10の昇圧時間以上である場合にのみ、低被曝制御を行うこととしてもよい。これによれば、より確実に、移動運動と次の旋回運動との間に、X線源10を使用可能な状態にまで回復させるための待ち時間が発生する等の非効率を防止することができる。
【0066】
なお、上記では低被曝制御においてX線源10の管電流または管電圧の少なくとも一方を制御して、X線源10からのX線照射をOFFする例について説明したが、必ずしもX線源10からのX線照射を零にする必要はない。X線源10からのX線照射量を低減することとしても構わない。これによれば、低被曝制御におけるX線源10における管電流や管電圧の低減量を抑えることができるので、昇圧時間を短縮することが可能な場合がある。
【0067】
なお、上記の実施例においては、検査対象Sの位置を固定し、その上下においてX線カメラ20とX線源10とを旋回運動させる形式のX線検査装置1に対して、本発明を適用した例について説明した。しかしながら、本発明の適用対象は構成を有するX線検査装置に限られない。X線源10を固定し、検査対象S及び、X線カメラ20を旋回させる形式のX線検査装置11に対して、本発明を適用してもよい。
【0068】
さらに、上記の実施例では、本発明が、X線源10と、X線カメラ20と、保持部40とを備え、X線源と、X線カメラと、保持部のうちのいずれかが、旋回部として旋回運動することで、検査対象の3次元画像を取得して検査するX線検査装置1に適用される例について説明した。
【0069】
しかしながら、本発明の技術思想はこれ以外の検査装置に適用することが可能である。例えば、線源からはX線以外の電磁波(光を含む)を照射してもよい。そして、その場合、カメラはX線カメラである必要はない。さらに、上記の実施例では、n回目の旋回運動の旋回円と、n+1回目の旋回運動の旋回円とを、所定の点において滑らかに結び最短の時間で移動可能な曲線を、多項式として導出したが、当該曲線は、他の方法で導出しても構わない。例えば、クロソイドセグメント等、三角関数に対して媒介変数を用いた算出方法を用いて導出しても構わない。
【0070】
〔実施例2〕
実施例1では、上記のように、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動運動の軌跡を、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円とを、旋回終了点と旋回開始点において滑らかに結び最短の時間で移動可能な曲線とした。そして、実施例2においては、このことに加えて、n+1回目の旋回運動の旋回開始点を、0度位置や180度位置に固定するのではなく、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動時間が最短になるように定める。
【0071】
図5に示すように、本実施例では、例えば、n+1回目の旋回運動の旋回円122n+1における旋回開始点の候補点として、n+1回目の旋回運動の旋回円122n+1上に配置されたm個の点を設定する。その際、n+1回目の旋回運動の旋回円122n+1においてX線カメラ20が時計回りに旋回する場合と、反時計回りに旋回する場合とを想定する。そして、この時計回りの場合と反時計回りの場合の合計2m個の候補点について、n回目の旋回運動の旋回円122nにおける旋回終了点とn+1回目の旋回運動の旋回円122n+1における旋回開始点とを滑らかに結び最短の時間で移動可能な曲線を求め、移動時間を算出する。そして、その中でも移動時間が最短となる候補点を、n+1回目の
旋回運動の旋回円122n+1における旋回開始点とする。
【0072】
これによれば、n+1回目の旋回運動の旋回円122n+1における旋回開始点の複数の候補点について、n回目の旋回運動の旋回円122nと旋回開始点と滑らかに結び最短の時間で移動可能な曲線を算出するとともに移動時間を算出する。そして、n回目の旋回運動からn+1回目の旋回運動に移行する際のX線カメラ20の移動時間が最短となるような旋回開始点を決定する。従って、より確実に、n回目の旋回運動の旋回円122nから、n+1回目の旋回運動の旋回円122n+1への移動時間を最短とすることが可能である。
図4の説明、あるいは以下の説明においては、X線カメラ20の運動の軌跡を例として説明する場合があるが、X線源10の運動の軌跡についても同様のことが言える点は当然である。なお、ここにおいて、n回目の旋回運動からn+1回目の旋回運動に移行する際のX線カメラ20の移動時間は所定時間に相当する。
【0073】
次に、本実施例における演算部111、制御部100、X線源制御部105による制御のフローについて説明する。
図6~
図9には、本実施例におけるX線源10及びX線カメラ20の移動制御及び低被曝制御のフローチャートを示す。本フローチャートは、主記憶部112に記憶されたプログラムであり、演算部111、制御部100及びX線源制御部105により実行される。
図6~
図7の前半に示すステップS01~ステップS07においては、n+1回目の旋回運動における旋回開始点と移動時間が決定され、
図8に示すステップS11~ステップS14においてX線源10及びX線カメラ20の移動制御が行われる。また、
図7の後半及び
図9に示すステップS08~ステップS10、ステップS16~ステップS19においては低被曝制御が行われる。
【0074】
本フローが実行されると、先ずステップS01において、旋回円間の移動軌跡を滑らかに接続する軌跡を演算するための情報を取得する。より具体的には、n+1回目の旋回運動の旋回円122n+1に対して、時計回りに旋回する場合と反時計回りに旋回する場合を合わせて2m個設定された、旋回開始点の候補点について、旋回終了点と旋回開始点とを滑らかに結ぶ軌跡を算出する。これは多項式をはじめ、公知の手法で実行されるので、ここでは詳細な説明は省略する。ステップS01の処理が終了するとステップS02に進む。
【0075】
ステップS02においては、ステップS01において取得した情報を基に、n回目の旋回運動の旋回円122nと、n+1回目の旋回運動の旋回円122n+1とを滑らかに結び最短の時間で移動可能な軌跡を算出するための多項式の係数を演算して取得する。ステップS02の処理が終了するとステップS03に進む。
【0076】
ステップS03~ステップS06の処理は、n+1回目の旋回運動の旋回円122n+1に対して、時計回りに旋回する場合と反時計回りに旋回する場合を合わせて2m個設定された、旋回開始点の候補点について、並列に移動時間を演算するステップである。ここでは、代表してS03-1~S06-1のステップを例にとって説明するが、2m個の候補点について同じ処理(ステップS03-1~S06-1、・・・・、ステップS03-2m~S06-2m)が並列に行われる。ステップS03-1においては、移動時間の算出が開始される。
【0077】
より具体的には、ステップS02で取得された係数を用いて、n回目の旋回運動の旋回円122nの旋回終了点とn+1回目の旋回運動の旋回円122n+1における1番目の候補点とを滑らかに結び最短の時間で移動可能な曲線を算出し、移動時間を算出する。なお、本実施例においては、X線カメラ20は各旋回運動において360度旋回するので、n回目の旋回運動の旋回円122nの旋回終了点は、n回目の旋回運動の旋回円122nの旋回開始点と同一である。ステップS03-1の処理が終了すると、ステップ04-1
に進む。
【0078】
ステップS04-1においては、ステップS03-1において算出された移動時間で移動した場合に、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えるか否かが判断される。また、X線カメラ20に作用する加速度が許容加速度を超えるか否かと、X線カメラ20の旋回運動と移動運動における運動範囲が許容移動範囲を超えるか否かが判定される。
【0079】
ここで、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えるか、X線カメラ20に作用する加速度が許容加速度を超えるか、または、X線カメラ20の運動範囲が許容移動範囲を超えると判定された場合には、ステップS05-1の処理に進む。これは、モータやボールねじの許容回転数を超えるか、X線カメラ20が加速度に耐えられず劣化するか、X線カメラ20がX線検査装置1内の部材に衝突する虞があると判断されるからである。
【0080】
一方、ステップS04-1において、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えず、且つX線カメラ20に作用する加速度が許容加速度を超えず、且つ、X線カメラ20の運動範囲が許容移動範囲を超えないと判定された場合には、ステップS06-1に進む。
【0081】
ステップS05-1においては、算出された移動時間の値が収束するまで移動時間の演算を再演算する。より具体的には、X線カメラ20の速度、X線カメラ20に作用する加速度が低くなり、または、X線カメラ20の運動範囲が狭くなるように曲線の数学パラメータを変更の後、再度ステップS03-1処理に戻る。そして、ステップS03-1~ステップS05-1のルーチンを、ステップS04-1において、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えず、且つX線カメラ20に作用する加速度が許容加速度を超えず、且つX線カメラ20の運動範囲が許容移動範囲を超えないと判定されるまで繰り返し実行する。
【0082】
ステップS04-1において、X線カメラ20の線速度及び軸速度のいずれかが許容速度を超えず、且つX線カメラ20に作用する加速度が許容加速度を超えず、且つ、X線カメラ20の運動範囲が許容移動範囲を超えないと判定された場合には、ステップS06-1に進む。ここで、許容速度とは、モータやボールねじの許容回転数を超えない閾値として予め定められた速度値である。許容加速度とは、X線カメラ20に作用してもX線カメラが劣化しない閾値として予め定められた加速度値である。許容移動範囲とは、X線カメラ20が装置内の他部材に衝突等しない運動範囲の閾値として予め定められた運動範囲である。
【0083】
ステップS06-1においては、移動時間の算出が完了する。より詳細には、n回目の旋回運動の旋回円122nの旋回終了点とn+1回目の旋回運動の旋回円122n+1における1番目の候補点とを滑らかに結び最短の時間で移動可能な曲線と、その移動時間が算出される。ステップS06-1の処理(及び、他の候補点についての同等のステップS06-2~ステップS06-2m)が終了すると、
図7に記載したステップS07に進む。
【0084】
次に、ステップS07においては、最短移動かつ許容値を超えない時間候補が選定される。より具体的には、ステップS06-1~S06-2mにおいて算出された移動時間のうち、最短の移動時間を選定し、当該移動時間に対応する候補点を選定する。S07の処理が終了すると、
図8に記載されたように、選定された情報が制御部100に渡される。
【0085】
図8のステップS11においては、制御部100が、ステップS07で算出された移動時間を受取る。また、ステップS12においては、X線カメラ20を移動する位置座標(旋回開始点)、旋回速度、旋回中心、旋回半径など、X線源10及びX線カメラ20の移動運動に必要な情報を受取る。ステップS11及びステップS12の処理が終了するとステップS13に進む。
【0086】
ステップS13においては、次の移動先である旋回開始点への移動の軌跡を算出する。ここでは、S11で受取った移動時間に対応する移動の軌跡を再度算出する。ステップS13の処理が終了するとステップS14に進む。ステップS14においては、X線カメラ20及びX線源10が、次の旋回開始点への軌跡に沿って移動するための出力を、X線源10及びX線カメラ20の運動を制御するXYステージの駆動モータ(不図示)に出力する。なお、ステップS11~ステップS14までの処理は制御部100において実行される。
【0087】
図7の説明に戻る。ステップS07において、最短移動で且つ、許容値を超えない時間候補が選定された後には、
図8のステップS11に進むのと並行してステップS08に進む。ステップS08においては、算出された移動時間が、X線源10の昇圧時間以上か否かが判定される。ここで、肯定判定された場合には、X線源10からのX線照射をOFFすることが可能と判断されるのでステップS09の処理に進む。一方、ステップS08において否定判定された場合には、X線源10からのX線照射をOFFしてしまうと、n+1回目の旋回運動において、最初からX線画像の撮影を行うことが不可能で待ち時間が発生してしまうと判断されるので、ステップS10に進む。
【0088】
ステップS09の処理においては、X線源10からのX線照射がOFFされる、ステップS09の処理が終了すると、
図9に示す、ステップS16に進む。一方、ステップS10の処理においては、X線源10からのX線照射のON状態が継続される。ステップS10の処理が終了すると、
図9に示す、ステップS17に進む。
【0089】
図9におけるステップS16からステップS19の処理は、X線源制御部105において実行される。ステップS16においては、演算部111から受け取った、X線源10からのX線照射のOFF命令が実行される。そして、ステップS18に進み、実際にX線源10からのX線照射がOFFされる。ステップS17の処理においては、演算部111から受け取った、X線源10からのX線照射のON状態維持の命令が実行される。そして、ステップS19に進み、実際にX線源10からのX線照射のON状態が維持される。ステップS18またはステップS19の処理が終了すると、本フローが一旦、終了する。
【0090】
以上のように、本実施例においては、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動運動の軌跡を、n回目の旋回運動の旋回円とn+1回目の旋回運動の旋回円とを、旋回終了点と旋回開始点において滑らかに結び最短の時間で移動可能な曲線とした。そして、本実施例では、このことに加えて、n+1回目の旋回運動の旋回開始点を、0度位置や180度位置に固定するのではなく、n回目の旋回運動からn+1回目の旋回運動に移行する際の移動時間が最短になるように定めた。
【0091】
このことにより、X線源10及びX線カメラ20の移動運動に係る移動時間を、より確実に短くすることができ、検査時間の短縮を図ることが可能である。また、このことにより、X線源10及びX線カメラ20の移動運動に係る移動時間をリアルタイムに算出することができ、移動時間がX線源10の昇圧時間以上か否かの判断を正確に行うことができる。そして、本実施例では、移動時間がX線源10の昇圧時間以上である場合に、X線源10からのX線照射をOFFすることとした。これにより、検査対象SとX線検査装置1の装置内部材の被曝量を低減することが可能となる。
【0092】
図10には、本実施例における被曝量低減の効果について示す。上述のステップS08~ステップS10、ステップS16~ステップS19の処理を実行しない場合であっても、ステップS01~ステップS07、ステップS11~ステップS14の処理による、旋回部の移動時間の短縮効果に基づいて、検査対象SとX線検査装置1の装置内部材の被曝量の低減効果が得られる。これは、
図10に図示すように9%程度の低減に留まる。これに対し、本実施例における低被曝制御を行った場合には、検査対象SとX線検査装置1の装置内部材の被曝量の低減効果は13%程度であった。また、将来、X線源10の高速昇圧が可能となり、昇圧時間が略零になった場合には、21%程度の被曝量の低減効果が見込める。
【0093】
なお、上記の実施例では、X線源10からのX線照射を停止またはX線照射量を低減するために、X線源10の管電流または管電圧の少なくとも一方をOFFまたは低減する例について説明したが、例えば、X線源10のX線照射口をシャッター等によって機構的に遮蔽することとしてもよい。これによれば、X線源10の昇圧時間を考慮する必要がなくなる。その結果、上述したように将来、X線源10の高速昇圧が可能となり、昇圧時間が略零になった場合と同様、21%程度の被曝量の低減効果を見込むことが可能である。
【0094】
なお、本ルーチンにおいては、ステップS04-1(~ステップS04-2m)において、速度(線速度及び軸速度のいずれか)、加速度、移動位置の全てが許容値を超えないと判定されるまで、ステップS03-1(~ステップS03-2m)において、旋回終了点と旋回開始点とを滑らかに結び最短で移動可能な軌跡と移動時間とが算出された。しかしながら、速度(線速度及び軸速度のいずれか)、加速度、移動位置のうちのいずれかが許容値を超えないと判定されるまで、旋回終了点と旋回開始点とを滑らかに結び最短で移動可能な軌跡と移動時間とが算出されるようなフローとしても構わない。
【0095】
上記の実施例においては、n+1回目の旋回運動の旋回円122n+1における旋回開始点の候補点を、時計回りの場合と反時計回りの場合を合せて2m個設定した。しかしながら、候補点の数はこれに限られない。候補点の数は、並列演算の負荷と、移動時間を最短とする旋回開始点の精度とを、比較考量して決定すればよい。
【0096】
〔実施例3〕
次に、本発明の実施例3について示す。本実施例においては、n回目の旋回運動の旋回終了点とn+1回目の旋回運動の旋回開始点とを上記の実施例2とは異なる方法で決定する。
図11に示すように、本実施例では、例えば、n回目の旋回運動の旋回円122nの旋回終了点を算出する際には、旋回円122nにおいて、一つ前のn-1回目の旋回運動の旋回円122n-1と旋回円122nの中心を結んだ直線と旋回円122nとの交点を求める。また、旋回円122nと一つ後の旋回円122n+1の中心を結んだ直線と旋回円122nとの交点を求める。そして、それらの2つの交点で挟まれる円弧のうちの短い方の円弧の中央の点Pnを、n回目の旋回運動の旋回円122nの旋回終了点とする。
【0097】
また、n+1回目の旋回運動の旋回円122n+1の旋回開始点を算出する際には、旋回円122n+1において、一つ前のn回目の旋回運動の旋回円122nと旋回円122n+1の中心を結んだ直線と旋回円122n+1との交点を求める。また、旋回円122n+1と一つ後の旋回円122n+2の中心を結んだ直線と旋回円122n+1との交点を求める。そして、それらの2つの交点で挟まれる円弧のうち短い方の円弧の中央の点Pn+1を、n+1回目の旋回運動の旋回円122n+1の旋回開始点とする。そして、PnとPn+1とを滑らかに結ぶ曲線123nで結ぶ。
【0098】
なお、例えば旋回円が横一列に並ぶような場合のように、
図11に示す比較例に係る手
法によっては、2つの交点で挟まれる円弧のうちの短い方の円弧が特定できない場合がある。よって、比較例においては、このような場合には、旋回運動における旋回終了点と旋回開始点とを、所定の角度位置に設定しなければならない。この場合、例えば、n回目の旋回運動の旋回円における旋回終了点を反時計回りに90度ずらし、n+1回目の旋回運動の旋回開始点を時計回りに90度ずらす処理を行う。
【0099】
このことで、旋回運動における旋回終了点と旋回開始点が算出できないという事態を回避する。このような方法で、次の旋回運動における旋回開始点を求める場合であって、特定移動軌跡を、例えば、n回目の旋回運動の旋回終了点とn+1回目の旋回開始点の間の移動時間を最短にするように決定した場合は、実施例1の場合と同様、旋回部の移動運動を時間基準で管理することが可能である。このような場合に対しても、本実施例における低被曝制御を適用することが可能である。また、本変形例に限らず、旋回部の移動運動を時間基準で管理する場合には、本実施例の低被曝化制御を適用することが可能である。
【0100】
図12には、本実施例におけるX線検査装置11における、X線カメラ20、被検査対象S、X線源10の配置の例を示す。
図12(a)に示すのは、X線カメラ20が検査対象Sの上側、X線源10が検査対象Sの下側に配置される例、
図12(b)に示すのは、X線源10が検査対象Sの上側、X線カメラ20が検査対象Sの下側に配置される例である。いずれの場合においても、X線源10が固定され、X線カメラ20及び検査対象Sが旋回運動を行う。
【0101】
なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本開示の構成要件を図面の符号付きで付記しておく。
<付記1>
検査対象に照射するX線を発生するX線源(10)と、
前記X線源(10)からのX線の照射を制御するX線源制御部と、
前記X線源(10)から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラ(20)と、
前記検査対象を保持する保持部(40)と、を備え、
前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいずれかが、旋回部(10、20、40)として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置であって、
前記旋回部(10、20、40)は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部(10、20、40)が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを、所定時間で移動するように、前記次の旋回運動の旋回開始点及び、前記一の旋回運動の旋回終了点と前記次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定する軌跡算出部を(111b)さらに備え、
前記X線源制御部(105)は、前記所定時間の中の少なくとも一部の時間において、前記X線源(10)からのX線の照射を停止し、または照射量を低減することを特徴とする、X線検査装置(1)。
<付記9>
検査対象に照射するX線を発生するX線源(10)と、
前記X線源(10)からのX線の照射を制御するX線源制御部と、
前記X線源(10)から前記検査対象に照射されたX線によるX線画像を撮影するX線カメラ(20)と、
前記検査対象を保持する保持部(40)と、を備え、
前記X線源(10)と、前記X線カメラ(20)と、前記保持部(40)のうちのいず
れかが、旋回部(10、20、40)として旋回運動することで、撮影方向を変更しつつ前記X線画像を撮影して、前記検査対象の3次元画像を取得して検査するX線検査装置を用いたX線検査方法であって、
前記旋回部(10、20、40)は、複数の場所において順次旋回運動するとともに、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点へ移動するための移動運動を行い、
前記旋回部(10、20、40)が、一の旋回運動の旋回終了点から次の旋回運動の旋回開始点までを、所定時間で移動可能なように、前記次の旋回運動の旋回開始点及び、前記一の旋回運動の旋回終了点と前記次の旋回運動の旋回開始点とを結ぶ特定移動軌跡を決定し、
前記所定時間の中の少なくとも一部の時間において、前記X線源(10)からのX線の照射を停止し、または照射量を低減することを特徴とする、X線検査方法。
【符号の説明】
【0102】
1、11・・・X線検査装置
10・・・X線源
20・・・X線カメラ
40・・・保持部
100・・・制御部
111・・・演算部
111b・・・軌跡算出部
121・・・X線源旋回運動旋回円
122・・・X線カメラ旋回運動旋回円
123・・・移動運動軌跡
S・・・検査対象(基板)