IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ユニシス株式会社の特許一覧

特開2022-141270土壌状態予測システム及び土壌状態予測プログラム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022141270
(43)【公開日】2022-09-29
(54)【発明の名称】土壌状態予測システム及び土壌状態予測プログラム
(51)【国際特許分類】
   G16Z 99/00 20190101AFI20220921BHJP
【FI】
G16Z99/00
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021041495
(22)【出願日】2021-03-15
(71)【出願人】
【識別番号】591030237
【氏名又は名称】BIPROGY株式会社
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100154759
【弁理士】
【氏名又は名称】高木 貴子
(72)【発明者】
【氏名】奥村 知之
(72)【発明者】
【氏名】銭尾 春仁
(72)【発明者】
【氏名】豊田 由香
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049DD01
(57)【要約】      (修正有)
【課題】太陽光線の土壌状態への影響について予測する土壌状態予測システム及び土壌状態予測プログラムを提供する。
【解決手段】土壌状態予測システム10において、日時情報、場所情報及び太陽光線強度情報を対応付けて記憶する記憶部13、通信を行う通信部17、通信部を介して入力された予測情報問合せ情報に含まれる太陽光線問合せ情報に対応付けられた太陽光線強度情報を算出する第一算出部11、第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部12及び第二算出部の算出結果を用いて、通信部を介して入力された予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部21を備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
通信を行う通信部と、
前記通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
前記第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部と、
前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部と、
を備え、
前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であり、
前記通信部は、前記予測情報問合せ情報の送信元に対し、前記第三算出部の算出結果を送信する、
ことを特徴とする土壌状態予測システム。
【請求項2】
日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
通信を行う通信部と、
前記通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
前記抽出部が抽出した前記太陽光線強度情報を用いて方向特定太陽光線強度情報を算出する第二算出部と、
前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部と、
を備え、
前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であり、
前記通信部は、前記予測情報問合せ情報の送信元に対し、前記第三算出部の算出結果を送信する、
ことを特徴とする土壌状態予測システム。
【請求項3】
請求項1又は2に記載の土壌状態予測システムであって、
前記第三算出部は、
前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌の温度に対する太陽光線の影響を予測する土壌温度プロファイルを算出する第四算出部と、
前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の分光強度を算出する第五算出部、
前記第四算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する地力修復の効果予測を算出する第六算出部、
前記第五算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する収量予測を算出する第七算出部と、
前記第四算出部の算出結果及び前記第五算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する栽培適地の予測を算出する第八算出部と、
を含み、
前記通信部は、前記予測情報問合せ情報の送信元に対し、前記第四算出部、前記第五算出部、前記第六算出部、前記第七算出部及び前記第八算出部の少なくとも一つの算出結果を送信する、
ことを特徴とする土壌状態予測システム。
【請求項4】
請求項1から3のいずれか一項に記載の土壌状態予測システムであって、
前記方向情報が示す方向は、太陽光線の照射を受ける照射面が拡がる面と直交する方向である
ことを特徴とする土壌状態予測システム。
【請求項5】
請求項1から4のいずれか一項に記載の土壌状態予測システムであって、
前記太陽光線強度情報は、前記方向情報によって示される方向を向く照射面以外の面で反射された太陽光線の強度を含む、
ことを特徴とする土壌状態予測システム。
【請求項6】
コンピュータを
日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、
通信を行う通信部と、
前記通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、
前記第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部と、
前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部と、
として機能させ、
前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であり、
前記通信部は、前記予測情報問合せ情報の送信元に対し、前記第三算出部の算出結果を送信する、
ことを特徴とする土壌状態予測プログラム。
【請求項7】
コンピュータを
日時に関する情報である日時情報で示される日時及び場所に関する情報である場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報を算出する第一算出部と、
前記日時情報と、前記場所情報と、前記第一算出部が算出した前記太陽光線強度情報と、を対応付けて記憶する記憶部と、
通信を行う通信部と、
前記通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を前記記憶部から抽出する抽出部と、
前記抽出部が抽出した前記太陽光線強度情報を用いて方向特定太陽光線強度情報を算出する第二算出部と、
前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部と、
として機能させ、
前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、
前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であり、
前記通信部は、前記予測情報問合せ情報の送信元に対し、前記第三算出部の算出結果を送信する、
ことを特徴とする土壌状態予測プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、土壌状態予測システム及び土壌状態予測プログラムに関する。
【背景技術】
【0002】
最近では、人体や生活環境に対する太陽光(例えば紫外線、可視光線及び赤外線)の影響が知られ、太陽光照射量(例えば紫外線照射量や日射量)について注目され始めている。例えば、特許第5524741号公報に記載の曝露量推定システムでは、位置を示す位置情報と当該位置に存在する紫外線のような曝露対象の量を示す環境情報とを対応付けて環境情報格納部に格納しておき、環境情報格納部から取得した環境情報とユーザの行動などに応じて定めた曝露率とに基づいて、曝露量の推定を行い、推定した曝露量の数値をユーザに提供する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第5524741号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、特許第5524741号公報に記載の曝露量推定システムでは、環境情報格納部に格納してある、位置情報で特定される環境情報(花粉飛散量、紫外線量、エアロゾル量)を用いて曝露量の推定を行うが、この位置情報で特定される環境情報では、情報提供を受けるユーザは、より詳細な情報を容易に得ることができないという問題があった。
【0005】
例えば、現実世界において、紫外線照射量や日射量等のエネルギー強度を知りたい部位や場所は、必ずしも水平面や太陽光線に対して垂直な面とは限らず様々である。このような様々な部位や場所のエネルギー強度を知るためには、水平面や太陽光線に垂直なエネルギー強度から、三角関数等を利用して、実際の照射面上のエネルギー強度を算出することが考えられる。ところが、大気成分により散乱・反射した現実の天空からのエネルギー強度は、方向毎に違うので、三角関数等を利用した算出では、十分な精度が得られないという問題があった。
【0006】
また、太陽光線は土壌状態に影響を与えることが知られている。このため、太陽光線の土壌状態への影響について予測することについて需要があると考えられるが、従来、太陽光線の土壌状態への影響について予測するシステムは提供されていなかった。
【0007】
本発明は以上のような課題を解決するためになされたものであり、太陽光線の土壌状態への影響について予測する土壌状態予測システムを提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明は、土壌状態予測システムであって、日時に関する情報である日時情報と、場所に関する情報である場所情報と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報と、を対応付けて記憶する記憶部と、通信を行う通信部と、前記通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた前記太陽光線強度情報を算出する第一算出部と、前記第一算出部の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部と、前記第二算出部の算出結果を用いて、前記通信部を介して入力された前記予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部と、を備え、前記太陽光線問合せ情報は、前記日時情報と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報と、を含み、前記方向特定太陽光線強度情報は、前記日時情報で示される日時及び前記場所情報で示される場所における、前記方向情報で示される照射面が受ける太陽光線の強度を含む情報であり、前記通信部は、前記予測情報問合せ情報の送信元に対し、前記第三算出部の算出結果を送信する、ことを特徴とする。
【発明の効果】
【0009】
本発明によれば、太陽光線の土壌状態への影響について予測する土壌状態予測システムを提供することができる。
【図面の簡単な説明】
【0010】
図1】本発明の実施例1に係る土壌状態予測システムの構成を示すブロック図である。
図2】太陽光線の照射方向について説明する図である。
図3】地面と平行な面である照射面Aに照射される太陽光線について説明する図である。
図4】地面と30°の角度を成す面である照射面Bに照射される太陽光線について説明する図である。
図5】地面と90°の角度を成す面である照射面Cに照射される太陽光線について説明する図である。
図6】照射面Eで反射されて照射面Dに照射される太陽光線について説明する図である。
図7】他照射面の分光反射率の求め方の一例について説明する図であって、図7(a)は照射面Eが直接受ける太陽光線を測定する様子を示す図であり、図7(b)は照射面Eによる反射光を測定する様子を示す図である。
図8】他照射面からの反射光のうち照射面に入光する光について説明する図である。
図9図1に示した記憶部13に記憶する情報の一例を示す図である。
図10図1に示した土壌状態予測システム10の動作を示すフローチャートである。
図11】本発明の実施例2に係る土壌状態予測システムの構成を示すブロック図である。
図12図11に示した土壌状態予測システム100の動作を示すフローチャートである。
図13】分光放射照度を示すグラフである。
図14】照射される材質の温度上昇に関する試算条件を示す図である。
図15】材質に応じた1時間後の温度上昇の試算例を示す図である。
図16図16(a)は歩道での各方向からの分光照射強度の例を示すグラフである。図16(b)は歩道での分光反射率の例を示すグラフである。
図17図17(a)は草地での各方向からの分光照射強度の例を示すグラフである。図17(b)は草地での分光反射率の例を示すグラフである。
図18図18(a)はアスファルトでの各方向からの分光照射強度の例を示すグラフである。図18(b)はアスファルトでの分光反射率の例を示すグラフである。
図19】光の波長とエネルギーの関係を示す図である。
図20】温度予測における土壌が受ける熱量について示す図である。
図21】温度予測における土壌表面が外界から受け取る熱量について示す図である。
図22】(a)は土壌に進入する照射エネルギーを示すグラフであり、(b)は気温と温度を示すグラフである。
図23】(a)は土壌温度を示すグラフであり、(b)は第三算出部21及び121で求めた土壌温度プロファイルを示すグラフである。
図24】土壌へのエネルギーの積算値について示す図である。
【発明を実施するための形態】
【0011】
以下、本発明に係る土壌状態予測システムについて、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本発明に係るシステムの好適な具体例であり、一般的なハードウェア、ソフトウェア構成に即した種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。また、以下に示す実施形態における構成要素は、適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組み合わせを含む様々なバリエーションが可能である。したがって、以下に示す実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。
【0012】
なお、以下の実施例では、本発明を土壌状態予測システムに適用し、太陽光線に関する情報、例えば日射量をユーザに提供するシステムについて説明するが、本発明は、太陽光線に含まれる、紫外線、赤外線、可視光線、又は、その他の電磁波等の個別の情報を、ユーザに提供するものであってもよい。また、以下の実施例では、太陽光線強度を日射強度ともいう。
【実施例0013】
図1は、本発明の実施例1に係る土壌状態予測システムの構成を示すブロック図である。本実施例の土壌状態予測システム10は、例えば、コンピュータから成るサーバーマシンである。
【0014】
土壌状態予測システム10は、図1に示すように、詳しくは後述する太陽光線強度情報16やそのほかの各種情報を記憶する記憶部13と、通信を行う通信部17と、通信部17を介して受信した予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた太陽光線強度情報16を算出する第一算出部11と、第一算出部11の算出結果を用いて方向特定太陽光線強度情報を算出する第二算出部12と、第二算出部12の算出結果を用いて、通信部17を介して入力された予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部21と、を備える。通信部17は、例えば外部と通信を行う。予測情報問合せ情報は、太陽光線問合せ情報及び土壌情報を含む。太陽光線問合せ情報は、日時情報14と、場所情報15と、太陽光線の照射すなわち日射を受ける照射面が向く方向を示す方向情報16aと、を含む。方向特定太陽光線強度情報は、日時情報14で示される日時及び場所情報15で示される場所における、方向情報16aで示される照射面が受ける太陽光線の強度であって、通信部17は、予測情報問合せ情報の送信元に対し、第三算出部21の算出結果を送信する。図1に示す各構成は、ハードウェアで構成してもよい。また、図1に示す各構成は、土壌状態予測システム10がプログラムを実行することで実現することもでき、記憶部13は、土壌状態予測システム10で実行するプログラムを記憶してもよい。記憶部13は、データの用途に応じて、揮発性の記憶装置や不揮発性の記憶装置を有する。
【0015】
なお、通信部17は、予測情報問合せ情報の送信元に対し、第二算出部12が算出した方向特定太陽光線強度を示す方向特定太陽光線強度情報を送信する構成としてもよい。
【0016】
なお、土壌状態予測システム10において、通信部17は、予測情報問合せ情報の送信元に対し、第一算出部11が算出した太陽光線強度情報を送信する構成としてもよい。この場合、第二算出部12の機能に相当する構成を、クライアントマシン2又は3が有することとしてもよい。すなわち、本発明は、サーバーマシンとクライアントマシンとをネットワークで接続してなる土壌状態予測システムであって、サーバーマシンは、日時に関する情報である日時情報14と、場所に関する情報である場所情報15と、前記日時情報で示される日時及び前記場所情報で示される場所における太陽光線強度に関する情報である太陽光線強度情報16と、を対応付けて記憶する記憶部13と、クライアントマシンと通信を行う第一通信部と、第一通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた太陽光線強度情報16を算出する第一算出部11と、を備え、第一通信部は、クライアントマシンに対し、第一算出部11が算出した太陽光線強度情報16を送信し、クライアントマシンは、サーバーマシン1と通信を行う第二通信部と、第二通信部を介して入力された太陽光線強度情報16を用いて方向特定太陽光線強度情報を算出する第二算出部(第二算出部12の機能に相当する構成)と、を備え、第二通信部(第二算出部12の機能に相当する構成)は、太陽光線問合せ情報をサーバーマシンに送信し、太陽光線問合せ情報は、日時情報14と、前記場所情報と、太陽光線の照射を受ける照射面が向く方向を示す方向情報16aと、を含む、構成としてもよい。なお、クライアントマシンとサーバーマシンとは、ネットワークを介さず、同一端末装置内にあってもよい。この場合、クライアントマシンとサーバーマシンとが同一装置であってもよいし、クライアントマシンとサーバーマシンとが例えばバス接続される構成であってもよい。クライアントマシンとサーバーマシンとが同一装置の場合、クライアントマシンとサーバーマシンとを接続するとは、クライアントマシンとしての機能を実現するプログラムとサーバーマシンとしての機能を実現するプログラムとがメモリ等を介してデータの受け渡しを行うことを指してもよい。
【0017】
記憶部13は、日時に関する情報である日時情報14と、場所に関する情報である場所情報15と、日時情報14で示される日時及び場所情報15で示される場所における太陽光線強度に関する情報である太陽光線強度情報16と、を対応付けて記憶する。
【0018】
土壌状態予測システム10の通信部17は、インターネットなどのネットワーク4に接続されている。ネットワーク4には、ユーザが用いるクライアントマシン2、3が接続されており、クライアントマシン2、3は、ネットワーク4を介して、土壌状態予測システム10と通信を行う。
【0019】
クライアントマシン2又はクライアントマシン3から、土壌状態予測システム10へは、ネットワーク4を介して、予測情報問合せ情報が送信される。予測情報問合せ情報は、太陽光線問合せ情報及び土壌情報を含む。太陽光線問合せ情報は、日時情報14と、場所情報15と、太陽光線の照射を受ける照射面が向く方向を示す方向情報16aと、を含む。方向情報16aが示す方向は、太陽光線の照射を受ける照射面が拡がる面と直交する方向である。方向情報16aについては、図2から図5を参照して後述する。土壌状態予測システム10から、予測情報問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3へは、ネットワーク4を介して、第一算出部11による算出結果が送信される。
【0020】
第一算出部11は、太陽光線問合せ情報に含まれる日時情報と場所情報とを用いて詳しくは後述する太陽光線強度情報16を算出する。第二算出部12は、第一算出部11による算出結果を用いて、方向情報16aで示される照射面が受ける太陽光線の強度を含む情報である方向特定太陽光線強度情報を算出する。通信部17は、第二算出部12が算出した方向特定太陽光線強度を示す方向特定太陽光線強度情報を、ネットワーク4を介して、予測情報問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に送信する。
【0021】
以下、方向情報16aについて説明する。図2は、太陽光線の照射方向について説明する図である。図3は、地面と平行な面である照射面Aに照射される太陽光線について説明する図である。図4は、地面と30°の角度を成す面である照射面Bに照射される太陽光線について説明する図である。図5は、地面と90°の角度を成す面である照射面Cに照射される太陽光線について説明する図である。図3図4及び図5では、太陽光線の照射を受ける照射面が向く方向、すなわち方向情報16aで示される方向を「照射面の方向」と記載している。
【0022】
図2に示すように、地球上に照射される太陽光線は、太陽の向きから照射される直達日射のほか、太陽の向き以外の向きから照射される散乱日射が存在する。散乱日射は、天空全体から照射面に対して照射される。地面と平行な面である照射面Aに対しては、図3に示すように、天空全体から散乱日射及び直達日射が照射される。
【0023】
また、地面と30°の角度を成す照射面Bに対しては、図4に示すように、天空全体のうち照射面Bが向く方向から散乱日射及び直達日射が照射される。また、地面と90°の角度を成す照射面Cに対しては、図5に示すように、太陽の向きが照射面Cの裏側であるため直達日射は照射されず、天空全体のうち照射面Cが向く方向から散乱日射が照射される。また、照射面に照射される太陽光線は、照射面に直接照射される散乱日射及び直達日射のほか、地面などで反射されて照射面に照射される太陽光線も存在する。
【0024】
図3図4及び図5を参照してわかるように、照射面が向く方向によって、照射される太陽光線の強度が大きく異なる。そこで、本実施例では、照射面が向く方向ごとに異なる方向特定太陽光線強度情報を算出し、これを、予測情報問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に提供する。
【0025】
なお、本実施例では、散乱日射及び直達日射のほか、地面や壁面などの他照射面で反射されて照射面に照射される太陽光線も考慮することができる。この点について図6を参照して説明する。図6は、照射面Eで反射されて照射面Dに照射される太陽光線について説明する図である。
【0026】
実際の環境においては、照射面Dで受ける太陽光線の照射量は、照射面Dが直接受ける太陽光線(直達日射及び散乱日射)だけではなく、太陽光線(直達日射及び散乱日射)が地面や壁面などの他照射面(照射面E)で反射した太陽光線(反射光)も含まれている。本実施例では、照射面が受ける太陽光線の強度に、この他照射面で反射された反射光の強度も含めることにより、照射面が受ける太陽光線の強度を求める精度をさらに高めることができる。
【0027】
通常、他照射面による反射光の計算には、他照射面の反射率を用いる。物質表面の反射率は、代表的な特定波長による反射率を用いるのが一般的であるが、エネルギー強度を精度よく計算するためには、分光反射率を用いて計算するのが望ましい。ここで、他照射面の分光反射率の求め方について、図7を参照して説明する。
【0028】
図7は、他照射面の分光反射率の求め方の一例について説明する図であって、図7(a)は照射面Eが直接受ける太陽光線を測定する様子を示す図であり、図7(b)は照射面Eによる反射光を測定する様子を示す図である。図7(a)及び図7(b)に示すように、ここでは測定器50を用いる。測定器50は、分光照度計として機能する測定器である。まず、図7(a)に示すように、測定器50を用いて他照射面である照射面Eの上方からの分光照度(照射面Eに照射する太陽光線の分光照度)を測定する。また、測定器50を用いて照射面Eで反射した分光照度(太陽光線が照射面Eで反射した反射光の分光照度)を測定する。求めた照射面Eの上方からの分光照度及び照射面Eで反射した分光照度を用いて、数1により、照射面Eの分光反射率を求める。
【数1】
【0029】
次に、数1で求めた分光反射率を用いた、照射面が受ける照射エネルギーの算出について説明する。図8は、他照射面からの反射光のうち照射面に入光する光について説明する図である。図8では、他照射面である照射面Gが地面である場合を示しており、照射面Gからの反射光のうち照射面Fに入光する割合を勘案している。照射面G(地面)から照射面Fに入光するエネルギーは、数2で算出することができる。
【数2】
【0030】
数2における照射面Gが受ける照射エネルギーは、例えば、図7(a)に示した方法で得ることができる。数2における反射率としては、例えば数1で求めた分光反射率を用いることができる。数2における面積比率Hは、以下に図8を参照して説明するようにして求めることができる。図8において照射面Fの向きに応じた角度θにより、照射面Fにおける地面(照射面G)の視野面積が定まる。地面である照射面Gの視野面積を定める角度θは、照射面Gが理想地面(水平)であれば、幾何的に、照射面Fと水平方向とが成す角度である。しかし実際には、地形変化を考慮したり、照射面Gのうち照射面Fから遠い位置であるほど照射面Fに入射する反射光が少なくなり寄与度が減衰することを考慮したりするのがよく、必要な精度に応じて角度θを定めるのがよい。
【0031】
照射面Fの半球面積に対する、照射面Fにおける地面の視野面積の比率が面積比率Hである。本実施例では、照射面Fが受ける照射エネルギーを求める際には、照射面Fに直接照射される散乱日射及び直達日射による照射エネルギーに、数2で求めた照射面Fに入光するエネルギーを加えることで、より高精度に求めることができる。また、数2では他照射面として地面を考慮しているが、地面による反射光のみならず、照射面Fに反射光が入射し得るすべての他照射面について考慮することで、照射面Fが受ける照射エネルギーをより高精度に求めることができる。
【0032】
図9は、図1に示した記憶部13に記憶する情報の一例を示す図である。記憶部13は、例えばデータベース形式で、図9に示す情報を記憶する。記憶部13は、第1の主キーとして、日時情報14を記憶する。日時情報14は、年、月、日及び時を含んでもよい。記憶部13は、第2の主キーとして、場所情報15を記憶する。場所情報15は、例えば東経及び北緯を用いて、地球上の位置を特定する情報である。
【0033】
記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでの太陽立体角を記憶する。記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでの直達日射強度を記憶する。記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでの散乱日射強度を記憶する。記憶部13は、格納値である太陽光線強度情報16として、第1の主キー及び第2の主キーでのアルベド値を記憶する。なお、アルベド値は、照射された太陽光線強度に対する、反射した太陽光線強度の比である。例えば、場所情報15が或る地域においては、日時情報14が夏である日時には、地面は土であってアルベド値が低く、日時情報14が冬である日時には、地面は雪面であってアルベド値が高い。図9に示した各値は、例えば実測値を収集して、記憶部13に記憶する。太陽光線強度情報16に含まれる方向情報16aは、図9に示した格納値に含まれる。太陽光線強度情報16に含まれる情報は、例えば放射伝達方程式を解いて算出する値や、放射伝達方程式を解く過程で算出する値を含む。
【0034】
図10は、図1に示した土壌状態予測システム10の動作を示すフローチャートである。ステップS71では、ネットワーク4を介して、クライアントマシン2又はクライアントマシン3からの予測情報問合せ情報を受信したか否かを判断する。予測情報問合せ情報を受信した場合には(ステップS71:Yes)、ステップS72に進み、予測情報問合せ情報を受信しない場合には(ステップS71:No)、ステップS71に戻る。
【0035】
ステップS72では、ステップS71で受信した予測情報問合せ情報が含む太陽光線問合せ情報に基づいて、太陽光線問合せ情報に含まれる日時情報14で示される日時に、太陽光線問合せ情報に含まれる場所情報15で示される場所で受ける太陽光線の強度を含む情報である太陽光線強度情報16を算出し、記憶部13に記憶する。太陽光線強度情報16は、例えば、放射伝達方程式を用いて算出する。
【0036】
ステップS73では、ステップS72で算出した太陽光線強度情報16に対し、方向情報16を入力値とした数学的計算を行うことで、日時情報14で示される日時に、太陽光線問合せ情報に含まれる場所情報15で示される場所で、方向情報16aで示される照射面が受ける太陽光線強度情報である、方向特定太陽光線強度情報を算出する。
【0037】
ステップS74では、ステップS73で算出した方向特定太陽光線強度情報を用いて、ステップS71で受信した予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する。土壌状態予測情報は、例えば、予測情報問合せ情報が含む土壌情報が示す土壌の温度に対する太陽光線の影響を予測する土壌温度プロファイル、予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の分光強度、予測情報問合せ情報が含む土壌情報が示す土壌に対する地力修復の効果予測、予測情報問合せ情報が含む土壌情報が示す土壌に対する収量予測、及び予測情報問合せ情報が含む土壌情報が示す土壌に対する栽培適地の予測のうちの少なくとも一つについての情報を含む。土壌状態予測情報の算出についての詳細は、後述する。
【0038】
ステップS75では、ステップS74で算出した土壌状態予測情報を、今回の予測情報問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に、ネットワーク4を介して送信する。クライアントマシン2又はクライアントマシン3は、日時情報14、場所情報15及び方向情報16aを含む太陽光線問合せ情報と土壌情報とを含む予測情報問合せ情報を土壌状態予測システム10に送信するだけで、土壌状態予測情報を得ることができ、より詳細な土壌への影響を容易に得ることができる。クライアントマシン2又はクライアントマシン3は、土壌状態予測システム10から得た土壌状態予測情報を用いて、エンドユーザに対して様々なアプリケーションを提供することができる。
【実施例0039】
図11は、本発明の実施例2に係る土壌状態予測システムの構成を示すブロック図である。本実施例の土壌状態予測システム100は、例えば、コンピュータから成るサーバーマシンである。
【0040】
土壌状態予測システム100は、図11に示すように、日時情報と場所情報とを用いて詳しくは後述する太陽光線強度情報116を予め算出する第一算出部110と、第一算出部110が算出した太陽光線強度情報116やそのほかの各種情報を記憶する記憶部113と、通信を行う通信部117と、通信部117を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた太陽光線強度情報116を記憶部113から抽出する抽出部111と、抽出部111が抽出した太陽光線強度情報116を用いて方向特定太陽光線強度情報を算出する第二算出部112と、第二算出部112の算出結果を用いて、通信部117を介して入力された予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する第三算出部121と、を備える。通信部117は、例えば外部と通信を行う。予測情報問合せ情報は、太陽光線問合せ情報及び土壌情報を含む。太陽光線問合せ情報は、日時情報114と、場所情報115と、方向情報116aと、を含む。方向特定太陽光線強度情報は、日時情報114で示される日時及び場所情報115で示される場所における、方向情報116aで示される照射面が受ける太陽光線の強度を含む情報である。通信部117は、予測情報問合せ情報の送信元に対し、第三算出部121の算出結果を送信する。図11に示す各構成は、ハードウェアで構成してもよい。また、図11に示す各構成は、土壌状態予測システム100がプログラムを実行することで実現することもでき、記憶部113は、土壌状態予測システム100で実行するプログラムを記憶してもよい。記憶部113は、データの用途に応じて、揮発性の記憶装置や不揮発性の記憶装置を有する。
【0041】
なお、通信部117は、予測情報問合せ情報の送信元に対し、第二算出部112が算出した方向特定太陽光線強度を示す方向特定太陽光線強度情報を送信する構成としてもよい。
【0042】
なお、土壌状態予測システム100において、通信部117は、予測情報問合せ情報の送信元に対し、抽出部111が抽出した太陽光線強度情報を送信する構成としてもよい。この場合、第二算出部112の機能に相当する構成を、クライアントマシン2又は3が有することとしてもよい。すなわち、本発明は、サーバーマシンとクライアントマシンとをネットワークで接続してなる土壌状態予測システムであって、サーバーマシンは、日時に関する情報である日時情報114で示される日時及び場所に関する情報である場所情報115で示される場所における太陽光線強度に関する情報である太陽光線強度情報116を算出する第一算出部110と、日時情報114と、場所情報115と、第一算出部110が算出した太陽光線強度情報116と、を対応付けて記憶する記憶部113と、クライアントマシンと通信を行う第一通信部と、第一通信部を介して入力された予測情報問合せ情報が含む太陽光線問合せ情報に対応付けられた太陽光線強度情報116を記憶部113から抽出する抽出部111と、を備え、第一通信部は、クライアントマシンに対し、抽出部111が抽出した太陽光線強度情報116を送信し、クライアントマシンは、サーバーマシンと通信を行う第二通信部と、第二通信部を介して入力された太陽光線強度情報116を用いて方向特定太陽光線強度情報を算出する第二算出部(第二算出部112の機能に相当する構成)と、を備え、第二通信部は、太陽光線問合せ情報をサーバーマシンに送信し、太陽光線問合せ情報は、日時情報114と、場所情報115と、太陽光線の照射を受ける照射面が向く方向を示す方向情報116aと、を含む、構成としてもよい。
【0043】
記憶部113は、日時に関する情報である日時情報114と、場所に関する情報である場所情報115と、日時情報114で示される日時及び場所情報115で示される場所における太陽光線強度に関する情報である太陽光線強度情報116(第一算出部110が算出した太陽光線強度情報116)と、を対応付けて記憶する。
【0044】
土壌状態予測システム100の通信部117は、インターネットなどのネットワーク4に接続されている。ネットワーク4には、ユーザが用いるクライアントマシン2、3が接続されており、クライアントマシン2、3は、ネットワーク4を介して、土壌状態予測システム100と通信を行う。
【0045】
クライアントマシン2又はクライアントマシン3から、土壌状態予測システム100へは、ネットワーク4を介して、予測情報問合せ情報が送信される。太陽光線問合せ情報は、日時情報114と、場所情報115と、方向情報116aと、を含む。土壌状態予測システム100から、予測情報問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3へは、ネットワーク4を介して、抽出部112による抽出結果である方向特定太陽光線強度情報が送信される。
【0046】
なお、本実施例において、記憶部113に記憶する情報の一例は、図9に示した情報である。
【0047】
図12は、図11に示した土壌状態予測システム100の動作を示すフローチャートである。ステップS91では、日時情報と場所情報を用いて、すべての日時におけるすべての場所の太陽光線強度情報116が含む情報を算出する。この太陽光線強度情報116が含む情報の算出には、例えば、放射伝達方程式を用いる。すなわち、太陽光線強度情報116が含む情報は、例えば放射伝達方程式を解いて算出する値や、放射伝達方程式を解く過程で算出する値を含む。ステップS92では、ステップS91で算出した太陽光線強度情報116が含む情報を記憶部113に記憶する。
【0048】
続いて、ネットワーク4を介して、クライアントマシン2又はクライアントマシン3からの予測情報問合せ情報を受信した場合には(ステップS93:Yes)、ステップS94に進み、予測情報問合せ情報を受信しない場合には(ステップS93:No)、ステップS90に戻る。予測情報問合せ情報は太陽光線問合せ情報を含む。なお、太陽光線強度情報116が含む情報の算出、算出した情報の記憶部13への記憶は、クライアントマシン2又は3からの太陽光線問合せ情報を受信する処理を実施する前に、すべて済ませてしまっておいてもよいし、例えば今まで入手不可能だった地域のデータが新たに入手できた場合などにはその都度更新してもよい。
【0049】
ステップS94では、クライアントマシン2又はクライアントマシン3からの受信データに含まれる太陽光線問合せ情報に基づき、記憶部113から太陽光線強度情報116の抽出を行う。すなわち、太陽光線問合せ情報に含まれる日時情報114、場所情報115に該当する太陽光線強度情報116を、記憶部113から抽出する。ステップS94ではさらに、抽出した太陽光線強度情報116の値に対し、方向情報116aを入力値とした数学的計算を行うことで、日時情報14で示される日時に、太陽光線問合せ情報に含まれる場所情報15で示される場所で、方向情報116aで示される照射面が受ける太陽光線の強度を含む情報である方向特定太陽光線強度情報を算出する。
【0050】
ステップS95では、ステップS94で算出した方向特定太陽光線強度情報を用いて、ステップS93で受信した予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の影響を予測する土壌状態予測情報を算出する。土壌状態予測情報は、例えば、予測情報問合せ情報が含む土壌情報が示す土壌の温度に対する太陽光線の影響を予測する土壌温度プロファイル、予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の分光強度、予測情報問合せ情報が含む土壌情報が示す土壌に対する地力修復の効果予測、予測情報問合せ情報が含む土壌情報が示す土壌に対する収量予測、及び予測情報問合せ情報が含む土壌情報が示す土壌に対する栽培適地の予測のうちの少なくとも一つについての情報を含む。土壌状態予測情報の算出についての詳細は、後述する。
【0051】
ステップS96では、ステップS95で算出した土壌状態予測情報を、今回の予測情報問合せ情報の送信元であるクライアントマシン2又はクライアントマシン3に、ネットワーク4を介して送信する。クライアントマシン2又はクライアントマシン3は、日時情報14、場所情報15及び方向情報16aを含む太陽光線問合せ情報と土壌情報とを含む予測情報問合せ情報を土壌状態予測システム100に送信するだけで、土壌状態予測情報を得ることができ、より詳細な土壌への影響を容易に得ることができる。クライアントマシン2又はクライアントマシン3は、土壌状態予測システム100から得た土壌状態予測情報を用いて、エンドユーザに対して様々なアプリケーションを提供することができる。
【0052】
また、本実施例では、太陽光線強度情報116を予め算出しておくので、クライアントマシン2又はクライアントマシン3から太陽光線問合せ情報を受信してから算出する場合と比べて、応答が早く、より高い即時性をもって方向特定太陽光線強度情報を提供することができる。
【実施例0053】
<照射熱量の算定>
本実施例では、図1に示した構成において、土壌状態予測システム10は、照射熱量を算出することができる。図13は、分光放射照度を示すグラフである。図13において、横軸は光の波長であり、縦軸は分光放射照度である。図13では、上述の実施例1に基づき、照射面に対する天空のエネルギー強度をシミュレーションで算出した後、照射面に照射される熱量を算出した結果を示す。また、図13は、2016年6月20日の12:00~1300に宮古島に配置した照射面が受ける熱量の算出例である。本実施例によれば、照射面に照射されるエネルギーの積算値は1,029.8[W/m]であることが求まり、照射面が受ける熱量は3,707,358[J/m]であることが求まる。
本実施例により、計測の困難であった高層構造物などや、森林が受ける照射熱量の予測が可能となり、構造物の防御設計や、森林植林計画に活用することが可能である。
【実施例0054】
<構造物に照射される照射量の算定>
本実施例では、図1に示した構成において、土壌状態予測システム10は、実施例3で求めた結果である照射面が受ける熱量から、照射される材質(照射面を有する照射材の材質)に応じた温度上昇を予測することができる。本実施例では、この照射面の温度上昇予測について説明する。図14は、照射される材質の温度上昇に関する試算条件を示す図である。図14に示すように、本実施例では、照射材J1の照射面J2の太陽光線が入射した場合であって、照射面J2の反射率は30%であるとする。また、照射材J1からの熱放射はゼロであるとする。また、照射材J1からの熱伝達、熱伝導はゼロであるとする。
【0055】
図15は、材質に応じた1時間後の温度上昇の試算例を示す図である。照射面J2の反射率が30%である照射材J1に3,707,358[J/m]の熱量の太陽光線が入射されると、照射面J2での反射熱量は1,112,207[J/m]であり、照射材J1の吸収熱量は2,595,151[J/m]である。図15に示す材質ごとの熱特性を考慮すると、図15に示すように、材質ごとの1時間後の温度上昇を試算することができる。例えば、照射材J1の材質が鋼材の場合は、熱容量が18864[J/K]であることから、1時間に受ける熱量は、2595.151[J/m2]×1[m]/18864[J/K]=137.6[K]となる。したがって、当初20[℃]の鋼材の温度は、1時間後に20[℃]+137.6[K]=157.6[℃]に上昇する。同様に、当初20[℃]のガラスウール保温板の温度は、20[℃]+25745.5[K]=25765.5[℃]に上昇する。なお、ここで、照射材J1の材質モデルの形状は1mx1mx厚さ5mmであるとする。また、この試算は、照射材J1からの放熱(熱放射、熱伝導、熱伝達など)がないと仮定した場合の試算である。現実には、照射材J1からの放熱があるので、これほど温度上昇することはない。試算においては必要に応じて放熱を考慮すればよい。この試算により、高所や人が近づけずに計測が困難であった構造物や、土地などの照射面における、温度上昇の予測が可能となり、本実施例によれば、構造物の劣化予測や、森林植林計画に活用することが可能である。
【実施例0056】
<他照射面での反射の参入(歩道の例)>
本実施例では、図1に示した構成において、土壌状態予測システム10は、歩道の反射率に基づき反射エネルギーを算出し、照射面に照射される照射量を算出することができる。歩道の反射率は、例えば、図7(a)及び図7(b)を参照して説明した方法で求めることができる。図16(a)は歩道での各方向からの分光照射強度の例を示すグラフである。図16(a)において、横軸は光の波長であり、縦軸は照射強度である。図16(b)は歩道での分光反射率の例を示すグラフである。図16(b)において、横軸は光の波長であり、縦軸は分光反射率である。図16(b)を参照すると、歩道の分光反射率が10~20%であることがわかる。
【実施例0057】
<他照射面での反射の参入(草地、例えば芝生の例)>
本実施例では、図1に示した構成において、土壌状態予測システム10は、草地の反射率に基づき反射エネルギーを算出し、照射面に照射される照射量を算出することができる。草地の反射率は、例えば、図7(a)及び図7(b)を参照して説明した方法で求めることができる。図17(a)は草地での各方向からの分光照射強度の例を示すグラフである。図17(a)において、横軸は光の波長であり、縦軸は照射強度である。図17(b)は草地での分光反射率の例を示すグラフである。図17(b)において、横軸は光の波長であり、縦軸は分光反射率である。図17(b)を参照すると、草地の分光反射率が5~10%であることがわかる。また、図17(b)を参照すると、草地では近赤外で反射率が急増していることがわかる。
【実施例0058】
<他照射面での反射の参入(アスファルトの例)>
本実施例では、図1に示した構成において、土壌状態予測システム10は、アスファルトの反射率に基づき反射エネルギーを算出し、照射面に照射される照射量を算出することができる。アスファルトの反射率は、例えば、図7(a)及び図7(b)を参照して説明した方法で求めることができる。図18(a)はアスファルトでの各方向からの分光照射強度の例を示すグラフである。図18(a)において、横軸は光の波長であり、縦軸は照射強度である。図18(b)はアスファルトでの分光反射率の例を示すグラフである。図18(b)において、横軸は光の波長であり、縦軸は分光反射率である。図18(b)を参照すると、アスファルトの分光反射率が5%であることがわかる。
【実施例0059】
<土壌状態予測情報の説明>
以下に、土壌状態予測情報について、さらに説明する。
上述の第三算出部21及び121は、土壌状態予測情報を算出する。土壌状態予測情報は、例えば、予測情報問合せ情報が含む土壌情報が示す土壌の温度に対する太陽光線の影響を予測する土壌温度プロファイル、予測情報問合せ情報が含む土壌情報が示す土壌に対する太陽光線の分光強度、予測情報問合せ情報が含む土壌情報が示す土壌に対する地力修復の効果予測、予測情報問合せ情報が含む土壌情報が示す土壌に対する収量予測、及び予測情報問合せ情報が含む土壌情報が示す土壌に対する栽培適地の予測のうちの少なくとも一つについての情報を含む。
【0060】
図19は、光の波長とエネルギーの関係を示す図である。上述の第三算出部21又は第三算出部121は、図19に示す関係を用いることで、土壌状態予測情報を算出することができる。
【0061】
(太陽光線の分光強度について)
土壌状態予測システム10及び100は、場所・日時・方向・分光強度に応じて、当該分光強度データ(分光強度データは、直達光成分と散乱光成分から構成される。)を生成する。
【0062】
(土壌温度プロファイルの予測について)
土壌状態予測システム10及び100は、場所・日時・方向・分光強度に応じて、当該分光強度データを生成する。土壌状態予測システム10及び100は、生成した分光強度データのうち、予め計測された土壌の分光反射率(色)に応じて、土壌内に侵入する分光透過強度を計算する。土壌状態予測システム10及び100は、月日時刻に応じた分光透過強度(分光エネルギー)を積算し、土壌内に侵入する熱エネルギーと土壌の表面温度と内部温度を予測する。
【0063】
土壌状態予測システム10及び100は、予測情報問合せ情報に含まれる土壌の種別・場所・日時・方向の入力を受け付け、日時に応じた土壌内の温度を示す土壌温度プロファイルの予測を求める。
【0064】
なお、温度予測における土壌が受ける熱量は、図20に示す式で求めることができる。また、温度予測における土壌表面が外界から受け取る熱量は、図21に示す式で求めることができる。図22(a)は土壌に進入する照射エネルギーを示すグラフであり、図22(b)は気温と温度を示すグラフである。図23(a)は土壌温度を示すグラフであり、図23(b)は第三算出部21及び121で求めた土壌温度プロファイルを示すグラフである。土壌温度予測においては、太陽日射の寄与度が高い。計測値による日射データは、計測時の天気の影響を受けやすく、土地間の定量比較は難しい。一方、上述のようにシミュレーションで求めた太陽日射(日射データ)によれば、土地間の定量比較が可能となる。
【0065】
(地力修復の効果予測について)
土壌状態予測システム10及び100は、先に求めた分光強度データ及び土壌温度プロファイルを用いて、所望の土地の地力修復の効果予測を求める。土壌状態予測システム10及び100は、地力修復の効果予測として、太陽熱消毒法等のバイオスティミュラントの効果を予測する。土壌状態予測システム10及び100は、所望の深さの土壌温度と積算温度により太陽熱消毒の効果を予測する。なお、土壌へのエネルギーの積算値である期間積算値は、図24に示す式で求めることができる。従来は、所望の土地の土壌温度プロファイルが不明であったため、太陽熱消毒法等のバイオスティミュラントの効果の予測精度が低かった。本実施例によれば土壌温度プロファイルを用いることで予測精度を高めることが出来る。
【0066】
(収量予測について)
土壌状態予測システム10及び100は、先に求めた分光強度データ及び土壌温度プロファイルを用いて、所望の土地の収量予測を求める。土壌状態予測システム10及び100は、収量予測として、植物の光合成効率や農作物等の収量を予測する。光合成に利用可能な光の波長は、例えば400~700nmであることが知られているが、従来は、所望の土地の土壌温度プロファイルが不明であったため、太陽光線情報(光合成効率に寄与する特定波長の光強度)を活用した光合成効率や収量の予測ができなかった。本実施例によれば土壌温度プロファイルを用いることで収量予測を求めることが出来る。
【0067】
(栽培適地の予測について)
土壌状態予測システム10及び100は、先に求めた分光強度データ及び土壌温度プロファイルを用いて、所望の土地の栽培適地の予測を求める。土壌状態予測システム10及び100は、栽培適地の予測として、所望の作物等の栽培に適しているかの予測を行う。所望の農作物等の栽培に適した温度は知られているが、従来は、所望の土地の土壌温度プロファイルが不明であったため、太陽光線情報(光合成効率に寄与する特定波長の光強度)を活用した光合成効率や収量を予測して栽培適地を選定することができなかった。または、所望の農作物等のゲノム・メタゲノム解析結果と土壌温度プロファイルとの相関を把握することができなかったため、光合成効率や収量を予測して栽培適地を選定することができなかった。本実施例によれば土壌温度プロファイルを用いることで栽培適地の予測を求めることが出来る。
【0068】
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されるものではない。本発明の目的は、上述の実施例の機能を実現するプログラムコード(コンピュータプログラム)を格納した記憶媒体をシステムあるいは装置に供給し、供給されたシステムあるいは装置のコンピュータが記憶媒体に格納されたプログラムコードを読み出し実行することによっても達成される。この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施例の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。また、上述した実施形態では、コンピュータがプログラムを実行することにより、各処理部として機能するものとしたが、処理の一部または全部を専用の電子回路(ハードウェア)で構成するようにしても構わない。本発明は、説明された特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0069】
2、3 クライアントマシン
4 ネットワーク
10 土壌状態予測システム
11 第一算出部
12 第二算出部
12 第二算出部
13 記憶部
17 通信部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24