(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022141955
(43)【公開日】2022-09-29
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 29/739 20060101AFI20220921BHJP
H01L 29/78 20060101ALI20220921BHJP
H01L 21/336 20060101ALI20220921BHJP
H01L 29/861 20060101ALI20220921BHJP
H01L 29/12 20060101ALI20220921BHJP
H01L 29/06 20060101ALI20220921BHJP
【FI】
H01L29/78 655C
H01L29/78 655G
H01L29/78 653A
H01L29/78 655D
H01L29/78 655B
H01L29/78 658H
H01L29/78 652J
H01L29/78 657D
H01L29/91 L
H01L29/91 C
H01L29/78 652T
H01L29/91 F
H01L29/91 J
H01L29/06 301V
H01L29/06 301G
H01L29/78 652P
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022120643
(22)【出願日】2022-07-28
(62)【分割の表示】P 2017199338の分割
【原出願日】2017-10-13
(31)【優先権主張番号】P 2016203146
(32)【優先日】2016-10-14
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2017091414
(32)【優先日】2017-05-01
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】内藤 達也
(57)【要約】
【課題】ダイオード部においては、チップの上面側にP+型のコンタクト領域が設けられる場合がある。当該P+型のコンタクト領域の下部全体にN+型のカソード領域が設けられる場合、チップの下面から上面へ流れる電流が当該コンタクト領域の一部分に集中するという問題がある。
【解決手段】半導体基板と、半導体基板に設けられたトランジスタ部と、トランジスタ部に隣接して、半導体基板に設けられたダイオード部とを備え、ダイオード部は、第2導電型のアノード領域と、第1導電型のドリフト領域と、第1導電型のカソード領域と、予め定められた配列方向に沿って配列された複数のダミートレンチ部と、配列方向とは異なる複数のダミートレンチ部の延伸方向に沿って設けられたコンタクト部と、延伸方向におけるコンタクト部の外側の端部の直下に設けられる下面側半導体領域とを有する、半導体装置を提供する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
半導体基板と、
前記半導体基板に設けられたトランジスタ部と、
前記トランジスタ部に隣接して、前記半導体基板に設けられたダイオード部と
を備え、
前記ダイオード部は、
少なくとも一部が前記半導体基板の上面に露出する第2導電型のアノード領域と、
前記アノード領域の下方に設けられた第1導電型のドリフト領域と、
前記ドリフト領域の下方に設けられた第1導電型のカソード領域と、
前記アノード領域を少なくとも貫通して、予め定められた配列方向に沿って配列された複数のダミートレンチ部と、
前記配列方向とは異なる複数のダミートレンチ部の延伸方向に沿って設けられたコンタクト部と、
前記ドリフト領域の下方に設けられ、前記延伸方向における前記コンタクト部の外側の端部の直下に設けられる第2導電型の下面側半導体領域と
を有する、半導体装置。
【請求項2】
前記トランジスタ部は、
前記半導体基板の上面に露出する第1導電型のエミッタ領域と、
少なくとも一部が前記エミッタ領域の下方に設けられた第2導電型のベース領域と、
前記ベース領域の下方に設けられた第1導電型のドリフト領域と、
前記ベース領域を少なくとも貫通して、前記延伸方向に延伸する複数のゲートトレンチ部と、
前記トランジスタ部における前記ベース領域と前記ドリフト領域との間と、前記ダイオード部の前記アノード領域と前記ドリフト領域との間とに設けられ、前記ドリフト領域よりも高い第1導電型のドーピング濃度を有する第1導電型の蓄積領域と、
前記ドリフト領域の下方に設けられ、前記ダイオード部における前記蓄積領域の前記延伸方向の外側の端部における直下にも設けられる、前記下面側半導体領域と
を有する、請求項1に記載の半導体装置。
【請求項3】
前記蓄積領域の前記延伸方向における外側の端部は、前記コンタクト部の前記延伸方向における外側の端部よりも内側に設けられ、
前記下面側半導体領域は、少なくとも前記コンタクト部の前記延伸方向における外側の端部の直下から前記蓄積領域の前記延伸方向の端部の直下まで連続して設けられる
請求項2に記載の半導体装置。
【請求項4】
前記延伸方向における前記下面側半導体領域の端部から、前記蓄積領域の前記延伸方向における外側の端部までの長さは、
前記蓄積領域の前記延伸方向における外側の端部から、前記コンタクト部の前記延伸方向における外側の端部までの長さよりも長い
請求項3に記載の半導体装置。
【請求項5】
前記延伸方向における前記下面側半導体領域の端部から、前記蓄積領域の前記延伸方向における外側の端部までの長さは、
前記蓄積領域の前記延伸方向における外側の端部から、前記コンタクト部の前記延伸方向における外側の端部までの長さよりも短い
請求項3に記載の半導体装置。
【請求項6】
前記下面側半導体領域は、前記蓄積領域の前記延伸方向における外側の端部よりも200μm以上内側まで連続して設けられる
請求項2から5のいずれか一項に記載の半導体装置。
【請求項7】
前記蓄積領域の前記延伸方向における外側の端部は、前記コンタクト部の前記延伸方向における外側の端部よりも内側に設けられ、
前記下面側半導体領域は、少なくとも前記コンタクト部の前記延伸方向における外側の端部の直下から前記蓄積領域の前記延伸方向の端部の直下よりも外側まで連続して設けられる
請求項2に記載の半導体装置。
【請求項8】
前記延伸方向における前記蓄積領域の端部領域は、外側ほど浅い位置に設けられる
請求項2から7のいずれか一項に記載の半導体装置。
【請求項9】
前記ダイオード部は、前記複数のダミートレンチ部の間に、前記アノード領域よりも高い第2導電型のドーピング濃度を有する高濃度第2導電型領域と、前記ドリフト領域よりも高い第1導電型のドーピング濃度を有する高濃度第1導電型領域とを有する
請求項1から8のいずれか一項に記載の半導体装置。
【請求項10】
前記高濃度第1導電型領域および前記高濃度第2導電型領域は、前記延伸方向に延伸し、前記配列方向において互いに隣接する
請求項9に記載の半導体装置。
【請求項11】
前記高濃度第1導電型領域および前記高濃度第2導電型領域は、前記配列方向に延伸し、前記延伸方向において互いに隣接する
請求項9に記載の半導体装置。
【請求項12】
前記トランジスタ部は、複数のゲートトレンチ部を有し、
前記複数のゲートトレンチ部は、
前記延伸方向に沿って延伸する第1部分と、
前記配列方向に延伸し、複数の前記第1部分の前記延伸方向の端部に接続する第2部分と、を有する
請求項1に記載の半導体装置。
【請求項13】
前記第2部分は、3つ以上の前記第1部分の前記延伸方向の端部に接続する
請求項12に記載の半導体装置。
【請求項14】
前記ダイオード部の前記複数のダミートレンチ部は、
前記延伸方向に沿って延伸する第1部分と、
前記配列方向に延伸し、複数の前記第1部分の前記延伸方向の端部に接続する第2部分と、を有する
請求項12に記載の半導体装置。
【請求項15】
前記第2部分は、3つ以上の前記第1部分の前記延伸方向の端部に接続する
請求項14に記載の半導体装置。
【請求項16】
前記複数のゲートトレンチ部の第1部分と前記複数のダミートレンチ部の第1部分とは互いに平行である請求項14に記載の半導体装置。
【請求項17】
前記複数のゲートトレンチ部の第1部分と前記複数のダミートレンチ部の第1部分とは互いに直交する請求項14に記載の半導体装置。
【請求項18】
前記ダイオード部はライフタイムキラー領域を備える
請求項14に記載の半導体装置。
【請求項19】
前記ライフタイムキラー領域は、前記複数のダミートレンチ部の第1部分よりも前記ダイオード部の外側に延伸する
請求項18に記載の半導体装置。
【請求項20】
前記ライフタイムキラー領域は、前記複数のダミートレンチ部の第2部分よりも前記ダイオード部の外側に延伸する
請求項18に記載の半導体装置。
【請求項21】
前記ライフタイムキラー領域は、前記複数のゲートトレンチ部の第2部分より外側に延伸する
請求項18に記載の半導体装置。
【請求項22】
前記複数のゲートトレンチ部の各々は、ゲート絶縁膜に接して、前記ゲート絶縁膜よりも前記複数のゲートトレンチ部の各々の内側に設けられたゲート導電部を有し、
前記半導体装置は、前記半導体基板の上面視で前記トランジスタ部または前記ダイオード部の外側に設けられ且つ前記ゲート導電部と電気的に接続するゲート金属層をさらに備え、
前記ライフタイムキラー領域は、前記ゲート金属層の外側に延伸する
請求項20に記載の半導体装置。
【請求項23】
前記半導体基板の上面から前記ライフタイムキラー領域までの深さは、前記ライフタイムキラー領域から前記半導体基板の下面までの深さよりも小さい
請求項18に記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置に関する。
【0002】
従来、IGBT(Insulated Gate Bipolar Transistor)等のトランジスタ部と、FWD(Free Wheeling Diode)等のダイオード部とが同一チップに形成された半導体装置が知られている。当該半導体装置において、チップの下面側におけるダイオード部が設けられる領域には、N+型のカソード領域が設けられる(例えば、特許文献1参照)。
[先行技術文献]
[特許文献]
[特許文献1] 特開2015-135954号公報
【発明の概要】
【発明が解決しようとする課題】
【0003】
ダイオード部においては、例えばトレンチ長手方向に沿ってコンタクト部が設けられる。ダイオード部の下部全体にN+型のカソード領域が設けられる場合、チップの下面から上面へ流れる電流が、ダイオード部の端部、即ちコンタクト部の端部に集中するという問題がある。
【課題を解決するための手段】
【0004】
本発明の第1の態様においては、半導体装置を提供する。半導体装置は、半導体基板と、トランジスタ部と、ダイオード部とを備えてよい。トランジスタ部およびダイオード部は、半導体基板に設けられてよい。ダイオード部は、トランジスタ部に隣接してよい。ダイオード部は、第2導電型のアノード領域と、第1導電型のドリフト領域と、第1導電型のカソード領域と、複数のダミートレンチ部と、コンタクト部と、下面側半導体領域とを有してよい。第2導電型のアノード領域は、少なくとも一部が半導体基板の上面に露出してよい。第1導電型のドリフト領域は、アノード領域の下方に設けられてよい。第1導電型のカソード領域は、ドリフト領域の下方に設けられてよい。複数のダミートレンチ部は、アノード領域を少なくとも貫通してよい。複数のダミートレンチ部は、予め定められた配列方向に沿って配列されてよい。コンタクト部は、配列方向とは異なる複数のダミートレンチ部の延伸方向に沿って設けられてよい。下面側半導体領域は、ドリフト領域の下方に設けられてよい。下面側半導体領域は、延伸方向におけるコンタクト部の外側の端部の直下に設けられてよい。
【0005】
トランジスタ部は、第1導電型のエミッタ領域と、第2導電型のベース領域と、第1導電型のドリフト領域と、複数のゲートトレンチ部と、第1導電型の蓄積領域と、下面側半導体領域とを有してよい。第1導電型のエミッタ領域は、半導体基板の上面に露出してよい。第2導電型のベース領域は、少なくとも一部がエミッタ領域の下方に設けられてよい。第1導電型のドリフト領域は、ベース領域の下方に設けられてよい。複数のゲートトレンチ部は、ベース領域を少なくとも貫通してよい。複数のゲートトレンチ部は、延伸方向に延伸してよい。第1導電型の蓄積領域は、トランジスタ部におけるベース領域とドリフト領域との間と、ダイオード部のアノード領域とドリフト領域との間とに設けられてよい。第1導電型の蓄積領域は、ドリフト領域よりも高い第1導電型のドーピング濃度を有してよい。下面側半導体領域は、ドリフト領域の下方に設けられてよい。下面側半導体領域は、ダイオード部における蓄積領域の延伸方向の外側の端部における直下にも設けられてよい。
【0006】
蓄積領域の延伸方向における外側の端部は、コンタクト部の延伸方向における外側の端部よりも内側に設けられてよい。下面側半導体領域は、少なくともコンタクト部の延伸方向における外側の端部の直下から蓄積領域の延伸方向の端部の直下まで連続して設けられてよい。
【0007】
延伸方向における下面側半導体領域の端部から、蓄積領域の延伸方向における外側の端部までの長さは、蓄積領域の延伸方向における外側の端部から、コンタクト部の延伸方向における外側の端部までの長さよりも長くてよい。
【0008】
これに代えて、延伸方向における下面側半導体領域の端部から、蓄積領域の延伸方向における外側の端部までの長さは、蓄積領域の延伸方向における外側の端部から、コンタクト部の延伸方向における外側の端部までの長さよりも短くてもよい。
【0009】
下面側半導体領域は、蓄積領域の延伸方向における外側の端部よりも200μm以上内側まで連続して設けられてよい。
【0010】
蓄積領域の延伸方向における外側の端部は、コンタクト部の延伸方向における外側の端部よりも内側に設けられてよい。下面側半導体領域は、少なくともコンタクト部の延伸方向における外側の端部の直下から蓄積領域の延伸方向の端部の直下よりも外側まで連続して設けられてもよい。
【0011】
延伸方向における蓄積領域の端部領域は、外側ほど浅い位置に設けられる。
【0012】
ダイオード部は、複数のダミートレンチ部の間に、高濃度第2導電型領域と高濃度第1導電型領域とを有してよい。高濃度第2導電型領域は、アノード領域よりも高い第2導電型のドーピング濃度を有してよい。高濃度第1導電型領域は、ドリフト領域よりも高い第1導電型のドーピング濃度を有してよい。
【0013】
高濃度第1導電型領域および高濃度第2導電型領域は、延伸方向に延伸してよい。高濃度第1導電型領域および高濃度第2導電型領域は、配列方向において互いに隣接してよい。
【0014】
また、高濃度第1導電型領域および高濃度第2導電型領域は、配列方向に延伸してもよい。この場合に、高濃度第1導電型領域および高濃度第2導電型領域は、延伸方向において互いに隣接してよい。
【0015】
トランジスタ部は、複数のゲートトレンチ部を有してよい。複数のゲートトレンチ部は、第1部分と第2部分とを有してよい。第1部分は、延伸方向に沿って延伸してよい。第2部分は、配列方向に延伸してよい。第2部分は、複数の第1部分の延伸方向の端部に接続してよい。第2部分は、3つ以上の第1部分の延伸方向の端部に接続してよい。
【0016】
ダイオード部の複数のダミートレンチ部は、第1部分と第2部分とを有してよい。第1部分は、延伸方向に沿って延伸してよい。第2部分は、配列方向に延伸してよい。第2部分は、複数の第1部分の延伸方向の端部に接続してよい。第2部分は、3つ以上の第1部分の延伸方向の端部に接続してよい。
【0017】
複数のゲートトレンチ部の第1部分と複数のダミートレンチ部の第1部分とは、互いに平行であってよい。これに代えて、複数のゲートトレンチ部の第1部分と複数のダミートレンチ部の第1部分とは互いに直交してよい。
【0018】
ダイオード部はライフタイムキラー領域を備えてよい。ライフタイムキラー領域は、複数のダミートレンチ部の第1部分よりもダイオード部の外側に延伸してよい。また、ライフタイムキラー領域は、複数のダミートレンチ部の第2部分よりもダイオード部の外側に延伸してよい。ライフタイムキラー領域は、複数のゲートトレンチ部の第2部分より外側に延伸してよい。
【0019】
複数のゲートトレンチ部の各々は、ゲート導電部を有してよい。ゲート導電部は、ゲート絶縁膜に接してゲート絶縁膜よりも複数のゲートトレンチ部の各々の内側に設けられてよい。半導体装置は、ゲート金属層をさらに備えてよい。ゲート金属層は、半導体基板の上面視でトランジスタ部またはダイオード部の外側に設けられ且つゲート導電部と電気的に接続してよい。ライフタイムキラー領域は、ゲート金属層の外側に延伸してよい。
【0020】
半導体基板の上面からライフタイムキラー領域までの深さは、ライフタイムキラー領域から半導体基板の下面までの深さよりも小さくてよい。
【0021】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0022】
【
図1】第1実施形態における半導体装置100の上面図である。
【
図6】第2実施形態における半導体装置200の上面図である。
【
図9】
図8におけるコンタクト領域15近傍の蓄積領域16の部分拡大図である。
【
図10】蓄積領域16を形成する際のマスク垂れを説明する図である。
【
図11】第3実施形態における半導体装置300の上面図である。
【
図13】第4実施形態における半導体装置400の上面図である。
【
図15A】第1比較例におけるA‐A'断面図である。
【
図15B】第2比較例におけるA‐A'断面図である。
【
図16】トランジスタ部70に隣接するダイオード部80の角部を示す上面図である。
【
図18】ライフタイムキラー領域19における再結合中心の濃度分布を示す図である。
【発明を実施するための形態】
【0023】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0024】
図1は、第1実施形態における半導体装置100の上面図である。本例の半導体装置100は、IGBT等のトランジスタを含むトランジスタ部70と、FWD等のダイオードを含むダイオード部80とを含む半導体基板を有する。半導体基板の上面においてダイオード部80は、トランジスタ部70に隣接して設けられる。半導体基板の上面とは、半導体基板において対向する二つの主面の一方を指す。
図1は、半導体基板の端部周辺の上面を示しており、他の領域を省略している。なお、
図1においては矢印を付して示しているコレクタ領域22およびカソード領域82は、半導体基板の裏面側に設けられる点に注意されたい。
【0025】
本例において、トランジスタ部70およびダイオード部80は、半導体基板の活性領域に設けられる。本例において、トランジスタ部70とは、半導体基板の裏面に垂直な方向において半導体基板の裏面から表(おもて)面側に向かってコレクタ領域22を投影したときの投影領域であって、エミッタ領域12およびコンタクト領域15の両方を含む所定の単位構成が規則的に配置された領域を含む。また、本例において、ダイオード部80とは、カソード領域82に一致する裏面の領域を含む、または、半導体基板の裏面に垂直において半導体基板の裏面から表面側に向かってカソード領域82を投影したときの投影領域を含む。
【0026】
なお、本明細書において、「上」、「下」、「上方」、「下方」、「上面」および「下面」の用語は、重力方向における上下方向に限定されない。これらの用語は、所定の軸における相対的な方向を指している。
【0027】
図1は、半導体基板の端部周辺の活性領域を示す。ただし、半導体装置100は、上面視において活性領域を囲むエッジ終端部を有してもよい。活性領域は、半導体装置100をオン状態に制御した場合に電流が流れる領域を指す。エッジ終端部は、半導体基板の上面側の電界集中を緩和する。エッジ終端部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有する。
【0028】
本例の半導体装置100は、半導体基板の上面側に形成されたダミートレンチ部30、ゲートトレンチ部40、エミッタ領域12、ベース領域14、コンタクト領域15およびウェル領域17を備える。なお、本明細書では、ゲートトレンチ部40およびダミートレンチ部30の総称として、トレンチ部と称する場合がある。また、本例の半導体装置100は、半導体基板の上面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。エミッタ電極52およびゲート金属層50は互いに分離して設けられる。
【0029】
半導体装置100は、エミッタ電極52およびゲート金属層50と半導体基板の上面との間に層間絶縁膜を有する。但し、
図1では層間絶縁膜を省略している。本例の層間絶縁膜は、コンタクトホール54、55および56を有する。コンタクトホール54、55および56は、層間絶縁膜を貫通して形成される。
【0030】
エミッタ電極52は、コンタクトホール54を介して、エミッタ領域12、コンタクト領域15およびベース領域14と接触する。また、エミッタ電極52は、コンタクトホール56を介して、ダミートレンチ部30内のダミー導電部と電気的に接続する。エミッタ電極52とダミー導電部との間には、導電性の接続部57が設けられてよい。接続部57は、不純物がドープされたポリシリコン等で形成されてよい。
【0031】
ゲート金属層50は、コンタクトホール55を介して、ゲート配線51に接触する。ゲート配線51は、不純物がドープされたポリシリコン等で形成されてよい。ゲート金属層50とゲートトレンチ部40内のゲート導電部との間には、導電性のゲート配線51が設けられる。ゲート配線51は、半導体基板の上面において、少なくともゲートトレンチ部40の一部分とコンタクトホール55との間に渡って設けられる。ゲート配線51は、ゲートトレンチ部40内のゲート導電部と電気的に接続する。
【0032】
エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、各電極の少なくとも一部の領域は、アルミニウムまたはアルミニウム‐シリコン合金で形成される。各電極は、アルミニウム等で形成された領域の下層にチタンまたはチタン化合物等で形成されたバリアメタルを有してよく、コンタクトホール54、55および56内においてタングステン等で形成されたプラグを有してもよい。
【0033】
複数のゲートトレンチ部40および複数のダミートレンチ部30は、トランジスタ部70の領域において所定の配列方向に沿って所定の間隔だけ離間して配列される。トランジスタ部70においては、配列方向に沿って1以上のゲートトレンチ部40と、1以上のダミートレンチ部30とが交互に設けられてよい。また、ダイオード部80においては、複数のダミートレンチ部30が配列方向に沿って所定の間隔だけ離間して配列される。
【0034】
本例においては、半導体基板の上面において二種類の形状のダミートレンチ部30が設けられる。一つ目の形状は、予め定められた延伸方向に延伸する直線形状である。二つ目の形状は、延伸方向に延伸する直線部分と配列方向に延伸する直線部分とが各々の端部において曲線部で接続されたU字形状である。
【0035】
図1においてはX軸方向をトレンチ部の配列方向とする。また、Y軸方向をトレンチ部の延伸方向とする。X軸およびY軸は、半導体基板の上面と平行な面内において互いに直交する軸である。また、X軸およびY軸と直交する軸をZ軸とする。なお、本明細書においては、Z軸方向を深さ方向と称する場合がある。
【0036】
トランジスタ部70において、ダイオード部80との境界には、複数のダミートレンチ部30が所定の間隔だけ離間して配列されてよい。トランジスタ部70とダイオード部80との境界近傍にX軸方向に配列されるダミートレンチ部30の数は、ダイオード部80から離れたトランジスタ部70の内側において配列されるダミートレンチ部30の数よりも多くてよい。
【0037】
図1の例では、トランジスタ部70とダイオード部80との境界におけるトランジスタ部70では、U字形状に連結された2本と、直線形状の1本の計3本のダミートレンチ部30が所定の間隔だけ離間して配列される。なお、トランジスタ部70およびダイオード部80の境界に重なるダミートレンチ部30は上記3本に計数していない。これに対して、トランジスタ部70とダイオード部80との境界から離れたトランジスタ部70では、ゲートトレンチ部40およびダミートレンチ部30が1本ずつ交互に配列されている。なお、
図1において、ダイオード部80は、U字形状に連結された2本のダミートレンチ部30を有する。ただし、ダイオード部80は、X軸正方向においてさらに複数のダミートレンチ部30を有してよい。
【0038】
本例においては、半導体基板の上面において一種類の形状のゲートトレンチ部40が設けられる。当該形状は、予め定められた延伸方向に延伸する直線部分と配列方向に延伸する直線部分とが各々の端部において曲線部で接続されたU字形状である。
【0039】
ゲートトレンチ部40は、対向部41および突出部43を有する。対向部41は、トランジスタ部70におけるダミートレンチ部30と対向する部分である。対向部41は、ダミートレンチ部30と平行に設けられる。突出部43は、対向部41よりもY軸方向の外側に設けられる。なお、本例においてY軸方向の外側とは、ゲート金属層50近傍における半導体基板の端部側を意味する。Y軸方向の内側とは、外側の反対側を意味する。本例において、ダミートレンチ部30の両側に設けられたゲートトレンチ部40の2つの対向部41が、1つの突出部43と接続する。突出部43の少なくとも一部は曲線形状を有してよい。
【0040】
突出部43において、ゲートトレンチ部40内のゲート導電部と、ゲート配線51とが電気的に接続する。ゲート配線51は、突出部43における対向部41から最も離れた領域において、ゲート導電部と電気的に接続してよい。本例の突出部43は、対向部41から最も離れた領域において、配列方向に延伸する部分を有する。ゲート配線51は、突出部43の当該部分においてゲート導電部と接続してよい。
【0041】
ダイオード部80におけるダミートレンチ部30は、トランジスタ部70におけるダミートレンチ部30と同様の形状を有してよく、トランジスタ部70におけるゲートトレンチ部40と同様の形状を有してもよい。ただし、ダイオード部80におけるダミートレンチ部30は、トランジスタ部70におけるダミートレンチ部30と同一の長さを有する。
【0042】
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域17、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に設けられる。ウェル領域17は、ゲート金属層50が設けられる活性領域の端部から、Y軸正方向の所定の範囲まで形成される。ウェル領域17の拡散深さは、ダミートレンチ部30およびゲートトレンチ部40の深さよりも深くてよい。ゲート金属層50側に位置するダミートレンチ部30およびゲートトレンチ部40の一部の領域は、ウェル領域17に形成される。ダミートレンチ部30およびゲートトレンチ部40の延伸方向の端の底は、ウェル領域17内に設けられてよい。
【0043】
ゲートトレンチ部40の突出部43は、その全体がウェル領域17内に設けられてよい。半導体基板は第1導電型であり、ウェル領域17は半導体基板とは異なる第2導電型である。本例の半導体基板はN-型であり、ウェル領域17はP+型である。本例においては、第1導電型をN型として、第2導電型をP型として説明する。ただし、他の例においては、第1導電型がP型であり、第2導電型がN型であってもよい。
【0044】
本例において、メサ部94とは、ダミートレンチ部30およびゲートトレンチ部40の底面よりも半導体基板の表面に位置する、半導体基板の一部である。メサ部94は、各トレンチ部に挟まれた領域でもある。メサ部94には、ベース領域14が設けられる。ベース領域14は、ウェル領域17よりもドーピング濃度の低い第2導電型である。本例のベース領域14はP-型である。ベース領域14は、少なくとも一部がエミッタ領域12およびコンタクト領域15の下方に設けられる。
【0045】
メサ部94においてベース領域14上には、ベース領域14よりもドーピング濃度の高い第2導電型のコンタクト領域15が設けられる。本例のコンタクト領域15は、P+型である。また、トランジスタ部70においては、コンタクト領域15以外の領域に、半導体基板よりもドーピング濃度が高い第1導電型のエミッタ領域12が選択的に形成される。本例のエミッタ領域12はN+型である。
【0046】
コンタクト領域15およびエミッタ領域12のそれぞれは、X軸方向において隣接する一方のトレンチ部から、他方のトレンチ部まで形成される。トランジスタ部70の1以上のコンタクト領域15および1以上のエミッタ領域12は、トレンチ部の延伸方向に沿って交互にメサ部94の上面に露出する。
【0047】
ダイオード部80のメサ部94は、トランジスタ部70における少なくとも一つのコンタクト領域15と同じY軸方向位置に、コンタクト領域15を有する。
図1の例では、ダイオード部80のメサ部94は、トランジスタ部70において最もゲート金属層50に近いコンタクト領域15と同じY軸方向位置に、コンタクト領域15を有する。ダイオード部80のメサ部94は、コンタクト領域15以外の領域において、ベース領域14を有する。
【0048】
トランジスタ部70のコンタクトホール54は、Y軸方向に並んで設けられたコンタクト領域15およびエミッタ領域12の各領域の上方に設けられる。トランジスタ部70のコンタクトホール54は、ベース領域14およびウェル領域17の上方には設けられない。ダイオード部80のコンタクトホール54は、ベース領域14およびコンタクト領域15の上方に設けられる。ダイオード部80のコンタクトホール54もまた、ウェル領域17の上方および最もゲート金属層50に近いベース領域14の上方には設けられない。本例においてトランジスタ部70のコンタクトホール54と、ダイオード部80のコンタクトホール54とは、各トレンチ部の延伸方向において同一の長さを有する。本例のコンタクトホール54中に設けられるコンタクト構造は、Y軸方向に沿って設けられたコンタクト部の一例である。当該コンタクト構造は、半導体基板に直接接するエミッタ電極52であってよく、上述のプラグであってもよい。
【0049】
なお、複数のメサ部94のうち、トランジスタ部70とダイオード部80との境界近傍における少なくとも1つの境界メサ部94‐1は、コンタクト領域15を有する。本例の境界メサ部94‐1において半導体基板の上面に露出するコンタクト領域15の面積は、他のメサ部94において半導体基板の上面に露出するコンタクト領域15の面積よりも大きい。なお、本例の境界メサ部94-1とは、トランジスタ部70とダイオード部80との境界に重なるダミートレンチ部30と隣接するメサ部94のうち、トランジスタ部70側のメサ部94を意味する。
【0050】
図1の例において、境界メサ部94‐1は、トランジスタ部70とダイオード部80との境界に隣接する。境界メサ部94‐1においては、トランジスタ部70の他のメサ部94においてはエミッタ領域12が設けられる領域にも、コンタクト領域15が設けられる。つまり、本例の境界メサ部94‐1は、半導体基板の上面においてエミッタ領域12を有さない。
【0051】
また、ダイオード部80のメサ部94のうち少なくとも一部は、半導体基板の上面に露出するベース領域14を有する。当該メサ部94は、境界メサ部94‐1におけるコンタクト領域15と同じY軸方向位置においても、ベース領域14を有する。本例のベース領域14は、ダイオード部80においてはアノード領域として機能する。つまり、本例において、ダイオード部80のベース領域14は、アノード領域と読み替えてよい。
【0052】
また、ダイオード部80の一部の領域には、ベース領域14のZ軸方向における下方にカソード領域82が設けられる。カソード領域82は、第1導電型である。本例のカソード領域82は、N+型である。本例のカソード領域82は、ベース領域14の直下の一部に設けられる。
図1においては、カソード領域82が設けられる領域を太い破線で示す。
【0053】
本例のダイオード部80は、カソード領域82と同じ深さ位置において、カソード領域82以外の領域にはコレクタ領域22を有する。コレクタ領域22は第2導電型であり、本例のコレクタ領域22はP+型である。
図1においては、コレクタ領域22が設けられる領域をカソード領域82と同様に太い破線で示す。本例のコレクタ領域22は、第2導電型の下面側半導体領域の一例である。下面側半導体領域は第2導電型であり、本例の下面側半導体領域はP+型である。下面側半導体領域は、コレクタ領域22と同じP型ドーピング濃度を有してよく、コレクタ領域22よりも高いP型ドーピング濃度を有してもよく、コレクタ領域22よりも低くベース領域14よりも高いP型ドーピング濃度を有してもよい。
本例では、トランジスタ部70を半導体基板の下面側に投影した領域には、コレクタ領域22が設けられる。境界メサ部94‐1を半導体基板の下面側に投影した領域には、コレクタ領域22が設けられてよく、トランジスタ部70のコレクタ領域22が延伸して設けられてよい。この場合、境界メサ部94-1をトランジスタ部70の一部としてもよい。
【0054】
なお、カソード領域82およびコレクタ領域22は、太い破線で囲まれる領域のみに限るものではない。例えば、コレクタ領域22との境界ではないカソード領域82の太い破線については、単に図面上の端を示すものであって、太い破線を越えてカソード領域82が形成されていてよい。コレクタ領域22についても、同様である。一方、カソード領域82については、コレクタ領域22との境界を示す破線を超えてカソード領域82が形成されるものではない。
【0055】
コレクタ領域22は、トランジスタ部70およびダイオード部80に渡って連続的に設けられてよい。本例のトランジスタ部70において、コレクタ領域22は、半導体基板の下面側全体に設けられる。これに対して、本例のダイオード部80において、コレクタ領域22は、半導体基板の下面側の一部に設けられる。ダイオード部80において、コレクタ領域22は、ウェル領域17の直下に設けられてよく、コンタクト領域15におけるY軸方向の端部の直下に設けられてよく、当該コンタクト領域15のY軸正方向に隣接するベース領域14の直下にも設けられてよい。本例のダイオード部80において、コレクタ領域22は、Y軸方向の半導体基板の端部からベース領域14の直下の位置まで連続的に設けられる。
【0056】
このように本例では、ダイオード部80のコンタクト領域15の直下にカソード領域82を設けない。本例では、カソード領域82をY軸正方向に縮小して、これに応じて、コレクタ領域22をY軸正方向に拡大する。これにより、少なくともコンタクトホール54のY軸方向における外側の端部53の直下には、コレクタ領域22を設ける。なお、コレクタ領域22は、端部53よりもさらにY軸正方向に設けられる。上述のように、コンタクトホール54には、コンタクト部が設けられており、コンタクト部の端部はコンタクトホール54の端部53に一致する。本例では、半導体基板の下面から上面へ流れる電流が、当該コンタクト部の端部53に集中することを抑制することができる。
【0057】
図2は、
図1のA‐A'断面図である。A‐A'断面は、X‐Z面と平行な断面である。A‐A'断面は、トランジスタ部70のエミッタ領域12およびダイオード部80のベース領域14を通る。本例の半導体装置100は、A‐A'断面において、半導体基板10、層間絶縁膜26、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10および層間絶縁膜26の上面に形成される。
【0058】
これに対して、コレクタ電極24は、半導体基板10の下面に形成される。下面とは、上面とは逆側の面を指す。エミッタ電極52およびコレクタ電極24は、金属等の導電材料で形成される。また本明細書において、基板、層、領域等の各部材のエミッタ電極52側の面または端部を上面または上端、コレクタ電極24側の面または端部を下面または下端と称する。また、エミッタ電極52とコレクタ電極24とを結ぶ方向を深さ方向と称する。
【0059】
半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。A‐A'断面において、トランジスタ部70の各メサ部94の上面側には、N+型のエミッタ領域12およびP-型のベース領域14が、半導体基板10の上面側から順番に設けられる。また、A‐A'断面において、ダイオード部80の各メサ部94の上面側には、P-型のベース領域14が設けられる。
【0060】
トランジスタ部70およびダイオード部80において、ベース領域14の下方には第1導電型のドリフト領域18が設けられる。本例のドリフト領域18は、N-型である。また、トランジスタ部70およびダイオード部80において、ドリフト領域18の下方にはN型のバッファ領域20が設けられる。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高くてよい。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、P+型のコレクタ領域22およびN+型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。
【0061】
トランジスタ部70において、バッファ領域20の下方には、P+型のコレクタ領域22が設けられる。ダイオード部80において、バッファ領域20の下方には、N+型のカソード領域82が設けられる。また、コレクタ領域22およびカソード領域82の下面にはコレクタ電極24が設けられる。
【0062】
本明細書では、コレクタ領域22およびカソード領域82の境界を通り、Y-Z面と平行な面を、トランジスタ部70およびダイオード部80の境界とする。コレクタ領域22およびカソード領域82の境界P1は、X軸方向におけるドーパントのネットドーピング濃度の分布が極小値となる位置であってよい。1つのダミートレンチ部30は、トランジスタ部70およびダイオード部80の境界P1を含む領域上に形成されてよい。また、X軸方向において、当該ネットドーピング濃度が極小値となる位置に最も近いダミートレンチ部30の位置を、トランジスタ部70およびダイオード部80の境界P1の位置としてもよい。
【0063】
半導体基板10の上面側には、1以上のゲートトレンチ部40および1以上のダミートレンチ部30が設けられる。各トレンチ部は、半導体基板10の上面から、ベース領域14を貫通して、ドリフト領域18に到達してよい。トレンチ部は、エミッタ領域12、ベース領域14およびコンタクト領域15の一以上の領域を貫通して、ドリフト領域18に到達してもよい。A‐A'断面においてトレンチ部の底部の形状は、U字状であってよい。
【0064】
本例のゲートトレンチ部40は、ゲート絶縁膜42、ゲート導電部44およびゲートトレンチ46を有する。ゲート絶縁膜42は、ゲートトレンチ46の内壁を覆って設けられてよい。ゲート絶縁膜42は、ゲートトレンチ46の内壁の半導体を酸化または窒化することにより形成してよい。本例のゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に設けられる。ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁してよい。ゲート導電部44は、ポリシリコン等の導電材料で形成されてよい。
【0065】
本例のゲートトレンチ部40は、半導体基板10の上面において層間絶縁膜26により覆われる。本例では、
図1に示したように突出部43におけるゲート導電部44が、ゲート配線51を介してゲート金属層50と電気的に接続する。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチ46に接する界面近傍の領域にチャネルが形成される。
【0066】
ダミートレンチ部30は、A‐A'断面において、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、半導体基板10の上面側に形成された、ダミー絶縁膜32、ダミー導電部34およびダミートレンチ36を有する。ダミー絶縁膜32は、ダミートレンチ36の内壁を覆って形成される。ダミー導電部34は、ダミートレンチ36の内部においてダミー絶縁膜32よりも内側に設けられる。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミー導電部34は、ゲート導電部44と同一の材料で形成されてよい。例えばダミー導電部34は、ポリシリコン等の導電材料で形成される。ダミー導電部34は、深さ方向においてゲート導電部44と同一の長さを有してよい。
【0067】
本例のダミートレンチ部30も、半導体基板10の上面において層間絶縁膜26により覆われる。本例では、
図1に示したようにコンタクトホール56を介して、ダミー導電部34がエミッタ電極52と電気的に接続する。
【0068】
本例では、複数のメサ部94のうち、トランジスタ部70とダイオード部80との境界における境界メサ部94‐1においては、半導体基板10の上面に露出するエミッタ領域12が設けられず、半導体基板10の上面に露出するコンタクト領域15が設けられる。本例の境界メサ部94‐1は、ゲートから電子を注入させない、すなわちIGBTとして機能させない領域であるので、
図1に示すように境界メサ部94‐1の全体において、半導体基板10の上面に露出するエミッタ領域12が設けられないことが好ましい。本例の境界メサ部94‐1のコンタクト領域15は、コンタクトホール54を介してエミッタ電極52と接続される。
【0069】
本例では、上述の境界メサ部94-1を設けることにより、半導体装置100のターンオフ時に、トランジスタ部70とダイオード部80との境界近傍におけるホールを効率よく引き抜くことができる。これにより、ターンオフ時のテール電流を効率よく低減させて、オフ時の損失を低減することができる。また、半導体装置100の破壊耐量低下を抑制できる。さらに、トランジスタ部70に蓄積されたホールがダイオード部80に流れることを抑制することができる、トランジスタ部70からダイオード部80への干渉の影響を低減できる。
【0070】
図3は、
図1のB‐B'断面図である。B‐B'断面は、Y‐Z面と平行な面である。B‐B'断面は、ダイオード部80のメサ部94において接続部57を通る。上述のように、本例のダイオード部80の下面側には、下面半導体領域としてのコレクタ領域22が設けられる。本例のコレクタ領域22は、ウェル領域17およびコンタクト領域15よりもY軸正方向に延伸する。本例において、コレクタ領域22のY軸正方向の端部P1は、コンタクトホール54の端部53よりもY軸正方向に位置する(破線矢印参照)。
コレクタ領域22のY軸正方向の端部P1を上面に投影した位置から、コンタクト領域15までの長さAは、ベース領域14の深さより長くてよく、ベース領域14からコレクタ領域22までの深さ方向の長さより長くてよい。本例では、100μmである。
【0071】
コレクタ領域22のY軸正方向の端部P1を上面に投影した仮想位置から、コンタクトホール54のY軸正方向の端部53までの長さBは、ベース領域14の深さより長くてよく、ベース領域14の底部からコレクタ領域22の上部までの方向の長さより長くてよい。本例において長さBは、120μmである。なお、ベース領域14の深さとは、Z軸方向に平行な長さであって、上面からベース領域14の底部までの長さを意味する。
【0072】
コレクタ領域22のY軸正方向の端部P1を上面に投影した仮想位置から、ベース領域14とウェル領域17との境界までの長さCは、ベース領域14の深さより長くてよく、ベース領域14の底部からコレクタ領域22の上部までの深さ方向の長さより長くてよい。本例において長さCは、140μmである。
【0073】
接続部57は、ダミートレンチ部30のダミー導電部34と電気的に接続してよい。本例においては、接続部57とダミー導電部34とがZ軸方向において重なる位置では、接続部57とダミー導電部34とが接触する。また、本例においては、接続部57とダミー導電部34とがZ軸方向において重ならない位置では、半導体基板10の上面と接続部57との間に絶縁膜58が設けられる。絶縁膜58は、ダミー絶縁膜32と同じ絶縁膜であってよい。絶縁膜58は、シリコン酸化膜であってよく、シリコン窒化膜であってもよい。
【0074】
ゲート金属層50は、コンタクトホール55を介してゲート配線51に電気的に接続する。上述のように、ゲート配線51は、X軸方向に延伸しており、トランジスタ部70のゲート導電部44に電気的に接続する。本例においては、ゲート配線51と半導体基板10の上面との間にも絶縁膜58が設けられる。但し、上述の様に、ゲート配線51とゲート導電部44とがZ方向において重なる位置では絶縁膜58が設けられておらず、当該位置においてゲート配線51はゲート導電部44に接触する。
【0075】
なお、
図3において、仮に、ウェル領域17の直下の位置にもカソード領域82が設けられる場合、ウェル領域17直下のカソード領域82から半導体基板10の上面に向かう電流は、ウェル領域17にはコンタクト領域15が存在しないのでウェル領域17へ流れることができない。それゆえ、ウェル領域17直下から上面に向かう電流は、コンタクト部の端部53に集中することとなる。これに対して本例では、少なくとも端部53の直下をコレクタ領域22とすることにより、端部53への電流集中を回避することができる。
【0076】
図4は、第1実施形態の変形例である。
図1との違いは、境界メサ部94‐1とダイオード部80との間に、新たに境界部90を設けたことである。なお、本例の境界メサ部94‐1は、トランジスタ部70と境界部90との境界に重なるダミートレンチ部30と隣接するメサ部94のうち、トランジスタ部70側のメサ部94を意味する。本例の境界部90は、コンタクトホール54の延伸方向の両端のみにコンタクト領域15を有する複数の境界メサ部94‐2を備える。また、延伸方向の両端のコンタクト領域15の間は、ベース領域14が半導体基板10の上面に露出する。境界メサ部94‐2の上面において、ベース領域14が露出する面積は、コンタクト領域15の面積に対して、5倍以上であってよく、10倍以上であってよく、20倍以上であってよい。
【0077】
また、境界部90のメサ部94の個数は、境界メサ部94‐1のメサ部94の個数より多くてよく、あるいは境界メサ部94‐1のメサ部94の個数同じであってもよい。ここでメサ部94の個数とは、配列方向においてトレンチ部に挟まれたメサ部94の個数のことである。本例では、境界メサ部94‐1のメサ部94の個数は1つであり、境界部90における境界メサ部94‐2のメサ部94の個数は2つである。
【0078】
最も境界部90に近いゲートトレンチ部40よりもX軸正方向に位置するダミートレンチ部30から、境界部90およびダイオード部80全体にわたって、ライフタイムキラー領域19が形成されてよい。ライフタイムキラー領域19は、ヘリウムなどの軽イオンまたは白金等の金属の導入によって半導体基板10の内部に形成された点欠陥(空孔、複空孔およびダングリングボンド等)であってよい。さらにライフタイムキラー領域19は、点欠陥によって形成された、キャリアの再結合中心であってよい。
【0079】
図5は、
図4のA‐A'断面図である。境界メサ部94‐2の直下の半導体基板10下面には、境界メサ部94‐1の下方のコレクタ領域22が延伸して形成されてよい。ダイオード部80が順方向に導通する場合において、トランジスタ部70の境界メサ部94‐1から、ダイオード部80のカソード領域82に向かって正孔が流れる。境界メサ部94‐1の表面はコンタクト領域15がほぼ全面に形成されているため、正孔の注入量が多い。本例においては、境界メサ部94‐1に比べてコンタクト領域15の面積を低減した境界メサ部94‐2を境界部90に設けることで、境界メサ部94‐1とカソード領域82との距離が長くなり、境界メサ部94‐1からの正孔の注入量を抑えることができる。
【0080】
図5に示すライフタイムキラー領域19は、導入されたヘリウム、点欠陥キャリアの再結合中心の濃度が極大(ピーク)となる位置を含んでよい。また、
図5に示すライフタイムキラー領域19の深さ方向の幅は、導入されたヘリウム、点欠陥あるいは再結合中心のピーク濃度の半値全幅であってよい。ライフタイムキラー領域19では、導入されたヘリウム、点欠陥あるいは再結合中心の濃度分布が、ピークを含む山型の分布形状を備えてよい。
【0081】
ライフタイムキラー領域19を設けることにより、ダイオード部80が動作する場合に、逆回復時間を短くできるほか、逆回復電荷および逆回復ピーク電流を低減できる。また、メサ部94-1からダイオード部80に少数キャリア(本例では正孔)が過剰に流入するのを防ぐことができ、逆回復耐量を向上できる。
【0082】
図6は、第2実施形態における半導体装置200の上面図である。本例の半導体装置200は、ドリフト領域18よりも高い第1導電型のドーピング濃度を有する第1導電型の蓄積領域16を有する。係る点が、第1実施形態と異なる。蓄積領域16が設けられる領域には斜線を付して示す。本例の蓄積領域16は、N+型である。
図6において、蓄積領域16が設けられる範囲の外側端部をコレクタ領域22の破線よりも細い破線にて示す。
【0083】
本例の半導体装置200は、トランジスタ部70およびダイオード部80の両方において、蓄積領域16を有する。蓄積領域16のドーパント(本例ではドナー)は、ドリフト領域18よりも高濃度に蓄積されている。蓄積領域16の外側の端部は、Y軸方向において最も外側に位置するエミッタ領域12よりもさらに外側に設けられてよい。本例において、蓄積領域16のY軸方向における外側の端部は、Y軸方向において最も外側に位置するコンタクトホール54のY軸方向における外側の端部53よりも内側に設けられる。蓄積領域16は、X軸正負方向およびY軸正方向において、
図6に示す以外の領域に設けられてもよい。トランジスタ部70においては、蓄積領域16を設けることによりキャリア注入促進効果(IE効果)を高めて、オン電圧を低減することができる。
【0084】
なお、IE効果を得るためには、トランジスタ部70のみに蓄積領域16を設けることも考えられる。ただし、ダイオード部80に蓄積領域16を設けずにトランジスタ部70にのみ蓄積領域16を設けようとすると、トランジスタ部70とダイオード部80との境界において、蓄積領域16の深さ位置がばらつく可能性がある。蓄積領域16の深さ位置のばらつきは、例えば、後述するレジスト垂れに起因して生じる。
【0085】
そこで、本例においては、トランジスタ部70およびダイオード部80の両方に蓄積領域16を設ける。これにより、蓄積領域16の深さ位置のばらつきを防ぐことができる。よって、蓄積領域16の深さ位置のばらつきに起因する、トランジスタ部70におけるIGBT等の閾値電圧および飽和電流のばらつき、ならびに、ダイオード部80におけるFWDの順方向電圧の低下を抑制することができる。
【0086】
本例において、ダイオード部80の下面側に設けられるカソード領域82は、トランジスタ部70に設けられる蓄積領域16のY軸方向における外側の端部よりも長さLだけ内側に設けられる。つまり、ダイオード部80の下面側に設けられるコレクタ領域22は、蓄積領域16と部分的に重なる。例えば、コレクタ領域22は、ダイオード部80における蓄積領域16のY軸方向の端部における直下にも設けられる。
【0087】
ダイオード部80におけるコレクタ領域22は、少なくともコンタクトホール54のY軸方向における外側の端部53の直下から蓄積領域16のY軸方向の端部の直下まで連続して設けられてよい。本例のコレクタ領域22は、Y軸方向の外側の端部からコレクタ領域22とカソード領域82との境界まで連続して設けられる。本例の半導体基板10の上面において、蓄積領域16のY軸方向の外側の端部から、コレクタ領域22とカソード領域82との境界までの長さを、Lと称する。蓄積領域16のY軸方向の外側の端部に対して、長さLの値は可変としてよい。長さLは、数μm以上であってよく、数十μm以上であってもよく、100μm以上であってもよく、200μm以上であってもよい。ただし、ダイオード部80を適切に機能させるべく、長さLは400μm以下とすることが好ましい。これにより、コンタクト部の端部53への電流集中を回避しつつ、ダイオード部80の機能も担保することができる。
【0088】
メサ部94-1を有するトランジスタ部70のうち、最もダイオード部80に近いゲートトレンチ部40よりもX軸正方向に位置するダミートレンチ部30から、ダイオード部80全体にわたって、ライフタイムキラー領域19が形成されてよい。本例では、ライフタイムキラー領域19のY軸方向の外周側端部は、ゲート配線51のコンタクトホール55より外周側(Y軸負方向)に位置してよい。また、ライフタイムキラー領域19のY軸方向の外周側端部は、ゲート配線51の外周側端部よりも外周側に位置してよい。
【0089】
図7は、
図6のA‐A'断面図である。本例の半導体基板10は、トランジスタ部70におけるベース領域14とドリフト領域18との間に蓄積領域16を有する。また、本例の半導体基板10は、ダイオード部80のベース領域14(即ち、アノード領域)とドリフト領域18との間にも蓄積領域16を有する。上述のように、本例においては、トランジスタ部70およびダイオード部80の両方に蓄積領域16を設けるので、トランジスタ部70およびダイオード部80において蓄積領域16が設けられる深さを同じにすることができる。
【0090】
本例のライフタイムキラー領域19は、半導体基板10の深さ方向(Z軸方向)において、半導体基板10の中心の深さよりも上面側に形成されてよい。すなわち半導体基板10の上面からライフタイムキラー領域19までの深さは、ライフタイムキラー領域19から半導体基板10の下面までの深さよりも小さくてよい。ライフタイムキラー領域19は、メサ部94-1を有するトランジスタ部70のうち、最もダイオード部80に近いゲートトレンチ部40よりもX軸正方向に位置するダミートレンチ部30から、ダイオード部80全体にわたって、形成されてよい。
【0091】
図8は、
図6のB‐B'断面図である。
図8は、ベース領域14とドリフト領域18との間に蓄積領域16を有する点以外は、第1実施形態の
図3と同じであるので重複する説明は省略する。蓄積領域16は、コンタクト領域15の直下からY軸正方向に延伸する。本例のダイオード部80においては、上述のように、蓄積領域16のY軸方向における外側の端部は、Y軸方向において最も外側に位置するコンタクトホール54の端部53よりも内側に設けられる(矢印参照)。本例の半導体基板10の上面において、蓄積領域16のY軸方向の外側の端部から、コレクタ領域22とカソード領域82との境界までの長さを、Wと称する。本例においては、ダイオード部80におけるコレクタ領域22は、少なくともコンタクトホール54の端部53の直下から蓄積領域16のY軸方向の端部の直下まで連続して設けられる。
【0092】
蓄積領域16のY軸方向における外側の端部は、コレクタ領域22とカソード領域82との境界よりも外側に設けられてもよい。この場合、蓄積領域16のY軸方向の外側の端部からコレクタ領域22とカソード領域82との境界までの長さLは、Y軸方向において最も外側に位置するコンタクト部としてのコンタクトホール54の端部53から蓄積領域16のY軸方向における外側の端部までの長さWよりも、長くてよい。ダイオード部80が導通しているとき、アノード領域となるベース領域14から注入される正孔は、カソード領域82に向かって流れる。蓄積領域16はベース領域14からの正孔の注入を抑制する一方で、本例においては蓄積領域16の端部よりも外側において長さWの領域は蓄積領域16が無いため、正孔が注入されやすい。ただし、コレクタ領域22とカソード領域82との境界が、コンタクトホール54の端部53よりも内側にあるので、蓄積領域16のY軸方向の外側の端の位置が端部53より内側であっても、端部53よりも外側への正孔の注入が抑えられる。さらに、長さLが長さWよりも長いことで、長さWの領域に正孔が過剰に注入されることがほとんど無くなる。本例は、この点が有利である。
【0093】
本例の他の例において、長さWは長さLより長くてもよい。一般にダイオード部80が導通しているとき、端部53よりも外側に正孔がある程度浸み出している。そのため、ダイオード部80の電流は、コンタクトホール54の端部53で集中し、端部53の電流密度が増加する。一方、ダイオード部80が逆回復動作をするときには、ベース領域14と蓄積領域16とのpn接合近傍における電界は、特に蓄積領域16のY軸方向における外側の端部で集中しやすい。そのため、蓄積領域16のY軸方向における外側の端部で電界強度が増加する。長さWが長さLより長いことで、電流集中により電流密度が増加する位置(端部53)と、電界集中により電界強度が増加する位置(蓄積領域16のY軸方向における外側の端部)とを十分離すことができる。これにより、電流集中と電界集中との相互の増幅によるアバランシェ破壊を回避し、ダイオード部80の逆回復耐量を増加させることができる。
【0094】
なお本例の更なる他の例において、蓄積領域16のY軸方向における外側の端部は、コレクタ領域22とカソード領域82との境界よりも内側に設けられてもよい。言い換えると、コレクタ領域22とカソード領域82との境界は、蓄積領域16のY軸方向における外側の端部よりも外側に位置してよい。ただし、この場合も、コレクタ領域22とカソード領域82との境界は、コンタクトホール54の端部53よりY軸方向の内側にあるとする。
【0095】
本例のライフタイムキラー領域19では、Y軸方向の外周側端部は、ゲート配線51のコンタクトホール55より外周側(Y軸負方向)に位置してよい。また、ライフタイムキラー領域19のY軸方向の外周側端部は、ゲート配線51の外周側端部よりも外周側に位置してよい。
蓄積領域16のY軸方向における外側の端部からゲート配線51のY軸方向における外側の端部までの長さL2は、ゲート配線51のY軸方向における外側の端部からライフタイムキラー領域19のY軸方向外側の端部までの長さL3より長くてよい。
【0096】
本例では、ライフタイムキラー領域19のY軸方向の外周側端部は、ダイオード部80のコンタクトホール54のY軸方向外側(外周側)端部よりも外側(外周側)に位置してよい。ライフタイムキラー領域19のY軸方向の外周側端部は、コンタクトホール54のY軸方向外側(外周側)端部を含むコンタクト領域15の外側端部よりも外側に位置してよい。ライフタイムキラー領域19のY軸方向の外周側端部は、ベース領域14とウェル領域17の境界よりも外側に位置してよい。ライフタイムキラー領域19のY軸方向の外周側端部は、ゲート配線51のコンタクトホールより外周側(Y軸負方向)に位置してよい。また、ライフタイムキラー領域19のY軸方向の外周側端部は、ゲート配線51の外周側端部よりも外周側に位置してよい。
【0097】
ライフタイムキラー領域19のY軸方向の外周側端部は、ウェル領域17の外周側端部(不図示)よりも内側に位置してよい。以上により、ダイオード部80のコンタクトホール54より外側において蓄積された蓄積電荷を低減し、半導体装置200の逆回復耐量を向上できる。
【0098】
図9は、
図8におけるコンタクト領域15近傍の蓄積領域16の部分拡大図である。本例の蓄積領域16は、平坦領域62と、端部領域64とを有する。平坦領域62は、少なくともカソード領域82の上方に位置し、所定の深さを有する。これに対して、端部領域64は、コレクタ領域22の上方に位置し、Y軸方向において外側ほど浅くなる。端部領域64は、平坦領域62よりも外側に位置する。本例の端部領域64は、平坦領域62と同じかまたは平坦領域62よりも浅い位置に設けられる。端部領域64の先端は、ドリフト領域18に接しなくてもよい。端部領域64の当該先端は、Z軸方向におけるベース領域14の中間よりも浅い位置に設けられてよい。端部領域64の形状は、例えば後述するレジスト垂れに起因して生じる。
【0099】
本例の蓄積領域16は、後述するマスクを用いることにより、形成することができる。また、蓄積領域16の端部領域64の形状は、マスクの形状を調整することにより制御することができる。一例として、マスクのベーク温度、ベーク時間、マスクの厚み、または、マスクの材料を調整してよい。なお、トランジスタ部70におけるIGBTのチャネルは、エミッタ領域12の直下に形成されるので、Y軸方向において最も外側に位置するコンタクト領域15の直下において本例の端部領域64が形成されても半導体装置200の動作に問題は生じない。
【0100】
図10は、蓄積領域16を形成する際のマスク垂れを説明する図である。
図10は、
図8に対して超過部分112を有するマスク110を追加した図である。マスク110以外は、
図8と同じであるので、重複する説明は省略する。
【0101】
マスク110は、蓄積領域16に対応する領域に不純物を注入する工程で用いられる。マスク110は、蓄積領域16を形成しない領域を覆うように配置される。不純物をイオン注入する際に、マスク110により覆われた領域には蓄積領域16が形成されず、マスク110に覆われない領域に蓄積領域16が形成される。マスク110は、レジスト等を塗布して所定形状にパターニングすることにより形成されてよい。
【0102】
マスク110の端部は、半導体基板10の上面に対して垂直に形成されることが好ましい。しかし、現実には、マスク110にレジスト垂れが生じて、超過部分112が形成される場合がある。超過部分112が形成されると、超過部分112に覆われたメサ部94には、所定の深さに蓄積領域16が形成されない。例えば超過部分112に覆われたメサ部94には、蓄積領域16が全く形成されないか、所定の深さよりも浅く形成されてしまう。なお、本例の平坦領域62および端部領域64は連続して設けられるが、平坦領域62および端部領域64は深さ方向において不連続に設けられてもよい。
【0103】
図11は、第3実施形態における半導体装置300の上面図である。本例のダイオード部80のメサ部94は、複数のダミートレンチ部30の間に高濃度第1導電型領域84および高濃度第2導電型領域86を有する。第3実施形態は、係る点において第2実施形態と異なるが、他の点は第2実施形態と同じであってよい。
【0104】
高濃度第1導電型領域84は、ドリフト領域18よりも高い第1導電型のドーピング濃度を有してよい。高濃度第1導電型領域84は、エミッタ領域12と同程度のN型のドーピング濃度を有してよい。また、高濃度第1導電型領域84は、エミッタ領域12と同程度の深さを有してよい。本例の高濃度第1導電型領域84は、N+型である。また、高濃度第2導電型領域86は、ダイオード部80のベース領域14よりも高い第2導電型のドーピング濃度を有してよい。高濃度第2導電型領域86は、コンタクト領域15と同程度のP型のドーピング濃度を有してよい。また、高濃度第2導電型領域86は、コンタクト領域15と同程度の深さを有してよい。本例の高濃度第2導電型領域86は、P+型である。
【0105】
本例において、高濃度第1導電型領域84および高濃度第2導電型領域86は、トレンチ部の延伸方向(即ち、Y軸方向)に延伸する。本例の高濃度第1導電型領域84および高濃度第2導電型領域86は、延伸方向においてコンタクト領域15よりも内側に位置する。ダイオード部80のY軸方向の両端にベース領域14が設けられ、かつ、両端のベース領域14の間において両端のベース領域14に接して2つのコンタクト領域15が設けられる場合に、高濃度第1導電型領域84および高濃度第2導電型領域86は2つのコンタクト領域15の間に連続的に延在してよい。
【0106】
また、本例の高濃度第1導電型領域84および高濃度第2導電型領域86は、トレンチ部の配列方向(即ち、X軸方向)において互いに隣接する。本例の高濃度第1導電型領域84および高濃度第2導電型領域86は、コンタクトホール54の直下において互いに接する。
【0107】
図12は、
図11のA‐A'断面図である。
図12は、高濃度第1導電型領域84および高濃度第2導電型領域86を通る、X‐Z面と平行な断面である。高濃度第1導電型領域84および高濃度第2導電型領域86の上面は、半導体基板10の表面と一致してよい。高濃度第1導電型領域84および高濃度第2導電型領域86は、コンタクトホール54を介してエミッタ電極52と接続する。高濃度第1導電型領域84の底部は、トランジスタ部70のエミッタ領域12およびコンタクト領域15との底部と一致してよい。高濃度第2導電型領域86の底部は、高濃度第1導電型領域84の底部よりも深くてよい。ただし、高濃度第2導電型領域86の底部は、蓄積領域16よりも浅くてよい。
【0108】
本例においては、トランジスタ部70およびダイオード部80の両方に蓄積領域16を設ける。それゆえ、トランジスタ部70のみに蓄積領域16を設ける場合に生じる問題、即ち、マスク垂れに起因する次の(1)から(3)の問題を解消することができる。(1)トランジスタ部70の閾値電圧(Vth)の変動、(2)トランジスタ部70の飽和電流のばらつき、および、(3)トランジスタ部70からダイオード部80に入り込む電流により、ダイオード部80の順方向電圧(Vf)が定常的に低くなる。
【0109】
加えて、本例においては、高濃度第1導電型領域84および高濃度第2導電型領域86を設けることにより、ダイオード部80に大電流が流れる場合において順方向電圧(Vf)を第2実施形態に比べて下げることができる。つまり、ダイオード部80に大電流が流れる場合には、高濃度第2導電型領域86に由来する高濃度の正孔がダイオードの導通に寄与するので、大電流導通時にのみ順方向電圧(Vf)を下げることができる。
【0110】
図13は、第4実施形態における半導体装置400の上面図である。第4実施形態は、高濃度第1導電型領域84および高濃度第2導電型領域86の配置が第3実施形態と異なる。本例の高濃度第1導電型領域84および高濃度第2導電型領域86は、配列方向に延伸し、延伸方向において互いに隣接する。本例において、高濃度第1導電型領域84および高濃度第2導電型領域86は、延伸方向において交互に設けられる。なお、本例においても、高濃度第1導電型領域84および高濃度第2導電型領域86の上面は半導体基板10の表面と一致し、高濃度第2導電型領域86の底部は、高濃度第1導電型領域84の底部よりも深い。
【0111】
図14は、
図13のA‐A'断面図である。
図14は、高濃度第1導電型領域84を通る、X‐Z面と平行な断面である。本例においても、第3実施形態と同じ有利な効果を得ることができる。
【0112】
図15Aは、第1比較例におけるA‐A'断面図である。第1比較例は、トランジスタ部70の一部のみに蓄積領域16を設ける例である。
図15Aでは、トランジスタ部70の一部のみに蓄積領域16を設ける場合に使用するマスク210の理想的な形状を示す。ただし、現実的には、トランジスタ部70上に位置するマスク210の切り立った端部は垂れる場合がある。
【0113】
図15Bは、第2比較例におけるA‐A'断面図である。第2比較例も、トランジスタ部70の一部のみに蓄積領域16を設ける例である。ただし、
図15Bのマスク210は、形成直後の理想的な形状に加えて、所定時間経過後に生じた超過部分212を有する。上述のマスク垂れは、超過部分212に対応する。マスク210のZ軸方向の厚みが例えば5μmである場合に、超過部分212のX軸方向の長さは例えば5.8μmである。
【0114】
マスク垂れに起因して、上述の(1)から(3)の問題が生じる。例えば、領域Cでは、ゲートトレンチ部40近傍の蓄積領域16が所定の深さ位置に設けられないことに起因して、上述の(1)および(2)の問題が生じる。また、例えば、領域Dでは、蓄積領域16が形成されないことに起因して、上述の(3)の問題が生じる。これに対して、第2から第4の実施形態によれば、トランジスタ部70およびダイオード部80の両方に蓄積領域16を設けるので、上述の(1)から(3)の問題を解消することができる。
【0115】
図16は、トランジスタ部70に隣接するダイオード部80の角部を示す上面図である。なお、
図16は、半導体基板10の端部周辺の上面図ではなく、端部よりも半導体基板10の中央に近い領域における上面図である。本例に示す構造は、半導体装置100から400に適用してよい。
【0116】
半導体装置は、複数のトランジスタ部70と複数のダイオード部80とを有してよい。ダイオード部80のX軸方向およびY軸方向の端部はトランジスタ部70に隣接してよく、ダイオード部80の角部もトランジスタ部70に隣接してよい。本例において、少なくともダイオード部80の角部と、当該角部を構成するダイオード部80の二辺とは、複数のトランジスタ部70により囲まれる。
【0117】
半導体基板10を上面視した場合に、ゲートトレンチ部40は格子状に設けられてよい。ゲートトレンチ部40は、複数のトランジスタ部70に渡って連続してよい。本例のゲートトレンチ部40は、Y軸方向に延伸する第1部分47と、X軸方向に延伸する第2部分48とを有する。ゲートトレンチ部40における第2部分48は、複数の第1部分47と接続してよい。Y軸方向に延伸するゲートトレンチ部40の第1部分47と、トランジスタ部70におけるダミートレンチ部30との間には、メサ部94が位置する。
【0118】
本例のダイオード部80は、櫛歯状のダミートレンチ部30を含む。櫛歯状のダミートレンチ部30は、Y軸方向に延伸する第1部分37と、X軸方向に延伸する第2部分38とを有してよい。ダイオード部80において、複数の第1部分37は、X軸方向において離間して設けられてよい。ダイオード部80において、第2部分38は、複数の第1部分37のY軸正方向の端部とそれぞれ接続してよい。本例のダイオード部80において、ダミートレンチ部30の第1部分37と第2部分38との接続部近傍には、P+型のコンタクト領域15が設けられる。
【0119】
ダイオード部80におけるダミートレンチ部30の第1部分37と第2部分38との接続部は、半導体基板10の上面でX-Y平面においてベース領域14に囲まれていてよい。さらに当該接続部は、ゲートトレンチ部40の第1部分47と第2部分48との交差部分に囲まれてよい。これにより、当該接続部の電界強度を緩和することができる。
【0120】
ダイオード部80は、Y軸正方向においてゲート金属層50を間に挟んでトランジスタ部70‐3に隣接してよい。また、ダイオード部80は、Y軸正方向においてゲートトレンチ部40の第2部分48を間に挟んでトランジスタ部70‐3に隣接してよい。なお、ゲートトレンチ部40の第2部分48は、P+型のウェル領域17により囲まれてもよい。ダイオード部80とトランジスタ部70‐3とのY軸方向における境界は、ゲートトレンチ部40の第2部分48を囲むウェル領域17に位置してもよい。
【0121】
ダイオード部80とトランジスタ部70‐1との境界は、ダミートレンチ部30の第1部分37に位置してよい。本例において、ダイオード部80とトランジスタ部70‐1との境界は、ダミートレンチ部30の第1部分37においてY軸方向と平行に延伸してよい。ダイオード部80とトランジスタ部70‐1との境界は、トランジスタ部70‐2とトランジスタ部70‐3とのX軸方向における境界と、X軸方向の位置が一致してもよい。
【0122】
トランジスタ部70‐1とダイオード部80の間のメサ部94で、コンタクトホール54全体を囲むようにコンタクト領域15が形成されたメサ部94を、第1境界部72としてよい。
トランジスタ部70‐1のコンタクト領域15のうち、ゲートトレンチ部40の第2部分48に隣接する端から、トランジスタ部70‐2のコンタクト領域15のうち、ゲートトレンチ部40の第2部分48に隣接する端までの、ゲートトレンチ部40の第2部分48を含む領域を、第2境界部74としてよい。
トランジスタ部70‐3のコンタクト領域15のうち、ゲートトレンチ部40の第2部分48に隣接する端から、ダイオード部80のダミートレンチ部30の第2部分38までの、ゲートトレンチ部40の第2部分48を含む領域を、第3境界部76としてよい。
【0123】
第2境界部74と第3境界部76とは、X軸方向において接してよい。第1境界部72は、第2境界部74または第3境界部76と交差してよい。なお、ダミートレンチ部30の第1部分37および第2部分38が設けられる範囲は、少なくともダイオード部80であるとしてよい。また、第2境界部74および第3境界部76は、ゲートトレンチ部40の第2部分48そのものであってよく、この場合トランジスタ部70‐3およびダイオード部80はそれぞれゲートトレンチ部40の第2部分48の側壁まで在るとしてもよい。
【0124】
トランジスタ部70のゲートトレンチ部40の第1部分47のX軸方向の幅およびダミートレンチ部30のX軸方向の幅と、ゲートトレンチ部40の第2部分48のY軸方向の幅とは、同じであってよい。ダイオード部80のダミートレンチ部30の第1部分37のX軸方向の幅と、ダミートレンチ部30の第2部分38のY軸方向の幅とは、同じであってよい。
【0125】
トランジスタ部70における、ゲートトレンチ部40の第1部分47のX軸方向の幅、ダミートレンチ部30のX軸方向の幅、および、ゲートトレンチ部40の第2部分48のY軸方向の幅は、ダイオード部80における、ダミートレンチ部30の第1部分37のX軸方向の幅、および、ダミートレンチ部30の第2部分38のY軸方向の幅と、同じであってよい。トランジスタ部70のメサ部94のX軸方向の幅は、ダイオード部80のメサ部94のX軸方向の幅と同じであってよい。
【0126】
トランジスタ部70‐2のダミートレンチ部30のY軸方向の端からゲートトレンチ部40の第2部分48までの長さは、ゲートトレンチ部40を挟んでトランジスタ部70‐2と隣り合うトランジスタ部70‐1の、ダミートレンチ部30のY軸方向の端からゲートトレンチ部40の第2部分48までの長さと、同じであってよい。トランジスタ部70のダミートレンチ部30のY軸方向の端からゲートトレンチ部40の第2部分48までの長さは、トランジスタ部70のメサ部94のX軸方向の幅と同じかそれより小さくてよい。
【0127】
ゲートトレンチ部40の第2部分48とダイオード部80のダミートレンチ部30の第2部分38との間のメサ部の、Y軸方向の幅は、トランジスタ部70またはダイオード部80のメサ部94のX軸方向の幅と同じかそれより小さくてよい。以上により、ゲート電圧がオフでコレクタ電極24‐エミッタ電極52間に電源電圧が印加された状態での、トレンチ部の底部の電位分布が一様となり、トレンチ部の底部の電界強度の局所的な増加が抑えられる。
【0128】
ゲート金属層50は、ゲートトレンチ部40の第2部分48上に位置してよい。ゲート金属層50は、ゲートトレンチ部40の第2部分48に設けられたゲート導電部44に直接接してよく、プラグを介して接してもよい。ゲート金属層50は、不純物がドープされたポリシリコン等のゲート配線51よりも低抵抗であってよい。ポリシリコン等のゲート配線51を介さずに、低抵抗なゲート金属層50とゲート導電部44とを電気的に接続することで、ゲート信号の遅延を抑制することができる。同様に、本例において、ダミートレンチ部30のダミー導電部34は、コンタクトホールを介してエミッタ電極52と直接接続する。ただし、ダミー導電部34は、コンタクトホールに設けられたプラグを介してエミッタ電極52と接してもよい。
【0129】
なお、他の例において、トランジスタ部70同士がY軸方向において隣接する部分においては、ゲートトレンチ部40の第2部分48とゲート金属層50とを省略してよい。例えば、トランジスタ部70‐1とトランジスタ部70‐2との境界領域に、エミッタ領域12およびコンタクト領域15を有するセル構造を設ける。より具体的には、トランジスタ部70‐1とトランジスタ部70‐2との境界領域において、ダミートレンチ部30をY軸方向に連続的に設け、且つ、連続的に設けられたダミートレンチ部30に応じてエミッタ領域12およびコンタクト領域15をY軸方向に繰り返し設けてよい。
【0130】
カソード領域82は、最もトランジスタ部70‐1に近いダミートレンチ部30の第1部分37よりも内側に位置してよい。本例のカソード領域82のX軸方向端部は、2番目にトランジスタ部70‐1に近いダミートレンチ部30の第1部分37の下方に位置する。また、カソード領域82は、ゲートトレンチ部40の第2部分48よりも内側に位置してよい。本例のカソード領域82のY軸方向端部は、ダイオード部80におけるダミートレンチ部30の第2部分38よりもY軸負方向に位置する。
【0131】
半導体基板10は、ライフタイムキラー領域19を有してよい。ライフタイムキラー領域19は、ダイオード部80に加えて、トランジスタ部70にも設けられてよい。本例においては、ダイオード部80と隣接するトランジスタ部70‐1、70‐2および70‐3の一部に、ライフタイムキラー領域19が設けられる。
【0132】
ライフタイムキラー領域19は、第3境界部76を越えてトランジスタ部70‐3に延伸する長さが、第1境界部72を越えてトランジスタ部70‐1に延伸する長さと同じかそれよりも長くてよい。これにより、ダイオード部80が逆回復動作をするときに、第3境界部76の半導体基板10の深さ方向に蓄積する蓄積電荷が、ダイオード部80のコンタクトホール54における第3境界部76の側端部に集中するのを防ぐことができる。
【0133】
ライフタイムキラー領域19は、第1境界部72を越えてトランジスタ部70‐1に延伸する長さが、第3境界部76を越えてトランジスタ部70‐3に延伸する長さ同じかそれより長くてもよい。ダイオード部80が逆回復動作をするときに、トランジスタ部70‐1から寄生的に注入されて蓄積した蓄積電荷が、ダイオード部80のコンタクトホール54のうち、カソード領域82を下面に備えかつ最も第1境界部72側にあるメサ部94のコンタクトホール54に集中するのを防ぐことができる。半導体基板10は、蓄積領域16を有してよい。本例の蓄積領域16は、トランジスタ部70-1、70-2、70-3とダイオード部80に設けられる。
【0134】
図17は、
図16のa‐a'断面図である。a‐a'断面図は、Y‐Z平面に平行である。a‐a'は、トランジスタ部70‐3のメサ部94上に設けられたコンタクトホール54と、ダイオード部80のメサ部94上に設けられたコンタクトホール54とを通る。また、a‐a'は、ゲートトレンチ部40の第2部分48と、ダミートレンチ部30の第2部分38とも通る。
【0135】
本例の蓄積領域16は、ゲートトレンチ部40の第2部分48において不連続に設けられる。ただし、他の例において、蓄積領域16は、
図17において破線で示す様に、ゲートトレンチ部40の第2部分48において連続してもよい。つまり、蓄積領域16は、トランジスタ部70およびダイオード部80の全体において1つの面状に設けられてもよい。
【0136】
ダイオード部80の蓄積領域16は、Y軸方向においてダミートレンチ部30を超えてトランジスタ部70‐3側に延在してよい。延在させた場合であっても、延在させなかった場合と比べて、トランジスタ部70のゲート閾値電圧に影響はないと考えてよい。本例において、ダイオード部80の蓄積領域16は、Y軸方向においてダミートレンチ部30を超えて延在し、ゲートトレンチ部40の手前で終端する。
【0137】
本例のトランジスタ部70‐3において、ライフタイムキラー領域19のY軸正方向の端部119から、蓄積領域16のY軸負方向の端部までの長さをLyとする。また、トランジスタ部70‐3において、Y軸方向の最も外側に位置するコンタクトホール54の端部53から、蓄積領域16のY軸方向における外側の端部までの長さをWとする。本例において、長さLyは長さWより大きい。ただし、長さWが長さLyより大きくてもよい。
【0138】
本例において、ゲートトレンチ部40のゲート導電部44とゲート金属層50とは、層間絶縁膜26に設けられたコンタクトホール154を介して接続する。また、本例において、ダミートレンチ部30のダミー導電部34とエミッタ電極52とは、層間絶縁膜26に設けられたコンタクトホール156を介して接続する。
【0139】
本例において、ダイオード部80のコンタクトホール156におけるY軸正方向の端部から、カソード領域82とコレクタ領域22との境界までの長さをLc2nyとする。つまり、本例において、カソード領域82とコレクタ領域22との境界は、ダイオード部80のコンタクトホール156におけるY軸正方向の端部からLc2nyだけ後退する。長さLc2nyは、半導体基板10のZ軸方向の厚さ(上面から下面までの長さ)より大きくてよい。本例において、長さLc2nyは50μmである。なお、長さAおよび長さBは、
図3において説明したものと同じである。
【0140】
ライフタイムキラー領域19は、少なくともダイオード部80に設けられてよい。ライフタイムキラー領域19は、ダイオード部80とトランジスタ部70の一部とに設けられてよい。本例のライフタイムキラー領域19は、トランジスタ部70‐3のコンタクトホール54のY軸負方向の端部よりも、Y軸正方向に延在する。本例のライフタイムキラー領域19のY軸正方向の端部119‐1は、トランジスタ部70‐3において最もY軸負方向に位置するエミッタ領域12の下方に位置する。
【0141】
他の例においては、ライフタイムキラー領域19のY軸正方向の端部119‐2は、トランジスタ部70‐3のコンタクトホール54のY軸負方向の端部と、ゲートトレンチ部40の第2部分48との間に位置する領域の下方に位置してもよい。また、更なる他の例においては、ライフタイムキラー領域19のY軸正方向の端部119‐3は、ゲートトレンチ部40の第2部分48と、ダミートレンチ部30の第2部分38との間に位置する領域の下方に位置してもよい。
【0142】
本例において、ライフタイムキラー領域19のY軸正方向の端部119と、トランジスタ部70‐3のコンタクトホール54のY軸負方向の端部との間の長さをLc1kとする。長さLc1k‐1は、端部119‐1に対応してよい。同様に、長さLc1k‐2は端部119‐2に対応してよく、長さLc1k‐3は端部119‐3に対応してよい。
【0143】
長さLc1k‐1は、トランジスタ部70‐3のコンタクトホール54のY軸負方向の端部からダイオード部80のコンタクトホール156のY軸正方向の端部までの長さLc1c2よりも長くてよい。当該構成に起因して、ライフタイムキラー領域19は、ダイオード部80が動作する場合に、過剰な正孔がカソード領域82に向かって流入することを防ぐことができる。
【0144】
長さLc1k‐1は、長さLyよりも短くてもよい。この場合でも、ライフタイムキラー領域19は、ダイオード部80が動作する場合に、蓄積領域16が設けられていない領域を通って、過剰な正孔がカソード領域82に向かって流入することを防ぐことができる。長さLc1k‐1は、長さLc2nyよりも短くてよい。この場合でも、ライフタイムキラー領域19は、同様の効果を奏し得る。
【0145】
本例において、ライフタイムキラー領域19のY軸正方向の端部119と、カソード領域82とコレクタ領域22との境界までのY軸方向長さをLknyとする。本例においては、端部119‐1に対応する長さをLkny‐1とし、端部119‐2に対応する長さをLkny‐2とし、端部119‐3に対応する長さをLkny‐3とする。
【0146】
Lkny‐1、Lkny‐2およびLkny‐3は、半導体基板10のZ軸方向厚さよりも長くてよい。当該構成を有するライフタイムキラー領域19は、ダイオード部80の動作時に過剰な正孔がカソード領域82に向かって流入することを防ぐことができる。
【0147】
なお、破線で示す様に、他の例においては、ゲートトレンチ部40の第2部分48を囲むようにP+型のウェル領域17を設けてもよい。この場合に、ウェル領域17は、ゲートトレンチ部40の第2部分48の側部および底部を覆ってよい。ウェル領域17は、X軸方向に延伸することによりゲートトレンチ部40の第2部分48の全体を覆ってもよい。これにより、ゲートトレンチ部40の第2部分48の底部における電界強度の増加を防止できる。
【0148】
ウェル領域17のY軸正方向の端部は、トランジスタ部70‐3のコンタクトホール54の端部53から離間してよい。また、ウェル領域17のY軸負方向の端部は、ダイオード部80において最もトランジスタ部70‐3に近いコンタクトホール156よりも、トランジスタ部70‐3側に位置してよい。ウェル領域17のY軸負方向の端部は、ゲートトレンチ部40の第2部分48とダイオード部80のダミートレンチ部30の第2部分38との間に位置してもよい。
【0149】
図18は、ライフタイムキラー領域19における再結合中心の濃度分布を示す図である。本例のライフタイムキラー領域19は、深さ方向において再結合中心の濃度分布のピークを有する。また、本例のライフタイムキラー領域19における再結合中心の濃度分布は、半導体基板10の上面に達するテール領域を有する。なお、ライフタイムキラー領域19における再結合中心の濃度分布は、上面に達するテール領域に代えて、半導体基板10の下面に達するテール領域を有してもよい。
【0150】
再結合中心は、前述のようにヘリウムなどの軽イオンまたは白金等の金属の導入によって半導体基板10の内部に形成された点欠陥(空孔、複空孔およびダングリングボンド等)によって形成されてよい。さらに再結合中心の濃度は、点欠陥の濃度であってもよく、ヘリウムまたは金属の濃度であってもよい。
図18に示すライフタイムキラー領域19は、再結合中心の濃度が極大(ピーク)となる位置を含んでよい。また、ライフタイムキラー領域19の深さ方向の幅は、導入されたヘリウム、点欠陥あるいは再結合中心のピーク濃度の半値全幅であってよい。再結合中心の濃度分布は、ピークを含む山型の分布形状を備えてよい。
【0151】
図19は、
図16のb‐b'断面図である。b‐b'断面図は、X‐Z平面に平行である。b‐b'は、トランジスタ部70‐1における複数のエミッタ領域12と、ダイオード部80とを通る。本例において、ライフタイムキラー領域19のX軸正方向の端部120と、カソード領域82とコレクタ領域22との境界までのX軸方向長さをLknxとする。長さLknxは、半導体基板10の厚さよりも長くてよい。
【0152】
図19において、ダイオード部80のダミートレンチ部30間のメサ部94には、ベース領域14が設けられているが、エミッタ領域12およびコンタクト領域15は設けられていない。コレクタ領域22は、X軸負方向の端部に位置するエミッタ領域12の下方の領域から、ダイオード部80側に延伸してよい。本例のコレクタ領域22は、ベース領域14が設けられているが、エミッタ領域12およびコンタクト領域15は設けられていないメサ部94の下方の領域まで延伸する。コレクタ領域22は、ダイオード部80における複数のメサ部に渡って延伸してもよい。
【0153】
本例において、ダイオード部80のX軸正方向の端部に位置するダミートレンチ部30上のコンタクトホール156におけるX軸正方向の端部から、カソード領域82とコレクタ領域22との境界までの長さをLc2nxとする。長さLc2nxは、半導体基板10のZ軸方向の厚さより大きくてよく、長さLknxより短くてよい。本例において、長さLc2nxは50μmである。
【0154】
図20は、
図16の変形例を示す図である。本例においては、櫛歯状のダミートレンチ部30は、X軸方向に延伸する第1部分37と、Y軸方向に延伸する第2部分38とを有してよい。すなわち、本例のダイオード部80においては、複数の第1部分37がY軸方向において離間して設けられる。また、ダイオード部80において、第2部分38は、複数の第1部分37のX軸正方向の端部とそれぞれ接続する。本例において、ゲートトレンチ部40の第1部分47とダミートレンチ部30の第1部分37とは互いに直交する。係る点が、
図16の例と異なる。カソード領域82は、ダイオード部80のダミートレンチ部30の第2部分38よりも内側(X軸負方向)に位置してよい。また、カソード領域82は、コンタクトホール54のX軸正方向の端部よりも内側(X軸負方向)に位置してよい。
【0155】
トランジスタ部70‐1とダイオード部80のダミートレンチ部30の第2部分38との間のメサ部94で、コンタクトホール54全体を囲むようにコンタクト領域15が形成されたメサ部94を、第1境界部72としてよい。トランジスタ部70‐1のコンタクト領域15のうち、ゲートトレンチ部40の第2部分48に隣接する端から、トランジスタ部70‐2のコンタクト領域15のうち、ゲートトレンチ部40の第2部分48に隣接する端までの、ゲートトレンチ部40の第2部分48を含む領域を、第2境界部74としてよい。トランジスタ部70‐3のコンタクト領域15のうち、ゲートトレンチ部40の第2部分48に隣接する端から、ダイオード部80のダミートレンチ部30において最もY軸正方向に位置する第1部分37までの、ゲートトレンチ部40の第2部分48を含む領域を、第3境界部76としてよい。
【0156】
第2境界部74と第3境界部76とは、X軸方向において接してよい。第1境界部72は、第2境界部74または第3境界部76と交差してよい。ゲートトレンチ部40の第2部分48と、当該部分に隣接し、最もY軸正方向に位置するダイオード部80のダミートレンチ部30の第1部分37との間のメサ部94のY軸方向の幅は、トランジスタ部70またはダイオード部80のメサ部94のX軸方向の幅と同じかそれより小さくてよい。これにより、ゲート電圧がオフでコレクタ電極24‐エミッタ電極52間に電源電圧が印加された状態での、トレンチ部の底部の電位分布が一様となり、トレンチ部の底部の電界強度の局所的な増加が抑えられる。
【0157】
図21は、
図20のc‐c'断面図である。c‐c'断面図は、X‐Z平面に平行である。c‐c'は、トランジスタ部70‐1における複数のエミッタ領域12と、第1境界部72に接するダミートレンチ部30の第2部分38、およびダイオード部80におけるダミートレンチ部30の2つの第1部分37の間に位置するメサ部94上のコンタクトホール54とを通る。本例においても、ライフタイムキラー領域19のX軸正方向の端部120と、カソード領域82とコレクタ領域22との境界までのY軸方向の長さをLknxとする。長さLknxは、半導体基板10の厚さよりも長くてよい。
【0158】
コレクタ領域22は、X軸負方向の端部に位置するエミッタ領域12の下方の領域から、ダイオード部80側に延伸してよい。本例のコレクタ領域22は、ダイオード部80におけるダミートレンチ部30の第2部分38を超えて、ダイオード部80においてベース領域14が設けられているがエミッタ領域12およびコンタクト領域15は設けられていない領域の下方まで延伸する。
【0159】
本例において、ダイオード部80のX軸正方向の端部に位置するダミートレンチ部30上のコンタクトホール156におけるX軸正方向の端部から、カソード領域82とコレクタ領域22との境界からまでの長さをLc2nxとする。長さLc2nxは、半導体基板10のZ軸方向の厚さより大きくてよく、長さLknxより短くてよい。本例において、長さLc2nxは50μmである。
【0160】
図22は、
図20のd‐d'断面図である。d‐d'断面図は、Y‐Z平面に平行である。d‐d'は、トランジスタ部70‐3のメサ部94上に設けられたコンタクトホール54およびゲートトレンチ部40の第2部分48と、ダイオード部80のメサ部94上に設けられた複数のコンタクトホール54および複数のダミートレンチ部30の第1部分37とを通る。
【0161】
蓄積領域16、長さLy、WおよびLc2ny、ライフタイムキラー領域19は、
図17の説明における蓄積領域16と同じであってよい。
図17の説明と同様に、長さLc1k‐1、Lc1k‐2およびLc1k‐3により、ライフタイムキラー領域19は、ダイオード部80の動作時において、過剰な正孔がカソード領域82に向かって流入することを防ぐことができる。なお、
図17において説明したように、他の例においては、ゲートトレンチ部40の第2部分48を囲むようにP+型のウェル領域17を設けてもよい。
【0162】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【符号の説明】
【0163】
10・・半導体基板、12・・エミッタ領域、14・・ベース領域、15・・コンタクト領域、16・・蓄積領域、17・・ウェル領域、18・・ドリフト領域、19・・ライフタイムキラー領域、20・・バッファ領域、22・・コレクタ領域、24・・コレクタ電極、26・・層間絶縁膜、30・・ダミートレンチ部、32・・ダミー絶縁膜、34・・ダミー導電部、36・・ダミートレンチ、37・・第1部分、38・・第2部分、40・・ゲートトレンチ部、41・・対向部、42・・ゲート絶縁膜、43・・突出部、44・・ゲート導電部、46・・ゲートトレンチ、47・・第1部分、48・・第2部分、50・・ゲート金属層、51・・ゲート配線、52・・エミッタ電極、53・・端部、54、55、56・・コンタクトホール、57・・接続部、58・・絶縁膜、62・・平坦領域、64・・端部領域、70・・トランジスタ部、72・・第1境界部、74・・第2境界部、76・・第3境界部、80・・ダイオード部、82・・カソード領域、84・・高濃度第1導電型領域、86・・高濃度第2導電型領域、90・・境界部、94・・メサ部、100・・半導体装置、110・・マスク、112・・超過部分、119、120・・端部、154、156・・コンタクトホール、200・・半導体装置、210・・マスク、212・・超過部分、300、400・・半導体装置
【手続補正書】
【提出日】2022-08-18
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
上面において第1方向に延伸するトレンチ部を有する半導体基板と、前記半導体基板の前記上面に設けられ、前記第1方向に沿って形成されたコンタクトホールを有する層間絶縁膜と、を備える半導体装置であって、
前記半導体基板は、
第1導電型のドリフト領域と、
前記ドリフト領域と前記半導体基板の前記上面との間に設けられた第2導電型のベース領域と、
前記ドリフト領域と前記ベース領域との間とに設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の蓄積領域と、
を有し、
前記第1方向において、前記蓄積領域の端部は、前記コンタクトホールの端部よりも内側に設けられている
半導体装置。
【請求項2】
前記半導体基板の上面側に選択的に設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の第1高濃度領域を更に備え、
前記ベース領域の少なくとも一部は、前記第1高濃度領域の下方に設けられ、
前記第1方向において、前記蓄積領域の端部は、最も外側に位置する前記第1高濃度領域よりも外側に設けられている
請求項1に記載の半導体装置。
【請求項3】
半導体基板を備える半導体装置であって、
前記半導体基板は、
第1導電型のドリフト領域と、
前記半導体基板の上面側に選択的に設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の第1高濃度領域と、
少なくとも一部が前記第1高濃度領域の下方に設けられた第2導電型のベース領域と、
前記ドリフト領域と前記ベース領域との間とに設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の蓄積領域と、
前記半導体基板の上面において第1方向に延伸するトレンチ部と、
を有し、
前記第1方向において、前記蓄積領域の端部は、最も外側に位置する前記第1高濃度領域よりも外側に設けられている
半導体装置。
【請求項4】
前記半導体基板の前記上面に設けられ、前記第1方向に沿って形成されたコンタクトホールを有する層間絶縁膜を更に備え、
前記第1方向における前記コンタクトホールの端部は、最も外側に位置する前記第1高濃度領域よりも外側に設けられている
請求項3に記載の半導体装置。
【請求項5】
前記第1方向において、前記蓄積領域の端部は、外側ほど浅い位置に設けられている
請求項1から4のいずれか1項に記載の半導体装置。
【請求項6】
上面において第1方向に延伸するトレンチ部を有する半導体基板と、前記半導体基板の前記上面に設けられ、前記第1方向に沿って形成されたコンタクトホールを有する層間絶縁膜と、を備える半導体装置であって、
前記半導体基板は、
第1導電型のドリフト領域と、
前記半導体基板の上面側に選択的に設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の第1高濃度領域と、
少なくとも一部が前記第1高濃度領域の下方に設けられた第2導電型のベース領域と、
前記ドリフト領域と前記ベース領域との間とに設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の蓄積領域と、
を有し、
前記第1方向において、前記蓄積領域の端部は、外側ほど浅い位置に設けられている
半導体装置。
【請求項7】
前記トレンチ部は、ゲートトレンチ部を含み、
前記ゲートトレンチ部は、前記第1方向に延伸する第1部分と、複数の前記第1部分が配列される第2方向に延伸し前記第1部分の端部に接続する第2部分と、を有する
請求項1、2、4および6のいずれか1項に記載の半導体装置。
【請求項8】
前記第2部分は、3つ以上の前記第1部分の端部に接続する
請求項7に記載の半導体装置。
【請求項9】
前記トレンチ部は、ダミートレンチ部を含み、
前記ダミートレンチ部は、前記第1方向に延伸する第1部分と、前記第2方向に延伸し当該ダミートレンチ部の前記第1部分の端部に接続する第2部分と、を有する
請求項7または8に記載の半導体装置。
【請求項10】
前記ダミートレンチ部の前記第2部分は、3つ以上の前記ダミートレンチ部の前記第1部分の端部に接続する
請求項9に記載の半導体装置。
【請求項11】
前記コンタクトホールの前記第1方向の端部は、前記第2方向において隣り合う前記ダミートレンチ部の前記第1方向の端部よりも内側に設けられている
請求項9または10に記載の半導体装置。
【請求項12】
前記半導体基板は、裏面側に第2導電型の下面側半導体領域を有し、
前記下面側半導体領域は、少なくとも、前記第1方向における前記コンタクトホールの前記端部の直下に設けられている
請求項1、2、4、6から11のいずれか1項に記載の半導体装置。
【請求項13】
前記下面側半導体領域は、少なくとも、前記第1方向における前記コンタクトホールの前記端部の直下から前記第1方向における前記蓄積領域の前記端部の直下まで連続して設けられている
請求項12に記載の半導体装置。
【請求項14】
前記第1方向において前記ベース領域よりも外側に設けられ、前記トレンチ部よりも深くまで形成された第2導電型のウェル領域を有し、
前記第1方向において、前記コンタクトホールの端部は、前記ウェル領域よりも内側に設けられている
請求項1、2、4、6から13のいずれか1項に記載の半導体装置。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0004
【補正方法】変更
【補正の内容】
【0004】
本発明の第1の態様においては、上面において第1方向に延伸するトレンチ部を有する半導体基板と、前記半導体基板の前記上面に設けられ、前記第1方向に沿って形成されたコンタクトホールを有する層間絶縁膜と、を備える半導体装置であって、前記半導体基板は、第1導電型のドリフト領域と、前記ドリフト領域と前記半導体基板の前記上面との間に設けられた第2導電型のベース領域と、前記ドリフト領域と前記ベース領域との間とに設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の蓄積領域と、を有し、前記第1方向において、前記蓄積領域の端部は、前記コンタクトホールの端部よりも内側に設けられている半導体装置を提供する。本発明の第2の態様においては、半導体基板を備える半導体装置であって、前記半導体基板は、第1導電型のドリフト領域と、前記半導体基板の上面側に選択的に設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の第1高濃度領域と、少なくとも一部が前記第1高濃度領域の下方に設けられた第2導電型のベース領域と、前記ドリフト領域と前記ベース領域との間とに設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の蓄積領域と、前記半導体基板の上面において第1方向に延伸するトレンチ部と、を有し、前記第1方向において、前記蓄積領域の端部は、最も外側に位置する前記第1高濃度領域よりも外側に設けられている半導体装置を提供する。本発明の第3の態様においては、上面において第1方向に延伸するトレンチ部を有する半導体基板と、前記半導体基板の前記上面に設けられ、前記第1方向に沿って形成されたコンタクトホールを有する層間絶縁膜と、を備える半導体装置であって、前記半導体基板は、第1導電型のドリフト領域と、前記半導体基板の上面側に選択的に設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の第1高濃度領域と、少なくとも一部が前記第1高濃度領域の下方に設けられた第2導電型のベース領域と、前記ドリフト領域と前記ベース領域との間とに設けられ、前記ドリフト領域よりも高いドーピング濃度を有する第1導電型の蓄積領域と、を有し、前記第1方向において、前記蓄積領域の端部は、外側ほど浅い位置に設けられている半導体装置を提供する。本発明の第4の態様においては、半導体装置を提供する。半導体装置は、半導体基板と、トランジスタ部と、ダイオード部とを備えてよい。トランジスタ部およびダイオード部は、半導体基板に設けられてよい。ダイオード部は、トランジスタ部に隣接してよい。ダイオード部は、第2導電型のアノード領域と、第1導電型のドリフト領域と、第1導電型のカソード領域と、複数のダミートレンチ部と、コンタクト部と、下面側半導体領域とを有してよい。第2導電型のアノード領域は、少なくとも一部が半導体基板の上面に露出してよい。第1導電型のドリフト領域は、アノード領域の下方に設けられてよい。第1導電型のカソード領域は、ドリフト領域の下方に設けられてよい。複数のダミートレンチ部は、アノード領域を少なくとも貫通してよい。複数のダミートレンチ部は、予め定められた配列方向に沿って配列されてよい。コンタクト部は、配列方向とは異なる複数のダミートレンチ部の延伸方向に沿って設けられてよい。下面側半導体領域は、ドリフト領域の下方に設けられてよい。下面側半導体領域は、延伸方向におけるコンタクト部の外側の端部の直下に設けられてよい。