(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022142702
(43)【公開日】2022-09-30
(54)【発明の名称】革製品品質推定プログラム
(51)【国際特許分類】
G06T 7/00 20170101AFI20220922BHJP
【FI】
G06T7/00 610C
G06T7/00 350C
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2021126809
(22)【出願日】2021-08-02
(31)【優先権主張番号】P 2021042618
(32)【優先日】2021-03-16
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】519045387
【氏名又は名称】ASSEST株式会社
(74)【代理人】
【識別番号】100120868
【弁理士】
【氏名又は名称】安彦 元
(72)【発明者】
【氏名】澤田 綾子
【テーマコード(参考)】
5L096
【Fターム(参考)】
5L096AA02
5L096AA06
5L096BA03
5L096DA01
5L096EA39
5L096GA51
5L096HA11
5L096JA11
5L096KA04
5L096MA07
(57)【要約】
【課題】革製品の品質を人手に頼ることなく高精度かつ自動的に推定する。
【解決手段】革製品の品質を推定する革製品品質推定プログラムにおいて、推定対象の革製品の外観を撮像した画像情報を取得する情報取得ステップと、過去において革製品の外観を撮像した参照用画像情報と、革製品の品質との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した画像情報に応じた参照用画像情報に基づき、上記推定対象の革製品の品質を推定する推定ステップとをコンピュータに実行させることを特徴とする。
【選択図】
図1
【特許請求の範囲】
【請求項1】
革製品の品質を推定する革製品品質推定プログラムにおいて、
推定対象の革製品の外観の画像を撮像することにより抽出した革製品の色、輝き、加工状態の何れかからなる外観情報を取得する情報取得ステップと、
過去において革製品の外観の画像を撮像することにより抽出した革製品の色、輝き、透加工状態の何れかからなる参照用外観情報と、革製品の品質との連関性を利用し、上記情報取得ステップにおいて取得した外観情報に応じた参照用外観情報に基づき、上記推定対象の革製品の品質を推定する推定ステップとを有し、
上記情報取得ステップ及び上記推定ステップでは、推定対象の革製品の外観を撮像した画像データと、革製品の色、輝き、加工状態の何れかからなる外観情報とを教師データとして機械学習された予想モデルを用い、入力を上記画像データとし、出力を上記外観情報とすることで新たに外観情報を取得することをコンピュータに実行させること
を特徴とする革製品品質推定プログラム。
【請求項2】
革製品の品質を推定する革製品品質推定プログラムにおいて、
推定対象の革製品の外観の画像を撮像することにより抽出した革製品のキズ、付着物、見栄えの何れかからなる表面情報を取得する情報取得ステップと、
過去において革製品の外観の画像を撮像することにより抽出した革製品のキズ、付着物、見栄えの何れかからなる参照用表面情報と、革製品の品質との連関性を利用し、上記情報取得ステップにおいて取得した表面情報に応じた参照用表面情報に基づき、上記推定対象の革製品の品質を推定する推定ステップとを有し、
上記情報取得ステップ及び上記推定ステップでは、推定対象の革製品の外観を撮像した画像データと、革製品のキズ、付着物、見栄えの何れかからなる表面情報とを教師データとして機械学習された予想モデルを用い、入力を上記画像データとし、出力を上記表面情報とすることで新たに表面情報を取得することをコンピュータに実行させること
を特徴とする革製品品質推定プログラム。
【請求項3】
上記情報取得ステップでは、推定対象の革製品のブランドに関するブランド情報を取得し、
上記推定ステップでは、上記参照用外観情報と、上記参照用外観情報を取得する際に撮像した革製品のブランドに関する参照用ブランド情報とを有する組み合わせと、上記革製品の品質との連関性を利用し、更に上記情報取得ステップにおいて取得したブランド情報に応じた参照用ブランド情報に基づき、上記推定対象の革製品の品質を推定すること
を特徴とする請求項1項記載の革製品品質推定プログラム。
【請求項4】
上記情報取得ステップでは、推定対象の革製品の種別に関する種別情報を取得し、
上記推定ステップでは、上記参照用外観情報と、上記参照用外観情報を取得する際に撮像した革製品の種別に関する参照用種別情報とを有する組み合わせと、上記革製品の品質との連関性を利用し、更に上記情報取得ステップにおいて取得した種別情報に応じた参照用種別情報に基づき、上記推定対象の革製品の品質を推定すること
を特徴とする請求項1項記載の革製品品質推定プログラム。
【請求項5】
上記情報取得ステップでは、推定対象の革製品の鑑定書に記載されている鑑定内容を読み取ることで鑑定情報を取得し、
上記推定ステップでは、上記参照用外観情報と、上記参照用外観情報を取得する際に撮像した革製品の鑑定書に記載されている鑑定内容を読み取ることで取得した参照用鑑定情報とを有する組み合わせと、上記革製品の品質との連関性を利用し、更に上記情報取得ステップにおいて取得した鑑定情報に応じた参照用鑑定情報に基づき、上記推定対象の革製品の品質を推定すること
を特徴とする請求項1項記載の革製品品質推定プログラム。
【請求項6】
上記情報取得ステップでは、推定対象の革製品の種別に関する種別情報を取得し、
上記推定ステップでは、上記参照用表面情報と、上記参照用表面情報を取得する際に撮像した革製品の種別に関する参照用種別情報とを有する組み合わせと、上記革製品の品質との連関性を利用し、更に上記情報取得ステップにおいて取得した種別情報に応じた参照用種別情報に基づき、上記推定対象の革製品の品質を推定すること
を特徴とする請求項2項記載の革製品品質推定プログラム。
【請求項7】
革製品の品質を推定する革製品品質推定プログラムにおいて、
推定対象の革製品の外観を撮像した画像情報を取得する情報取得ステップと、
過去において革製品の外観を撮像した参照用画像情報と、革製品の品質との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した画像情報に応じた参照用画像情報に基づき、上記推定対象の革製品の品質を推定する推定ステップとをコンピュータに実行させること
を特徴とする革製品品質推定プログラム。
【請求項8】
上記推定ステップでは、人工知能におけるニューラルネットワークのノードの各出力の重み付け係数に対応する上記連関度を利用すること
を特徴とする請求項1~7のうち何れか1項記載の革製品品質推定プログラム。
【請求項9】
革製品の品質を推定する革製品品質推定プログラムにおいて、
革製品の外観を撮像した参照用画像データと、革製品の色、輝き、加工状態の何れかからなる外観情報とを教師データとして機械学習させ、入力を上記参照用画像データとし、出力を上記外観情報とした予想モデルを予め取得し、
推定対象の革製品の外観を撮像した画像データを取得し、
取得した上記画像データに応じた参照用画像情報を上記予想モデルに入力し、出力された新たな外観情報を取得し、
取得した上記外観情報に基づいて、革製品の品質を推定することをコンピュータに実行させること
を特徴とする革製品品質推定プログラム。
【請求項10】
革製品の品質を推定する革製品品質推定プログラムにおいて、
革製品の外観を撮像した参照用画像データと、革製品のキズ、付着物、見栄えの何れかからなる表面情報とを教師データとして機械学習させ、入力を上記参照用画像データとし、出力を上記表面情報とした予想モデルを予め取得し、
推定対象の革製品の外観を撮像した画像データを取得し、
取得した上記画像データに応じた参照用画像情報を上記予想モデルに入力し、出力された新たな表面情報を取得し、
取得した上記表面情報に基づいて、革製品の品質を推定することをコンピュータに実行させること
を特徴とする革製品品質推定プログラム。
【請求項11】
革製品の販売価格を推定する革製品販売価格推定プログラムにおいて、
革製品の外観を撮像した参照用画像データと、革製品の色、輝き、加工状態の何れかからなる外観情報とを教師データとして機械学習させ、入力を上記参照用画像データとし、出力を上記外観情報とした予想モデルを予め取得し、
推定対象の革製品の外観を撮像した画像データを取得し、
取得した上記画像データに応じた参照用画像情報を上記予想モデルに入力し、出力された新たな外観情報を取得し、
取得した上記外観情報に基づいて、販売価格を推定することをコンピュータに実行させること
を特徴とする革製品販売価格推定プログラム。
【請求項12】
革製品の販売価格を推定する革製品販売価格推定プログラムにおいて、
革製品の外観を撮像した参照用画像データと、革製品のキズ、付着物、見栄えの何れかからなる表面情報とを教師データとして機械学習させ、入力を上記参照用画像データとし、出力を上記表面情報とした予想モデルを予め取得し、
推定対象の革製品の外観を撮像した画像データを取得し、
取得した上記画像データに応じた参照用画像情報を上記予想モデルに入力し、出力された新たな表面情報を取得し、
取得した上記表面情報に基づいて、販売価格を推定することをコンピュータに実行させること
を特徴とする革製品販売価格推定プログラム。
【請求項13】
革製品が模倣品であるか否か真偽を判定する革製品真偽判定プログラムにおいて、
革製品の外観を撮像した参照用画像データと、革製品の色、輝き、加工状態の何れかからなる外観情報とを教師データとして機械学習させ、入力を上記参照用画像データとし、出力を上記外観情報とした予想モデルを予め取得し、
推定対象の革製品の外観を撮像した画像データを取得し、
取得した上記画像データに応じた参照用画像情報を上記予想モデルに入力し、出力された新たな外観情報を取得し、
取得した上記外観情報に基づいて、模倣品であるか否か真偽を判定することをコンピュータに実行させること
を特徴とする革製品販売価格推定プログラム。
【請求項14】
革製品が模倣品であるか否か真偽を判定する革製品真偽判定プログラムにおいて、
革製品の外観を撮像した参照用画像データと、革製品のキズ、付着物、見栄えの何れかからなる表面情報とを教師データとして機械学習させ、入力を上記参照用画像データとし、出力を上記表面情報とした予想モデルを予め取得し、
推定対象の革製品の外観を撮像した画像データを取得し、
取得した上記画像データに応じた参照用画像情報を上記予想モデルに入力し、出力された新たな表面情報を取得し、
取得した上記表面情報に基づいて、模倣品であるか否か真偽を判定することをコンピュータに実行させること
を特徴とする革製品真偽判定プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、革製品の品質を高精度に推定する上で好適な革製品品質推定プログラムに関する。
【背景技術】
【0002】
革製品を新たに購入したい場合、購入対象の革製品について適正な品質を知りたい場合がある。
【0003】
この品質は、革製品の種別やブランドのみならず、重量、見た目の色や輝き等、参考にすべきファクターは山ほどある。これらの各ファクターを参照しながら適正な品質を設定するのは経験と知識が必要となり困難な作業であることに加え、多大な労力を要してしまうという問題があった。
【発明の概要】
【発明が解決しようとする課題】
【0004】
このため、革製品の品質を、人手に頼ることなく高精度に評価することができるシステムが従来より望まれていた。
【0005】
そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、革製品の品質をより人手に頼ることなく高精度かつ自動的に推定することが可能な革製品品質推定プログラムを提供することにある。
【課題を解決するための手段】
【0006】
本発明を適用した革製品品質推定プログラムは、革製品の品質を推定する革製品品質推定プログラムにおいて、推定対象の革製品の外観の画像を撮像することにより抽出した革製品の色、輝き、加工状態の何れかからなる外観情報を取得する情報取得ステップと、過去において革製品の外観の画像を撮像することにより抽出した革製品の色、輝き、透加工状態の何れかからなる参照用外観情報と、革製品の品質との連関性を利用し、上記情報取得ステップにおいて取得した外観情報に応じた参照用外観情報に基づき、上記推定対象の革製品の品質を推定する推定ステップとを有し、上記情報取得ステップ及び上記推定ステップでは、推定対象の革製品の外観を撮像した画像データと、革製品の色、輝き、加工状態の何れかからなる外観情報とを教師データとして機械学習された予想モデルを用い、入力を上記画像データとし、出力を上記外観情報とすることで新たに外観情報を取得することをコンピュータに実行させることを特徴とする。
【発明の効果】
【0007】
特段のスキルや経験が無くても、誰でも手軽に品質の推定を高精度に行うことができる。
【図面の簡単な説明】
【0008】
【
図1】本発明を適用したシステムの全体構成を示すブロック図である。
【
図3】本発明の動作について説明するための図である。
【
図4】本発明の動作について説明するための図である。
【
図5】本発明の動作について説明するための図である。
【
図6】本発明の動作について説明するための図である。
【
図7】本発明の動作について説明するための図である。
【
図8】本発明の動作について説明するための図である。
【
図9】本発明の動作について説明するための図である。
【
図10】本発明の動作について説明するための図である。
【
図11】本発明の動作について説明するための図である。
【
図12】本発明の動作について説明するための図である。
【
図13】本発明の動作について説明するための図である。
【発明を実施するための形態】
【0009】
以下、本発明を適用した宝石品質推定プログラムについて、図面を参照しながら詳細に説明をする。
【0010】
図1は、本発明を適用した宝石品質推定プログラムが実装される品質推定システム1の全体構成を示すブロック図である。品質推定システム1は、情報取得部9と、情報取得部9に接続された推定装置2と、推定装置2に接続されたデータベース3とを備えている。
【0011】
情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する推定装置2と一体化されていてもよい。情報取得部9は、検知した情報を推定装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、風向センサ、を測るための照度センサで構成されていてもよい。また情報取得部9は、天候についてのデータを気象庁や民間の天気予報会社から取得する通信インターフェースで構成されていてもよい。また情報取得部9は身体に装着して身体のデータを検出するための身体センサで構成されていてもよく、この身体センサは、例えば体温、心拍数、血圧、歩数、歩く速度、加速度を検出するためのセンサで構成されていてもよい。また情報取得部9は図面等の情報をスキャニングしたり、或いはデータベースから読み出すことで取得するデバイスとして構成されていてもよい。情報取得部9は、これら以外に臭気や香りを検知する臭気センサにより構成されていてもよい。
【0012】
データベース3は、品質推定を行う上で必要な様々な情報が蓄積される。品質推定を行う上で必要な情報としては、過去において宝石の外観を撮像した参照用画像情報、過去において宝石の外観の画像を撮像することにより抽出した宝石の色、輝き、透明度、加工状態の何れかからなる参照用外観情報、過去において宝石の外観の画像を撮像することにより抽出した宝石のキズ、内包物の何れかからなる参照用クラリティ情報、上記参照用画像情報を取得する際に撮像した宝石のブランドに関する参照用ブランド情報、上記参照用画像情報を取得する際に撮像した宝石の種別に関する参照用種別情報、上記参照用画像情報を取得する際に撮像した宝石相場価格に関する参照用相場情報、上記参照用画像情報を取得する際に宝石を撮像した撮像時における外部環境に関する参照用外部環境情報、上記参照用画像情報を取得する際に宝石を撮像した撮像時における市況に関する参照用市況情報、上記参照用画像情報を取得する際に撮像した宝石の鑑定書に記載されている鑑定内容を読み取ることで取得した参照用鑑定情報、上記参照用画像情報を取得する際に撮像した宝石の産地に関する参照用産地情報、上記参照用画像情報を取得する際に撮像した宝石の重量に関する参照用重量情報と、これらに対して実際に判断がなされた宝石の品質とのデータセットが記憶されている。
【0013】
つまり、データベース3には、このような参照用画像情報に加え、参照用外観情報、参照用クラリティ情報、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報の何れか1以上と、宝石の品質が互いに紐づけられて記憶されている。
【0014】
推定装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。ユーザは、この推定装置2による探索解を得ることができる。
【0015】
図2は、推定装置2の具体的な構成例を示している。この推定装置2は、推定装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う推定部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。
【0016】
制御部24は、内部バス21を介して制御信号を送信することにより、推定装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。
【0017】
操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、推定部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。
【0018】
推定部27は、探索解を推定する。この推定部27は、推定動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この推定部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。
【0019】
表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。
【0020】
記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。
【0021】
上述した構成からなる品質推定システム1における動作について説明をする。以下でいう宝石は、ダイヤモンド、ルビー、プラチナ、アメジスト、サファイヤ、エメラルド等に代表される。
【0022】
品質推定システム1は、店頭や通信販売を通じて販売しようとする宝石の品質を販売側が適正に決めたい場合、或いは宝石の購入側が実際に購入しようとする宝石の品質が適正か否かを判別する際に適用される。品質推定システム1は、例えば
図3に示すように、参照用画像情報と、宝石の品質との3段階以上の連関度が予め設定されていることが前提となる。参照用画像情報とは、宝石の外観について、宝石を撮像することにより得られた画像情報から得られるものであり、画像情報を解析することで得ることができる。この画像は静止画のみならず動画であってもよい。また、この画像は可視光で構成されるが画像ではなく、スペクトルに応じて表示色を切り替えたいわゆるスペクトル画像で構成されていてもよい。この参照用画像情報は、宝石について撮像した画像を解析することで、宝石の大きさ、形状、色の何れかに基づいて、宝石の外観を特定するようにしてもよい。またこの参照用画像情報は、宝石について撮像した超音波画像で構成してもよい。これらの宝石の外観は、以前において学習させた特徴量に基づいて判別するようにしてもよい。このとき、人工知能を活用し、宝石の大きさ、形状、色等の画像データと、宝石の品質を学習させておき、実際に参照用画像情報を取得する際には、これらの学習させた画像データと照らし合わせて、その宝石の品質を判別するようにしてもよい。
【0023】
かかる場合には、画像情報と、宝石の大きさ、形状、色の何れかの外観とを教師データとして機械学習された予想モデルを用い、入力を上記画像情報とし、出力を上記外観として判定した結果に基づいて、外観を特定するようにしてもよい。
【0024】
宝石の品質は、その参照用画像情報として撮像した宝石の実際の品質である。この品質は、店舗やEコマース、質屋等の運営会社において保存されているデータベースにアクセスすることで取得してもよいし、都度手入力により入力するようにしてもよい。また、宝石の品質は、実際に専門家によって、あるいは業者によって評価されたものであってもよく、その鑑定書に記載の内容に基づいてもよいし、評価者によって評価され、例えば、100点満点、或いは1000点満点でランク付けされたものであってもよい。あるいは良、悪の2段階で、或いは2段階以上で評価されたものであってもよい。
【0025】
このような参照用画像情報と、宝石の品質からなるデータセットを取得しておき、これを学習させる。
【0026】
図3の例では、入力データとして例えば参照用画像情報P01~P03であるものとする。このような入力データとしての参照用画像情報P01~P03は、出力としての宝石の品質に連結している。この出力においては、出力解としての、宝石の品質が表示されている。
【0027】
参照用画像情報は、この出力解としての宝石の品質A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。品質は、その宝石が同一種類の宝石であると仮定した場合に、例えば品質Aは、50万円、品質Bは、40万円、品質Cは、35万円、品質Dは、30万円等のように配列している。参照用画像情報がこの連関度を介して左側に配列し、各宝石の品質が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報に対して、何れの宝石の品質と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報が、いかなる宝石の品質に紐付けられる可能性が高いかを示す指標であり、参照用画像情報から最も確からしい宝石の品質を選択する上での的確性を示すものである。
図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としての宝石の品質と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としての値段と互いに関連度合いが低いことを示している。
【0028】
【0029】
推定装置2は、このような
図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり推定装置2は、実際の探索解の判別を行う上で、参照用画像情報と、その場合の宝石の品質の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで
図3に示す連関度を作り上げておく。
【0030】
例えば、参照用画像情報がαであるものとする。このような参照用画像情報に対する宝石の品質としては宝石の品質Aが多く評価されたものとする。このようなデータセットを集めて分析することにより、参照用画像情報との連関度が強くなる。
【0031】
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01である場合に、過去の宝石の品質の評価を行った結果の各種データから分析する。こ参照用画像情報P01である場合に、宝石の品質Aの事例が多い場合には、この宝石の品質の評価につながる連関度をより高く設定し、宝石の品質Bの事例が多い場合には、この宝石の品質の評価につながる連関度をより高く設定する。例えば参照用画像情報P01の例では、宝石の品質Aと、宝石の品質Cにリンクしているが、以前の事例から宝石の品質Aにつながるw13の連関度を7点に、宝石の品質Cにつながるw14の連関度を2点に設定している。
【0032】
また、この連関度は、
図4に示すように、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
【0033】
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の評価対象の宝石の外観の画像等と実際に推定・評価した宝石の品質とのデータセットを通じて作った後に、実際にこれから新たに宝石の品質の判別を行う上で、上述した学習済みデータを利用して宝石の品質を探索することとなる。かかる場合には、実際に判別対象の領域において画像情報を新たに取得する。新たに取得する画像情報は、上述した情報取得部9により入力される。画像情報は、品質を判別しようとする宝石を撮像することで取得する。この判別方法は、上述した参照用画像情報と同様の手法で行うようにしてもよい。
【0034】
このようにして新たに取得した画像情報に基づいて、宝石の品質を判別する。かかる場合には、予め取得した
図3(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合には、連関度を介して宝石の品質Bがw15、宝石の品質Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高い宝石の品質Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる宝石の品質Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。なお、連関度は3段階以上のものを利用する場合に限定されるものではなく、2段階の連関性、即ち、1か0か、関係があるか否かを示すもので構成されるものであってもよい。かかる場合には、入力側の参照用画像情報と、出力側の品質とが互いに紐付けられたテーブルを参照するようにしてもよい。そしてある画像情報が入力された場合、これに対応する参照用画像情報に紐付けられた品質を出力することとなる。
【0035】
このようにして、新たに取得する画像情報から、最も好適な宝石の品質を探索し、販売側、買取側に表示することができる。この探索結果を見ることにより、販売側、買取側は、探索された宝石の品質に基づいて宝石の品質を互いに決めることができる。しかも宝石に接触することなく、画像の撮像を通じてこれらの品質を予測することができるため、宝石が貴重品、骨董品であってもこれに傷をつけることがなくなる。
【0036】
なお、この
図3において、参照用画像情報の代替として、過去において宝石を撮像することにより抽出した宝石のキズ、内包物の何れかからなる参照用クラリティ情報と、宝石の品質との3段階以上の連関度を予め学習させるようにしてもよい。参照用クラリティ情報は、例えばキズや内包物のサイズや量、位置、コントラスト、性質等の情報で構成される。参照用クラリティ情報を取得する際には、
図5に示すように、買取対象の宝石の外観を撮像した画像データと、宝石のキズや内包物の大きさや量等からなるクラリティ情報とを教師データとして機械学習された予想モデルを用いるようにしてもよい。入力を上記画像データとし、出力を上記クラリティ情報とすることで新たにクラリティ情報を取得するようにしてもよい。即ち、このクラリティ情報は、以前において学習させた特徴量に基づいて判別するようにしてもよい。なお、ここでいうキズは、実際に宝石につけられたキズ以外に、付着した汚れも含む。内包物とはダイヤモンドなどの結晶の中にある別の鉱物や液体気体等である。
【0037】
このようにして得られたクラリティ情報から参照用クラリティ情報を構成し、また撮像した宝石についての実際の品質(品質)を取得することで上述と同様にデータセットを得て、
図3、4に示すような連関度を形成しておく。次に実際に品質を推定したい宝石について撮像することで画像データを取得する。この画像データについて、実際に
図5に示す連関度を参照し、クラリティ情報を得る。予め学習させた、参照用外観情報と宝石の品質との3段階以上の連関度を参照し、取得したクラリティ情報を介して品質を探索することができる。
【0038】
参照用画像情報の代替として、過去において宝石を撮像することにより抽出した宝石の色、輝き、透明度、加工状態の何れかからなる参照用外観情報と、宝石の品質との3段階以上の連関度を予め学習させるようにしてもよい。参照用外観情報は、例えば宝石の色、輝き、透明度、加工状態等の情報で構成される。色、輝き、透明度はそのレベルに応じて階層化されたランクで表示されるものであってもよい。また加工状態は、宝石のカットの状態、カットされた各面の形状や大きさ、摩擦の仕上がり具合等を示すものであり、そのレベルに応じて階層化されたランクで表示されるものであってもよい。参照用外観情報を取得する際には、
図6に示すように、買取対象の宝石の外観を撮像した画像データと、宝石の色、輝き、透明度、加工状態等からなる外観情報とを教師データとして機械学習された予想モデルを用いるようにしてもよい。入力を上記画像データとし、出力を上記外観情報とすることで新たに外観情報を取得するようにしてもよい。即ち、この外観情報は、以前において学習させた特徴量に基づいて判別するようにしてもよい。
【0039】
このようにして得られた外観情報から参照用外観情報を構成し、また撮像した宝石についての実際の品質(品質)を取得することで上述と同様にデータセットを得て、
図3、4に示すような連関度を形成しておく。次に実際に品質を推定したい宝石について撮像することで画像データを取得する。この画像データについて、実際に
図6に示す連関度を参照し、外観情報を得る。予め学習させた、参照用外観情報と宝石の品質との3段階以上の連関度を参照し、取得した外観情報を介して品質を探索することができる。
【0040】
なお本発明によれば、参照用外観情報と、宝石の品質との3段階以上の連関度を予め学習させ、その連関度を利用して宝石の品質を探索する場合に限定されるものではない。つまり外観情報と、宝石の品質は、3段階以上の連関度ではなく、2段階以上の連関性に基づいていればよい。2段階以上の連関性とは、各参照用外観情報に、いかなる宝石の品質が紐づいているか否かを示すものであってもよい。
【0041】
例えば、参照用外観情報G11は、品質が30万円、参照用外観情報G12は、品質が43万円、参照用外観情報G13は、品質が26万円等のように参照用外観情報と品質が1対1で紐付けられている。このような紐付けをテンプレートや表にしたデータを予め準備しておくようにしてもよい。そして、実際に参照用外観情報に応じた外観情報を取得した場合には、そのテンプレートや表を参照し、これに対応する品質を出力するようにしてもよい。即ち、外観情報に応じた参照用外観情報に基づいて品質を取得することが可能となる。
【0042】
同様に、参照用クラリティ情報と、宝石の品質との3段階以上の連関度を予め学習させ、その連関度を利用して宝石の品質を探索する場合に限定されるものではない。つまりクラリティ情報と、宝石の品質は、3段階以上の連関度ではなく、2段階以上の連関性に基づいていればよい。2段階以上の連関性とは、各参照用クラリティ情報に、いかなる宝石の品質が紐づいているか否かを示すものであってもよい。
【0043】
例えば、参照用クラリティ情報C21は、品質が30万円、参照用クラリティ情報C22は、品質が43万円、参照用クラリティ情報C23は、品質が26万円等のように参照用クラリティ情報と品質が1対1で紐付けられている。このような紐付けをテンプレートや表にしたデータを予め準備しておくようにしてもよい。そして、実際に参照用クラリティ情報に応じたクラリティ情報を取得した場合には、そのテンプレートや表を参照し、これに対応する品質を出力するようにしてもよい。即ち、クラリティ情報に応じた参照用外観情報に基づいて品質を取得することが可能となる。
【0044】
図7の例では、参照用画像情報と、参照用ブランド情報との組み合わせが形成されていることが前提となる。参照用ブランド情報とは、宝石の製造元、或いは販売元を示す情報であり、或いは宝石に貼られている商標のブランドに関する情報である。
【0045】
宝石の品質は、参照用画像情報に加え、宝石のブランドに応じて異なる。特にアクセサリーは有名ブランドであるか否かで大きく価格は左右する。このため、この参照用ブランド情報も説明変数として加えている。
【0046】
図7の例では、入力データとして例えば参照用画像情報P01~P03、参照用ブランド情報P14~17であるものとする。このような入力データとしての、参照用画像情報に対して、参照用ブランド情報が組み合わさったものが、
図7に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、宝石の品質が表示されている。
【0047】
参照用画像情報と参照用ブランド情報との各組み合わせ(中間ノード)は、この出力解としての、宝石の品質に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用ブランド情報がこの連関度を介して左側に配列し、宝石の品質が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用ブランド情報に対して、宝石の品質と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用ブランド情報が、いかなる宝石の品質に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用ブランド情報から最も確からしい宝石の品質を選択する上での的確性を示すものである。このため、これらの参照用画像情報と参照用ブランド情報の組み合わせで、最適な宝石の品質を探索していくこととなる。
【0048】
図7の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。
【0049】
推定装置2は、このような
図7に示す3段階以上の連関度w13~w22を予め取得しておく。つまり推定装置2は、実際の探索解の判別を行う上で、参照用画像情報と参照用ブランド情報、並びにその場合の宝石の品質が何れが見合うものであったか、過去のデータを蓄積しておき、これらを分析、解析することで
図7に示す連関度を作り上げておく。
【0050】
例えば、過去にあった実際の事例における参照用画像情報がαであるものとする。また参照用ブランド情報が、ある有名なブランドWであるものとする。かかる場合に、実際にその宝石の品質がいくらであったかを示す宝石の品質をデータセットとして学習させ、上述した連関度という形で定義しておく。なお、このような参照用画像情報や、参照用ブランド情報は、販売業者、流通業者等が管理する管理データベースから抽出するようにしてもよい。
【0051】
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用ブランド情報P16である場合に、その宝石の品質を過去のデータから分析する。宝石の品質がAの事例が多い場合には、この品質Aにつながる連関度をより高く設定し、宝石の品質Bの事例が多く、宝石の品質Aの事例が少ない場合には、宝石の品質Bにつながる連関度を高くし、宝石の品質Aにつながる連関度を低く設定する。例えば中間ノード61aの例では、宝石の品質Aと品質Bの出力にリンクしているが、以前の事例から宝石の品質Aにつながるw13の連関度を7点に、宝石の品質Bにつながるw14の連関度を2点に設定している。
【0052】
また、この
図7に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
【0053】
図7に示す連関度の例で、ノード61bは、参照用画像情報P01に対して、参照用ブランド情報P14の組み合わせのノードであり、宝石の品質Cの連関度がw15、宝石の品質Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用位置情報P15、P17の組み合わせのノードであり、宝石の品質Bの連関度がw17、宝石の品質Dの連関度がw18となっている。
【0054】
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから宝石の品質を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際に画像情報と、ブランド情報とを取得する。ブランド情報は、実際に品質を推定しようとするリングの品質を入力又は選択する。
【0055】
このようにして新たに取得した画像情報、ブランド情報に基づいて、最適な宝石の品質を探索する。かかる場合には、予め取得した
図7(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、ブランド情報がP17である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、宝石の品質Cがw19、宝石の品質Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高い宝石の品質Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる宝石の品質Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
【0056】
また、入力から伸びている連関度w1~w12の例を以下の表2に示す。
【0057】
【0058】
この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。
【0059】
図8は、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用種別情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度が設定されている例を示している。
【0060】
参照用位置情報の代わりに説明変数として加えられるこの参照用種別情報は、宝石の種別に関するもので、例えば型番や商品名、石の種類等を通じて分類することができる。宝石の種別は、宝石の品質と関係することが既に知られている。このため、この参照用種別情報を組み合わせて連関度を形成することにより、宝石の品質の判断精度を向上させる趣旨である。
【0061】
図8の例では、入力データとして例えば参照用画像情報P01~P03、参照用種別情報P18~21であるものとする。このような入力データとしての、参照用画像情報に対して、参照用種別情報が組み合わさったものが、
図8に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、宝石の品質が表示されている。
【0062】
参照用画像情報と参照用種別情報との各組み合わせ(中間ノード)は、この出力解としての、宝石の品質に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用種別情報がこの連関度を介して左側に配列し、宝石の品質が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用種別情報に対して、宝石の品質と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用種別情報が、いかなる宝石の品質に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用種別情報から最も確からしい宝石の品質を選択する上での的確性を示すものである。
【0063】
推定装置2は、このような
図8に示す3段階以上の連関度w13~w22を予め取得しておく。つまり推定装置2は、実際の探索解の判別を行う上で、参照用画像情報と、参照用画像情報を取得する際に撮像した宝石の参照用種別情報、並びにその場合の宝石の品質が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで
図8に示す連関度を作り上げておく。参照用種別情報は、例えば、種別が記載された箱や説明書、或いは宝石についてカメラ等を通じて画像を撮像し、その種別をOCR等を通じてテキスト変換することで取得してもよい。
【0064】
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用種別情報P20である場合に、その宝石の品質を過去のデータから分析する。宝石の品質Aの事例が多い場合には、この宝石の品質がAにつながる連関度をより高く設定し、宝石の品質がBの事例が多く、宝石の品質がAの事例が少ない場合には、宝石の品質がBにつながる連関度を高くし、宝石の品質がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、宝石の品質Aと宝石の品質Bの出力にリンクしているが、以前の事例から宝石の品質Aにつながるw13の連関度を7点に、宝石の品質Bにつながるw14の連関度を2点に設定している。
【0065】
また、この
図8に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
【0066】
図8に示す連関度の例で、ノード61bは、参照用画像情報P01に対して参照用種別情報P18の組み合わせのノードであり、宝石の品質Cの連関度がw15、宝石の品質Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用種別情報P19、P21の組み合わせのノードであり、宝石の品質Bの連関度がw17、宝石の品質Dの連関度がw18となっている。
【0067】
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから宝石の品質の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその宝石の品質の判別対象の画像情報と、種別情報とを取得する。ここで種別情報は、宝石の品質を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用種別情報と同様である。
【0068】
このようにして新たに取得した画像情報と、種別情報に基づいて、最適な宝石の品質を探索する。かかる場合には、予め取得した
図8(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、種別情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、宝石の品質Cがw19、宝石の品質Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高い宝石の品質Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる宝石の品質Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
【0069】
図9は、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用産地情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度が設定されている例を示している。
【0070】
この説明変数として加えられるこの参照用産地情報は、宝石の産地に関するあらゆる情報である。参照用産地情報は、生産された国や地域に関する情報で構成される。この参照用産地情報は、カメラにより撮像した、産地が記述されたラベルや説明書等の画像をOCRにより解析して得るようにしてもよいし、手入力により取得するようにしてもよい。
【0071】
図9の例では、入力データとして例えば参照用画像情報P01~P03、参照用産地情報P18~21であるものとする。このような入力データとしての、参照用画像情報に対して、参照用産地情報が組み合わさったものが、
図9に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、宝石の品質が表示されている。
【0072】
参照用画像情報と参照用産地情報との各組み合わせ(中間ノード)は、この出力解としての、宝石の品質に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用産地情報がこの連関度を介して左側に配列し、宝石の品質が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用産地情報に対して、宝石の品質と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用産地情報が、いかなる宝石の品質に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用産地情報から最も確からしい宝石の品質を選択する上での的確性を示すものである。
【0073】
推定装置2は、このような
図9に示す3段階以上の連関度w13~w22を予め取得しておく。つまり推定装置2は、実際の探索解の判別を行う上で、参照用画像情報と、参照用画像情報を取得する際に得た参照用産地情報、並びにその場合の宝石の品質が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで
図9に示す連関度を作り上げておく。
【0074】
例えば、過去にあった実際の宝石の品質の評価時において、ある参照用画像情報に対して、参照用産地情報が、南アフリカのある地域であるものとする。かかる場合に、宝石の品質がAと判別されている事例が多い場合には、これらをデータセットとして学習させ、上述した連関度という形で定義しておく。
【0075】
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用産地情報P20である場合に、その宝石の品質を過去のデータから分析する。宝石の品質Aの事例が多い場合には、この宝石の品質がAにつながる連関度をより高く設定し、宝石の品質がBの事例が多く、宝石の品質がAの事例が少ない場合には、宝石の品質がBにつながる連関度を高くし、宝石の品質がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、宝石の品質Aと宝石の品質Bの出力にリンクしているが、以前の事例から宝石の品質Aにつながるw13の連関度を7点に、宝石の品質Bにつながるw14の連関度を2点に設定している。
【0076】
また、この
図9に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
【0077】
図9に示す連関度の例で、ノード61bは、参照用画像情報P01に対して参照用産地情報P18の組み合わせのノードであり、宝石の品質Cの連関度がw15、宝石の品質Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用産地情報P19、P21の組み合わせのノードであり、宝石の品質Bの連関度がw17、宝石の品質Dの連関度がw18となっている。
【0078】
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから宝石の品質の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその宝石の品質の判別対象の画像情報と、産地情報とを取得する。ここで産地情報は、宝石の品質を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用産地情報と同様である。
【0079】
このようにして新たに取得した画像情報と、産地情報に基づいて、最適な宝石の品質を探索する。かかる場合には、予め取得した
図9(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、産地情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、宝石の品質Cがw19、宝石の品質Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高い宝石の品質Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる宝石の品質Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
【0080】
図10は、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用重量情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度が設定されている例を示している。
【0081】
説明変数として加えられるこの参照用重量情報は、参照用画像情報を取得する際に撮像した宝石の重量に関する情報である。この重量が重いほど、品質は高くなるため、参照用重量情報も説明変数に加えたものである。
【0082】
図10の例では、入力データとして例えば参照用画像情報P01~P03、参照用重量情報P18~21であるものとする。このような入力データとしての、参照用画像情報に対して、参照用重量情報が組み合わさったものが、
図10に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、宝石の品質が表示されている。
【0083】
参照用画像情報と参照用重量情報との各組み合わせ(中間ノード)は、この出力解としての、宝石の品質に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用重量情報がこの連関度を介して左側に配列し、宝石の品質が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用重量情報に対して、宝石の品質と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用重量情報が、いかなる宝石の品質に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用重量情報から最も確からしい宝石の品質を選択する上での的確性を示すものである。
【0084】
推定装置2は、このような
図10に示す3段階以上の連関度w13~w22を予め取得しておく。つまり推定装置2は、実際の探索解の判別を行う上で、参照用画像情報と、参照用画像情報を取得する際に得た参照用重量情報、並びにその場合の宝石の品質が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで
図10に示す連関度を作り上げておく。
【0085】
例えば、過去にあった実際の宝石の品質の評価時において、ある参照用画像情報に対して、参照用重量情報が、4カラットであるものとする。かかる場合に、宝石の品質がAと判別されている事例が多い場合には、これらをデータセットとして学習させ、上述した連関度という形で定義しておく。
【0086】
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用重量情報P20である場合に、その宝石の品質を過去のデータから分析する。宝石の品質Aの事例が多い場合には、この宝石の品質がAにつながる連関度をより高く設定し、宝石の品質がBの事例が多く、宝石の品質がAの事例が少ない場合には、宝石の品質がBにつながる連関度を高くし、宝石の品質がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、宝石の品質Aと宝石の品質Bの出力にリンクしているが、以前の事例から宝石の品質Aにつながるw13の連関度を7点に、宝石の品質Bにつながるw14の連関度を2点に設定している。
【0087】
また、この
図10に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
【0088】
図10に示す連関度の例で、ノード61bは、参照用画像情報P01に対して参照用重量情報P18の組み合わせのノードであり、宝石の品質Cの連関度がw15、宝石の品質Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用重量情報P19、P21の組み合わせのノードであり、宝石の品質Bの連関度がw17、宝石の品質Dの連関度がw18となっている。
【0089】
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから宝石の品質の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその宝石の品質の判別対象の画像情報と、重量情報とを取得する。ここで重量情報は、宝石の品質を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用重量情報と同様である。
【0090】
このようにして新たに取得した画像情報と、重量情報に基づいて、最適な宝石の品質を探索する。かかる場合には、予め取得した
図10(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、重量情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、宝石の品質Cがw19、宝石の品質Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高い宝石の品質Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる宝石の品質Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
【0091】
また、本発明においては、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用外部環境情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度を利用するものであってもよい。
【0092】
ここでいう参照用外部環境情報、外部環境情報は、例えば、経済データ(GDP、雇用統計、鉱工業生産指数、設備投資、労働力調査等)、家計データ(家計消費状況調査、家計データ、1週間の平均就業時間、貯蓄額の統計データ、年収の統計データ等)、不動産データ(オフィス空室率、坪単価、賃料相場、地価、空き家データ等)、自然環境データ(災害データ、気温データ、降水量データ、風向きデータ、湿度データ等)に代表されるものである。外部環境情報は、これらのデータの一部、全部が反映されるもの以外に、外部のあらゆる情報が含まれる。参照用外部環境情報は、外部環境自体を類型化しておくようにしてもよい。例えば、雇用統計におけるデータで区切ることで分類するようにしてもよい。また、パターン(例えば、GDPの伸び率が急激が、あるいは徐々に増加するか等のパターン)等により類型化されていてもよい。この参照用外部環境情報は、過去の販売日、又はその日の前後数日の間における外部環境を示すものである。
【0093】
このような参照用画像情報と、参照用外部環境情報とを有する組み合わせと、宝石の品質との3段階以上の連関度を予め取得しておく。そして、新たに推定対象の宝石の外観に関する画像情報と、その撮像時(推定時)における外部環境に関する外部環境情報とを取得する。そして、この取得した上記画像情報に応じた参照用画像情報と、上記外部環境情報に応じた参照用外部環境情報に基づき、宝石の品質を推定する点は、上述した
図3~
図10の説明と同様である。
【0094】
また、本発明においては、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用市況情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度を利用するものであってもよい。
【0095】
ここでいう参照用市況情報、市況情報は、市況に関する様々な情報である。この参照用市況情報の例としては、金利、為替、各銘柄の株価、原油、先物、貴金属、ビットコイン等の値動きを対象としたものである。この参照用市況情報は、これらの対象について時系列的なチャートや折れ線グラフ等で表示されていてもよい。またボリンジャーバンド、出来高、MACD、移動平均線等の情報が付されていてもよい。また、この市況情報は、各銘柄のチャート、ボリンジャーバンド、MACD、移動平均線等の情報が付されていてもよい。為替についても各通貨間における値動きを示すチャート、ボリンジャーバンド、MACD、移動平均線等の情報が付されていてもよい。
【0096】
このような参照用画像情報と、参照用市況情報とを有する組み合わせと、宝石の品質との3段階以上の連関度を予め取得しておく。そして、新たに推定対象の宝石の外観に関する画像情報と、その撮像時(推定時)における市況に関する市況情報とを取得する。そして、この取得した上記画像情報に応じた参照用画像情報と、上記市況情報に応じた参照用市況情報に基づき、宝石の品質を推定する点は、上述した
図3~
図10の説明と同様である。
【0097】
また、本発明においては、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用鑑定情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度を利用するものであってもよい。
【0098】
ここでいう参照用鑑定情報、鑑定情報は、参照用画像情報を取得する際に撮像した宝石の鑑定書に記載されている鑑定内容を読み取ることで取得した情報である。鑑定書は、その宝石のカラーやクラリティ、カットなどのグレードを鑑定機関が証明するものであるが、宝石が本物か偽物かを鑑別書や、商品を販売するお店が、販売した 商品の品質を保証するための保証書に記載されている内容を読み取ることで取得した情報を参照用鑑定情報、鑑定情報として構成してもよい。この参照用鑑定情報、鑑定情報の取得方法としては、内容が記載されている鑑定書や書類等をカメラにより撮像し、その保証内容をOCR技術を利用して読み取るようにしてもよいし、手入力により入力してもよい。
【0099】
このような参照用画像情報と、参照用鑑定情報とを有する組み合わせと、宝石の品質との3段階以上の連関度を予め取得しておく。そして、新たに推定対象の宝石の外観に関する画像情報と、その宝石の鑑定内容に関する鑑定情報とを取得する。そして、この取得した上記画像情報に応じた参照用画像情報と、上記鑑定情報に応じた参照用鑑定情報に基づき、宝石の品質を推定する点は、上述した
図3~
図10の説明と同様である。
【0100】
また、本発明においては、上述した参照用画像情報に加え、上述した参照用ブランド情報の代わりに参照用相場情報との組み合わせと、当該組み合わせに対する宝石の品質との3段階以上の連関度を利用するものであってもよい。
【0101】
ここでいう参照用相場情報、相場情報は、その宝石についての一般的な相場のデータであり、そのような相場のデータを開示しているサイトからデータを取得するようにしてもよいし、相場を開示している機関のサイトやそのサーバ等からデータを取得するようにしてもよいし、手入力により入力してもよい。
【0102】
このような参照用画像情報と、参照用相場情報とを有する組み合わせと、宝石の品質との3段階以上の連関度を予め取得しておく。そして、新たに推定対象の宝石の外観に関する画像情報と、その宝石の収容体に関する相場情報とを取得する。そして、この取得した上記画像情報に応じた参照用画像情報と、上記相場情報に応じた参照用相場情報に基づき、宝石の品質を推定する点は、上述した
図3~
図10の説明と同様である。
【0103】
上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。
【0104】
上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽に宝石の品質の探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。
【0105】
なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。
【0106】
なお、上述した連関度では、参照用画像情報に加え、参照用外観情報、参照用クラリティ情報、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報の何れかとの組み合わせで構成されている場合を例にとり説明をしたが、これに限定されるものではない。つまり連関度は、参照用画像情報に加え、参照用外観情報、参照用クラリティ情報、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報の何れか2以上との組み合わせで構成されていてもよい。また連関度は、参照用画像情報に加え、参照用外観情報、参照用クラリティ情報、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報の何れか1以上に加え、他のファクターがこの組み合わせに加わって連関度が形成されていてもよい。
【0107】
また、上述した例では、参照用画像情報を基調とし、これと他の参照用情報とを組み合わせて連関度を形成する場合を例にとり説明をしたが、これに限定されるものでは無く、参照用外観情報又は参照用クラリティ情報を基調として他の参照用情報とを組み合わせて連関度を形成するものであってもよい。即ち、参照用外観情報又は参照用クラリティ情報に加え、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報の何れか1又は2以上との組み合わせで連関度が構成されるものであってもよい。
【0108】
これに加えて、基調となる参照用情報としては、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報の何れかで構成されていてもよい。この基調となる参照用情報と、これ以外の参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報等の何れか1又は2以上との組み合わせで連関度が構成されるものであってもよい。
【0109】
例えば、基調となる参照用情報が参照用種別情報である場合、これとの組み合わせとして他の参照用情報(参照用ブランド情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報等)により上記連関度が形成され、解探索時には、種別情報に加えて、参照用情報に応じた情報が入力され、出力としての宝石の品質が探索される。
【0110】
同様に、基調となる参照用情報が参照用ブランド情報である場合、これとの組み合わせとして他の参照用情報(参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報等)により上記連関度が形成され、解探索時には、ブランド情報に加えて、参照用情報に応じた情報が入力され、出力としての宝石の品質が探索される。
【0111】
いずれの場合も、その連関度の参照情報に合わせたデータの入力がなされ、その連関度を利用して宝石の品質を求める。
【0112】
また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。
【0113】
このような3段階以上の数値で表される連関度に基づいて最も確からしい宝石の品質、を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。このように連関度の高い順にユーザに表示できれば、より確からしい探索解を優先的に表示することも可能となる。
【0114】
これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。
【0115】
更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。
【0116】
更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また参照用画像情報、参照用外観情報、参照用ブランド情報、参照用品名情報、参照用産地情報、参照用落札値情報、参照用外部環境情報、参照用市況情報、参照用テキスト情報、参照用サポート情報、参照用保証情報、参照用相場情報を取得し、これらに対する宝石の品質、改善施策に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。
【0117】
つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。
【0118】
また、この連関度の更新は、公衆通信網から取得可能な情報に基づく場合以外に、専門家による研究データや論文、学会発表や、新聞記事、書籍等の内容に基づいてシステム側又はユーザ側が人為的に、又は自動的に更新するようにしてもよい。これらの更新処理においては人工知能を活用するようにしてもよい。
【0119】
また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。
【0120】
なお
図3に示す連関度が、人工知能におけるニューラルネットワークのノードで構成されるものである場合には、
図10に示すように、入力データとして参照用画像情報が入力され、出力データとして宝石の品質が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。
【0121】
また本発明は、
図11に示すように参照用情報Uと参照用情報Vという2種類以上の情報の組み合わせの連関度に基づいて宝石の品質を判別するものである。この参照用画像情報Uが参照用水温であり、参照用情報Vが参照用ブランド情報、参照用品名情報、参照用産地情報、参照用落札値情報、参照用外部環境情報、参照用市況情報、参照用テキスト情報、参照用サポート情報、参照用保証情報、参照用収容体情等の何れかであるものとする。
【0122】
このとき、
図11に示すように、参照用情報Uについて得られた出力をそのまま入力データとして、参照用情報Vとの組み合わせの中間ノード61を介して出力(宝石の品質)と関連付けられていてもよい。例えば、参照用情報U(参照用画像情報)について、
図3に示すように出力解を出した後、これをそのまま入力として、他の参照用情報Vとの間での連関度を利用し、出力(宝石の品質)を探索するようにしてもよい。
【0123】
また、本発明は、上述した実施の形態に限定されるものでは無く、例えば
図12に示すように、基調となる参照用情報と、宝石の品質との3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した情報に応じた宝石の品質との3段階以上の連関度に基づき、解探索を行うことになる。基調となる参照用情報は、上述したいかなる参照用情報(参照用画像情報、参照用外観情報、参照用クラリティ情報、参照用ブランド情報、参照用種別情報、参照用相場情報、参照用外部環境情報、参照用市況情報、参照用鑑定情報、参照用産地情報、参照用重量情報等)も適用可能である。
【0124】
これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。
【0125】
連関度を通じて求められる探索解は、更に、他の参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。
【0126】
ここでいう他の参照用情報とは、上述した参照用情報の何れかを基調となる参照用情報とした場合、当該基調となる参照用情報以外のいかなる参照用情報に該当する。
【0127】
例えば、他の参照用情報の一つとして、ある参照用相場情報P14において、以前において品質としてBが判別される経緯が多かったものとする。このような参照用相場情報P14に応じた品質を新たに取得したとき、品質の探索解Bに対して、重み付けを上げる処理を行い、換言すれば品質の探索解Bにつながるようにする処理を行うように予め設定しておく。
【0128】
例えば、他の参照用情報Gが、より品質の探索解Cを示唆するような分析結果であり、参照用情報Fが、より品質の探索解Dを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、品質の探索解Cの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、品質の探索解Dの重み付けを上げる処理を行う。つまり、品質につながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、品質を上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としての品質にいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。
【0129】
また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆する品質につながるケースほど、連関度を介して求められた探索解としての当該判別類型をより高く修正するようにしてもよい。
【0130】
本発明では、品質を探索する代わりに販売価格を探索するようにしてもよい。かかるケースは、店頭や通信販売を通じて販売しようとする宝石の販売価格を販売側が適正に決めたい場合、或いは宝石の購入側が実際に購入しようとする宝石の販売価格が適正か否かを判別する際に適用される。販売価格を推定する場合には、
図3に示す品質の代替として販売価格を出力側の解として学習させ、参照用画像情報と、宝石の販売価格との3段階以上の連関度が予め設定されていることが前提となる。宝石の販売価格は、その参照用画像情報として撮像した宝石の実際の販売価格である。この販売価格は、店舗やEコマース、質屋等の運営会社において保存されているデータベースにアクセスすることで取得してもよいし、都度手入力により入力するようにしてもよい。解探索時には、予め学習させた、参照用情報と販売価格との3段階以上の連関度を参照し、取得した情報を介して販売価格を探索することができる。
【0131】
なお、上述した実施の形態においては、宝石の品質や販売価格を探索する場合を例に挙げて説明をしたが、これに限定されるものではない。
【0132】
例えば鞄、革製品(例えば革靴、革製の容器や鞄、革製の財布や文房具、小物、ベルト等)、時計、アクセサリー等のような高級品、ブランド品とわれるものであっても同様に品質や解探索を行うことが可能となる。高級品、ブランド品としてはこれ以外に毛皮製品や衣服等も含まれる。
【0133】
かかる場合には、上述した参照用クラリティ情報の代替として、キズ、付着物、見栄えの何れかからなる参照用表面情報を探索解としての品質や販売価格と関連付けるようにしてもよい。
【0134】
ここでいう付着物とは、表面に付着した汚れや異物、塵やゴミである。見栄えとは、凹凸や筋、皺やくもり等により見栄えが低下しているか否かを示すものである。
【0135】
このような参照用表面情報を取得する際には、推定対象の鞄、革製品、時計、アクセサリーの外観を撮像した画像データと、キズ、付着物、見栄えの何れかからなる参照用表面情報(表面情報)とを教師データとして機械学習された予想モデルを用いるようにしてもよい。
図13に示すように、入力を上記画像データとし、出力を上記参照用表面情報(表面情報)とすることで新たに参照用表面情報(表面情報)を取得するようにしてもよい。即ち、この参照用表面情報(表面情報)は、以前において学習させた特徴量に基づいて判別するようにしてもよい。
【0136】
解探索時には、このようにして得られた表面情報から参照用表面情報を構成し、また撮像した鞄、革製品、時計、アクセサリー等についての実際の品質(販売価格)を取得することで上述と同様にデータセットを得て、
図3、4に示すような連関度を形成しておく。次に実際に品質や販売価格を推定したい鞄、革製品、時計、アクセサリーの外観について撮像することで画像データを取得する。この画像データについて、実際に
図13に示す連関度を参照し、表面情報を得る。予め学習させた、参照用表面情報と品質や販売価格との3段階以上の連関度を参照し、取得した表面情報を介して品質や販売価格を探索することができる。
【0137】
また、時計についての品質や販売価格を探索する場合には、参照用機能情報を探索解としての品質や販売価格と関連付けるようにしてもよい。ここでいう参照用機能情報とは、時計の保有する機能(例えば、ストップウォッチ機能、通話機能、録音機能、タイマー記号、通信機能、撮像機能)に関する情報である。解探索時には、参照用機能表面情報と実際の品質(販売価格)とを取得することで上述と同様にデータセットを得て、
図3、4に示すような連関度を形成しておく。次に実際に品質や販売価格を推定したい時計から機能情報を得る。予め学習させた、参照用機能情報と品質や販売価格との3段階以上の連関度を参照し、取得した機能情報を介して品質や販売価格を探索することができる。
【0138】
また本発明によれば、宝石、鞄、革製品、時計、アクセサリーが模倣品であるか否か真偽を判定する真偽判定プログラムとして適用されるものであってもよい。
【0139】
かかる場合には、出力側が品質や販売価格の代替として、模倣品であるか否かの真偽、となる。実際に真の本物の製品と模倣品とを互いに上述した参照用情報との間で3段階以上の連関度、又は連関性を取得しておくことで、同様の方法による出力解としての模倣品であるか否かの真偽、を探索することが可能となる。
【符号の説明】
【0140】
1 品質推定システム
2 推定装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 推定部
28 記憶部
61 ノード