(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022143641
(43)【公開日】2022-10-03
(54)【発明の名称】レドックスフロー電池システム及びレドックスフロー電池システムの運転方法
(51)【国際特許分類】
H01M 8/18 20060101AFI20220926BHJP
H01M 8/04537 20160101ALI20220926BHJP
H01M 8/04313 20160101ALI20220926BHJP
H01M 8/04858 20160101ALI20220926BHJP
【FI】
H01M8/18
H01M8/04537
H01M8/04313
H01M8/04858
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021044267
(22)【出願日】2021-03-18
(71)【出願人】
【識別番号】512160210
【氏名又は名称】LEシステム株式会社
(71)【出願人】
【識別番号】000195971
【氏名又は名称】西松建設株式会社
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100183955
【弁理士】
【氏名又は名称】齋藤 悟郎
(74)【代理人】
【識別番号】100169753
【弁理士】
【氏名又は名称】竹内 幸子
(74)【代理人】
【識別番号】100180334
【弁理士】
【氏名又は名称】山本 洋美
(74)【代理人】
【識別番号】100177149
【弁理士】
【氏名又は名称】佐藤 浩義
(72)【発明者】
【氏名】伊坂 久
(72)【発明者】
【氏名】杉田 武
(72)【発明者】
【氏名】鶴田 大毅
(72)【発明者】
【氏名】永山 智之
【テーマコード(参考)】
5H126
5H127
【Fターム(参考)】
5H126BB10
5H126RR01
5H127AA10
5H127AB27
5H127AC01
5H127BA01
5H127BA21
5H127BA28
5H127BA57
5H127BB03
5H127BB06
5H127BB13
5H127BB37
5H127DB54
5H127DC42
(57)【要約】
【課題】安定した運転を実現できるレドックスフロー電池システム及びレドックスフロー電池システムの運転方法を提供する。
【解決手段】レドックスフロー電池システム10は、電池セル100と循環部300と開放電圧測定部500と制御部600とを備える。電池セル100は、正極105aを配置される正極室110aと、負極105cを配置される負極室110cと、正極室110aと負極室110cを隔てる隔膜120とを有する。循環部300は、正極室110aに正極電解液PLを循環させ、負極室110cに負極電解液NLを循環させる。開放電圧測定部500は電池セル100の開放電圧を測定する。制御部600は、正極電解液PLと負極電解液NLの充電深度に応じて、開放電圧測定部500により測定された開放電圧の移動平均値を求め、求められた開放電圧の移動平均値に基づいて正極電解液PLと負極電解液NLの充放電を制御する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
正極を配置される正極室と、負極を配置される負極室と、前記正極室と前記負極室を隔てる隔膜とを有する電池セルと、
前記正極室に正極電解液を循環させ、前記負極室に負極電解液を循環させる循環部と、
前記電池セルの開放電圧を測定する開放電圧測定部と、
前記正極電解液と前記負極電解液の充電深度に応じて、前記開放電圧測定部により測定された前記開放電圧の移動平均値を求め、求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する制御部と、を備える、
レドックスフロー電池システム。
【請求項2】
前記制御部は、所定の第1期間における前記開放電圧の移動平均値と、前記所定の第1期間よりも短い所定の第2期間における前記開放電圧の移動平均値とを求め、
前記正極電解液と前記負極電解液の充電深度が所定の範囲内である場合、前記制御部は、前記所定の第1期間における前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御し、
前記正極電解液と前記負極電解液の充電深度が前記所定の範囲よりも小さい場合と前記正極電解液と前記負極電解液の充電深度が前記所定の範囲よりもよりも大きい場合、前記制御部は、前記所定の第2期間における前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1に記載のレドックスフロー電池システム。
【請求項3】
前記制御部は、前記所定の第1期間よりも長い所定の第3期間における前記開放電圧の移動平均値を求め、前記所定の第3期間における前記開放電圧の移動平均値と、前記所定の第1期間における前記開放電圧の移動平均値との差に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項2に記載のレドックスフロー電池システム。
【請求項4】
前記制御部は、所定の第1期間における前記開放電圧の移動平均値と、前記所定の第1期間よりも長い所定の第3期間における前記開放電圧の移動平均値とを求め、前記所定の第3期間における前記開放電圧の移動平均値と、前記所定の第1期間における前記開放電圧の移動平均値との差に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1に記載のレドックスフロー電池システム。
【請求項5】
前記制御部は、前記正極電解液と前記負極電解液の流量を制御することにより、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1から4のいずれか1項に記載のレドックスフロー電池システム。
【請求項6】
前記制御部は、前記電池セルに接続する再生可能エネルギー発電所の発電量を取得して、前記発電量の移動平均値を求め、求められた前記発電量の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1から5のいずれか1項に記載のレドックスフロー電池システム。
【請求項7】
電池セルの開放電圧を測定する測定工程と、
測定された前記開放電圧から、前記電池セルの正極室に供給される正極電解液と前記電池セルの負極室に供給される負極電解液の充電深度に応じて、前記開放電圧の移動平均値を求める算出工程と、
求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、制御工程と、を含む、
レドックスフロー電池システムの運転方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、レドックスフロー電池システム及びレドックスフロー電池システムの運転方法に関する。
【背景技術】
【0002】
大容量の蓄電池として、レドックスフロー電池が知られている。レドックスフロー電池は、正極と負極との間にイオン交換膜を設けた電池セルに、正極電解液と負極電解液とを循環させて充放電を行う。酸化還元反応により価数が変化する金属を含有する溶液が、正極電解液と負極電解液として使用され、活物質としてバナジウムを含有する電解液が広く使用されている。
【0003】
レドックスフロー電池の運転では、安定した運転を実現するために、電解液の充電深度(充電状態:SOC(State of Charge)ともいう)を把握して、充放電を制御している。例えば、特許文献1では、電解液の充電率測定に用いる補助セルから得られる開路電圧に基づいて、電池の充電の停止及び放電の停止の少なくとも一方を行っている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1では、補助セルの開路電圧の測定値(すなわち瞬時開路電圧)から電解液の充電深度を把握している。補助セルの開路電圧の測定では、補助セルにおける電解液の通過ルート、電解液中の活物質の価数のバラツキ、電解液中に発生する気泡等により、測定値にバラツキが生じ、また、異常な値が測定されることもある。したがって、特許文献1の運転方法では、レドックスフロー電池を十分に安定した状態で運転できない虞がある。
【0006】
本開示は、上記の事情に鑑みてなされたものであり、安定した運転を実現できる、レドックスフロー電池システム及びレドックスフロー電池システムの運転方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本開示の第1の観点に係るレドックスフロー電池システムは、
正極を配置される正極室と、負極を配置される負極室と、前記正極室と前記負極室を隔てる隔膜とを有する電池セルと、
前記正極室に正極電解液を循環させ、前記負極室に負極電解液を循環させる循環部と、
前記電池セルの開放電圧を測定する開放電圧測定部と、
前記正極電解液と前記負極電解液の充電深度に応じて、前記開放電圧測定部により測定された前記開放電圧の移動平均値を求め、求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する制御部と、を備える。
【0008】
本開示の第2の観点に係るレドックスフロー電池システムの運転方法は、
電池セルの開放電圧を測定する測定工程と、
測定された前記開放電圧から、前記電池セルの正極室に供給される正極電解液と前記電池セルの負極室に供給される負極電解液の充電深度に応じて、前記開放電圧の移動平均値を求める算出工程と、
求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、制御工程と、を含む。
【発明の効果】
【0009】
本開示によれば、正極電解液と負極電解液の充電深度に応じて求められた、開放電圧の移動平均値に基づいて、正極電解液と負極電解液の充放電を制御するので、安定した運転を実現できる。
【図面の簡単な説明】
【0010】
【
図1】実施形態1に係るレドックスフロー電池システムの模式図である。
【
図2】実施形態1に係る電解液の充電深度と開放電圧との関係を示す図である。
【
図3】実施形態1に係る制御部を示すブロック図である。
【
図4】実施形態1に係る開放電圧の測定値と開放電圧の移動平均値とを示す図である。
【
図5】実施形態1に係る制御部のハードウェアの構成を示す図である。
【
図6】実施形態1に係るレドックスフロー電池システムの運転方法を示すフローチャートである。
【
図7】実施形態2に係る、ソーラ発電量とレドックスフロー電池システムからの充放電電力と充放電制御後のソーラ発電出力との関係の一例を示す図である。
【発明を実施するための形態】
【0011】
以下、実施形態に係るレドックスフロー電池システムについて、図面を参照して説明する。
【0012】
<実施形態1>
図1~
図6を参照して、本実施形態に係るレドックスフロー電池システム10を説明する。
【0013】
レドックスフロー電池システム10は、
図1に示すように、電池セル100と、電池セル100に正極電解液PLと負極電解液NLを循環させる循環部300と、を備える。レドックスフロー電池システム10は、電池セル100の開放電圧(OCV:Open Circuit Voltage)を測定する開放電圧測定部500と、正極電解液PLと負極電解液NLの充放電を制御する制御部600と、を更に備える。本実施形態では、正極電解液PLと負極電解液NLの活物質として、バナジウムイオンを用いたレドックスフロー電池を例として説明する。また、正極電解液PLと負極電解液NLとを総称して、電解液とも記載する。
【0014】
レドックスフロー電池システム10は、制御部600の電力変換器610を介して、発電所と負荷との間に接続される。発電所は、例えば、太陽光発電所、風力発電所等の再生可能エネルギー発電所である。負荷は、電力系統、電力需要家である。レドックスフロー電池システム10は、発電所から供給された電力を充電する。また、レドックスフロー電池システム10は、充電された電力を負荷に供給する。
【0015】
まず、レドックスフロー電池システム10の電池セル100の具体的構成を説明する。電池セル100は、正極105aと、正極室110aと、負極105cと、負極室110cと、隔膜120とを有する。
【0016】
電池セル100の正極105aには、例えば、カーボン繊維電極が使用される。正極105aは、電池セル100の正極室110aに配置される。電池セル100の正極室110aは、正極105aを配置され、隔膜120により負極室110cと隔てられる。正極電解液PLが正極室110aを循環する。充電時には、正極電解液PL中の4価バナジウムイオンが5価バナジウムイオンに酸化される。放電時には、正極電解液PL中の5価バナジウムイオンが4価バナジウムイオンに還元される。
【0017】
電池セル100の負極105cには、例えば、カーボン繊維電極が使用される。負極105cは、電池セル100の負極室110cに配置される。電池セル100の負極室110cは、負極105cを配置され、隔膜120により正極室110aと隔てられる。負極電解液NLが負極室110cを循環する。充電時には、負極電解液NL中の3価バナジウムイオンが2価バナジウムイオンに還元される。放電時には、負極電解液NL中の2価バナジウムイオンが3価バナジウムイオンに酸化される。
【0018】
電池セル100の隔膜120はイオン交換膜である。隔膜120は、正極室110aと負極室110cを隔てて、所定のイオンを透過させる。
【0019】
電池セル100は、複数の電池セル100が積層されたセルスタックの形態で用いられる。セルスタックは、例えば、双極板を設けられたセルフレームと正極105aと隔膜120と負極105cとを積層して構成される。正極105aが双極板の一方の面側に配置され、負極105cが双極板の他方の面側に配置されることにより、隣接するセルフレームの間に電池セル100が形成される。正極電解液PLと負極電解液NLは、セルフレームの枠体、正極105aを支持する枠体、負極105cを支持する枠体等に形成されたマニホールドを介して、循環する。なお、電池セル100の構成は、適宜、公知の構成を利用できる。
【0020】
レドックスフロー電池システム10の循環部300は、
図1に示すように、正極循環部300aと負極循環部300cとを有する。循環部300の正極循環部300aは、正極電解液PLを、電池セル100の正極室110aに循環させる。また、正極循環部300aは、正極電解液PLを、後述する開放電圧測定部500のモニターセル510に循環させる。循環部300の負極循環部300cは、負極電解液NLを、電池セル100の負極室110cに循環させる。また、負極循環部300cは、負極電解液NLをモニターセル510に循環させる。正極電解液PLと負極電解液NLの流量は、制御部600により制御される。
【0021】
循環部300の正極循環部300aは、正極電解液貯留槽310aと、正極ポンプ320aと、正極供給管322aと、供給分岐管324aと、第1正極回収管326aと、第2正極回収管328aとを有する。正極循環部300aの正極電解液貯留槽310aは、正極電解液PLを貯留する。正極電解液貯留槽310aは、正極ポンプ320aと第1正極回収管326aと第2正極回収管328aに接続している。
【0022】
正極循環部300aの正極ポンプ320aは、正極電解液PLを循環させるポンプである。正極ポンプ320aは、正極電解液貯留槽310aと正極供給管322aに接続している。正極ポンプ320aは、制御部600により制御されて、電池セル100の正極室110aとモニターセル510の正極室を循環する正極電解液PLの流量を制御する。
【0023】
正極循環部300aの正極供給管322aは、正極ポンプ320aと電池セル100の正極室110aに接続し、正極室110aに正極電解液PLを供給する。正極循環部300aの供給分岐管324aは、正極供給管322aから分岐して、モニターセル510の正極室に正極電解液PLを供給する。
【0024】
正極循環部300aの第1正極回収管326aは、電池セル100の正極室110aと正極電解液貯留槽310aに接続する。第1正極回収管326aは、正極室110aに供給された正極電解液PLを、正極室110aから正極電解液貯留槽310aに戻す。
【0025】
正極循環部300aの第2正極回収管328aは、モニターセル510の正極室と正極電解液貯留槽310aに接続する。第2正極回収管328aは、モニターセル510の正極室に供給された正極電解液PLを、モニターセル510の正極室から正極電解液貯留槽310aに戻す。
【0026】
循環部300の負極循環部300cは、負極電解液貯留槽310cと、負極ポンプ320cと、負極供給管322cと、供給分岐管324cと、第1負極回収管326cと、第2負極回収管328cとを有する。負極循環部300cの負極電解液貯留槽310cは、負極電解液NLを貯留する。負極電解液貯留槽310cは、負極ポンプ320cと第1負極回収管326cと第2負極回収管328cに接続している。
【0027】
負極循環部300cの負極ポンプ320cは、負極電解液NLを循環させるポンプである。負極ポンプ320cは、制御部600により制御されて、電池セル100の負極室110cとモニターセル510の負極室を循環する正極電解液PLの流量を制御する。
【0028】
負極循環部300cの負極供給管322cは、負極ポンプ320cに接続して、電池セル100の負極室110cに負極電解液NLを供給する。負極循環部300cの供給分岐管324cは、負極供給管322cから分岐して、モニターセル510の負極室に負極電解液NLを供給する。
【0029】
負極循環部300cの第1負極回収管326cは、負極室110cに供給された負極電解液NLを、負極室110cから負極電解液貯留槽310cに戻す。負極循環部300cの第2負極回収管328cは、モニターセル510の負極室に供給された負極電解液NLを、モニターセル510の負極室から負極電解液貯留槽310cに戻す。
【0030】
レドックスフロー電池システム10の開放電圧測定部500は、電解液の蓄電状態を示す開放電圧を測定する。開放電圧測定部500は、
図1に示すように、モニターセル510と測定部520とを有する。
【0031】
モニターセル510は、電池セル100と同様の構成を有し、充放電に寄与しない単一のレドックスフロー電池セルである。モニターセル510の正極室には、電池セル100の正極室110aと同様に、正極電解液貯留槽310aに貯留されている正極電解液PLが供給される。また、モニターセル510の負極室には、電池セル100の負極室110cと同様に、負極電解液貯留槽310cに貯留されている負極電解液NLが供給される。
【0032】
測定部520は、モニターセル510における正極電解液PLと負極電解液NLの電位差(すなわち開放電圧)を測定する電圧計である。モニターセル510の正極室と負極室のそれぞれに、電池セル100に流れる正極室110aと負極室110cのそれぞれと同様に、正極電解液PLと負極電解液NLのそれぞれが供給されるので、モニターセル510の開放電圧を測定することにより、電池セル100の開放電圧を測定できる。本実施形態では、測定部520は正極電解液PLと負極電解液NLの供給側で開放電圧を測定している。また、測定部520は1秒間隔(測定間隔Δt0=1sec)で開放電圧を測定している。
【0033】
電解液(正極電解液PLと負極電解液NL)の充電深度とモニターセル510の開放電圧との間には、相関関係があり、モニターセル510の開放電圧から電解液の充電深度を得ることができる。例えば、電解液の充電深度とモニターセル510の開放電圧との間には、
図2に示すような関係がある。また、電解液の充電深度(SOC)は、簡易的に、モニターセル510の開放電圧(OCV)により下記の式(1)で表される。ここで、Fはファラデー定数を、Rは気体定数を、Tは絶対温度を、OCVeは酸化物と還元物との濃度が等しい状態での開放電圧を表す。
【0034】
【0035】
レドックスフロー電池システム10の制御部600は、正極電解液PLと負極電解液NLの充電深度に応じて、開放電圧の移動平均値を求める。制御部600は、求められた開放電圧の移動平均値に基づいて、正極電解液PLと負極電解液NLの充放電を制御する。制御部600は、
図3に示すように、取得部620と、記憶部630と、設定部640と、算出部650と、判定部660と、流量制御部670と、充放電制御部680とを有する。
【0036】
制御部600の取得部620は、開放電圧測定部500の測定部520が測定した開放電圧の測定値を取得する。取得部620は、取得した開放電圧の測定値を表す信号を記憶部630と算出部650に送信する。
制御部600の記憶部630は、プログラム、データ、開放電圧の測定値等を記憶する。
【0037】
制御部600の設定部640は、算出部650が開放電圧の移動平均値を求める条件を設定する。具体的には、設定部640は、開放電圧の移動平均値を求める間隔Δt1と期間S(S=n×Δt1:nは2以上の自然数)とを設定する。
【0038】
本実施形態では、開放電圧の移動平均値を求める間隔Δt1を1秒とする(Δt1=1sec)。また、電解液の充電深度が所定の範囲内である場合、設定部640は、開放電圧の移動平均値を求める期間Sを所定の第1期間S1=60秒に設定する(S1=60×Δt1、n=60)。電解液の充電深度の所定の範囲は、開放電圧と電解液の充電深度との相関関係が比例関係と見なせる範囲であることが好ましい。本実施形態では、電解液の充電深度の所定の範囲を、電解液の充電深度が10%以上90%以下とする。
【0039】
さらに、電解液の充電深度が所定の範囲よりも小さい場合(電解液の充電深度が10%未満である場合)と電解液の充電深度が所定の範囲よりも大きい場合(電解液の充電深度が90%よりも大きい場合)、設定部640は、開放電圧の移動平均値を求める期間Sを、所定の第1期間S1よりも短い所定の第2期間S2=5秒に設定する(S2=5×Δt1、n=5)。本実施形態では、開放電圧と電解液の充電深度の相関関係において電解液の充電深度が急激に変化する、電解液の充電深度が所定の範囲よりも小さい場合と所定の範囲よりも大きい場合に、設定部640が開放電圧の移動平均値を求める期間Sを短くするので、制御部600は、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転が実現できる。
設定部640は、設定した条件を表す信号を算出部650に送信する。
【0040】
制御部600の算出部650は、設定部640により設定された条件に基づいて、取得部620により取得された開放電圧の測定値から、時刻tにおける開放電圧の移動平均値OCV(t)を求める。具体的には、時刻tにおける開放電圧の移動平均値OCV(t)は下記の式(2)により、時刻t+Δt1における開放電圧の移動平均値OCV(t+Δt1)は下記の式(3)により求められる。ここで、OCVn+1~OCV1は開放電圧の測定値である。
【0041】
【0042】
図4は、開放電圧の測定値と第1期間S1での開放電圧の移動平均値OCV(t)とを示す。
図4に示すように、開放電圧の移動平均値OCV(t)を求めることにより、開放電圧の測定値のバラツキを補正できる。
【0043】
さらに、算出部650は、開放電圧の移動平均値OCV(t)に基づいて、時刻tにおける電解液の充電深度SOC(t)を求める。時刻tにおける電解液の充電深度SOC(t)は、例えば、式(1)から求められる。また、時刻tにおける電解液の充電深度SOC(t)は、
図2に示すような、電解液の充電深度と開放電圧との相関関係から求められてもよい。電解液の充電深度と開放電圧との相関関係は、実験により予め得られることができる。本実施形態では、電解液の充電深度SOC(t)がバラツキのない開放電圧の移動平均値OCV(t)から求められるので、電解液の充電深度を正確に把握できる。
算出部650は、求められた電解液の充電深度SOC(t)を表す信号を、設定部640と判定部660とに送信する。
【0044】
制御部600の判定部660は、時刻tにおける電解液の充電深度SOC(t)から、電解液の蓄電状態を判定する。例えば、電解液の充電深度SOC(t)が所定の範囲内(10%以上90%以下)である場合、判定部660は電解液の蓄電状態を通常状態と判定する。また、電解液の充電深度SOC(t)が所定の範囲よりも小さい場合(10%未満)、判定部660は電解液の蓄電状態を高放電状態と判定する。電解液の充電深度SOC(t)が例えば5%以下である場合、判定部660は電解液の蓄電状態を放電末期状態と判定する。一方、電解液の充電深度SOC(t)が所定の範囲よりも大きい場合(90%より大きい)、判定部660は電解液の蓄電状態を高充電状態と判定する。さらに、電解液の充電深度SOC(t)が例えば95%以上である場合、判定部660は電解液の蓄電状態を充電末期状態と判定する。
判定部660は、電解液の蓄電状態を表す信号を、流量制御部670と充放電制御部680に送信する。
【0045】
制御部600の流量制御部670は、電解液の蓄電状態に基づいて、正極循環部300aの正極ポンプ320aと負極循環部300cの負極ポンプ320cの流量を制御する。電解液の蓄電状態が通常状態と判定された場合、流量制御部670は、正極ポンプ320aと負極ポンプ320cの流量を、所定の第1流量に制御する。また、電解液の蓄電状態が高放電状態と高充電状態のいずれかに判定された場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第1流量よりも大きい第2流量に制御する。さらに、電解液の蓄電状態が放電末期状態と充電末期状態のいずれかに判定された場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第2流量よりも更に大きい第3流量に制御する。これらの正極ポンプ320aと負極ポンプ320cの流量の制御により、電解液への過充電と電解液からの過放電とを抑制できる。
【0046】
制御部600の充放電制御部680は、レドックスフロー電池システム10(すなわち、レドックスフロー電池システム10の電解液)と、発電所と負荷との電力の充放電を制御する。例えば、電解液の蓄電状態が放電末期状態と判定された場合、充放電制御部680は、レドックスフロー電池システム10と負荷との接続を切断する。また、電解液の蓄電状態が充電末期状態と判定された場合、充放電制御部680は、レドックスフロー電池システム10と発電所との接続を切断する。これらの制御により、電解液への過充電と電解液からの過放電とを抑制できる。
【0047】
図5は、制御部600のハードウェアの構成を示す。制御部600は、CPU(Central Processing Unit)602と、ROM(Read Only Memory)604と、RAM(Random Access Memory)606と、入出力インターフェース608と、電力変換器610とから構成される。CPU602はROM604に記憶されているプログラムを実行する。ROM604は、プログラム、データ、信号等を記憶している。RAM606はデータを記憶する。入出力インターフェース608は各部の間の信号を入出力する。電力変換器610は、交流直流変換器、レドックスフロー電池システム10と負荷とを接続するスイッチ、レドックスフロー電池システム10と発電所とを接続するスイッチ等を含む。制御部600の機能は、CPU602のプログラムの実行と電力変換器610の機能により、実現される。
【0048】
次に、レドックスフロー電池システム10の運転方法を説明する。
図6は、レドックスフロー電池システム10の運転方法を示すフローチャートである。レドックスフロー電池システム10の運転方法は、電池セル100の開放電圧を測定する測定工程(ステップS100)と、測定された開放電圧から開放電圧の移動平均値を求める算出工程(ステップS200)と、求められた開放電圧の移動平均値に基づいて電解液の充放電を制御する制御工程(Sステップ300)と、を含む。ここでは、初期状態として、電解液の蓄電状態が通常状態(すなわち、充電深度SOCが所定の範囲内にある)であり、レドックスフロー電池システム10が発電所と負荷に接続されている場合について説明する。
【0049】
ステップS100では、開放電圧測定部500の測定部520が開放電圧測定部500のモニターセル510の開放電圧を測定することにより、電解液の蓄電状態を示す電池セル100の開放電圧を測定する。本実施形態では、開放電圧の測定は、1秒間隔(測定間隔Δt1=1sec)で実施されている。
【0050】
ステップS200は、開放電圧の測定値を取得する工程(ステップS210)と、開放電圧の測定値から時刻tにおける開放電圧の移動平均値OCV(t)を求める工程(ステップS220)と、求められた開放電圧の移動平均値OCV(t)から時刻tにおける電解液の充電深度SOC(t)を求める工程(ステップS230)と、を含む。
【0051】
ステップS210では、制御部600の取得部620が測定部520から開放電圧の測定値を取得する。そして、取得部620は、開放電圧の測定値を表す信号を、制御部600の記憶部630と算出部650に送信する。
【0052】
ステップS220では、制御部600の算出部650が、制御部600の設定部640により設定された条件に基づいて、開放電圧の測定値から、時刻tにおける開放電圧の移動平均値OCV(t)を求める。本実施形態では、初期状態として、電解液の蓄電状態が通常状態(充電深度SOCが所定の範囲内)であるので、設定部640は、開放電圧の移動平均値を求める期間Sを第1期間S1に設定している(S1=60×Δt1、Δt1=1sec)。したがって、算出部650は、第1期間S1の条件で、時刻tにおける開放電圧の移動平均値OCV(t)を求める。開放電圧の移動平均値OCV(t)を求めることにより、開放電圧の測定値のバラツキを補正できる。
【0053】
ステップS230では、算出部650が、開放電圧の移動平均値OCV(t)に基づいて、時刻tにおける電解液の充電深度SOC(t)を求める。例えば、電解液の充電深度SOC(t)は、電解液の充電深度と開放電圧との相関関係から求められる。本実施形態では、電解液の充電深度SOC(t)がバラツキのない開放電圧の移動平均値OCV(t)から求められるので、電解液の充電深度を正確に把握できる。
算出部650は、求められた電解液の充電深度SOC(t)を表す信号を、設定部640と判定部660とに送信する。
【0054】
なお、設定部640は、電解液の充電深度SOC(t)を表す信号に基づいて、開放電圧の移動平均値を求める期間Sを設定する。すなわち、受信した電解液の充電深度SOC(t)が所定の範囲内である場合、設定部640は、次に開放電圧の移動平均値OCV(t)を求める条件として、開放電圧の移動平均値OCV(t)を求める期間Sを第1期間S1に設定する。また、電解液の充電深度SOC(t)が所定の範囲よりも小さい場合と受信した電解液の充電深度SOC(t)が所定の範囲よりも大きい場合、例えば、設定部640は開放電圧の移動平均値OCV(t)を求める期間Sを第2期間S2(S2=5×Δt1、Δt1=1sec)に設定する。電解液の充電深度が所定の範囲よりも小さい場合と所定の範囲よりも大きい場合に、設定部640が開放電圧の移動平均値を求める期間Sを短くするので、制御部600は、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転が実現できる。
【0055】
ステップS300は、電解液の蓄電状態を判定する工程(ステップS310)と、電解液の流量と、発電所と負荷との充放電とを制御する工程(ステップS320)とを含む。
【0056】
ステップS310では、制御部600の判定部660が、開放電圧の移動平均値OCV(t)に基づいて求められた電解液の充電深度SOC(t)から、電解液の蓄電状態を判定する。本実施形態では、判定部660は、上述のように、電解液の蓄電状態を、通常状態(SOC(t):10%以上90%以下)と、高放電状態(SOC(t):10%未満)と、放電末期状態(SOC(t):5%以下)と、高充電状態(SOC(t):90%よりも大きい)と、充電末期状態(SOC(t):95%以上)のいずれかに判定する。判定部660は、電解液の蓄電状態を表す信号を、制御部600の流量制御部670と充放電制御部680に送信する。
【0057】
ステップS320では、制御部600の流量制御部670が、電解液の蓄電状態に基づいて、正極ポンプ320aと負極ポンプ320cの流量を制御する。また、制御部600の充放電制御部680が、電解液の蓄電状態に基づいて、レドックスフロー電池システム10と、発電所と負荷との充放電を制御する。
【0058】
具体的には、電解液の蓄電状態が通常状態である場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を所定の第1流量に制御し、接続制御部680は、レドックスフロー電池システム10と、発電所と負荷との運転状態を維持する。電解液の蓄電状態が高放電状態と高充電状態のいずれかである場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第1流量よりも大きい第2流量に制御し、充放電制御部680は、レドックスフロー電池システム10と、発電所と負荷との運転状態を維持する。また、電解液の蓄電状態が放電末期状態である場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第2流量よりも更に大きい第3流量に制御し、充放電制御部680はレドックスフロー電池システム10と負荷との接続を切断する。さらに、電解液の蓄電状態が充電末期状態である場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第2流量よりも大きい第3流量に制御し、充放電制御部680はレドックスフロー電池システム10と発電所との接続を切断する。これらの制御により、電解液への過充電と電解液からの過放電とを抑制できる。
【0059】
ステップS320の後、制御部600に運転停止指示が入力されない場合(ステップS322:NO)、レドックスフロー電池システム10の運転はステップS100に戻る。制御部600に運転停止指示が入力された場合(ステップS322:YES)、レドックスフロー電池システム10の運転は終了する。
【0060】
以上のように、開放電圧の移動平均値を求めることにより、開放電圧の測定値のバラツキを補正でき、電解液の充電深度を正確に把握できる。制御部600が電解液の充電深度に応じて開放電圧の移動平均値を求め、求められた開放電圧の移動平均値に基づいて電解液の充放電を制御するので、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転が実現できる。
【0061】
さらに、電解液の充電深度を正確に把握できるので、再生可能エネルギー発電所における発電出力の変動が平準化できる。電解液の充電深度を正確に把握できるので、電解液容量を増やす場合に最適な容量を容易に見積もることができ、また、災害時には負荷の優先度に応じた電力の配分を容易に制御できる。
【0062】
<実施形態2>
実施形態1では、開放電圧の移動平均値に基づいて電解液の充放電を制御しているが、開放電圧の移動平均値と再生可能エネルギー発電所の発電量の移動平均値に基づいて、電解液の充放電を制御してもよい。本実施形態のレドックスフロー電池システム10の電池セル100と循環部300と開放電圧測定部500の構成は、実施形態1と同様であるので、ここでは、レドックスフロー電池システム10の制御部600について、説明する。
本実施形態の制御部600は、実施形態1の制御部600と同様に、取得部620と、記憶部630と、設定部640と、算出部650と、判定部660と、流量制御部670と、充放電制御部680とを有する。
【0063】
本実施形態の取得部620は、実施形態1の取得部620と同様に、開放電圧測定部500の測定部520が測定した開放電圧の測定値を取得する。また、本実施形態の取得部620は、再生可能エネルギー発電所から発電量を取得する。本実施形態の取得部620は、取得した開放電圧の測定値を表す信号と取得した発電量を表す信号を、記憶部630と算出部650に送信する。
本実施形態の記憶部630は、実施形態1の記憶部630と同様に、プログラム、データ、開放電圧の測定値等を記憶する。
【0064】
本実施形態の設定部640は、算出部650が開放電圧の移動平均値と発電量の移動平均値を求める条件を設定する。本実施形態では、実施形態1と同様に、移動平均値を求める間隔Δt1を1秒とする(Δt1=1sec)。また、電解液の充電深度が所定の範囲内である場合、本実施形態の設定部640は、移動平均値を求める期間Sを所定の第1期間S1=60秒に設定する。電解液の充電深度が所定の範囲よりも小さい場合と電解液の充電深度が所定の範囲よりも大きい場合、本実施形態の設定部640は、移動平均値を求める期間Sを、所定の第1期間S1よりも短い所定の第2期間S2=5秒に設定する(S2=5×Δt1、n=5)。本実施形態の設定部640は、設定した条件を表す信号を算出部650に送信する。
【0065】
本実施形態の算出部650は、設定部640により設定された条件に基づいて、開放電圧の測定値から、時刻tにおける開放電圧の移動平均値OCV(t)と時刻tにおける電解液の充電深度SOC(t)を求める。開放電圧の移動平均値OCV(t)と電解液の充電深度SOC(t)は、実施形態1と同様に求められる。本実施形態の算出部650は、求められた電解液の充電深度SOC(t)を表す信号を、設定部640と判定部660とに送信する。
【0066】
さらに、本実施形態の算出部650は、設定部640により設定された条件に基づいて、取得された発電量から時刻tにおける発電量の移動平均値REP(t)求め、取得された発電量と求められた発電量の移動平均値REP(t)との差Δpを求める。時刻tにおける発電量の移動平均値REP(t)は、開放電圧の移動平均値OCV(t)と同様に求められる。本実施形態の算出部650は、求められた差Δpを表す信号を充放電制御部680に送信する。
【0067】
本実施形態の判定部660は、実施形態1の判定部660と同様に、時刻tにおける電解液の充電深度SOC(t)に基づいて、電解液の蓄電状態を判定する。また、本実施形態の判定部660は、電解液の蓄電状態を表す信号を、流量制御部670と充放電制御部680に送信する。
【0068】
本実施形態の流量制御部670は、実施形態1の流量制御部670と同様に、電解液の蓄電状態に基づいて、正極循環部300aの正極ポンプ320aと負極循環部300cの負極ポンプ320cの流量を制御する。正極ポンプ320aと負極ポンプ320cの流量の制御は、実施形態1の制御と同様である。
【0069】
本実施形態の充放電制御部680は、実施形態1の充放電制御部680と同様に、レドックスフロー電池システム10と、発電所と負荷との電力の充放電を制御する。電力の充放電の制御は、実施形態1の制御と同様である。
【0070】
さらに、本実施形態の充放電制御部680は、求められた発電量の移動平均値REP(t)に基づいて、電解液の充放電を制御する。具体的には、発電量と発電量の移動平均値REP(t)との差Δpが正である場合(すなわち、発電量が発電量の移動平均値REP(t)よりも大きい場合)、本実施形態の充放電制御部680は発電所の発電量のうちの差Δp分を電解液へ充電する。一方、発電量と発電量の移動平均値REP(t)との差Δpが負である場合(すなわち、発電量が発電量の移動平均値REP(t)よりも小さい場合)、本実施形態の充放電制御部680は差Δp分を電解液から放電する。また、発電量と発電量の移動平均値REP(t)との差Δpがゼロである場合、本実施形態の充放電制御部680は充電も放電もしない。これにより、自然に左右される再生可能エネルギー発電の瞬時出力変動を吸収できる。
図7は、ソーラ発電量と、レドックスフロー電池システム10からの充放電電力と、充放電制御後のソーラ発電出力との関係(ソーラ発電量の変動吸収結果)の一例を示す。
図7では、ソーラ発電量の移動平均値REP(t)を仮に3kWに設定している。
図7に示すように、発電量の移動平均値REP(t)に基づいて、レドックスフロー電池システム10(レドックスフロー電池システム10の電解液)の充放電を制御することにより、再生可能エネルギー発電所の発電変動をリアルタイムで平準化できる。
【0071】
本実施形態では、充放電制御部680が、発電量の移動平均値に基づいて電解液の充放電を制御すると共に、流量制御部670が開放電圧の移動平均値に基づいて正極ポンプ320aと負極ポンプ320cの流量を制御する。再生可能エネルギー発電所の発電量の移動平均値は、再生可能エネルギー発電所における短期又は長期の発電量の傾向を表すので、レドックスフロー電池システム10は、再生可能エネルギー発電所の発電変動をリアルタイムで平準化できる。さらに、実施形態1と同様に、電解液への過充電と電解液からの過放電とを抑制すると共に、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転を実現できる。
【0072】
<変形例>
以上、実施形態を説明したが、本開示は、本開示の要旨を逸脱しない範囲で種々の変更が可能である。
【0073】
例えば、正極電解液PLと負極電解液NLの活物質はバナジウムイオンに限られない。正極電解液PLと負極電解液NLの活物質は、それぞれ、鉄イオンとクロムイオンであってもよい。
【0074】
実施形態1では、設定部640は、電解液の充電深度が所定の範囲内である場合、開放電圧の移動平均値を求める期間Sを所定の第1期間S1に設定し、電解液の充電深度が所定の範囲外である場合、開放電圧の移動平均値を求める期間Sを、所定の第1期間S1よりも短い所定の第2期間S2に設定している。設定部640は、開放電圧の移動平均値を求める期間Sを所定の第1期間S1よりも長い第3期間S3(例えば、S3=120×Δt1、n=120)に設定してもよい。
【0075】
例えば、設定部640は、電解液の充電深度が所定の範囲内である場合、開放電圧の移動平均値を求める期間Sを所定の第1期間S1と第3期間S3とに設定する。算出部650は、第1期間S1での開放電圧の移動平均値と第3期間S3での開放電圧の移動平均値とを求め、さらに、第1期間S1での電解液の充電深度と第3期間S3での電解液の充電深度とを求める。判定部660は、第1期間S1での電解液の充電深度と第3期間S3での電解液の充電深度との差が所定の範囲内である場合、電解液の蓄電状態は安定状態と判定する。電解液の蓄電状態が安定状態と判定された場合、流量制御部670は、正極ポンプ320aと負極ポンプ320cの流量を、所定の第1流量よりも小さい第3流量に制御する。これにより、レドックスフロー電池システム10を省電力で運転できる。
【0076】
電池セル100の開放電圧の測定間隔(Δt0)と開放電圧の移動平均値を求める間隔(Δt1)と開放電圧の移動平均値を求める期間S(S1~S3)は、任意である。
【0077】
実施形態1と実施形態2では、判定部640は、開放電圧の移動平均値OCV(t)に基づいて求められた電解液の充電深度SOC(t)から、電解液の蓄電状態を判定している。判定部640は、電解液の充電深度SOC(t)を介さず、開放電圧の移動平均値OCV(t)から電解液の蓄電状態を直接判定してもよい。電解液の充電深度と電池セル100の開放電圧との間には相関関係があるので、判定部640は、予め得た相関関係に基づいて、開放電圧の移動平均値OCV(t)から電解液の蓄電状態を判定してもよい。この場合、算出部650は電解液の充電深度SOC(t)を求めなくともよい。また、設定部640は、求められた開放電圧の移動平均値OCV(t)に基づいて、移動平均値を求める条件を設定する。
【0078】
実施形態2では、開放電圧の移動平均値OCV(t)と発電量の移動平均値REP(t)が求められる。開放電圧の移動平均値OCV(t)と発電量の移動平均値REP(t)を求める期間Sは等しいことが好ましい。
【0079】
制御部600は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、制御回路等の専用ハードウェアを備えてもよい。この場合、処理のそれぞれを、個別のハードウェアにより実行してもよい。また、処理のそれぞれをまとめて、単一のハードウェアにより実行してもよい。処理の一部を専用ハードウェアにより実行し、処理の他の一部をソフトウェア又はファームウェアにより実行してもよい。
【符号の説明】
【0080】
10 レドックスフロー電池システム、100 電池セル、105a 正極、105c 負極、110a 正極室、110c 負極室、120 隔膜、300 循環部、300a 正極循環部、300c 負極循環部、310a 正極電解液貯留槽、320a 正極ポンプ、322a 正極供給管、324a 供給分岐管、326a 第1正極回収管、328a 第2正極回収管、310c 負極電解液貯留槽、320c 負極ポンプ、322c 負極供給管、324c 供給分岐管、326c 第1負極回収管、328c 第2負極回収管、500 開放電圧測定部、510 モニターセル、520 測定部、600 制御部、602 CPU、604 ROM、606 RAM、608 入出力インターフェース、610 電力変換器、620 取得部、630 記憶部、640 設定部、650 算出部、660 判定部、670 流量制御部、680 充放電制御部、PL 正極電解液、NL 負極電解液