IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 昭和電工株式会社の特許一覧

<>
  • 特開-磁気センサ装置 図1
  • 特開-磁気センサ装置 図2
  • 特開-磁気センサ装置 図3
  • 特開-磁気センサ装置 図4
  • 特開-磁気センサ装置 図5
  • 特開-磁気センサ装置 図6
  • 特開-磁気センサ装置 図7
  • 特開-磁気センサ装置 図8
  • 特開-磁気センサ装置 図9
  • 特開-磁気センサ装置 図10
  • 特開-磁気センサ装置 図11
  • 特開-磁気センサ装置 図12
  • 特開-磁気センサ装置 図13
  • 特開-磁気センサ装置 図14
  • 特開-磁気センサ装置 図15
  • 特開-磁気センサ装置 図16
  • 特開-磁気センサ装置 図17
  • 特開-磁気センサ装置 図18
  • 特開-磁気センサ装置 図19
  • 特開-磁気センサ装置 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022148862
(43)【公開日】2022-10-06
(54)【発明の名称】磁気センサ装置
(51)【国際特許分類】
   G01R 33/02 20060101AFI20220929BHJP
   H01L 43/00 20060101ALI20220929BHJP
   H01L 43/02 20060101ALI20220929BHJP
【FI】
G01R33/02 D
H01L43/00
H01L43/02 Z
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021050698
(22)【出願日】2021-03-24
(71)【出願人】
【識別番号】000002004
【氏名又は名称】昭和電工株式会社
(74)【代理人】
【識別番号】100104880
【弁理士】
【氏名又は名称】古部 次郎
(74)【代理人】
【識別番号】100149113
【弁理士】
【氏名又は名称】加藤 謹矢
(72)【発明者】
【氏名】河邊 功
【テーマコード(参考)】
2G017
5F092
【Fターム(参考)】
2G017AD63
2G017AD65
2G017BA05
5F092AA01
5F092AB01
5F092AC01
5F092BD04
5F092BD19
5F092BD20
5F092BE06
5F092DA01
(57)【要約】
【課題】磁気インピーダンス効果によって磁界を感受する磁気センサを備えている磁気センサ装置において、感度を向上させる。
【解決手段】磁気センサ装置1は、磁気インピーダンス効果により磁界を感受する磁気センサ10と、磁気センサ10のインピーダンスの変化を検出する検出部300と、を備え、磁気センサ10近傍の配線が作る電流ループの面積が、検出部300近傍の配線が作る電流ループより小さい。
【選択図】図1
【特許請求の範囲】
【請求項1】
磁気インピーダンス効果により磁界を感受する磁気センサと、
前記磁気センサのインピーダンスの変化を検出する検出部と、を備え、
前記磁気センサ近傍の配線が作る電流ループの面積が、前記検出部近傍の配線が作る電流ループより小さい磁気センサ装置。
【請求項2】
前記磁気センサ近傍の配線が作る電流ループ及び前記検出部近傍の配線が作る電流ループにより生じるインダクタンスが、前記磁気センサのインダクタンスの50%以下であることを特徴とする請求項1に記載の磁気センサ装置。
【請求項3】
前記磁気センサは、
非磁性の基板と、
前記基板の表面に設けられ、磁気インピーダンス効果により磁界を感受する感受部を含む感受回路と、
前記感受回路の両端部にそれぞれが接続された第1の端子部と第2の端子部と、
一端部が前記第1の端子部に接続されて前記第2の端子部側に向けて折り返す、導電性の折返し部材と、を備える
ことを特徴とする請求項1又は2に記載の磁気センサ装置。
【請求項4】
前記折返し部材は、非磁性の金属で構成された配線であることを特徴とする請求項3に記載の磁気センサ装置。
【請求項5】
前記第2の端子部に隣接して設けられた第3の端子部を備え、
前記折返し部材の他端部は、前記第3の端子部に接続されていることを特徴とする請求項4に記載の磁気センサ装置。
【請求項6】
前記第2の端子部と前記第3の端子部との中心間の距離は、前記第1の端子部と当該第2の端子部との中心間の距離に比べて、小さいことを特徴とする請求項5に記載の磁気センサ装置。
【請求項7】
前記折返し部材は、前記基板の表面側又は裏面側に設けられていることを特徴とする請求項6に記載の磁気センサ装置。
【請求項8】
前記磁気センサは、
磁気インピーダンス効果により磁界を感受する感受部を含む第1の感受回路と、
磁気インピーダンス効果により磁界を感受する感受部を含む第2の感受回路とを、備え、
前記第1の感受回路と前記第2の感受回路とは、少なくとも一部の電流経路が平面視において重なり、それぞれの一端部が互いに電気的に接続されている
ことを特徴とする請求項1又は2に記載の磁気センサ装置。
【請求項9】
前記第1の感受回路と前記第2の感受回路とは、重なって対向する部分における電流の方向が逆であることを特徴とする請求項8に記載の磁気センサ装置。
【請求項10】
前記磁気センサは、
磁気インピーダンス効果により磁界を感受する感受部を含む感受回路と、
非磁性の導電体で構成された電流回路と、を備え、
前記感受回路と前記電流回路とは、少なくとも一部の電流経路が平面視において重なり、それぞれの一端部が互いに電気的に接続されている
ことを特徴とする請求項1又は2に記載の磁気センサ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気センサ装置に関する。
【背景技術】
【0002】
公報記載の従来技術として、非磁性体からなる基板と、該基板上に形成され、その長手方向両端に電極が設けられた薄膜磁気コアとからなる磁気インピーダンス素子において、前記薄膜磁気コアは少なくとも2個以上、並列配置されてなり、かつ、前記それぞれの薄膜磁気コアは互いに電気的に直列接続されていることを特徴とする磁気インピーダンス素子が存在する(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000-292506号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
磁気インピーダンス効果によって磁界を感受する磁気センサを備えている磁気センサ装置では、インピーダンスの変化が検出部で検出され、磁界の強度に変換される。しかし、磁気センサと検出部とを接続する配線もインピーダンスを有するため、配線の有するインピーダンスが大きいと、磁界によるインピーダンスの変化率が小さくなり、感度を低下させてしまう。
本発明は、磁気インピーダンス効果によって磁界を感受する磁気センサを備えている磁気センサ装置において、感度を向上させることを目的とする。
【課題を解決するための手段】
【0005】
本発明が適用される磁気センサ装置は、磁気インピーダンス効果により磁界を感受する磁気センサと、磁気センサのインピーダンスの変化を検出する検出部と、を備え、磁気センサ近傍の配線が作る電流ループの面積が、検出部近傍の配線が作る電流ループより小さい。
このような磁気センサ装置は、磁気センサ近傍の配線が作る電流ループ及び検出部近傍の配線が作る電流ループにより生じるインダクタンスが、磁気センサのインダクタンスの50%以下であることを特徴とすることができる。
【0006】
このような磁気センサ装置における磁気センサは、非磁性の基板と、基板の表面に設けられ、磁気インピーダンス効果により磁界を感受する感受部を含む感受回路と、感受回路の両端部にそれぞれが接続された第1の端子部と第2の端子部と、一端部が第1の端子部に接続されて第2の端子部側に向けて折り返す、導電性の折返し部材と、を備えることを特徴とすることができる。
そして、磁気センサにおける折返し部材は、非磁性の金属で構成された配線であることを特徴とすることができる。
さらに、磁気センサにおける第2の端子部に隣接して設けられた第3の端子部を備え、折返し部材の他端部は、第3の端子部に接続されていることを特徴とすることができる。
また、磁気センサにおける磁気センサにおける第2の端子部と第3の端子部との中心間の距離は、第1の端子部と第2の端子部との中心間の距離に比べて、小さいことを特徴とすることができる。
さらにまた、磁気センサにおける折返し部材は、基板の表面側又は裏面側に設けられていることを特徴とすることができる。
【0007】
このような磁気センサ装置における磁気センサは、磁気インピーダンス効果により磁界を感受する感受部を含む第1の感受回路と、磁気インピーダンス効果により磁界を感受する感受部を含む第2の感受回路とを、備え、第1の感受回路と第2の感受回路とは、少なくとも一部の電流経路が平面視において重なり、それぞれの一端部が互いに電気的に接続されていることを特徴とすることができる。
また、磁気センサにおける第1の感受回路と第2の感受回路とは、重なって対向する部分における電流の方向が逆であることを特徴とすることができる。
【0008】
このような磁気センサ装置における磁気センサは、磁気インピーダンス効果により磁界を感受する感受部を含む感受回路と、非磁性の導電体で構成された電流回路と、を備え、感受回路と電流回路とは、少なくとも一部の電流経路が平面視において重なり、それぞれの一端部が互いに電気的に接続されていることを特徴とすることができる。
【発明の効果】
【0009】
本発明によれば、磁気インピーダンス効果によって磁界を感受する磁気センサを備えている磁気センサ装置の感度が向上する。
【図面の簡単な説明】
【0010】
図1】第1の実施の形態が適用される磁気センサ装置を説明する図である。(a)は、第1の実施の形態が適用される磁気センサ装置、(b)は、比較のために示す、第1の実施の形態が適用されない磁気センサ装置である。
図2図1(b)に示した磁気センサにおいて、磁気センサ近傍の配線が作る電流ループの面積とインダクタンスとの関係を示す図である。
図3】第1の実施の形態が適用される磁気センサの一例を説明する図である。(a)は、平面図、(b)は、(a)のIIIB-IIIB線での断面図である。
図4】磁気センサの感受部の長手方向に印加された磁界と磁気センサ10のインピーダンスとの関係を説明する図である。
図5】第1の実施の形態が適用される磁気センサを立体的に説明する図である。(a)は、斜視図、(b)は、(a)の磁気センサをx方向側から見た側面図である。
図6】(a)~(d)は、第1の実施の形態が適用される磁気センサのバリエーションを示す図である。
図7】(a)~(c)は、第1の実施の形態が適用される磁気センサの他のバリエーションを示す図である。
図8】磁気センサにおける感度を説明する図である。(a)は、電流ループの面積と感度との関係、(b)は、磁気センサと配線との間隔と感度との関係である。
図9】磁気センサのバリエーションにおける感度を示す図である。(a)は、同一構造の2個の試料で測定された感度、図9(b)は、構造の異なる2個の試料で測定された感度である。
図10】第1の実施の形態が適用される他の磁気センサを説明する図である。(a)は、斜視図、(b)は、(a)の磁気センサをx方向から見た側面図である。
図11】第2の実施の形態が適用される磁気センサを説明する図である。(a)は、斜視図、(b)は、(a)の磁気センサをx方向から見た側面図である。
図12】(a)~(c)は、第2の実施の形態が適用される磁気センサのバリエーションを示す図である。
図13】第3の実施の形態が適用される磁気センサのバリエーションを示す図である。
図14】第4の実施の形態が適用される磁気センサ装置を説明する図である。
図15】感受回路の一例を説明する平面図である。
図16】磁気センサの構成を説明する図である。(a)は、磁気センサの斜視図、(b)は、2個の感受回路における電流と磁界とを説明する図である。
図17】磁気センサにおける2個の感受回路の重ね方を説明する図である。(a)は、2個の感受回路を内側で対向させた配置、(b)は、2個の感受回路を外側で対向させた配置、(c)は、2個の感受回路を積み重ねた配置、(d)は、2個の感受回路を一つの基板の表裏に設けた配置である。
図18】2個の感受回路を重ねた磁気センサを用いた磁気センサ装置における感度を説明する図である。(a)は、電流ループの面積と感度との関係、(b)は、2個の感受回路間の間隔と感度との関係である。
図19】2個の感受回路を重ねた磁気センサを備える磁気センサ装置の感度を示す図である。
図20】第5の実施の形態が適用される磁気センサ装置における磁気センサの構成を説明する図である。(a)は、磁気センサの斜視図、(b)は、感受回路及び電流回路における電流と磁界とを説明する図である。
【発明を実施するための形態】
【0011】
以下、添付図面を参照して、本発明の実施の形態について説明する。
[第1の実施の形態]
(磁気センサ装置1)
図1は、第1の実施の形態が適用される磁気センサ装置1を説明する図である。図1(a)は、第1の実施の形態が適用される磁気センサ装置1、図1(b)は、比較のために示す、第1の実施の形態が適用されない磁気センサ装置1′である。磁気センサ装置を区別しない場合は、磁気センサ装置と表記する。
【0012】
図1(a)に示すように、第1の実施の形態が適用される磁気センサ装置1は、磁界を感受する磁気センサ10と、交流電流発生部200と、検出部300とを備えている。磁気センサ10は、交流電流発生部200及び検出部300に接続端子20、30を介して接続されている。磁気センサ10は、磁気インピーダンス効果に基づいて、磁界の変化によりインピーダンスが変化する感受部121(後述する図3(a)参照)を備えている。
【0013】
交流電流発生部200は、高周波成分を含む電流(以下では、高周波電流と表記する。)を発生する回路を含み、高周波電流を磁気センサ10に供給する。なお、高周波とは、例えば20MHz以上である。
検出部300は、磁気センサ10のインピーダンスの変化を検出する回路を備えている。具体的には、検出部300は、磁気センサ10のインダクタンスの変化やインピーダンスの振幅や位相の変化を検出する。
【0014】
図1(a)には、磁気センサ10と接続端子20、30との間で構成される電流ループαと、接続端子20、30と検出部300との間で構成される電流ループβとを示している。なお、電流ループαは、磁気センサ10近傍の配線が作る電流ループであり、電流ループβは、検出部300近傍の配線が作る電流ループである。以下では、電流ループαを、磁気センサ10近傍の配線が作る電流ループαと表記し、電流ループβを、検出部300近傍の配線が作る電流ループβと表記する。そして、電流ループαと電流ループβとを加えた電流ループは、磁気センサ10と検出部300とが囲む電流ループである。電流ループは、インダクタンスとして機能する。そして、電流ループの面積が大きいほど、インダクタンスが大きくなる。
【0015】
そして、磁気センサ10近傍の配線が作る電流ループαは、磁気センサ10における電流ループα1と、磁気センサ10と接続端子20、30との間における電流ループα2とから構成される。このため、図1(a)では、電流ループα1(α)、電流ループα2(α)と表記する。
【0016】
図1(b)に示すように、第1の実施の形態が適用されない磁気センサ装置1′は、磁気センサ10′近傍の配線が作る電流ループα′を除いて、図1(a)に示した第1の実施の形態が適用される磁気センサ装置1と同じである。よって、同様の部分には同じ符号を付して説明を省略する。磁気センサ10′近傍の配線が作る電流ループα′は、図1(a)に示した磁気センサ10近傍の配線が作る電流ループαより面積が大きい。なお、電流ループα′は、磁気センサ10′における電流ループα′1と、磁気センサ10′と接続端子20、30との間における電流ループα′2とから構成される。このため、図1(b)では、電流ループα′1(α′)、電流ループα′2(α′)と表記する。
【0017】
図1(b)に示す磁気センサ10′における電流ループα′1の面積は、図1(a)に示す磁気センサ10における電流ループα1と大差がない。よって、磁気センサ10′近傍の配線が作る電流ループα′の面積が、磁気センサ10近傍の配線が作る電流ループαの面積より大きいのは、磁気センサ10′と接続端子20、30との間における電流ループα′2の面積が電流ループα2より大きいためである。
なお、磁気センサ10と磁気センサ10′とを区別しない場合には、磁気センサと表記することがある。電流ループα、α′、βを区別しない場合には、電流ループと表記することがある。そして、図1(a)、(b)に示す端子部13a、13b、13cについては、後述する図3(a)において説明する。
【0018】
ここで、磁気センサ装置1のインダクタンス変化に対する電流ループによるインダクタンスの影響を説明する。なお、図1(a)に示す磁気センサ装置1を例として説明する。
信号磁界を印加しない場合における磁気センサ10のインダクタンスをL1とし、信号磁界が印加された場合における磁気センサ10のインダクタンスの変化量をΔL1とする。そして、磁気センサ10近傍の配線が作る電流ループα、及び検出部300近傍の配線が作る電流ループβにより生じるインダクタンスをL2とする。なお、信号磁界とは、磁気センサ10の動作を説明するために、外部から磁気センサ10に印加される磁界である。磁気センサ10に信号磁界を印加すると、信号磁界を印加しない場合に対して、磁気センサ10のインピーダンスが変化する。
【0019】
信号磁界が印加されていない状態におけるインダクタンスは、L1+L2である。そして、信号磁界が印加されている状態におけるインダクタンスは、L1+ΔL1+L2となる。よって、信号磁界が印加されたことによって、検出部300が検出するインダクタンスの変化率は、(L1+ΔL1+L2)/(L1+L2)となる。したがって、インダクタンスの変化率は、インダクタンスL2が小さいほど大きくなる。言い換えれば、インダクタンスL2が小さいほど、インダクタンスの変化率が大きくなり、磁界を検出する感度が向上する。つまり、磁気センサ10近傍の配線が作る電流ループα及び検出部300近傍の配線が作る電流ループβにより生じるインダクタンスL2を小さくすれば、磁気センサ10の感度が向上する。
【0020】
図2は、図1(b)に示した磁気センサ10′において、磁気センサ10′近傍の配線が作る電流ループα′の面積と磁気センサ10′及び電流ループα′により生じるインダクタンスとの関係を示す図である。横軸は、電流ループα′の面積(図2では、電流ループの面積(mm))、縦軸は、インダクタンス(nH)である。ここでは、後述する図3に示す磁気センサ10の端子部13aと端子部13bとをインピーダンス測定器に接続して、インダクタンスを測定した。このとき、端子部13a及び端子部13bとインピーダンス測定器とを接続する配線が囲む面積を変化させた。図2では、インダクタンスを測定する周波数を、20MHz、50MHz、100MHzとした。
【0021】
図2に示すように、磁気センサ10′及び電流ループα′により生じるインダクタンスは、電流ループα′の面積が大きくなるほど大きくなる。また、磁気センサ10′及び電流ループα′により生じるインダクタンスは、周波数が高いほど大きくなる。つまり、電流ループα′の面積を小さくすれば、インダクタンスを小さくできる。なお、図2では、電流ループα′の面積として説明しているが、磁気センサ10′近傍の配線が作る電流ループα′の面積及び検出部300近傍の配線が作る電流ループβ′の面積の和として考えてもよい。以下では、電流ループα′の面積を電流ループの面積と表記して説明する。
【0022】
ここでは、電流ループの面積が0mmに対応する磁気センサ10のインダクタンス(L1に相当)は、約85nHである。図2に示すように、電流ループの面積が16mmでのインダクタンス(L1+L2に相当)は、周波数20MHz、50MHz、100MHzの場合を平均した平均値で101nHであって、磁気センサ10のインダクタンスの1.2倍である。また、電流ループの面積が47mmでのインダクタンス(L1+L2に相当)は、同様な平均値で116nHであって、磁気センサ10のインダクタンスの1.4倍である。後述する図8図18において説明するが、電流ループの面積は、50mm以下であることが好ましく、16mm以下であることがより好ましい。そして、インダクタンスL2はインダクタンスL1の50%以下であることが好ましく、20%以下であることがより好ましい。
【0023】
なお、検出部300は、上記の磁気センサ10のインダクタンスの変化を検出する代わりに、インダクタンスL、抵抗R及び容量Cを含むインピーダンスの変化を検出してもよい。例えば、検出部300は、インピーダンスの振幅や位相を検出する回路を備えてもよい。この場合、インピーダンスZは、Z=R+jωL+1/(jωC)=R+jXと表記される。そして、振幅|Z|は、|Z|=√(R+X)であり、位相θは、θ=tan-1(X/R)と表記される。ここで、ωは角周波数、Xはリアクタンスである。
【0024】
磁気センサ10′(後述する図3(a)に示す磁気センサ10に相当)の面積は、交流電流発生部200及び検出部300を構成する電子部品に比べ大きくなりやすい。よって、図1(b)に示すように、磁気センサ10′近傍の配線が作る電流ループα′の面積は、検出部300近傍の配線が作る電流ループβの面積より大きくなりやすい。よって、磁気センサ10′近傍の配線が作る電流ループα′を小さくすることが好ましい。しかし、磁気センサ10′における電流ループα′1は磁気センサ10′の形状で決まるため、磁気センサ10′においては、電流ループα′1の面積を小さくしづらい。また、磁気センサ10′における電流ループα′1の面積よりも、磁気センサ10と接続端子20、30との間の電流ループα′2の面積の方が大きくなりやすい。
【0025】
よって、第1の実施の形態が適用される磁気センサ装置1(図1(a))では、磁気センサ10と接続端子20、30との間の電流ループα2の面積を、第1の実施の形態が適用されない磁気センサ装置1′(図1(b))における磁気センサ10′と接続端子20、30との間の電流ループα′2の面積より小さくなるようにしている。
【0026】
(磁気センサ10)
ここで、第1の実施の形態が適用される磁気センサ装置1が備えている磁気センサ10を説明する。
図3は、第1の実施の形態が適用される磁気センサ装置1が備えている磁気センサ10の一例を説明する図である。図3(a)は、平面図、図3(b)は、図3(a)のIIIB-IIIB線での断面図である。図3(a)において、紙面の右方向が+x方向、紙面の上方向が+y方向、紙面の表面方向が+z方向である。図3(b)において、紙面の右方向が+x方向、紙面の上方向が+z方向、紙面の裏面方向が+y方向である。
【0027】
図3(a)の平面図により、磁気センサ10の平面構造を説明する。磁気センサ10は、一例として四角形の平面形状を有する。磁気センサ10の平面形状は、数mm角~数10mm角である。例えば、x方向の長さが3mm~20mm、y方向の長さが3mm~20mmである。なお、磁気センサ10の平面形状の大きさは、他の値であってもよい。
【0028】
磁気センサ10は、基板11と基板11上に設けられた感受回路12と、端子部13a、13b、13cと、折返し配線14とを備える。感受回路12は、並列配置された複数の感受部121と、感受部121間をつづら折り(ミアンダ構造)に直列接続する接続部122とを備えている。端子部13a、13bは、感受回路12の一方の端部と他方の端部とに設けられている。端子部13cは、基板11上において、端子部13bに隣接するように設けられている。そして、折返し配線14は、基板11の裏面側を裏面に沿って引き回すように設けられ、端子部13aと端子部13cとを接続する。なお、図3(a)では、基板11の裏面側に隠れる折返し配線14を破線で示している。ここで、端子部13aが第1の端子部の一例、端子部13bが第2の端子部の一例、及び端子部13cが第3の端子部の一例、折返し配線14が折返し部材の一例である。
【0029】
感受部121は、平面形状が長手方向と短手方向とを有する短冊状である。図3(a)に示す感受部121は、x方向を長手方向、y方向を短手方向とする。そして、図3(a)では、4個の感受部121がy方向に並列配置されている。感受部121が磁気インピーダンス効果を示す。よって、磁気センサ10又は感受回路12を磁気インピーダンス素子と表記することがある。そして、感受部121を、感受素子と表記することがある。
【0030】
各感受部121は、例えば長手方向の長さが1mm~10mm、短手方向の幅が50μm~150μmである。厚さが0.2μm~5μmである。隣接する感受部121間の間隔は、50μm~150μmである。そして、感受部121の数は、図3(a)では4個であるが、他の数であってもよい。
なお、それぞれの感受部121の大きさ(長さ、面積、厚さ等)、感受部121の数、感受部121間の間隔等は、感受、つまり検出したい磁界の大きさなどによって設定されればよい。なお、感受部121は、1個でもよい。
【0031】
接続部122は、隣接する感受部121の端部間に設けられ、複数の感受部121を直列接続する。つまり、接続部122は、隣接する感受部121をつづら折りに接続されるように設けられている。図3(a)に示す4個の感受部121を備える磁気センサ10では、接続部122は3個である。接続部122の数は、感受部121の数によって異なる。例えば、感受部121が5個であれば、接続部122は4個である。また、感受部121が1個であれば、接続部122を備えない。なお、接続部122の幅は、感受回路12に流す電流などによって設定すればよい。例えば、接続部122の幅は、感受部121と同じであってもよい。
【0032】
端子部13a、13bは、感受回路12の一端部と他端部に設けられている。図3(a)においては、紙面の上側(y方向側)に端子部13aが設けられ、紙面の下側(-y方向側)に端子部13bが設けられている。そして、端子部13bの下側(-y方向側)に端子部13cが設けられている。端子部13a、13b、13cをそれぞれ区別しないときは、端子部13と表記する。端子部13は、回路と接続しうる大きさであればよい。なお、図3(a)に示す磁気センサ10では、感受部121が4個であるため、端子部13a、13bは、紙面の右側(x方向側)に設けられている。感受部121の数が奇数の場合には、端子部13a、13bを紙面の左右方向側(±x方向側)に分けて設けられる。なお、感受回路12を左右反転して構成してもよい。
【0033】
そして、端子部13cは、端子部13bに隣接して設けられている。ここでは、端子部13cは、端子部13bの-y方向側に隣接して設けられている。そして、折返し配線14は、端子部13aと端子部13cとを接続する。つまり、折返し配線14は、端子部13aを端子部13bに隣接する位置(端子部13c)に引き出す配線である。言い換えると、折返し配線14は、導電性であって、端子部13aから端子部13b側に電流が流れる経路(以下では、電流経路と表記する。)が折り返すように設けられている。折返し配線14を構成する導電性材料としては、Au、Al、Cu、Ag等の金属等が挙げられる。
【0034】
そして、磁気センサ10における端子部13b及び端子部13cと、交流電流発生部200及び検出部300との接続端子20、30とが接続される。つまり、端子部13bと端子部13cとから、交流電流発生部200から高周波電流が供給されるとともに、検出部300によりインダクタンスの変化、インピーダンスの振幅や位相の変化などが検出される。
【0035】
ここで、図1(b)に示した磁気センサ10′は、図3(a)に示した磁気センサ10において、端子部13c及び折返し配線14を備えない。よって、図1(b)に示したように、磁気センサ10′では、端子部13a、及び端子部13aから離れた位置にある端子部13bと、交流電流発生部200及び検出部300との接続端子20、30とを接続することになる。一方、図1(a)に示した磁気センサ10は、端子部13bに隣接するように端子部13cが設けられ、折返し配線14が感受回路12の近傍を通って端子部13aと端子部13cとを接続する。そして、端子部13b、及び端子部13bに隣接した端子部13cと、交流電流発生部200及び検出部300との接続端子20、30とを接続することになる。このため、図1(b)に示した磁気センサ10′と接続端子20、30との間の電流ループα′2の面積は、図1(a)に示した磁気センサ10と接続端子20、30との間の電流ループα2の面積よりも大きくなる。つまり、第1の実施の形態が適用される磁気センサ装置1が備えている磁気センサ10は、端子部13c及び折返し配線14を備えることで、電流ループα2の面積を小さくしている。ここで、図3(a)に示したD1は端子部13bと端子部13cとの中心間の距離で、D2は端子部13aと端子部13bとの中心間の距離である。なお、端子部13aと端子部13bとが、互いに磁気センサ10の対角の位置に設けられている場合(後述する図7(a)参照)でも、距離D2は、対角に位置する端子部13aと端子部13bの中心間の距離である。
【0036】
図3(a)において、端子部13cは、端子部13bの下側(-y方向側)に設けられているが、端子部13cは、端子部13bに隣接して設けられればよい。つまり、端子部13bと端子部13cとの間の距離D1が端子部13aと端子部13bとの間の距離D2より短くなるように設けられればよい(D1<D2)。よって、端子部13cは、端子部13bのx方向側又は-x方向側に隣接して設けられてもよく、端子部13bの斜め上側(±x方向+y方向側)、斜め下側(±x方向-y方向側)に設けられてもよい。
折返し配線14については、後に詳述する。
【0037】
以上説明したように、感受回路12は、感受部121が接続部122によってつづら折りに直列接続され、両端部に設けられた端子部13a、13bから高周波電流が流れるように構成されている。よって、高周波電流が流れる経路であることから、感受回路12と表記する。
【0038】
図3(b)の断面図により、磁気センサ10の断面構造を説明する。ここでは、折返し配線14の表記を省略し、感受回路12の構造を中心に説明する。
磁気センサ10は、前述したように、基板11と、基板11上に設けられた感受回路12とを備える。感受回路12は、一例として、基板11側から4層の軟磁性体層111a、111b、111c、111dを備える。そして、感受回路12は、軟磁性体層111aと軟磁性体層111bとの間に、軟磁性体層111aと軟磁性体層111bとに還流磁区の発生を抑制する磁区抑制層112aを備える。さらに、感受回路12は、軟磁性体層111cと軟磁性体層111dとの間に、軟磁性体層111cと軟磁性体層111dとに還流磁区の発生を抑制する磁区抑制層112bを備える。そしてまた、感受回路12は、軟磁性体層111bと軟磁性体層111cとの間に、感受回路12の抵抗(ここでは、電気抵抗をいう。)を低減させる導電体層113を備える。軟磁性体層111a、111b、111c、111dをそれぞれ区別しない場合は、軟磁性体層111と表記する。磁区抑制層112a、112bをそれぞれ区別しない場合には、磁区抑制層112と表記する。
【0039】
基板11は、非磁性体からなる基板であって、例えばガラス、サファイアといった電気絶縁性の酸化物基板、シリコン等の半導体基板、又は、アルミニウム、ステンレススティール、ニッケルリンメッキを施した金属等の金属基板などである。なお、基板11が、シリコン等の半導体基板、又は、アルミニウム、ステンレススティール、ニッケルリンメッキを施した金属等の金属基板などであって導電性が高い場合には、感受回路12が設けられる側の基板11の表面に、基板11と感受回路12とを電気的に絶縁する絶縁体層を設けるとよい。このような絶縁体層を構成する絶縁体としては、SiO、Al、TiO等の酸化物、又は、Si、AlN等の窒化物等が挙げられる。ここでは、基板11は、ガラスであるとして説明する。このような基板11の厚さは、例えば0.3mm~2mmである。なお、基板11の厚さは他の値であってもよい。
【0040】
軟磁性体層111は、磁気インピーダンス効果を示すアモルファス合金の軟磁性体で構成される。軟磁性体層111を構成する軟磁性体としては、Coを主成分とした合金に高融点金属Nb、Ta、W等を添加したアモルファス合金を用いるのがよい。このようなCoを主成分とした合金としては、CoNbZr、CoFeTa、CoWZr、CoFeCrMnSiB等が挙げられる。軟磁性体層111の厚さは、例えば100nm~1μmである。
ここで、軟磁性体とは、外部磁界によって容易に磁化されるが、外部磁界を取り除くと速やかに磁化がないか又は磁化が小さい状態に戻る、いわゆる保磁力の小さい材料である。
また、本明細書において、アモルファス合金、アモルファス金属とは、結晶のような原子の規則的な配列を有しない構造を有し、スパッタリング法などで形成されるものをいう。
【0041】
磁区抑制層112は、磁区抑制層112を挟む上下の軟磁性体層111に還流磁区が発生するのを抑制する。
一般に、軟磁性体層111には、それぞれの磁化の向きが異なる複数の磁区が形成されやすい。この場合、磁化の向きが環状を呈する還流磁区が形成される。外部磁界が大きくなると、磁壁が移動し、外部磁界の向きと磁化の向きとが同じ磁区の面積が大きくなり、外部磁界の向きと磁化の向きとが逆の磁区の面積が小さくなる。そして、さらに外部磁界が大きくなると、磁化の向きが外部磁界の向きと異なる磁区において、磁化の向きが外部磁界の向きと同じ向きを向くように磁化回転が生じる。そして、ついには隣接する磁区同士の間に存在していた磁壁が消滅し、1つの磁区(単磁区)となる。つまり、還流磁区が形成されていると、外部磁界の変化に伴って、還流磁区を構成する磁壁が階段状に不連続に移動するバルクハウゼン効果が生じる。この磁壁の不連続な移動は、磁気センサ10におけるノイズとなり、磁気センサ10から得られる出力におけるS/Nの低下を生じるおそれがある。磁区抑制層112は、磁区抑制層112の上下に設けられた軟磁性体層111に面積の小さな複数の磁区が形成されるのを抑制する。これにより、還流磁区が形成されることが抑制され、磁壁が不連続に移動することによるノイズの発生を抑制する。なお、磁区抑制層112は、磁区抑制層112を含まない場合に比べて、形成される磁区の数が少なく、つまり磁区の大きさが大きくなる効果が得られればよい。
【0042】
このような磁区抑制層112としては、Ru、SiO等の非磁性体や、CrTi、AlTi、CrB、CrTa、CoW等の非磁性アモルファス金属が挙げられる。このような磁区抑制層112の厚さは、例えば10nm~100nmである。
【0043】
導電体層113は、感受回路12の抵抗を低減する。つまり、導電体層113は、軟磁性体層111より導電性が高く、導電体層113を含まない場合に比べて、感受回路12の抵抗を小さくする。磁界は、感受回路12の2個の端子部13a、13b間に交流電流を流した際におけるインピーダンス(以下では、インピーダンスZと表記する。)の変化(ΔZと表記する。)により検出される。この際、交流電流の周波数が高いほど、外部磁界の変化(ここでは、ΔHと表記する。)に対するインピーダンスZの変化率ΔZ/ΔH(以下ではインピーダンス変化率ΔZ/ΔH)が大きくなる。しかし、導電体層113を含まない状態で交流電流の周波数を高くすると、浮遊容量により、逆にインピーダンス変化率ΔZ/ΔHが小さくなってしまう。そこで、導電体層113を設けて、感受回路12の抵抗を低減させている。
【0044】
このような導電体層113としては、導電性が高い金属または合金を用いることが好ましく、導電性が高く且つ非磁性の金属または合金を用いることがより好ましい。このような導電体層113としては、Ag、Al、Cu等の金属が挙げられる。導電体層113の厚さは、例えば、10nm~1μmである。導電体層113は、導電体層113を含まない場合に比べて、感受回路12の抵抗が低減されるものであればよい。
【0045】
なお、磁区抑制層112を挟む上下の軟磁性体層111、及び導電体層113を挟む上下の軟磁性体層111は、互いに反強磁性結合(AFC:Antiferromagnetically Coupled)している。上下の軟磁性体層111が反強磁性結合することで、反磁界が抑制され、磁気センサ10の感度が向上する。
【0046】
(磁気センサ10の動作)
続いて、磁気センサ10の動作について説明する。
図4は、磁気センサ10の感受部121の長手方向に印加された磁界Hと磁気センサ10のインピーダンスZとの関係を説明する図である。図4において、横軸が磁界H、縦軸がインピーダンスZである。なお、インピーダンスZは、図3(a)に示す感受回路12の端子部13b、13c間に交流電流を流して測定される。よって、インピーダンスZは感受回路12のインピーダンスであるが、磁気センサ10のインピーダンスZと表記する。
【0047】
図4に示すように、磁気センサ10のインピーダンスZは、感受部121の長手方向に印加される磁界Hが大きくなるにしたがい大きくなる。そして、磁気センサ10のインピーダンスZは、印加する磁界Hが異方性磁界Hkより大きくなると小さくなる。感受部121の異方性磁界Hkより小さい範囲において、磁界Hの変化量ΔHに対してインピーダンスZの変化量ΔZが急峻な部分(ΔZ/ΔHが大きい)を用いると、磁界Hの微弱な変化をインピーダンスZの変化量ΔZとして取り出すことができる。図4では、ΔZ/ΔHが大きい磁界Hの中心を磁界Hbとして示している。つまり、磁界Hbの近傍(図4で矢印で示す範囲)における磁界Hの変化量(ΔH)が高精度に測定できる。ここで、インピーダンスZの変化量ΔZが最も急峻な(ΔZ/ΔHが最も大きい)部分ほど、磁気インピーダンス効果が大きく、磁界又は磁界の変化を計測しやすい。換言すれば、磁界Hに対するインピーダンスZの変化が急峻なほど感度が高くなる。磁界Hbは、バイアス磁界と呼ばれることがある。以下では、磁界Hbをバイアス磁界Hbと表記する。なお、感受回路12に流される交流電流の周波数が高いほど、感度は高くなる。
【0048】
(磁気センサ10の製造方法)
磁気センサ10は、次のようにして製造される。
まず、基板11上に、感受回路12の平面形状を除いた部分を覆うフォトレジストのパターンを公知のフォトリソグラフィ技術により形成する。ついで、基板11上に、軟磁性体層111a、磁区抑制層112a、軟磁性体層111b、導電体層113、軟磁性体層111c、磁区抑制層112b、軟磁性体層111dを順に、例えばスパッタリング法により堆積する。そして、フォトレジスト上に堆積された軟磁性体層111a、磁区抑制層112a、軟磁性体層111b、導電体層113、軟磁性体層111c、磁区抑制層112b、軟磁性体層111dを、フォトレジストとともに除去する。すると、基板11上に、感受回路12の平面形状に加工された、軟磁性体層111a、磁区抑制層112a、軟磁性体層111b、導電体層113、軟磁性体層111c、磁区抑制層112b、軟磁性体層111dからなる積層体が残る。つまり、磁気センサ10が形成される。
【0049】
軟磁性体層111は、前述したように、長手方向と交差する方向、例えば短手方向(図3(a)のy方向)に一軸磁気異方性が付与されている。一軸磁気異方性は、基板11上に形成された感受回路12を、例えば3kG(0.3T)の回転磁場中における400℃での熱処理(回転磁場中熱処理)と、それに引き続く3kG(0.3T)の静磁場中における400℃での熱処理(静磁場中熱処理)とを行うことで付与できる。一軸磁気異方性の付与は、回転磁場中熱処理及び静磁場中熱処理で行う代わりに、感受回路12を構成する軟磁性体層111の堆積時にマグネトロンスパッタリング法を用いて行ってもよい。つまり、マグネトロンスパッタリング法に用いられる磁石(マグネット)が形成する磁界により、軟磁性体層111の堆積と同時に、軟磁性体層111に一軸磁気異方性が付与される。
【0050】
以上に説明した製造方法では、感受回路12における接続部122は、感受部121と同時に形成される。なお、感受回路12の平面形状を除いた部分を感受回路12及び端子部13の平面形状を除いた部分としてフォトレジストのパターンを形成してもよい。この場合、端子部13は、感受部121及び接続部122と同時に形成される。また、接続部122、端子部13を、導電性のAl、Cu、Ag、Au等の金属で形成してもよい。また、感受部121と同時に形成された接続部122、端子部13上に、導電性のAl、Cu、Ag、Au等の金属を積層してもよい。
【0051】
なお、感受回路12は、磁区抑制層112及び導電体層113を備えるとしたが、磁区抑制層112及び導電体層113のいずれか一方又は両方を備えなくてもよい。
【0052】
(第1の実施の形態が適用される磁気センサ装置1)
次に、第1の実施の形態が適用される磁気センサ装置1について説明する。
前述したように、磁気センサ10近傍の配線の作る電流ループαの面積を小さくすれば、インダクタンスが小さくなり、感度が向上する。このため、第1の実施の形態が適用される磁気センサ装置1が備えている磁気センサ10では、端子部13cを設け、折返し配線14にて、端子部13aと端子部13cとを接続するようにしている。
【0053】
図5は、磁気センサ10を立体的に説明する図である。図5(a)は、斜視図、図5(b)は、図5(a)の磁気センサ10をx方向側から見た側面図である。図5(a)では、図3(a)、(b)と同様に、x方向、y方向、及びz方向を設定する。図5(b)の側面図は、紙面の右方向がy方向、紙面の上方向がz方向である。
【0054】
図5(a)、(b)に示すように、磁気センサ10は、端子部13aと端子部13cとを接続する折返し配線14が基板11の裏面側に引き回されるように設けられている。なお、基板11の裏面側に引き回された折返し配線14は、破線で示している。そして、端子部13b、13cが、交流電流発生部200及び検出部300との接続端子20、30に接続される。端子部13b、13cは、隣接して配置されている。なお、折返し配線14は、基板11の端部から基板11の裏面側に裏面に沿って引き回されているが、折返し配線14の長さが短くなるように、折返し配線14が裏面側に引き回される部分に基板11に切り込みを入れてもよい。また、基板11に貫通孔を設けて、折返し配線14を裏面側に引き回してもよい。
【0055】
図6(a)~(d)は、磁気センサ10のバリエーションを示す図である。なお、図6(a)は、図3図5に示した磁気センサ10である。バリエーションの磁気センサを区別するために、図6(a)~(d)の磁気センサ10を磁気センサ10a、10b、10c、10dと表記し、折返し配線14a、14b、14c、14dと表記する。磁気センサ10a、10b、10c、10dをそれぞれ区別しない場合は、磁気センサ10と表記し、折返し配線14a、14b、14c、14dをそれぞれ区別しない場合は、折返し配線14と表記する。そして、基板11の裏面側に隠れる折返し配線14を破線で示す。基板11の裏面側において、折返し配線14は、基板11の裏面に沿って設けられている。なお、磁気センサ10a、10b、10c、10dにおいて、感受回路12は同じである。
【0056】
図6(a)に示す磁気センサ10aは、折返し配線14aが感受回路12のx方向の端部において、端子部13aから端子部13bに向かうように直線状に設けられ、端子部13cに接続されている。この磁気センサ10aを“端”と呼ぶことがある。なお、折返し配線14aは、平面視において、一部が感受回路12と重なって設けられてもよい。なお、平面視とは、z方向から基板11を透かして磁気センサ10を見た場合をいう。
【0057】
図6(b)に示す磁気センサ10bは、平面視において、折返し配線14bが感受回路12のx方向における中央部を横切るように設けられている。この磁気センサ10bを“中央”と呼ぶことがある。
【0058】
図6(c)に示す磁気センサ10cは、平面視において、折返し配線14cが感受回路12をM字状に横切るように設けられている。この磁気センサ10cを“M字”と呼ぶことがある。
【0059】
図6(d)に示す磁気センサ10dは、平面視において、折返し配線14dが感受回路12の感受部121及び接続部122に重なって設けられている。つまり、折返し配線14dは、感受回路12と同一形状である。この磁気センサ10dを“同一”と呼ぶことがある。
折返し配線14dに流れる高周波電流の方向は、感受回路12に流れる高周波電流が流れる方向と逆になり、電流により生成される磁界が打ち消しあう。感受回路12は、つづら折り(ミアンダ構造)に構成されていて、隣接する感受部121間で、磁界が打ち消しあう。しかし、磁気センサ10が感受部121を奇数個備える場合には、隣接する感受部121間で磁界が打ち消されない。また、接続部122から生成される磁界は、打ち消されない。よって、折返し配線14dを感受回路12に重ねて設けることで、高周波電流によって生成される磁界が打ち消されやすい。したがって、検出部300が検出する信号のS/Nが向上する。
【0060】
図7(a)~(c)は、磁気センサ10の他のバリエーションを示す図である。図7(a)~(c)は、磁気センサ10e、10f、10gと表記し、折返し配線14e、14f、14gと表記する。磁気センサ10e、10f、10gをそれぞれ区別しない場合は、磁気センサ10と表記し、折返し配線14e、14f、14gをそれぞれ区別しない場合は、折返し配線14と表記する。そして、基板11の裏面側に隠れる折返し配線14を破線で示す。なお、基板11の裏面側では、折返し配線14は、基板11の裏面に沿って設けられている。
【0061】
図7(a)に示す磁気センサ10eは、感受回路12が5個(奇数個)の感受部121を備え、端子部13aが-x方向側のy方向側(紙面の左上隅側)に設けられ、端子部13bがx方向側の-y方向側(紙面の右下隅側)に設けられている。端子部13cは、端子部13bの-y方向側に隣接して設けられている。つまり、端子部13aと端子部13cとは、磁気センサ10eの互いに対向する対角の位置に設けられている。そして、折返し配線14eは、端子部13aから端子部13b側に向かうように、平面視において感受回路12を斜めに横切るように設けられ、端子部13cに接続されている。
【0062】
図7(b)に示す磁気センサ10fは、端子部13a、13bが感受回路12のx方向の中央部に設けられている。なお、端子部13cも磁気センサ10fのx方向の中央部において、端子部13bに対して-y方向側に隣接して設けられている。そして、折返し配線14fは、端子部13aから端子部13b側に向かうように、平面視において感受回路12の中央部を-y方向に横切るように設けられ、端子部13cに接続されている。
【0063】
図7(c)に示す磁気センサ10gは、感受回路12がx方向に長手方向を有する1個の感受部121を備え、端子部13aが-x方向側の端部に設けられ、端子部13bが+x方向側の端部に設けられている。端子部13cは、端子部13bのx方向側に隣接して設けられている。そして、折返し配線14gは、端子部13aから端子部13b側に向かうように、平面視において感受部121に重なるように設けられ、端子部13cに接続されている。
感受回路12の感受部121に流れる高周波電流が流れる方向と折返し配線14gに流れる高周波電流の方向とは逆になり、電流により生成される磁界が打ち消しあう。したがって、検出部300が検出する信号のS/Nが向上する。
【0064】
図6(a)~(d)、図7(a)~(c)に示したバリエーションの磁気センサ10は、いずれも端子部13bと端子部13cとが隣接して設けられている。よって、磁気センサ10(端子部13b、13c)と接続端子20、30とを接続する配線の作る電流ループ(図1(a)に示す電流ループα2)の面積が小さくなる。よって、磁気センサ10の感度が向上する。
【0065】
図8は、磁気センサ装置における感度を説明する図である。図8(a)は、電流ループの面積と感度との関係、図8(b)は、磁気センサ10と配線との間隔と感度との関係である。図8(a)において、横軸が電流ループの面積(mm)、縦軸が感度(%/Oe)である。また、図8(b)において、横軸が磁気センサ10と配線との間隔(mm)、縦軸が感度(%/Oe)である。なお、感度(%/Oe)は、単位信号磁界強度に対する磁気センサ10の周波数の変化率である。
【0066】
ここで、電流ループとは、図1(a)における電流ループαと電流ループβとを加えたものであり、図1(b)における電流ループα′と電流ループβとを加えたものである。そして、図6(b)に示した磁気センサ10bと同様に、感受回路12の中央部を横切るように基板11の裏面側を回して設けた配線(磁気センサ10bでは折返し配線14b)と磁気センサ10の基板11との間隔を変化させて、電流ループ(図1(b)の電流ループα′に相当)の面積を変化させている。図8(b)における、磁気センサ10と配線との間隔“0.1mm”が、図6(b)の磁気センサ10bに相当する。この時の、磁気センサ装置1の電流ループの面積は、11mmである。なお、この電流ループの面積である11mmの内訳は、磁気センサ10b近傍の配線が作る電流ループαの面積が1mmであり、検出部300近傍の配線が作る電流ループβの面積が10mmである。つまり、磁気センサ装置1では、電流ループα(図1(a)参照)の面積は、電流ループβの面積に比べて小さい。
【0067】
図8(a)、(b)に示すように、磁気センサと配線との間隔が増加し、電流ループの面積が増大すると、感度(%/Oe)が低下する。図8(a)に示すように、電流ループの面積が56.5mm以下であると、感度は41.4%/Oe以上である。一方、電流ループの面積が72.0mm以上になると、感度は35.2%/Oe以下になる。つまり、感度を向上させるには、電流ループの面積が50mm以下であることが好ましい。また、図8(b)に示すように、磁気センサ10と配線との間隔が4.7mm以下であると、感度は41.4%/Oe以上である。一方、磁気センサ10と配線との間隔が6.2mm以上になると、感度は35.2%/Oe以下になる。つまり、感度を向上させるには、磁気センサ10と配線との間隔が5mm以下であることが好ましい。
【0068】
図9は、磁気センサ10のバリエーションにおける磁気センサ装置の感度を示す図である。図9(a)は、同一構造の2個の試料A1、A2で測定された感度、図9(b)は、構造の異なる2個の試料B、Cで測定された感度である。図9(a)において、“300mm”は、電流ループの面積が300mmであって、図8で説明したように、磁気センサと配線との間隔を増加させて電流ループの面積を大きくした場合である。“端”は、図6(a)の磁気センサ10aであって、折返し配線14aを感受回路12の端部に直線状に設けた場合、“M字”は、図6(c)の磁気センサ10cであって、折返し配線14cを感受回路12をM字状に横切るように設けた場合、“中央”は、図6(b)の磁気センサ10bであって、折返し配線14bを感受回路12の中央部を横切るように設けた場合である。縦軸は、感度であるが、相対値(任意単位)で示している。
【0069】
磁気センサ10a(“端”)、磁気センサ10c(“M字”)、磁気センサ10b(“中央”)のいずれも電流ループの面積は、11mmである。つまり、磁気センサ10a(“端”)、磁気センサ10c(“M字”)、磁気センサ10b(“中央”)近傍の配線が作る電流ループαの面積がそれぞれ1mmであり、検出部300近傍の配線が作る電流ループβの面積が10mmである。つまり、磁気センサ10近傍の配線が作る電流ループαの面積は、検出部300近傍の配線が作る電流ループβの面積より小さい。なお、電流ループの面積が300mmの場合でも、検出部300近傍の配線が作る電流ループβの面積は10mmである。よって、電流ループの面積が300mmの場合では、磁気センサ近傍の配線が作る電流ループ(図1(b)の磁気センサ10′近傍の配線が作る電流ループα′)の面積は、検出部300近傍の配線が作る電流ループβの面積より大きい。
【0070】
図9(b)において、“60mm”は、電流ループの面積が60mmであって、図8で説明したように、磁気センサと配線との間隔を増加させて電流ループの面積を大きくした場合である。“中央”は、図6(b)の磁気センサ10bであって、折返し配線14bを感受回路12の中央部を横切るように設けた場合、“同一”は、図6(d)の磁気センサ10dであって、折返し配線14dを感受回路12の感受部121及び接続部122に沿わせて設けた場合である。縦軸は、感度であるが、相対値(任意単位)で示している。
【0071】
磁気センサ10b(“中央”)、磁気センサ10d(“同一”)のいずれも電流ループの面積は、11mmである。つまり、磁気センサ10b(“中央”)、磁気センサ10d(“同一”)近傍の配線が作る電流ループαの面積がそれぞれ1mmであり、検出部300近傍の配線が作る電流ループβの面積が10mmである。つまり、磁気センサ10近傍の配線が作る電流ループαの面積は、検出部300近傍の配線が作る電流ループβの面積より小さい。なお、電流ループの面積が60mmの場合でも、検出部300近傍の配線が作る電流ループβの面積は10mmである。よって、電流ループの面積が60mmの場合では、磁気センサ近傍の配線が作る電流ループ(図1(b)の磁気センサ10′近傍の配線が作る電流ループα′)の面積は、検出部300近傍の配線が作る電流ループβの面積より大きい。
【0072】
図9(a)に示すように、“端”、“M字”、“中央”のいずれであっても、感度は、電流ループが300mmの場合より向上している。同様に、図9(b)に示すように、“中央”、“同一”のいずれであっても、感度は、電流ループが60mmの場合より向上している。
以上説明したように、第1の実施の形態が適用される磁気センサ装置1では、磁気センサ10近傍の配線が作る電流ループαの面積を検出部300近傍の配線が作る電流ループβの面積より小さくしているので、磁気センサ装置1の感度が向上する。
【0073】
なお、上記においては、折返し配線14は、基板11の裏面側に回すように設けられているとしたが、基板11の表面側に設けられてもよい。
図10は、他の磁気センサ10を説明する図である。図10(a)は、斜視図、図10(b)は、図10(a)の磁気センサ10をx方向から見た側面図である。図10(a)では、図5(a)、(b)と同様に、x方向、y方向、及びz方向を設定する。図10(b)の側面図は、紙面の右方向がy方向、紙面の上方向がz方向である。
【0074】
図10(a)、(b)に示すように、磁気センサ10は、端子部13aと端子部13cとを接続する折返し配線14が基板11の表面側に設けられている。なお、折返し配線14は、感受回路12と重なる部分に電気絶縁性の絶縁体層115が設けられて、感受回路12と電気的に絶縁されている。そして、折返し配線14は、絶縁体層115の表面に沿って設けられている。なお、折返し配線14は、端子部13bと重ならないように、端子部13bを迂回するように設けられている。絶縁体層115を構成する絶縁体としては、SiO、Al、TiO等の酸化物、又は、Si、AlN等の窒化物等が挙げられる。
【0075】
図10(b)に示すように、折返し配線14を基板11の表面側に設けると、折返し配線14を基板11の裏面側に設ける場合に比べ、磁気センサ10における電流ループα1(図1(a)参照)において、折返し配線14と感受回路12とが作る電流ループの面積を小さくできる。これにより、磁気センサ10における電流ループα1が小さくなることにより、磁気センサ10近傍の配線が作る電流ループαが小さくなり、磁気センサ装置1の感度がより向上する。
【0076】
以上の説明では、磁気センサ10は、基板11の表面に端子部13cを備えるとして説明した。しかし、端子部13cは、基板11の裏面に設けられてもよい。また、端子部13cは、基板11に設けられた端子部13cを設けることなく、折返し配線14の端部であってもよい。ここでの端子部13cは、折返し配線14の端部を含むものとする。すなわち、磁気センサ10と接続端子20、30とを接続する配線の作る電流ループが小さくなるように、端子部13bと端子部13c(折返し配線14の端部を含む)とが、隣接して設けられていればよい。なお、隣接するとは、図3(a)に示したように、端子部13bと端子部13c(折返し配線14の端部を含む)との距離D1が、端子部13aと端子部13bとの距離D2より短ければよい。
【0077】
[第2の実施の形態]
第1の実施の形態が適用される磁気センサ装置1においては、磁気センサ10の折返し配線14は、基板11の裏面側又は表面側に設けられていた。第2の実施の形態が適用される磁気センサ装置では、磁気センサ10の折返し配線14は、基板11上に設けられている。なお、第2の実施の形態では、磁気センサ10を除いて、他の構成は第1の実施の形態と同様であるので、異なる部分である磁気センサ10を説明し、他の構成の説明を省略する。よって、第2の実施の形態が適用される磁気センサ装置を磁気センサ装置1と表記する。磁気センサ10のように、同じ機能の構成は、第1の実施の形態の磁気センサ10と同じ符号を付す。
【0078】
図11は、第2の実施の形態が適用される磁気センサ装置1が備えている磁気センサ10を説明する図である。図11(a)は、斜視図、図11(b)は、図11(a)の磁気センサ10をx方向から見た側面図である。図11(a)では、図3(a)、(b)と同様に、x方向、y方向、及びz方向を設定する。図5(b)の側面図は、紙面の右方向がy方向、紙面の上方向がz方向である。
【0079】
磁気センサ10では、折返し配線14は、感受回路12のx方向側の基板11上に設けられている。
【0080】
図12(a)~(c)は、第2の実施の形態が適用される磁気センサ装置1が備えている磁気センサ10のバリエーションを示す図である。なお、バリエーションの磁気センサを区別するために、図12(a)~(c)は、磁気センサ10h、10i、10jと表記し、折返し配線14h、14i、14jと表記する。磁気センサ10h、10i、10jをそれぞれ区別しない場合は、磁気センサ10と表記し、折返し配線14h、14i、14jをそれぞれ区別しない場合は、折返し配線14と表記する。
【0081】
図12(a)に示す磁気センサ10hは、折返し配線14hが感受回路12のx方向の側面に沿って、端子部13aから端子部13b側に直線状に折り返すように設けられ、端子部13cに接続されている。
【0082】
図12(b)に示す磁気センサ10iは、折返し配線14iが感受回路12の感受部121及び接続部122に沿って設けられ、端子部13cに接続されている。
磁気センサ10iでは、感受回路12に流れる高周波電流が流れる方向と折返し配線14iに流れる高周波電流の方向とは逆になる。よって、図6(d)で説明したように、高周波電流により生成される磁界が打ち消しあう。したがって、検出部300が検出する信号のS/Nが向上する。
【0083】
図12(c)に示す磁気センサ10jは、感受回路12がx方向に長手方向を有する1個の感受部121で構成されている。そして、折返し配線14jは、感受部121に沿って端子部13aから端子部13b側に折り返すように設けられ、端子部13cに接続されている。感受回路12の感受部121と折返し配線14jとは並列に配置されるので、感受回路12の感受部121に流れる高周波電流が流れる方向と折返し配線14jに流れる高周波電流の方向とは逆になり、電流により生成される磁界が打ち消しあう。したがって、検出部300が検出する信号のS/Nが向上する。
【0084】
図12(a)~(c)に示したバリエーションの磁気センサ10は、いずれも端子部13bと端子部13cとが隣接して設けられている。よって、磁気センサ10(端子部13b、13c)と接続端子20、30とを接続する配線の作る電流ループ(図1(a)に示す電流ループα2)の面積が小さくなる。よって、磁気センサ装置1の感度が向上する。
【0085】
以上の説明では、磁気センサ10は、基板11の表面に端子部13cを備えるとして説明した。しかし、端子部13cは、基板11に設けられた端子部13cを設けることなく、折返し配線14の端部であってもよい。ここでの端子部13cは、折返し配線14の端部を含むものとする。すなわち、磁気センサ10と接続端子20、30とを接続する配線の作る電流ループが小さくなるように、端子部13bと端子部13c(折返し配線14の端部を含む)とが、隣接して設けられていればよい。
【0086】
[第3の実施の形態]
第1の実施の形態及び第2の実施の形態が適用される磁気センサ装置1においては、磁気センサ10に折返し配線14を設け、磁気センサ10と接続端子20、30とを接続する配線の作る電流ループ(図1(a)に示す電流ループα2)の面積を小さくした。第3の実施の形態においては、折返し配線14の代わりに、感受回路12を折り返すように設けている。なお、第3の実施の形態では、磁気センサ10を除いて、他の構成は第1の実施の形態及び第2の実施の形態と同様であるので、異なる部分である磁気センサ10を説明し、他の構成の説明を省略する。よって、第3の実施の形態が適用される磁気センサ装置を磁気センサ装置1と表記する。なお、磁気センサ10のように、同じ機能の構成は、第1の実施の形態及び第2の実施の形態の磁気センサ10と同じ符号を付す。
【0087】
図13は、第3の実施の形態が適用される磁気センサ10のバリエーションを示す図である。図13に示す磁気センサ10は、これまで説明した磁気センサ10と区別するため、磁気センサ10kと表記する。
【0088】
図13に示す磁気センサ10kは、感受回路12a、12bを備える。そして、感受回路12aが外側、感受回路12bが内側に設けられている。そして、感受回路12aのy方向の端部に端子部13a、感受回路12aの-y方向の端部に端子部13bが設けられている。そして、感受回路12aの端子部13aは、感受回路12bと接続されている。そして、感受回路12bの-y方向側の端部に端子部13cが設けられている。そして、端子部13bと端子部13cとは隣接して設けられている。つまり、第1の実施の形態及び第2の実施の形態における折返し配線14の代わりに、感受回路12bが設けられている。感受回路12bは、他の感受回路及び折返し部材の他の一例である。なお、感受回路12aと感受回路12bとを連続するように設ければ、端子部13aを設けることを要しない。
磁気センサ10kでは、感受回路12aに流れる高周波電流の方向と、感受回路12bに流れる高周波電流が流れる方向とは逆になる。よって、図6(d)で説明したように、高周波電流により生成される磁界が打ち消しあう。したがって、検出部300が検出する信号のS/Nが向上する。
【0089】
図13に示したバリエーションの磁気センサ10は、端子部13bと端子部13cとが、隣接して設けられている。よって、磁気センサ10(端子部13b、13c)と接続端子20、30とを接続する配線の作る電流ループ(図1(a)に示す電流ループα2)の面積が小さくなる。よって、磁気センサ装置1の感度が向上する。
【0090】
[第4の実施の形態]
第1の実施の形態、第2の実施の形態、第3の実施の形態が適用される磁気センサ装置1が備える磁気センサ10は、1個の感受回路12を備えていた。これに対して、第4の実施の形態が適用される磁気センサ装置2が備えている磁気センサ40は、重ねられた2個の感受回路12A、12Bを備えている。
【0091】
図14は、第4の実施の形態が適用される磁気センサ装置2を説明する図である。
第3の実施の形態が適用される磁気センサ装置2は、磁気センサ40と、交流電流発生部200と、検出部300とを備えている。磁気センサ40は、磁気インピーダンス効果に基づいて磁界の変化によりインピーダンスが変化する感受部121(後述する図15参照)を含む感受回路12A、12Bを備えている。感受回路12A、12Bは、重ねられている。磁気センサ40は、交流電流発生部200及び検出部300に接続端子20、30を介して接続されている。交流電流発生部200、検出部300、及び接続端子20、30は、第1の実施の形態と同様である。感受回路12Aは、第1の感受回路の一例であり、感受回路12Bは、第2の感受回路の一例である。
【0092】
感受回路12Aは、端子部13aA、13bAに接続され、感受回路12Bは、端子部13aB、13bBに接続されている。そして、端子部13bAと端子部13bBとが、接続線15により接続されている。感受回路12Aと感受回路12Bとは、直列接続されている。そして、端子部13aAと接続端子20とが接続され、端子部13aBと接続端子30とが接続されている。磁気センサ40では、端子部13aAから感受回路12A、接続線15、感受回路12Bを介して、端子部13aBに電流が流れる。感受回路12Aと感受回路12Bとは直列接続されているので、感受回路12Aと感受回路12Bとで、流れる電流の向きが逆になる。
【0093】
図14には、第1の実施の形態と同様に、磁気センサ40と接続端子20、30との間で構成される電流ループαと、接続端子20、30と検出部300との間で構成される電流ループβとを示している。磁気センサ40と接続端子20、30との間で構成される電流ループαが、磁気センサ40近傍の配線が作る電流ループαであり、接続端子20、30と検出部300との間で構成される電流ループβが検出部300近傍の配線が作る電流ループβである。そして、第1の実施の形態と同様に、磁気センサ40近傍の配線が作る電流ループαは、磁気センサ40における電流ループα1と、磁気センサ40と接続端子20、30との間における電流ループα2とから構成されている。
【0094】
図14に示すように、端子部13aAと端子部13aBとの中心間の距離は、端子部13aAと端子部13bAとの中心間の距離や端子部13aAと端子部13bBとの中心間の距離より短い。よって、電流ループα2の面積は、第1の実施の形態が適用されない磁気センサ装置1′における電流ループα′2に比べて小さい(図1(b)参照)。
【0095】
磁気センサ40における電流ループα1は、重ねて配置された感受回路12Aと感受回路12Bとの間の電流ループである。一方、磁気センサ装置1′における磁気センサ10′の電流ループα′1は、1個の感受回路12における電流ループである。電流ループα1の面積と電流ループα′1の面積とは、電流ループα′2の面積に比べて小さいとともに、差が小さい。
【0096】
よって、磁気センサ装置2における磁気センサ40近傍の配線が作る電流ループαの面積は、第1の実施の形態、第2の実施の形態、第3の実施の形態が適用される磁気センサ装置1と同様に、検出部300近傍の配線が作る電流ループβより小さい。よって、磁気センサ装置2の感度が向上する。
【0097】
図15は、感受回路12A、12Bの一例を説明する平面図である。図15において、紙面の横方向がx方向、紙面の上方向がy方向、紙面の表面方向がz方向である。感受回路12Aと感受回路12Bとは、同じ平面形状を有している。よって、以下では、感受回路12A、12Bを感受回路12A/12Bと表記する。他も同様である。
【0098】
ここでは、感受回路12Aは、基板11A上に設けられ、感受回路12Bは、基板11B上に設けられているとして説明する。基板11A/11Bは、第1の実施の形態で説明した基板11と同様である。基板11A/11Bは、一例として四角形の平面形状を有する。基板11A/11Bの平面形状は、数mm角~数10mm角である。例えば、x方向の長さが3mm~20mm、y方向の長さが3mm~20mmである。なお、基板11A/11Bの平面形状の大きさは、他の値であってもよい。なお、基板11Aが第1の基板の一例であり、基板11Bが第2の基板の一例である。
【0099】
感受回路12A/12Bは、並列配置された複数の感受部121と、感受部121間をつづら折り(ミアンダ構造)に直列接続する接続部122とを備える。端子部13aA/13aBは、感受回路12A/12Bの一方の端部に設けられ、端子部13bA/13bBは、感受回路12A/12Bの他方の端部に設けられている。感受部121、接続部122は、第1の実施の形態で説明した磁気センサ10の感受回路12と同様である。端子部13aA/13aB、端子部13bA/13bBは、第1の実施の形態で説明した磁気センサ10の端子部13a、13bと同様である。なお、磁気センサ40は、第1の実施の形態で説明した磁気センサ10が備える端子部13cを備えていない(図3(a)参照)。
【0100】
感受回路12A/12Bの断面構造は、第1の実施の形態で説明した磁気センサ10の感受回路12と同様である(図3(b)参照)。
【0101】
図16は、磁気センサ40の構成を説明する図である。図16(a)は、磁気センサ40の斜視図、図16(b)は、2個の感受回路12A、12Bにおける電流と磁界とを説明する図である。図16(a)、図16(b)におけるx方向、y方向及びz方向は、図15に対応する。
【0102】
磁気センサ40は、感受回路12Aと感受回路12Bとを重ねて構成されている。つまり、感受回路12Aと感受回路12Bとは同じ平面形状を有し、平面視した場合に、感受回路12Aの感受部121、接続部122及び端子部13aA、13bAと、感受回路12Bの感受部121、接続部122及び端子部13aB、13bBとは、互いに重ねて配置されている。そして、端子部13bAと端子部13bBとが接続線15にて接続されている。端子部13aAが接続端子20に接続され、端子部13aBが接続端子30に接続されている(図14(a)参照)。
【0103】
接続線15は、導電体で構成されている。このような導電体としては、Al、Cu、Au、Agなどや、これらの合金などが挙げられる。つまり、感受回路12Aと感受回路12Bとは、端子部13bAと端子部13bBとを介して、互いに電気的に接続されている。
【0104】
端子部13aAと端子部13aBとの中心間の距離は、端子部13aAと端子部13bAとの中心間の距離や端子部13aAと端子部13bBとの中心間の距離より短い距離に位置する。よって、図14(a)に示したように、磁気センサ40と接続端子20、30との間における電流ループα2は、図1(b)に示した磁気センサ10′と接続端子20、30との間における電流ループα′2より小さくなる。
【0105】
なお、磁気センサ40における電流ループα1の面積は、対向する感受回路12Aと感受回路12Bとの間の面積である。
【0106】
よって、図14に示した磁気センサ装置2が備えている磁気センサ40近傍の配線が作る電流ループα(α1+α2)の面積は、図1(b)に示した磁気センサ10′近傍の配線が作る電流ループα′(α′1+α′2)の面積より小さくなる。これにより、磁気センサ装置2では、磁気センサ装置1′に比べ、電流ループによるインダクタンスが小さくなる。
【0107】
高周波電流は、端子部13aAと端子部13aBとの間で流れる。高周波電流であるので、感受回路12A側の端子部13aAと感受回路12B側の端子部13aBとの間において流れる電流の方向は、交互に入れ替わる。図16(a)には、端子部13aAから端子部13aBへ電流が流れる場合における電流の向きを白抜き矢印Iにて示している。感受回路12Aと感受回路12Bとは直列接続されているので、感受回路12Aに流れる電流と感受回路12Bに流れる電流とは大ききが同じであって、流れる方向が逆になる。
【0108】
図16(b)では、磁気センサ40において、重ねて配置した感受回路12Aと感受回路12Bとを、xy平面においてずらして並列に示している。図16(b)には、端子部13aAから端子部13aBへ電流Iが流れる場合を示している。図16(b)では、電流Iの流れる向きを白抜き矢印で示している。
【0109】
図16(b)に示すように、重ねて配置した感受回路12Aと感受回路12Bとで、電流Iの大きさは同じであって、流れる方向は逆である。したがって、感受回路12Aの電流経路を取り巻いて発生する磁界Hの大きさと、感受回路12Bの電流経路を取り巻いて発生する磁界Hの大きさとは等しく、向きが逆になる。つまり、感受回路12Aにより発生する磁界と、感受回路12Bにより発生する磁界とが打ち消しあう。これにより、感受回路12A及び感受回路12Bに流れる高周波電流により磁気センサ40に発生する磁界は、感受回路12A又は感受回路12Bのみの磁気センサ10′の場合(図1(b)参照)に比べて弱くなる。よって、磁界の発生による高周波電流に影響を与える雑音(ノイズ)が低減する。これにより、磁気センサ40では、感度対雑音比(S/N比)が向上する。なお、図16(b)では、電流Iによって発生する磁界を磁界Hと表記し、円弧状の矢印で示している。
【0110】
図17は、磁気センサ40における2個の感受回路12A、12Bの重ね方を説明する図である。図17(a)は、2個の感受回路12A、12Bを内側で対向させた配置、図17(b)は、2個の感受回路12A、12Bを外側で対向させた配置、図17(c)は、2個の感受回路12A、12Bを積み重ねた配置、図17(d)は、2個の感受回路12A、12Bを一つの基板11Cの表裏に設けた配置である。図17(a)~(c)に示す感受回路12A、12Bは、図15のXVII-XVII線での断面図である。
【0111】
図17(a)に示す磁気センサ40は、基板11A上に設けられた感受回路12Aと、基板11B上に設けられた感受回路12Bとにおいて、感受回路12Aと感受回路12Bとが内側で対向するように、基板11B側の感受回路12Bが-z方向に向けて配置されている。この場合、電気的に絶縁するために、感受回路12Aと感受回路12Bとの間に絶縁体層を設けてもよい。
【0112】
図17(b)に示す磁気センサ40は、基板11A上に設けられた感受回路12Aと、基板11B上に設けられた感受回路12Bとにおいて、感受回路12Aと感受回路12Bとが外側で対向するように、基板11A側の感受回路12Aが-z方向に向けて配置されている。
【0113】
図17(c)に示す磁気センサ40は、基板11A上に設けられた感受回路12Aと、基板11B上に設けられた感受回路12Bとが+z方向に積み重ねられて配置されている。
【0114】
図17(d)に示す磁気センサ40は、基板11Cの表面側に感受回路12Aが設けられ、基板11Cの裏面側に感受回路12Bが設けられている。
【0115】
磁気センサ40における2個の感受回路12(感受回路12A、12B)の重ね方は、図17(a)~(d)のいずれであってもよい。なお、図17(a)~(d)に示した磁気センサ40では、感受回路12Aと感受回路12Bとにおいて、感受部121、接続部122とが互いに対向している。また、端子部13aA、13aBと端子部13bA、13bBとが互いに対向している。
【0116】
図18は、2個の感受回路12を重ねた磁気センサ40を用いた磁気センサ装置2における感度を説明する図である。図18(a)は、電流ループの面積と感度との関係、図18(b)は、2個の感受回路12間の間隔と感度との関係である。図18(a)において、横軸が電流ループの面積(mm)、縦軸が感度(%/Oe)である。また、図18(b)において、横軸が2個の感受回路12間の間隔(mm)、縦軸が感度(%/Oe)である。なお、感度(%/Oe)は、単位信号磁界強度に対する磁気センサ10の周波数の変化率である。
【0117】
ここで、電流ループとは、図14における電流ループαと電流ループβとを加えたものである。2個の感受回路12(感受回路12A、12B)の間隔を変化させて、電流ループの面積を変化させている。図18(b)における感受回路12間の間隔“0.2mm”が、図17(a)に示した感受回路12Aと感受回路12Bとを、内側で対向するように配置した場合に該当する。これに対応する磁気センサ装置2の電流ループの面積は、12mmである。なお、この電流ループの面積である12mmの内訳は、磁気センサ10b近傍の配線が作る電流ループαの面積が2mmであり、検出部300近傍の配線が作る電流ループβの面積が10mmである。
【0118】
図18(a)、(b)に示すように、2個の感受回路12間の間隔が増加し、電流ループの面積が増大すると、感度(%/Oe)が低下する。図18(a)に示すように、電流ループの面積が41.0mm以下であると、感度は61.5%/Oe以上である。一方、電流ループの面積が210.0mmになると、感度は46.4%/Oeに低下する。つまり、感度を向上させるには、電流ループの面積が50mm以下であることが好ましい。また、図18(b)に示すように、感受回路12間の間隔が3.1mm以下では、感度は46.4%/Oe以上である。一方、感受回路12間の間隔が20.0mmになると、感度は46.4%/Oeに低下する。つまり、感度を向上させるには、感受回路12間の間隔が5mm以下であることが好ましい。
【0119】
図19は、2個の感受回路12A、12Bを重ねた磁気センサ40を備える磁気センサ装置2の他の感度を示す図である。図19では、磁気センサ40を備える場合を“2個重ね”と表記する。この場合の電流ループの面積は、12mmである。磁気センサ40では、同一構造の2個の試料A1、A2で測定された感度を示している。図19において、比較のために示す“300mm”は、図9(a)で説明した、電流ループの面積が300mmであって、図8で説明した、磁気センサと配線との間隔を増加させて電流ループの面積を大きくした場合である。縦軸は、感度であるが、相対値(任意単位)で示している。
【0120】
磁気センサ40近傍の配線が作る電流ループαの面積が1mmであり、検出部300近傍の配線が作る電流ループβの面積が10mmである。つまり、磁気センサ40近傍の配線が作る電流ループαの面積は、検出部300近傍の配線が作る電流ループβの面積より小さい。
そして、図19に示すように、2個の感受回路12A、12Bを重ねた磁気センサ40(“2個重ね”)では、感度は、電流ループが300mmの場合より向上している。
【0121】
第4の実施の形態が適用される磁気センサ装置2が備えている磁気センサ40では、2個の感受回路12Aと感受回路12Bとを重ねることで、電流によって発生する磁界による雑音(ノイズ)Nが抑制され、感度対雑音比(S/N比)が向上する。よって、感度対雑音比(S/N比)が向上すれば、感受回路12Aと感受回路12Bとは同じ平面形状を備えていなくともよく、感受回路12Aと感受回路12Bとで、少なくとも一部の電流経路が平面視において重なっていてもよい。
【0122】
[第5の実施の形態]
第4の実施の形態が適用される磁気センサ装置2が備えている磁気センサ40は、2個の感受回路12A、12Bを重ねて構成されている。これに対して、第5の実施の形態が適用される磁気センサ装置が備えている磁気センサ50では、1個の感受回路12と、電流経路が重なる電流回路16とを重ねて構成されている。他の部分は、第4の実施の形態が適用される磁気センサ装置2と同様である。ここでは、同様な他の構成についての説明を省略し、磁気センサ50を説明する。1個の感受回路12は、第4の実施の形態で説明した感受回路12Aと同じである。そして、端子部13aA、13bAを端子部13a、13bと表記する。
【0123】
図20は、第5の実施の形態が適用される磁気センサ装置における磁気センサ50の構成を説明する図である。図20(a)は、磁気センサ50の斜視図、図20(b)は、感受回路12及び電流回路16における電流と磁界とを説明する図である。図20(a)、図20(b)におけるx方向、y方向及びz方向は、図16(a)、(b)と同じである。
【0124】
磁気センサ50は、感受回路12と電流回路16とを重ねて構成されている。電流回路16は、電流経路が感受回路12の電流経路と重なっている。平面視した場合に、電流回路16は、感受回路12の感受部121、接続部122、及び端子部13a、13bに重ねて電流経路が設けられている。そして、電流回路16は、端子部13aに対向する部分に端子部16a、端子部13bに対向する部分に、端子部16bが設けられている。端子部13bと端子部16bとが接続線15にて接続されている。端子部13aが接続端子20に接続され、端子部16aが接続端子30に接続されている(図1(a)参照)。端子部13aと端子部16aとの中心間の距離は、端子部13aと端子部13bとの中心間の距離や端子部13aと端子部16bとの中心間の距離より短い距離に位置する。よって、図1(a)に示した磁気センサ装置1と同様に、磁気センサ50と接続端子20、30との間における電流ループ(図1(a)の電流ループα2に相当)は、図1(b)に示した磁気センサ装置1′における磁気センサ10′と接続端子20、30との間における電流ループα′2より小さくなる。
【0125】
なお、磁気センサ50における電流ループ(図1(a)の電流ループα1に相当)の面積は、対向する感受回路12と電流回路16との間の面積である。よって、磁気センサ50における電流ループ(図1(a)の電流ループα1に相当)の面積は、第4の実施の形態が適用される磁気センサ装置2の磁気センサ40における電流ループα1の面積との差が小さい。
【0126】
よって、磁気センサ50近傍の配線が作る電流ループ(図1(a)の電流ループα(α1+α2)に相当)の面積は、図1(b)に示した磁気センサ10′近傍の配線が作る電流ループα′(α′1+α′2)の面積より小さくなる。これにより、第5の実施の形態が適用される磁気センサ装置において、インダクタンスが小さくなる。
【0127】
電流回路16は、非磁性の低透磁率の導電体で構成されている。このような導電体としては、Al、Cu、Au、Agなどや、これらの合金などが挙げられる。
【0128】
高周波電流は、端子部13aと端子部16aとの間で流れる。高周波電流であるので、端子部13aと端子部16aとの間において流れる電流の方向は、交互に入れ替わる。図20(a)には、感受回路12の端子部13aから電流回路16の端子部16aへ電流が流れる場合における電流の向きを白抜き矢印Iにて示している。感受回路12と電流回路16とは直列接続されているので、感受回路12に流れる電流と電流回路16に流れる電流とは大ききが同じであって、流れる方向が逆になる。
【0129】
図20(b)では、磁気センサ50において、重ねて配置した感受回路12と電流回路16とを、xy平面においてずらして並列に示している。そして、図20(b)には、端子部13aから電流回路16の端子部16aへ電流Iが流れる場合を示している。図20(b)では、電流Iの流れる向きを白抜き矢印で示している。
【0130】
図20(b)に示すように、重ねて配置した感受回路12と電流回路16とで、電流Iの大きさは同じであって、流れる方向は逆である。したがって、感受回路12の電流経路を取り巻いて発生する磁界Hの大きさと、電流回路16の電流経路を取り巻いて発生する磁界Hの大きさとは等しく、向きが逆になる。つまり、感受回路12により発生する磁界と、電流回路16により発生する磁界とが打ち消しあう。これにより、感受回路12及び電流回路16に流れる高周波電流により磁気センサ50に発生する磁界は、感受回路12で構成される磁気センサ10′の場合(図1(b)参照)に比べて弱くなる。よって、磁界の発生による高周波電流に影響を与える雑音(ノイズ)が低減する。これにより、磁気センサ50の感度対雑音比(S/N比)が向上する。なお、図20(b)では、電流Iによって発生する磁界を磁界Hと表記し、円弧状の矢印で示している。
【0131】
なお、磁気センサ50において、感受回路12と電流回路16との重ね方は、図17と同様にすればよい。つまり、図17において、感受回路12Aを感受回路12に置き換え、感受回路12Bを電流回路16に置き換えればよい。
【0132】
第5の実施の形態の磁気センサ50では、感受回路12と電流回路16とを重ねることで、電流によって発生する磁界による雑音(ノイズ)Nが抑制され、感度対雑音比(S/N比)が向上する。感度対雑音比(S/N比)が向上すれば、感受回路12と電流回路16とは平面視において電流経路が完全に重ならなくともよく、感受回路12と電流回路16とで、少なくとも一部の電流経路が平面視において重なっていてもよい。
【0133】
以上、本発明の実施の形態について説明したが、本発明は本実施の形態に限定されるものではなく、本発明の趣旨に反しない限りにおいては様々な変形や組み合わせを行っても構わない。
【符号の説明】
【0134】
1、1′、2…磁気センサ装置、10、10′、10a、10b、10c、10d、10e、10f、10g、10h、10i、10j、10k、40、50…磁気センサ、11、11A、11B、11C…基板、12、12a、12b、12A、12B…感受回路、13、13a、13b、13c、13aA、13bA、13bB、16a、16b…端子部、14、14a、14b、14c、14d、14e、14f、14g、14h、14i、14j…折返し配線、15…接続線、16…電流回路、20、30…接続端子、111、111a、111b、111c、111d…軟磁性体層、112、112a、112b…磁区抑制層、113…導電体層、115…絶縁体層、121…感受部、122…接続部、200…交流電流発生部、300…検出部、α、α1、α2、α′、α′1、α′2、β…電流ループ、D1、D2…距離
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20