(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022149901
(43)【公開日】2022-10-07
(54)【発明の名称】動態解析装置、放射線撮影システム及びプログラム
(51)【国際特許分類】
A61B 6/00 20060101AFI20220929BHJP
【FI】
A61B6/00 360Z
A61B6/00 330A
A61B6/00 350C
【審査請求】未請求
【請求項の数】19
【出願形態】OL
(21)【出願番号】P 2021052245
(22)【出願日】2021-03-25
(71)【出願人】
【識別番号】000001270
【氏名又は名称】コニカミノルタ株式会社
(74)【代理人】
【識別番号】110001254
【氏名又は名称】特許業務法人光陽国際特許事務所
(72)【発明者】
【氏名】野地 翔
【テーマコード(参考)】
4C093
【Fターム(参考)】
4C093AA13
4C093AA26
4C093CA18
4C093CA35
4C093DA03
4C093EB12
4C093EB13
4C093EB17
4C093FA35
4C093FD03
4C093FD09
4C093FF06
4C093FF08
4C093FF16
4C093FF19
4C093FF20
4C093FF24
4C093FF28
4C093FG01
(57)【要約】
【課題】撮影毎の撮影条件に差異がある場合であっても、得られた動態画像が示す動態が同様である場合には、同様の動態解析結果が出力されるようにする。
【解決手段】動態解析装置2は、被写体Sに対して放射線Xによる動態撮影を行うことで得られた動態画像Iに対して動態解析を行うことで動態解析結果A(動画像、静止画像、相関値)を生成する解析結果生成手段21と、解析結果生成手段21が生成した動態解析結果Aの、撮影毎の撮影条件(体厚、線量)の差異に起因するバラツキを、変換式に基づいて算出された補正値に基づいて補正する補正手段21と、補正手段21が補正した補正後の動態解析結果A
Cを出力する出力手段21と、を備える。
【選択図】
図3
【特許請求の範囲】
【請求項1】
被写体に対して放射線による動態撮影を行うことで得られた動態画像に対して動態解析を行うことで動態解析結果を生成する解析結果生成手段と、
前記解析結果生成手段が生成した動態解析結果の、撮影毎の撮影条件の差異に起因するバラツキを補正する補正手段と、
前記補正手段が補正した補正後の動態解析結果を出力する出力手段と、を備える動態解析装置。
【請求項2】
前記動態解析結果を補正するための変換式を記憶する記憶部を備え、
前記補正手段は、前記記憶部に記憶された前記変換式に基づいて前記動態解析結果を補正する請求項1に記載の動態解析装置。
【請求項3】
前記変換式は、一の前記動態画像に対して動態解析を行うことで得られた前記動態解析結果と、一の前記動態画像とは異なる他の前記動態画像に対して動態解析を行うことで得られた前記動態解析結果の少なくとも二つの前記動態解析結果に基づいて算出されたものである請求項2に記載の動態解析装置。
【請求項4】
前記動態解析結果は、複数のフレームからなる動画像であり、
前記動態解析結果から、信号値の経時変化の最大値、中央値、最小値、積算値又は平均値を時間方向特徴量として画素毎に算出する時間方向特徴量算出手段と、
前記時間方向特徴量算出手段が算出した各画素の前記時間方向特徴量から、最大値、中央値、最小値、積算値、又は平均値を空間方向特徴量として算出する空間方向特徴量算出手段と、
前記空間方向特徴量算出手段が算出した前記空間方向特徴量及び前記変換式に基づいて補正値を算出する補正値算出手段と、を備え、
前記補正手段は、前記補正値算出手段が算出した前記補正値に基づいて前記動態解析結果を補正する請求項2又は請求項3に記載の動態解析装置。
【請求項5】
前記動態解析結果に処理領域を設定する処理領域設定手段を備え、
前記時間方向特徴量算出手段は、前記処理領域設定手段が設定した処理領域から信号値の経時変化の最大値、中央値、最小値、積算値又は平均値を前記時間方向特徴量として画素毎に算出する請求項4に記載の動態解析装置。
【請求項6】
前記動態解析結果は、静止画像であり、
前記解析結果生成手段が生成した前記動態解析結果から、各画素の信号値の最大値、中央値、最小値、積算値、又は平均値を空間方向特徴量として算出する空間方向特徴量算出手段と、
前記空間方向特徴量算出手段が算出した前記空間方向特徴量及び前記変換式に基づいて補正値を算出する補正値算出手段と、を備え、
前記補正手段は、前記補正値算出手段が算出した前記補正値に基づいて前記動態解析結果を補正する請求項2又は請求項3に記載の動態解析装置。
【請求項7】
前記動態解析結果に処理領域を設定する処理領域設定手段を備え、
前記空間方向特徴量算出手段は、前記処理領域設定手段が設定した処理領域から、各画素の信号値の経時変化の最大値、中央値、最小値、積算値又は平均値を前記空間方向特徴量として算出する請求項6に記載の動態解析装置。
【請求項8】
前記被写体は、被検者の胸部であり、
前記動態解析結果は、肺血流に関する解析結果であり、
前記処理領域設定手段は、肺野領域、肺門領域、心臓領域、大動脈弓領域、又は動脈領域を前記処理領域に設定する請求項5又は請求項7に記載の動態解析装置。
【請求項9】
前記処理領域設定手段は、前記肺野領域を前記処理領域に設定する場合、実際に認識した肺野の輪郭よりも前記肺野の中心側に前記処理領域の輪郭を設定する請求項8に記載の動態解析装置。
【請求項10】
前記解析結果生成手段は、前記動態画像を構成する一のフレームの画素の信号値と、他のフレームの画素に対応する画素の信号値と、の差分を前記動態解析結果として生成する請求項1又は請求項2に記載の動態解析装置。
【請求項11】
前記動態画像を構成する一のフレームを基準フレームとして設定する基準フレーム設定手段を備え、
前記解析結果生成手段は、前記基準フレームの画素の信号値と、他のフレームの画素に対応する画素の信号値と、の差分を前記動態解析結果として生成する請求項10に記載の動態解析装置。
【請求項12】
前記動態画像を構成する各フレームを一画素以上の大きさを有する複数のブロック領域に分割するブロック領域設定手段を備え、
前記基準フレーム設定手段は、前記ブロック領域設定手段が設定したブロック領域毎に、異なるフレームを前記基準フレームに設定する請求項11に記載の動態解析装置。
【請求項13】
基準信号波形を取得する波形取得手段と、
前記動態画像から信号波形を算出する波形算出手段と、を備え、
前記解析結果生成手段は、前記波形取得手段が取得した前記基準信号波形と、前記波形算出手段が算出した前記信号波形と、の相関を示す値を前記動態解析結果として生成する請求項1又は請求項2に記載の動態解析装置。
【請求項14】
前記動態画像から、信号値の経時変化の評価値を算出する評価値算出手段を備え、
前記解析結果生成手段は、前記評価値算出手段が算出した前記評価値の最大値、中央値、最小値、積算値、又は平均値を前記動態解析結果として生成する請求項1又は請求項2に記載の動態解析装置。
【請求項15】
前記動態解析結果は、複数のフレームからなる動画像又は静止画像であり、
前記出力手段は、補正後の動態解析結果の各信号値に、当該信号値の大きさに応じた色付けを行うことにより、当該補正後の動態解析結果を表示部にカラー表示させる請求項1又は請求項2に記載の動態解析装置。
【請求項16】
前記動態解析結果は、複数のフレームからなる動画像又は静止画像であり、
前記出力手段は、所定の閾値に基づいて補正後の動態解析結果の各信号値を二値化することにより、当該補正後の動態解析結果を二値化画像として表示部に表示させる請求項1又は請求項2に記載の動態解析装置。
【請求項17】
ユーザーが操作可能な操作部と、
前記操作部になされた操作に応じて前記閾値を調整する閾値調整手段と、を備える請求項16に記載の動態解析装置。
【請求項18】
被写体に対して放射線による動態撮影を行うことで動態画像を生成する画像生成手段と、
前記画像生成手段が生成した動態画像に対して動態解析を行うことで動態解析結果を生成する解析結果生成手段と、
前記解析結果生成手段が生成した動態解析結果の、撮影毎の撮影条件の差異に起因するバラツキを補正する補正手段と、
前記補正手段が補正した補正後の動態解析結果を出力する出力手段と、を備える放射線撮影システム。
【請求項19】
コンピューターに、
被写体に対して放射線による動態撮影を行うことで得られた動態画像に対して動態解析を行うことで動態解析結果を生成する解析結果生成処理と、
前記解析結果生成処理により生成された動態解析結果の、撮影毎の撮影条件の差異に起因するバラツキを補正する補正処理と、
前記補正処理により補正された補正後の動態解析結果を出力する出力処理と、を実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、動態解析装置、放射線撮影システム及びプログラムに関する。
【背景技術】
【0002】
胸部の動態画像を構成する複数のフレーム画像のうちの一つを基準フレームに設定し、基準フレーム画像から抽出された肺野領域の画素の画素値と、他のフレーム画像の対応する画素の画素値と、の差分(基準フレーム画像からの濃度変化量)を、各画素の血流特徴量として算出することが従来行われている(例えば、特許文献1参照)。
また、画像データから関心領域を認識し、関心領域から特徴量を抽出し、抽出した特徴量に基づいて画像データを階調変換することも従来行われている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2020-151232号公報
【特許文献2】特開2003-250789号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載されたような従来の技術で算出された血流特徴量は、撮影条件(例えば、被写体の厚さ、被写体を透過した放射線の線量等)に応じて変動する相対的な値であった。このため、肺野の血流の状態が同様の被検者をそれぞれ撮影したときに、一方の被検者の血流特徴量に基づく表示は十分な血流があるように見えるにもかかわらず、他方の被検者の血流特徴量に基づく表示は血流が弱くなっているように見えてしまうといったことがあった。このような表示の見え方の差は誤診の原因となる可能性がある。
また、特許文献2に記載されたような従来の動画像に階調処理を施す技術は、動画像を見 易くすることを目的として画像データの信号値そのものを補正するものであり、動態解析結果(信号値の差分値等)に対して適用できるものではなかった。
【0005】
本発明は、上記課題に鑑みてなされたもので、撮影毎の撮影条件に差異がある場合であっても、得られた動態画像が示す動態が同様である場合には、同様の動態解析結果が出力されるようにすることを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため、本発明に係る動態解析装置は、
被写体に対して放射線による動態撮影を行うことで得られた動態画像に対して動態解析を行うことで動態解析結果を生成する解析結果生成手段と、
前記解析結果生成手段が生成した動態解析結果の、撮影毎の撮影条件の差異に起因するバラツキを補正する補正手段と、
前記補正手段が補正した補正後の動態解析結果を出力する出力手段と、を備える。
【0007】
また、本発明に係る放射線撮影システムは、
被写体に対して放射線による動態撮影を行うことで動態画像を生成する画像生成手段と、
前記画像生成手段が生成した動態画像に対して動態解析を行うことで動態解析結果を生成する解析結果生成手段と、
前記解析結果生成手段が生成した動態解析結果の、撮影毎の撮影条件の差異に起因するバラツキを補正する補正手段と、
前記補正手段が補正した補正後の動態解析結果を出力する出力手段と、を備える。
【0008】
また、本発明に係るプログラムは、
コンピューターに、
被写体に対して放射線による動態撮影を行うことで得られた動態画像に対して動態解析を行うことで動態解析結果を生成する解析結果生成処理と、
前記解析結果生成処理により生成された動態解析結果の、撮影毎の撮影条件の差異に起因するバラツキを補正する補正処理と、
前記補正処理により補正された補正後の動態解析結果を出力する出力処理と、を実行させる。
【発明の効果】
【0009】
本発明によれば、撮影毎の撮影条件に差異がある場合であっても、得られた動態画像が示す動態が同様である場合には、同様の動態解析結果を出力することができる。
【図面の簡単な説明】
【0010】
【
図1】本発明の実施形態に係る放射線撮影システムを示すブロック図である。
【
図2】
図1の放射線撮影システムが備える動態解析装置を示すブロック図である。
【
図3】
図2の動態解析装置が実行する動態解析処理の流れを示すフローチャートである。
【
図4】
図2の動態解析装置が実行する処理の一例を示す画像図である。
【
図5】
図2の動態解析装置が実行する処理に用いる技術の一例を示す概念図である。
【
図6】
図5の技術を適用した動態解析装置が出力する画像の一例を示す画像図である。
【
図7】
図2の動態解析装置が実行する処理の一例を示す概念図である。
【
図8】
図2の動態解析装置が実行する処理の一例を示す概念図である。
【
図9】
図2の動態解析装置が実行する処理の一例を示す概念図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態について図面を参照しながら説明する。ただし、本発明の技術的範囲は、以下の実施形態及び図示例に限定されるものではない。
【0012】
<1.放射線撮影システムの概要>
はじめに、本実施形態に係る放射線撮影システム(以下、システム100)の概要について説明する。
図1はシステム100を表すブロック図である。
【0013】
システム100は、
図1に示すように、放射線撮影装置(以下、撮影装置1)と、動態解析装置2と、を備えている。
また、本実施形態に係るシステム100は、放射線発生装置(以下、発生装置3)と、コンソール4と、を更に備えている。
各装置1~4は、例えば通信ネットワークN(LAN(Local Area Network)、WAN(Wide Area Network)、インターネット等)を介して互いに通信可能となっている。
【0014】
なお、システム100は、図示しない病院情報システム(Hospital Information System:HIS)、放射線科情報システム(Radiology Information System:RIS)、画像保存通信システム(Picture Archiving and Communication System:PACS)等と通信可能となっていてもよい。
【0015】
[1-1.放射線発生装置]
発生装置3は、放射線Xを発生させるものである。
発生装置3は、ジェネレーター31と、照射指示スイッチ32と、放射線源33と、を備える。
なお、照射指示スイッチ32は、図示しない操作卓を介してジェネレーター31に接続されていてもよい。
【0016】
〔1-1-1.ジェネレーター〕
ジェネレーター31は、照射指示スイッチ32が操作されたことに基づいて、予め設定された撮影条件(被写体Sに関する条件(撮影部位、撮影方向、体格・体厚等)、放射線Xの照射に関する条件(撮影モード(静止画像撮影、動態撮影等)、管電圧、管電流、照射時間、電流時間積(mAs値)等)に応じた電圧を放射線源33(管球)へ印加するとともに、撮影条件に応じた電流を放射線源33へ通電するようになっている。
【0017】
〔1-1-2.放射線源〕
放射線源33は、ジェネレーター31から電圧が印加され、電流が通電されると、印加された電圧及び通電された電流に応じた線量の放射線X(例えばX線等)を発生させるようになっている。
また、放射線源33は、X軸方向、X軸と直交するY軸方向、X軸及びY軸と直交するZ軸方向に移動することが可能であるとともに、Y軸、Z軸と平行な回転軸を中心に回転して放射線Xの照射口の向きを変えることが可能となっている。
【0018】
〔1-1-3.放射線発生装置の動作〕
このように構成された発生装置3は、生成しようとする放射線画像の形態(静止画像、複数のフレームからなる動態画像)に応じた態様で放射線Xを発生させるようになっている。
静止画像の場合には、1回の照射指示スイッチ32の押下につき放射線Xの照射を1回だけ行う。
動態画像の場合には、1回の照射指示スイッチ32の押下につきパルス状の放射線Xの照射を所定時間当たり複数回(例えば1秒間に15回)繰り返す、又は放射線Xの照射を所定時間継続する。
【0019】
〔1-1-4.放射線発生装置その他〕
なお、発生装置3は、撮影室内に据え付けられたものであってもよいし、コンソール4等と共に回診車と呼ばれる移動可能に構成されたものとなっていてもよい。
【0020】
[1-2.放射線撮影装置]
撮影装置1は、図示を省略するが、放射線Xを受けることで線量に応じた電荷を発生させる放射線検出素子や電荷の蓄積・放出を行うスイッチ素子を備えた画素が二次元状(マトリクス状)に配列されたセンサー基板や、各スイッチ素子のオン/オフを切り替える走査回路、各画素から放出された電荷の量を信号値として読み出す読み出し回路、読み出し回路が読み出した複数の信号値から放射線画像を生成する制御部、生成した放射線画像のデータや各種信号等を外部へ送信したり、各種情報や各種信号を受信したりする通信部等を備えている。
【0021】
そして、撮影装置1は、発生装置3から放射線Xが照射されるタイミングと同期して、電荷の蓄積・放出、信号値の読出しを行うことにより、照射された放射線Xの線量に応じた放射線画像を生成するようになっている。
静止画像を生成する場合には、1回の照射指示スイッチ32の押下につき放射線画像の生成を1回だけ行う。
動態画像を生成する場合には、1回の照射指示スイッチ32の押下につき動態画像を構成するフレームの生成を所定時間当たり複数回(例えば1秒間に15回)繰り返す。
【0022】
なお、撮影装置1は、発生装置3と一体になったもの(例えば、CT(Computed Tomography)装置等)であってもよい。
なお、撮影装置1は、生成した動態画像を、画像データの形にして保存・転送するようになっていてもよいし、自身に接続された表示装置にリアルタイムで表示させるようになっていてもよい。
リアルタイムで表示する例としては、例えば、透視が挙げられる。
【0023】
[1-3.コンソール]
コンソール4は、PC、携帯端末、専用の装置等で構成されている。
また、コンソール4は、撮影装置1及び発生装置3のうちの少なくとも一方に上記撮影条件を設定する。
また、コンソール4は、撮影条件の設定を、他のシステム(HISやRIS等)から取得した撮影オーダー情報、又はユーザー(例えば技師)によってなされた操作に基づいて行う。
また、コンソール4は、撮影装置1が生成した放射線画像の画像データを取得し、それを自身に保存したり、他の装置(動態解析装置2、PACS等)へ送信したりすることが可能となっている。
【0024】
[1-4.動態解析装置]
動態解析装置2は、他の装置から取得した動態画像に対して動態解析を行うことで動態解析結果を生成するものである。
また、動態解析装置2は、PC、専用の装置等で構成されている。
この動態解析装置2の詳細については後述する。
【0025】
[1-5.放射線撮影システムの概略動作]
このように構成されたシステム100は、以下のように動作する。
まず、間を空けて対向配置された発生装置3の放射線源33と撮影装置1との間に位置する被写体S(被検者の診断対象部位)に、発生装置3が放射線Xを照射すると、撮影装置1は、診断対象部位が写った放射線画像(静止画像、動態画像)を生成し、その画像データを動態解析装置2及びコンソール4のうちの少なくとも一方の装置へ送信する。
すなわち、撮影装置1は、被写体Sに対して放射線Xによる動態撮影を行うことで動態画像を生成する画像生成手段をなす。
動態解析装置2は、画像データを受信すると、動態解析処理(詳細後述)を実行し、動態解析結果を出力する。
【0026】
[1-6.放射線撮影システムその他]
ここまで、コンソール4とは別に動態解析装置2を備えたシステム100について説明してきたが、動態解析装置は、コンソール4が兼ねていてもよい。
具体的には、上記撮影装置1、発生装置3の他、動態解析装置を兼ねるコンソールによって放射線撮影システムを構成してもよい。
【0027】
<2.動態解析装置の詳細>
次に、上記システム100が備える動態解析装置2の詳細について説明する。
図2は動態解析装置2を示すブロック図、
図3は動態解析装置2が実行する動態解析処理の流れを示すフローチャート、
図4~7は動態解析装置2が実行する処理の一例を示す画像図・概念図である。
【0028】
[2-1.動態解析装置の構成]
動態解析装置2は、
図2に示すように、制御部21と、記憶部22と、通信部23と、
を備えている。
本実施形態に係る動態解析装置2は、表示部24と、操作部25と、を更に備えている。
各部21~25は、バス等で電気的に接続されている。
【0029】
制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)等により構成されている。
そして、制御部21のCPUは、記憶部22に記憶されている各種プログラムを読出してRAM内に展開し、展開されたプログラムに従って各種処理を実行し、動態解析装置2各部の動作を集中制御するようになっている。
【0030】
記憶部22は、不揮発性のメモリーやハードディスク等により構成されている。
また、記憶部22は、制御部21が実行する各種プログラム(後述する動態解析処理のプログラムを含む)やプログラムの実行に必要なパラメーター等を記憶している。
本実施形態に係る記憶部22は、所定の変換式を記憶している。
この変換式の詳細については後述する。
また、本実施形態に係る記憶部22は、信号値(差分値)とRGB値との対応関係(カラーマップ)を記憶している。
また、本実施形態に係る記憶部22は、他の装置(撮影装置1等)から取得した放射線画像の画像データ、制御部21が動態画像に基づいて生成した各種画像の画像データを記憶することが可能となっている。
【0031】
通信部23は、通信モジュール等で構成されている。
そして、通信部23は、通信ネットワークN(LAN(Local Area Network)、WAN(Wide Area Network)、インターネット等)を介して有線又は無線で接続された他の装置(撮影装置1、コンソール4等)との間で各種信号や各種データを送受信するようになっている。
【0032】
表示部24は、ユーザーの診断に用いられる各種画面を表示するものである。
表示部24は、例えばLCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)等で構成されている。
そして、表示部24は、制御部21から受信した画像信号に応じた放射線画像、動態解析結果等を表示するようになっている。
【0033】
操作部25は、ユーザーが操作可能に構成されている。
操作部25には、キーボード(カーソルキー、数字入力キー、各種機能キー等)、ポインティングデバイス(マウス等)、表示部24の表面に積層されたタッチパネル等が含まれる。
そして、操作部25は、ユーザーによってなされた操作に応じた制御信号を制御部21へ出力するようになっている。
【0034】
なお、動態解析装置2は、表示部24及び操作部25を備えず、例えば通信部23等を介して、動態解析装置2とは別に設けられた入力装置から制御信号を受信したり、動態解析装置2とは別に設けられた表示装置(モニター)へ画像信号を出力したりするようになっていてもよい。
また、他の装置(コンソール4等)が表示部及び操作部を備える場合、他の装置の操作部から制御信号を受信したり、他の装置の表示部へ画像信号を出力したりするようになっていてもよい(表示部及び操作部が他の装置と共用になっていてもよい)。
【0035】
[2-2.動態解析装置の動作]
上記のように構成された動態解析装置2の制御部21は、所定条件が成立したことを契機として、例えば
図3に示すような動態解析処理を実行する。
所定条件には、例えば、動態解析装置2の電源がオンにされたこと、他の装置から動態画像の画像データを取得したこと、他の装置から所定の制御信号を受信したこと、操作部25に所定操作がなされたこと等が含まれる。
【0036】
〔2-2-1.動態画像の取得〕
この動態解析処理において、制御部21は、まず、取得処理を実行する(ステップS1)。
この取得処理で、制御部21は、他の装置(撮影装置1、コンソール4、PACS等)から動態画像を取得する。
本実施形態に係る取得処理で、制御部21は、通信部23を介して他の装置から受信する。
なお、動態解析処理を、動態画像の画像データを取得したことを契機として開始する場合、この取得処理は不要である。
【0037】
〔2-2-2.処理領域の設定〕
本実施形態に係る動態解析処理では、制御部21は、動態画像を取得した後、解析領域設定処理を実行する(ステップS2)。
この解析領域設定処理で、制御部21は、動態画像Iに解析領域R
Aを設定する。
この「解析領域R
A」は、後述する処理領域設定処理で設定する処理領域R
Pを含む領域、又は処理領域R
Pと一致する領域であり、例えば肺野領域、心臓領域等を含む。
この解析領域設定処理で、制御部21は、例えば
図4に示すように、解析領域R
Aとする領域を認識し、認識した領域を囲むように輪郭を設定する。
【0038】
また、この解析領域設定処理で、制御部21は、手動又は自動で解析領域RAを設定する。
解析領域RAの設定方法は特に限定されるものではないが、解析領域RAを自動で設定する場合、制御部21は、取得した画像(入力データ)に対し解析領域RAを出力するように機械学習させた学習済モデルを用いるようになっていてもよい。
【0039】
ところで、肺野領域の形状は、例えば
図5に示すような複数の様々な形状(座標)の肺野データDによる主成分分析の手法を用い、下記式(1)で表すことができる。
M+Ae
1+Be
2+Ce
3+・・(1)
M:平均形状座標、A、B、C・・=定数、e
i(i=1,2,3・・)=主成分ベクトル
このため、肺野領域を解析領域R
Aに自動で設定する場合、学習済モデルには、肺野の動態画像Iを入力データとし、上記式(1)における主成分ベクトルe
iの組み合わせを出力するように機械学習(ディープラーニング)させたものを用いることができる。
このような学習済モデルを用いれば、胸部の動態画像Iが入力された場合に、例えば
図6に示すような、肺野領域の輪郭線上に複数の輪郭点Pが付された肺野(解析領域R
A)の動態画像Iを出力することができる。
なお、出力に基づく肺野領域の輪郭を表示する際には、複数の輪郭点Pをそれぞれスプライン補間することで、解析領域R
Aの輪郭線を生成することができる。
【0040】
また、本実施形態に係る解析領域設定処理では、制御部21は、ブロック領域設定処理を実行する。
このブロック領域設定処理で、制御部21は、動態画像Iを構成する各フレームを一画素以上の大きさを有する複数のブロック領域R
Bに分割する。
本実施形態に係るブロック領域設定処理では、制御部21は、各フレームの解析領域R
Aを複数のブロック領域R
Bに分割する。
また、本実施形態に係るブロック領域設定処理では、制御部21は、解析領域R
Aを、例えば
図4に示したように、行列状に配列された10mm×10mmの矩形のブロック領域R
Bに分割する、もしくは1画素毎に10mm×10mmサイズの平滑化処理を実施し、1画素をブロック領域R
Bとして設定する。
【0041】
本実施形態に係る制御部21は、以上説明してきた解析領域設定処理を実行することによりブロック領域設定手段をなす。
【0042】
〔2-2-3.動態解析結果の生成〕
動態画像Iを取得した後、又は解析領域R
Aを設定した後、制御部21は、
図3に示したように、解析結果生成処理を実行する(ステップS3)。
この解析結果生成処理で、制御部21は、動態画像Iに対して動態解析を行うことで動態解析結果Aを生成する。
本実施形態に係る解析結果生成処理では、制御部21は、(a)複数のフレームからなる動画像、(b)静止画像、又は(c)相関値を動態解析結果Aとして生成する。
【0043】
(a.動画像を動態解析結果として生成する場合)
動態解析結果Aが動画像となる解析結果生成処理では、制御部21は、動態画像Iを構成する一のフレームの画素の信号値と、他のフレームの画素に対応する画素の信号値と、の差分を動態解析結果Aとして生成する。
具体的には、まず、基準フレーム設定処理を実行する。
この基準フレーム設定処理で、制御部21は、動態画像Iを構成する一のフレームを初期基準フレームとして設定する。
本実施形態に係る基準フレーム設定処理では、制御部21は、上記解析領域設定処理で設定したブロック領域RB毎に、異なるフレームを基準フレームに設定する。
【0044】
具体的には、例えば
図7に示すように、複数のフレームのうち、予め設定しておいたRPI(心臓領域)において最も低い信号値を示したフレームを、基準フレームとして設定する。
また、他のブロック領域R
Bにおいては、一のブロック領域R
Bにおける基準フレームから予め設定された探索範囲(例えば15fpsの場合であれば、±0.1333秒(前後2フレーム)等)内にある最も高い信号値を示したフレームを、当該ブロック領域R
Bにおける基準フレームとして設定する。
この「探索範囲」は、1回の拍動が行われる時間(秒)の半分以下の時間であることが望ましい。
例えば、1回の拍動を撮影して得られたフレーム数が15フレームであった場合、その撮影時間の半分の時間(探索範囲)に含まれるのは、基準フレーム±7フレームとなる。
なお、フレームレートが変更された場合、探索範囲内のフレーム数も変更される(例えば、30fpsの場合、探索範囲内のフレーム数は15fpsの場合の2倍となる)。
基準フレームを設定した後、制御部21は、基準フレームの画素の信号値と、他のフレームの画素に対応する画素の信号値と、の差分を動態解析結果Aとして、ブロック領域R
B毎に生成する。
【0045】
(b.静止画像を動態解析結果として生成する場合)
一方、動態解析結果Aが静止画像となる解析結果生成処理では、制御部21は、まず、評価値算出処理を実行する。
この評価値算出処理で、制御部21は、動態画像Iから、信号値の経時変化の評価値を画素毎に算出する。
評価値を算出した後、制御部21は、算出した評価値の最大値、中央値、最小値、積算値、又は平均値を動態解析結果Aとして生成する。
【0046】
(c.相関値を動態解析結果として生成する場合)
また、動態解析結果Aが相関値となる解析結果生成処理では、制御部21は、まず、波形取得処理を実行する。
この波形取得処理で、制御部21は、基準信号波形を取得する。
基準信号波形を取得する前、取得した後、又は取得と並行して、制御部21は、波形算出処理を実行する。
この波形算出処理で、制御部21は、上記取得処理で取得した動態画像Iから信号波形を算出する。
基準信号波形を取得し、信号波形を算出した後、制御部21は、取得した基準信号波形と、算出した信号波形と、の相関を示す相関値を動態解析結果Aとして生成する。
基準信号波形の取得、信号波形の算出及び相関値の算出には、例えば、特開2012-239796号公報に記載された方法を用いることができる。
【0047】
本実施形態に係る制御部21は、以上説明してきた解析結果生成処理を実行することにより基準フレーム設定手段、波形取得手段、波形算出手段、評価値算出手段、及び解析結果生成手段をなす。
【0048】
〔2-2-4.特徴量の算出〕
動態解析結果Aを生成した後、制御部21は、
図3に示したように、特徴量算出処理を実行する(ステップS4)。
この特徴量算出処理で、制御部21は、空間方向特徴量を算出する。
具体的には、まず、制御部21は、処理領域設定処理を実行する。
この処理領域設定処理で、制御部21は、動態画像Iに処理領域R
Pを設定する
例えば、被写体Sが被検者の胸部であり、動態解析結果Aが肺血流に関する解析結果である場合、この特徴量算出処理で、制御部21は、肺野領域、肺門領域、心臓領域、大動脈弓領域、又は動脈領域を処理領域R
Pに設定する。
【0049】
(動態解析結果が動画像である場合の処理)
動態解析結果Aが動画像(相関値を含む)である場合、制御部21は、次に、時間方向特徴量算出処理を実行する。
この時間方向特徴量算出処理で、制御部21は、動態解析結果Aから、信号値の経時変化の最大値、中央値、最小値、積算値又は平均値を時間方向特徴量として画素毎に算出する。
上述したように、本実施形態に係る動態解析処理では、上記処理領域設定処理を実行するため、本実施形態に係る時間方向特徴量算出処理では、制御部21は、
図8に示すように、設定した処理領域R
Pから信号値の経時変化の最大値、中央値、最小値、積算値又は平均値を時間方向特徴量として画素毎に算出する。
本実施形態に係る時間方向特徴量算出処理では、制御部21は、信号値の経時変化の最小値を時間方向特徴量とする。
また、本実施形態に係る時間方向特徴量算出処理では、制御部21は、算出した各画素の時間方向特徴量が一枚に集約されたサマライズ画像I
S(最小値を時間方向特徴量とする場合にはMinIP画像)を作成する。
【0050】
サマライズ画像ISを作成した後、制御部21は、空間方向特徴量算出処理を実行する。
この空間方向特徴量算出処理で、制御部21は、上記時間方向特徴量算出処理で算出した各画素の時間方向特徴量(サマライズ画像IS)から、最大値、中央値、最小値、積算値、又は平均値を空間方向特徴量として算出する。
本実施形態に係る空間方向特徴量算出処理では、制御部21は、時間方向特徴量の最小値を空間方向特徴量とする。
【0051】
(動態解析結果が静止画像である場合の処理)
一方、動態解析結果Aが静止画像である場合、制御部21は、時間方向特徴量算出処理をスキップして空間方向特徴量算出処理を実行する。
解析結果生成処理で生成した動態解析結果A(静止画像)から、各画素の信号値の最大値、中央値、最小値、積算値、又は平均値を空間方向特徴量として算出する。
上述したように、本実施形態に係る動態解析処理では、上記処理領域設定処理を実行するため、本実施形態に係る空間方向特徴量算出処理では、制御部21は、設定した処理領域RPから、各画素の信号値の経時変化の最大値、中央値、最小値、積算値又は平均値を空間方向特徴量として算出する。
また、本実施形態に係る空間方向特徴量算出処理では、制御部21は、時間方向特徴量の最小値を空間方向特徴量とする。
【0052】
なお、この処理領域設定処理で、制御部21は、上記解析領域設定処理で設定した解析領域RAをそのまま処理領域RPに設定するようになっていてもよい。
また、この特徴量算出処理で、肺野領域を処理領域RPに設定する場合、制御部21は、実際に認識した肺野の輪郭よりも肺野の中心側に処理領域RPの輪郭を設定するようになっていてもよい。このようにすれば、肺野が受ける構造物の位置ズレの影響を低減することができる。
本実施形態に係る制御部21は、以上説明してきた特徴量算出処理を実行することにより処理領域設定手段、時間方向特徴量算出手段、及び空間方向特徴量算出手段をなす。
【0053】
〔2-2-5.補正値の算出〕
空間方向特徴量を算出した後、制御部21は、
図3に示したように、補正値算出処理を実行する(ステップS5)。
この補正値算出処理で、制御部21は、空間方向特徴量算出処理で算出した空間方向特徴量、及び記憶部22に記憶されている変換式に基づいて補正値を算出する。
変換式は、動態解析結果Aを補正するためのもので、一の動態画像Iに対して動態解析を行うことで得られた動態解析結果Aと、一の動態画像Iとは異なる他の動態画像Iに対して動態解析を行うことで得られた動態解析結果Aの少なくとも二つの動態解析結果Aに基づいて算出されたものである。
具体的には、変換式は、それぞれ異なる動態撮影により得られた複数の空間方向特徴量と、空間方向特徴量を示した画素に対応する部位を目視したときの実際の血流の状態を数値化した閾値(ゲイン値)との関係をプロットした散布図の分布を線形近似したものであり、下記式(1)のような形で表される。
閾値=定数a×空間方向特徴量-定数b・・(1)
【0054】
そして、制御部21は、変換式に、上記特徴量算出処理で算出した空間方向特徴量を代入して閾値を算出する。
そして、制御部21は、算出した閾値を目標値とするのに必要な乗数を補正値とする(目標値を閾値で除した値を補正値とする)。
【0055】
なお、この補正値算出処理で、制御部21は、予め記憶されている変換式を用いるのではなく、変換式を新規に算出するようになっていてもよい。
また、制御部21は、この補正値算出処理を実行する際に、記憶部22に記憶されている変換式を更新する(新たに取得した動態画像Iの動態解析結果Aを変換式に反映させる)ようになっていてもよい。
本実施形態に係る制御部21は、以上説明してきた補正値算出処理を実行することにより補正値算出手段をなす。
【0056】
〔2-2-6.動態解析結果の補正〕
補正値を算出した後、制御部21は、補正処理を実行する(ステップS6)。
この補正処理で、制御部21は、補正値算出処理で算出した補正値に基づいて動態解析結果Aを補正する。
より具体的には、制御部21は、
図9に示すように、動態解析結果A(各画素の差分値、評価値、相関値)に補正値を乗じ、それを補正後の動態解析結果A
Cとする。
制御部21がこの補正処理を実行することで、生成した動態解析結果Aの、撮影毎の撮影条件の差異に起因するバラツキが補正される。
この補正処理で用いられる補正値は、上記補正値算出処理で、記憶部22に記憶された変換式に基づいて算出されるため、制御部21は、変換式に基づいて動態解析結果Aを補正するとも言える。
動態解析結果Aが動画像である場合、本実施形態に係る補正処理では、制御部21は、補正値に基づいて、上記時間方向特徴量算出処理で作成したサマライズ画像I
Sも補正する。
本実施形態に係る制御部21は、以上説明してきた補正処理を実行することにより補正手段をなす。
【0057】
〔2-2-7.動態解析結果の出力〕
動態解析結果Aを補正した後、制御部21は、
図3に示したように、出力処理を実行する(ステップS7)。
この出力処理で、制御部21は、補正した補正後の動態解析結果A
Cを出力する。
本実施形態に係る出力処理で、制御部21は、補正後の動態解析結果A
Cの各信号値に、当該信号値の大きさに応じた色付けを行うことにより、当該補正後の動態解析結果A
Cを表示部24にカラー表示させる。
具体的には、例えば、記憶部に記憶されている差分値とRGB値との対応関係(カラーマップ)を用いて各画素に色付けを行う。
【0058】
なお、この出力処理で、制御部21は、所定の閾値に基づいて補正後の動態解析結果ACの各信号値を二値化することにより、当該動態解析結果Aを二値化画像として表示部24に表示させるようになっていてもよい。
また、この出力処理において、制御部21は、閾値調整処理を実行するようになっていてもよい。
この閾値調整処理では、制御部21は、操作部25になされた操作に応じて閾値を調整する。
本実施形態に係る制御部21は、以上説明してきた出力処理を実行することにより閾値調整手段、及び出力手段をなす。
【0059】
〔2-2-8.動態解析処理その他〕
なお、上記動態解析処理で、制御部21は、動態画像Iの信号値にフィルター処理を施すことにより、信号値から、動態解析対象の動きと異なる動き(例えば、血流を動態解析対象としたときの呼吸)の成分を除去するようになっていてもよい。
また、上記動態解析処理で、制御部21は、解析領域設定処理をスキップし、動態画像のフレーム全体を対象として解析結果生成処理を実行するようになっていてもよい。
また、制御部21は、上記解析領域設定処理で、解析領域RAを複数の小領域に分けて設定し、解析結果生成処理で、小領域毎に動態解析結果Aを生成するようになっていてもよい。
【0060】
<3.効果>
以上説明してきたように、本実施形態に係る動態解析装置2は、被写体Sに対して放射線Xによる動態撮影を行うことで得られた動態画像Iに対して動態解析を行うことで動態解析結果Aを生成し、生成した動態解析結果Aの、撮影毎の撮影条件の差異に起因するバラツキを補正し、補正した補正後の動態解析結果ACを出力する制御部21(解析結果生成手段、補正手段、出力手段)を備える。
このため、動態解析装置2又はシステム100によれば、撮影毎の撮影条件に差異がある場合であっても、得られた動態画像Iが示す動態が同様である場合には、同様の動態解析結果Aを出力することができる。
【0061】
<4.その他>
なお、本発明は上記の実施形態等に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。
【0062】
例えば、上記実施形態に係るシステム100は、解析結果生成手段、補正手段、及び出力手段としての機能を動態解析装置2が備えていたが、これらの機能うちの少なくともいずれかは、動態解析装置2以外の装置に備えられていてもよい。
【0063】
また、例えば、上記の説明では、本発明に係るプログラムのコンピューター読み取り可能な媒体としてハードディスクや半導体の不揮発性メモリー等を使用した例を開示したが、この例に限定されない。その他のコンピューター読み取り可能な媒体として、CD-ROM等の可搬型記録媒体を適用することが可能である。また、本発明に係るプログラムのデータを通信回線を介して提供する媒体として、キャリアウエーブ(搬送波)も適用される。
【符号の説明】
【0064】
100) 放射線撮影システム
1 撮影装置
2 動態解析装置
21 制御部
22 記憶部
23 通信部
24 表示部
25 操作部
3 放射線発生装置
31 ジェネレーター
32 照射指示スイッチ
33 放射線源
4 コンソール
A 動態解析結果
AC 補正後の動態解析結果
I 動態画像
IS サマライズ画像
N 通信ネットワーク
P 輪郭点
RA 解析領域
RP 処理領域
RB ブロック領域
S 被写体
X 放射線