(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022155838
(43)【公開日】2022-10-14
(54)【発明の名称】車両制御装置、経路生成装置、車両制御方法、経路生成方法、およびプログラム
(51)【国際特許分類】
G01C 21/34 20060101AFI20221006BHJP
G08G 1/0969 20060101ALI20221006BHJP
F02D 29/02 20060101ALI20221006BHJP
【FI】
G01C21/34
G08G1/0969
F02D29/02 L
F02D29/02 K
【審査請求】有
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2021059258
(22)【出願日】2021-03-31
(71)【出願人】
【識別番号】000005326
【氏名又は名称】本田技研工業株式会社
(74)【代理人】
【識別番号】100165179
【弁理士】
【氏名又は名称】田▲崎▼ 聡
(74)【代理人】
【識別番号】100126664
【弁理士】
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100154852
【弁理士】
【氏名又は名称】酒井 太一
(74)【代理人】
【識別番号】100194087
【弁理士】
【氏名又は名称】渡辺 伸一
(72)【発明者】
【氏名】菅野 勇希
(72)【発明者】
【氏名】長岡 伸治
【テーマコード(参考)】
2F129
3G093
5H181
【Fターム(参考)】
2F129AA03
2F129BB02
2F129BB20
2F129BB22
2F129CC16
2F129DD26
2F129DD29
2F129DD53
2F129DD65
2F129EE02
2F129EE52
2F129EE55
2F129GG04
2F129GG05
2F129GG06
2F129GG17
2F129GG18
2F129HH02
2F129HH12
3G093BA04
3G093CB14
3G093DB05
5H181AA01
5H181BB04
5H181CC03
5H181CC04
5H181CC12
5H181CC14
5H181EE12
5H181FF04
5H181FF05
5H181FF14
5H181FF22
5H181FF32
5H181LL09
(57)【要約】
【課題】運転支援機能のロバスト性を向上させることができる車両制御装置、経路生成装置、車両制御方法、経路生成方法、およびプログラムを提供すること。
【解決手段】カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する認識部と、前記認識部による自車両周辺の認識結果に基づいて自車両の行動計画を生成する行動計画生成部と、を備え、前記行動計画生成部は、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成する、車両制御装置。
【選択図】
図1
【特許請求の範囲】
【請求項1】
カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する認識部と、
前記認識部による自車両周辺の認識結果に基づいて自車両の行動計画を生成する行動計画生成部と、
を備え、
前記行動計画生成部は、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成する、
車両制御装置。
【請求項2】
前記行動計画生成部は、自車両が前記予測地点を前記予測タイミングにおいて走行しないようにする行動計画である第1の逆光回避計画、または、前記予測タイミングにおいて自車両の周辺環境を利用して前記カメラが逆光状態にならないように位置取りをしながら前記予測地点を走行する第2の逆光回避計画を生成する、
請求項1に記載の車両制御装置。
【請求項3】
前記行動計画生成部は、前記第1の逆光回避計画として、前記予測地点を迂回する行動計画を生成する、
請求項2に記載の車両制御装置。
【請求項4】
前記行動計画生成部は、前記第1の逆光回避計画として、前記カメラが逆光状態とならないタイミングで前記予測地点を走行する行動計画を生成する、
請求項2に記載の車両制御装置。
【請求項5】
前記行動計画生成部は、自車両の周辺に存在する他車両の影に隠れて走行するように位置取りをする行動計画を前記第2の逆光回避計画として生成する、
請求項2から4のいずれか一項に記載の車両制御装置。
【請求項6】
前記行動計画生成部は、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて前記カメラが逆光状態となるか否かを判定する、
請求項1から5のいずれか一項に記載の車両制御装置。
【請求項7】
コンピュータが、
カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する外界認識処理と、
前記自車両周辺の状況の認識結果に基づいて自車両の行動計画を生成する行動計画生成処理と、
を実行し、
前記行動計画生成処理において、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成する、
車両制御方法。
【請求項8】
コンピュータに、
カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する外界認識処理と、
前記自車両周辺の状況の認識結果に基づいて自車両の行動計画を生成する行動計画生成処理と、
を実行させ、
前記行動計画生成処理において、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成させる、
プログラム。
【請求項9】
出発地点および目的地の情報の入力を受け付ける入力部と、
前記入力部に入力された前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定部と、
を備え、
前記経路決定部は、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定する、
経路生成装置。
【請求項10】
コンピュータが、
出発地点および目的地の情報を入力し、
入力した前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定処理を実行し、
前記経路決定処理において、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定する、
経路生成方法。
【請求項11】
コンピュータに、
出発地点および目的地の情報を入力させ、
入力された前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定処理を実行させ、
前記経路決定処理において、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定させる、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両制御装置、経路生成装置、車両制御方法、経路生成方法、およびプログラムに関する。
【背景技術】
【0002】
従来、車両の運転を支援する機能を実現するために、車両周辺の環境をミリ波レーダや赤外線レーザレーダ、ステレオカメラ、単眼カメラ等の複数の検出手段を用いて認識する技術が開発されている。例えば、撮像手段とレーダ手段との双方の検出結果をもとに周辺環境を認識する場合において、誤認識による運転支援機能の誤作動を抑制する技術が提案されている(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の技術では、撮像手段に対する逆光を検知した場合には運転支援機能を制限するため、運転支援機能を必要なタイミングで作動させることができない場合があった。
【0005】
本発明は、このような事情を考慮してなされたものであり、運転支援機能のロバスト性を向上させることができる車両制御装置、経路生成装置、車両制御方法、経路生成方法、およびプログラムを提供することを目的の一つとする。
【課題を解決するための手段】
【0006】
この発明に係る車両制御装置、経路生成装置、車両制御方法、経路生成方法、およびプログラムは、以下の構成を採用した。
(1):この発明の一態様に係る車両制御装置は、カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する認識部と、前記認識部による自車両周辺の認識結果に基づいて自車両の行動計画を生成する行動計画生成部と、を備え、前記行動計画生成部は、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成するものである。
【0007】
(2):上記(1)の態様において、前記行動計画生成部は、自車両が前記予測地点を前記予測タイミングにおいて走行しないようにする行動計画である第1の逆光回避計画、または、前記予測タイミングにおいて自車両の周辺環境を利用して前記カメラが逆光状態にならないように位置取りをしながら前記予測地点を走行する第2の逆光回避計画を生成するものである。
【0008】
(3):上記(2)の態様において、前記行動計画生成部は、前記第1の逆光回避計画として、前記予測地点を迂回する行動計画を生成するものである。
【0009】
(4):上記(2)の態様において、前記行動計画生成部は、前記第1の逆光回避計画として、前記カメラが逆光状態とならないタイミングで前記予測地点を走行する行動計画を生成するものである。
【0010】
(5):上記(2)から(4)のいずれかの態様において、前記行動計画生成部は、自車両の周辺に存在する他車両の影に隠れて走行するように位置取りをする行動計画を前記第2の逆光回避計画として生成するものである。
【0011】
(6):上記(1)から(5)のいずれかの態様において、前記行動計画生成部は、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて前記カメラが逆光状態となるか否かを判定するものである。
【0012】
(7):この発明の一態様に係る車両制御方法は、コンピュータが、カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する外界認識処理と、前記自車両周辺の状況の認識結果に基づいて自車両の行動計画を生成する行動計画生成処理と、を実行し、前記行動計画生成処理において、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成するものである。
【0013】
(8):この発明の一態様に係るプログラムは、コンピュータに、カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する外界認識処理と、前記自車両周辺の状況の認識結果に基づいて自車両の行動計画を生成する行動計画生成処理と、を実行させ、前記行動計画生成処理において、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成させるものである。
【0014】
(9):この発明の一態様に係る経路生成装置は、出発地点および目的地の情報の入力を受け付ける入力部と、前記入力部に入力された前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定部と、を備え、前記経路決定部は、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定するものである。
【0015】
(10):この発明の一態様に係る経路生成方法は、コンピュータが、出発地点および目的地の情報を入力し、入力した前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定処理を実行し、前記経路決定処理において、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定するものである。
【0016】
(11):この発明の一態様に係るプログラムは、コンピュータに、出発地点および目的地の情報を入力させ、入力された前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定処理を実行させ、前記経路決定処理において、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定させるものである。
【発明の効果】
【0017】
上記(1)~(11)の態様によれば、運転支援機能のロバスト性を向上させることができる。
【図面の簡単な説明】
【0018】
【
図1】実施形態に係る車両制御装置を利用した車両システムの構成図である。
【
図2】第1制御部および第2制御部の機能構成図である。
【
図3】運転モードと自車両の制御状態、およびタスクの対応関係の一例を示す図である。
【
図4】実施形態における第1の逆光回避計画の一例として、迂回経路を走行する行動計画を生成する例を示す図である。
【
図5】実施形態における第1の逆光回避計画の一例として、逆光予測地点と推定された地点(位置)をカメラが逆光状態とならないタイミングで走行するようにするための行動計画を生成する例を示す図である。
【
図6】実施形態における第2の逆光回避計画の一例を説明する図である。
【
図7】実施形態の自動運転制御装置において行動計画生成部が第1の逆光回避計画または第2の逆光回避計画を生成して逆光を回避する第1の逆光回避処理の流れの一例を示すフローチャートである。
【
図8】実施形態のナビゲーション装置において経路決定部が逆光回避経路を決定する第2の逆光回避処理の流れの一例を示すフローチャートである。
【発明を実施するための形態】
【0019】
以下、図面を参照し、本発明の車両制御装置、経路生成装置、車両制御方法、経路生成方法、およびプログラムの実施形態について説明する。
【0020】
[全体構成]
図1は、実施形態に係る車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
【0021】
車両システム1は、例えば、カメラ10と、レーダ装置12と、LIDAR(Light Detection and Ranging)14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、ドライバモニタカメラ70と、運転操作子80と、自動運転制御装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、
図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
【0022】
カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両(以下、自車両M)の任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
【0023】
レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
【0024】
LIDAR14は、自車両Mの周辺に光(或いは光に近い波長の電磁波)を照射し、散乱光を測定する。LIDAR14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。LIDAR14は、自車両Mの任意の箇所に取り付けられる。
【0025】
物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14の検出結果をそのまま自動運転制御装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。
【0026】
通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
【0027】
HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。
【0028】
車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
【0029】
ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備える。ナビゲーション装置50は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。地図上経路は、MPU60に出力される。ナビゲーション装置50は、地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。
【0030】
また、本実施形態のナビゲーション装置50において、第1地図情報には、道路や道路以外の構造物、地形等の三次元情報(以下「三次元地図情報」という。)が含まれるものとし、経路決定部53は、この三次元地図情報に基づいて、自車両の走行中にカメラ10が逆光状態とならないような走行経路(以下「逆光回避経路」という。)を決定する機能を有する。逆光回避経路を決定する機能の詳細については後述する。
【0031】
なお、ナビゲーション装置50は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで自動運転制御装置100のHDDやフラッシュメモリにインストールされてもよい。なお、ナビゲーション装置50は本発明における「経路生成装置」の一例である。
【0032】
MPU60は、例えば、推奨車線決定部61を含み、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、地図上経路に分岐箇所が存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
【0033】
第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報、後述するモードAまたはモードBが禁止される禁止区間の情報などが含まれてよい。第2地図情報62は、通信装置20が他装置と通信することにより、随時、アップデートされてよい。
【0034】
ドライバモニタカメラ70は、例えば、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。ドライバモニタカメラ70は、自車両Mの運転席に着座した乗員(以下、運転者)の頭部を正面から(顔面を撮像する向きで)撮像可能な位置および向きで、自車両Mにおける任意の箇所に取り付けられる。例えば、ドライバモニタカメラ70は、自車両Mのインストルメントパネルの中央部に設けられたディスプレイ装置の上部に取り付けられる。
【0035】
運転操作子80は、例えば、ステアリングホイール82の他、アクセルペダル、ブレーキペダル、シフトレバー、その他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御装置100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。ステアリングホイール82は、「運転者による操舵操作を受け付ける操作子」の一例である。操作子は、必ずしも環状である必要は無く、異形ステアリングやジョイスティック、ボタンなどの形態であってもよい。ステアリングホイール82には、ステアリング把持センサ84が取り付けられている。ステアリング把持センサ84は、静電容量センサなどにより実現され、運転者がステアリングホイール82を把持している(力を加えられる状態で接していることをいう)か否かを検知可能な信号を自動運転制御装置100に出力する。
【0036】
自動運転制御装置100は、例えば、第1制御部120と、第2制御部160とを備える。第1制御部120と第2制御部160は、それぞれ、例えば、CPUなどのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSIやASIC、FPGA、GPUなどのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで自動運転制御装置100のHDDやフラッシュメモリにインストールされてもよい。自動運転制御装置100は「車両制御装置」の一例である。
【0037】
図2は、第1制御部120および第2制御部160の機能構成図である。第1制御部120は、例えば、認識部130と、行動計画生成部140と、モード決定部150とを備える。第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてよい。これによって、自動運転の信頼性が担保される。
【0038】
認識部130は、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報に基づいて、自車両Mの周辺にある物体の位置、および速度、加速度等の状態を認識する。物体の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識され、制御に使用される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。
【0039】
また、認識部130は、例えば、自車両Mが走行している車線(走行車線)を認識する。例えば、認識部130は、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。なお、認識部130は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。また、認識部130は、一時停止線、障害物、赤信号、料金所、その他の道路事象を認識する。
【0040】
認識部130は、走行車線を認識する際に、走行車線に対する自車両Mの位置や姿勢を認識する。認識部130は、例えば、自車両Mの基準点の車線中央からの乖離、および自車両Mの進行方向の車線中央を連ねた線に対してなす角度を、走行車線に対する自車両Mの相対位置および姿勢として認識してもよい。これに代えて、認識部130は、走行車線のいずれかの側端部(道路区画線または道路境界)に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。
【0041】
行動計画生成部140は、原則的には推奨車線決定部61により決定された推奨車線を走行し、更に、自車両Mの周辺状況に対応できるように、自車両Mが自動的に(運転者の操作に依らずに)将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、道なり距離で所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
【0042】
具体的には、本実施形態の自動運転制御装置100において、行動計画生成部140は、自車両の走行中にカメラ10が逆光状態となることが予測された場合に、カメラ10が逆光状態になると予測された地点(以下「逆光予測地点」という。)において、カメラ10が実際に逆光状態となることを回避する行動計画(以下「逆光回避計画」という。)を生成する。ここで、逆光予測地点には、位置の概念だけでなく、時間の概念も含まれるものとする。これは、同じ地点であっても時間によって逆光地点になったりならなかったりするからである。
【0043】
例えば、逆光回避計画は、自車両が逆光予測地点を走行しないようにする第1の逆光回避計画と、自車両が、カメラ10が逆光状態にならないようにしながら逆光予測地点を走行する第2の逆光回避計画とに分類することができる。例えば、行動計画生成部140は、第1の逆光回避計画として、逆光予測地点を迂回する行動計画を生成してもよいし、カメラ10が逆光状態とならないタイミングで逆光予測地点を走行するようにする行動計画を生成してもよい。また、例えば、行動計画生成部140は、第2の逆光回避計画として逆光予測地点の走行時に周辺環境を利用してカメラ10が逆光状態とならないように位置取りをする行動計画を生成してもよい。
【0044】
なお、行動計画生成部140は、目標軌道を生成するにあたり、自動運転のイベントを設定してよい。自動運転のイベントには、定速走行イベント、低速追従走行イベント、車線変更イベント、分岐イベント、合流イベント、テイクオーバーイベントなどがある。行動計画生成部140は、起動させたイベントに応じた目標軌道を生成する。
【0045】
モード決定部150は、自車両Mの運転モードを、運転者に課されるタスクが異なる複数の運転モードのいずれかに決定する。モード決定部150は、例えば、運転者状態判定部152と、モード変更処理部154とを備える。これらの個別の機能については後述する。
【0046】
図3は、運転モードと自車両Mの制御状態、およびタスクの対応関係の一例を示す図である。自車両Mの運転モードには、例えば、モードAからモードEの5つのモードがある。制御状態すなわち自車両Mの運転制御の自動化度合いは、モードAが最も高く、次いでモードB、モードC、モードDの順に低くなり、モードEが最も低い。この逆に、運転者に課されるタスクは、モードAが最も軽度であり、次いでモードB、モードC、モードDの順に重度となり、モードEが最も重度である。なお、モードDおよびEでは自動運転でない制御状態となるため、自動運転制御装置100としては自動運転に係る制御を終了し、運転支援または手動運転に移行させるまでが責務である。以下、それぞれの運転モードの内容について例示する。
【0047】
モードAでは、自動運転の状態となり、運転者には前方監視、ステアリングホイール82の把持(図ではステアリング把持)のいずれも課されない。但し、モードAであっても運転者は、自動運転制御装置100を中心としたシステムからの要求に応じて速やかに手動運転に移行できる体勢であることが要求される。なお、ここで言う自動運転とは、操舵、加減速のいずれも運転者の操作に依らずに制御されることをいう。前方とは、フロントウインドシールドを介して視認される自車両Mの進行方向の空間を意味する。モードAは、例えば、高速道路などの自動車専用道路において、所定速度(例えば50[km/h]程度)以下で自車両Mが走行しており、追従対象の前走車両が存在するなどの条件が満たされる場合に実行可能な運転モードであり、TJP(Traffic Jam Pilot)と称される場合もある。この条件が満たされなくなった場合、モード決定部150は、モードBに自車両Mの運転モードを変更する。
【0048】
モードBでは、運転支援の状態となり、運転者には自車両Mの前方を監視するタスク(以下、前方監視)が課されるが、ステアリングホイール82を把持するタスクは課されない。モードCでは、運転支援の状態となり、運転者には前方監視のタスクと、ステアリングホイール82を把持するタスクが課される。モードDは、自車両Mの操舵と加減速のうち少なくとも一方に関して、ある程度の運転者による運転操作が必要な運転モードである。例えば、モードDでは、ACC(Adaptive Cruise Control)やLKAS(Lane Keeping Assist System)といった運転支援が行われる。モードEでは、操舵、加減速ともに運転者による運転操作が必要な手動運転の状態となる。モードD、モードEともに、当然ながら運転者には自車両Mの前方を監視するタスクが課される。
【0049】
自動運転制御装置100(および運転支援装置(不図示))は、運転モードに応じた自動車線変更を実行する。自動車線変更には、システム要求による自動車線変更(1)と、運転者要求による自動車線変更(2)がある。自動車線変更(1)には、前走車両の速度が自車両の速度に比して基準以上に小さい場合に行われる、追い越しのための自動車線変更と、目的地に向けて進行するための自動車線変更(推奨車線が変更されたことによる自動車線変更)とがある。自動車線変更(2)は、速度や周辺車両との位置関係等に関する条件が満たされた場合において、運転者により方向指示器が操作された場合に、操作方向に向けて自車両Mを車線変更させるものである。
【0050】
自動運転制御装置100は、モードAにおいて、自動車線変更(1)および(2)のいずれも実行しない。自動運転制御装置100は、モードBおよびCにおいて、自動車線変更(1)および(2)のいずれも実行する。運転支援装置(不図示)は、モードDにおいて、自動車線変更(1)は実行せず自動車線変更(2)を実行する。モードEにおいて、自動車線変更(1)および(2)のいずれも実行されない。
【0051】
モード決定部150は、決定した運転モード(以下、現運転モード)に係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに自車両Mの運転モードを変更する。
【0052】
例えば、モードAにおいて運転者が、システムからの要求に応じて手動運転に移行できない体勢である場合(例えば許容エリア外の脇見を継続している場合や、運転困難となる予兆が検出された場合)、モード決定部150は、HMI30を用いて運転者に手動運転への移行を促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。自動運転を停止した後は、自車両はモードDまたはEの状態になり、運転者の手動操作によって自車両Mを発進させることが可能となる。以下、「自動運転を停止」に関して同様である。モードBにおいて運転者が前方を監視していない場合、モード決定部150は、HMI30を用いて運転者に前方監視を促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。モードCにおいて運転者が前方を監視していない場合、或いはステアリングホイール82を把持していない場合、モード決定部150は、HMI30を用いて運転者に前方監視を、および/またはステアリングホイール82を把持するように促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。
【0053】
運転者状態判定部152は、上記のモード変更のために運転者の状態を監視し、運転者の状態がタスクに応じた状態であるか否かを判定する。例えば、運転者状態判定部152は、ドライバモニタカメラ70が撮像した画像を解析して姿勢推定処理を行い、運転者が、システムからの要求に応じて手動運転に移行できない体勢であるか否かを判定する。また、運転者状態判定部152は、ドライバモニタカメラ70が撮像した画像を解析して視線推定処理を行い、運転者が前方を監視しているか否かを判定する。
【0054】
モード変更処理部154は、モード変更のための各種処理を行う。例えば、モード変更処理部154は、行動計画生成部140に路肩停止のための目標軌道を生成するように指示したり、運転支援装置(不図示)に作動指示をしたり、運転者に行動を促すためにHMI30の制御をしたりする。
【0055】
第2制御部160は、行動計画生成部140によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
【0056】
図2に戻り、第2制御部160は、例えば、取得部162と、速度制御部164と、操舵制御部166とを備える。取得部162は、行動計画生成部140により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部164は、メモリに記憶された目標軌道に付随する速度要素に基づいて、走行駆動力出力装置200またはブレーキ装置210を制御する。操舵制御部166は、メモリに記憶された目標軌道の曲がり具合に応じて、ステアリング装置220を制御する。速度制御部164および操舵制御部166の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部166は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。
【0057】
走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECU(Electronic Control Unit)とを備える。ECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
【0058】
ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、第2制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
【0059】
ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
【0060】
以下、逆光回避計画の生成機能および逆光回避経路の決定機能についてより詳細に説明する。
【0061】
[第1の逆光回避計画]
図4および
図5は、第1の逆光回避計画の一例を説明する図である。まず、
図4は、第1の逆光回避計画の一例として、迂回経路を走行する行動計画を生成する例を示す。
図4は、設定中の走行経路上にある地点Aを16:00に走行しているときに、その15分後までに走行する予定である経路上における逆光地点を予測した結果、16:10~16:15の期間に走行予定である区間Bにおいて逆光が発生することが予測された場合を表している。
【0062】
例えば、この場合、行動計画生成部140は、カメラ10が逆光状態となることなく区間Bを迂回することができる迂回経路B’を検索し、区間Bに代えて迂回経路B’を走行するような行動計画を生成する。行動計画生成部140が、このような迂回経路を走行する行動計画を生成することにより、自車両はカメラ10が逆光状態になることなく目的地まで走行することが可能となる。そのため、実施形態の自動運転制御装置100によれば、カメラ10による物体検出の精度が低下することを抑制することができる。
【0063】
なお、この場合、迂回経路の決定に必要な情報は自動運転制御装置100に予め記憶されているものとするが、必要な情報が第1地図情報54や第2地図情報62に含まれている場合には、行動計画生成部140は、検索条件を提示して、ナビゲーション装置50やMPU60に迂回経路を検索させてもよい。この場合、ナビゲーション装置50は、検索結果として得られた迂回経路を設定中の走行経路に反映させてもよい。
【0064】
また、
図4では、迂回経路として、区間Bの開始地点B1から終了地点B2に向かう迂回経路B’を例示したが、迂回経路は区間Bを通過せず、かつカメラ10が逆光状態となることがない経路であればどのように決定されてもよい。例えば、迂回経路は区間Bに至る前に左折するような経路(図中の経路B1”)であってもよいし、現在位置から区間B方向に右折せずに直進する経路(図中の経路B2”)であってもよい。
【0065】
また、
図5は、第1の逆光回避計画の一例として、逆光予測地点と推定された地点(位置)をカメラ10が逆光状態とならないタイミングで走行するようにするための行動計画を生成する例を示す。
図5は、
図4の場合と同様に、設定中の走行経路上にある地点Aを16:00に走行しているときに、その15分後までに走行する予定である経路上における逆光地点を予測した結果、16:10~16:15の期間に走行予定である区間Bにおいて逆光が発生することが予測された場合を表している。
【0066】
例えば、この場合、行動計画生成部140は、逆光が予測された区間Bについて、走行予定である16:10~16:15の期間以外のタイミングでカメラ10が逆光とならないタイミングがないかを調べる。ここで、例えば、16:15~16:20の期間で区間Bを走行する場合にはカメラ10が逆光とならないことが分かった場合、行動計画生成部140は、16:15~16:20のタイミングで区間Bを走行することができるような行動計画を生成する。例えば、区間Bの開始地点B1に16:15に到着するように現在地点Aから地点B1までの走行速度を遅くするとともに、区間Bの終了地点B2に16:20までに到着するような速度で区間Bを走行する行動計画を生成する。
【0067】
このような逆光回避計画を生成することにより、行動計画生成部140は、カメラ10が逆光状態とならないタイミングにおいて区間Bを走行するように自車両を制御することができる。このように、走行速度を変更することでカメラ10が逆光状態となることを回避できる場合、設定中の走行経路を変更する必要がないため、行動計画の変更による影響を小さくすることができる。一方で、この場合、目的地への到着時間が変化するため、乗員の移動条件を満足しなくなる可能性がある。そのため、生成した逆光回避計画を採用するか否かは、行動計画の変更した場合に得らえる移動結果の予測を踏まえて判断するようにしてもよい。
【0068】
[第2の逆光回避計画]
図6は、第2の逆光回避計画の一例を説明する図である。
図6の例は、自車両Mが、時刻t1において、設定中の走行経路上の道路R1を走行しているときに、時刻t2以降でカメラ10が逆光状態になることが予測された場合を表している。このとき、自車両Mでは、認識部130により、自車両前方を走行するトラックTが認識されているものとする。
【0069】
この場合、行動計画生成部140は、時刻t2以降において自車両Mの前方に認識されているトラックTの影に隠れることでカメラ10が逆光状態になるのを回避するように走行する行動計画を生成する。具体的には、
図6の例において、行動計画生成部140は、時刻t2以降において、自車両MとトラックTとの位置関係が図示するような位置関係となるように移動する行動計画P1を生成する。具体的には、
図6の例の行動計画P1には、走行速度を調整する行動計画と走行車線を変更する行動計画とが含まれる。
【0070】
このように、周辺環境を利用してカメラ10が逆光状態となることを回避できる場合、設定中の走行経路を変更する必要がないため、行動計画の変更による影響を小さくすることができる。しかしながら、自車両の周辺に逆光の回避のために利用できる物がない場合もあるので、行動計画生成部140は、必ずしも第2の逆光回避計画を生成することができるとは限らない。そのため、行動計画生成部140は、まず、第1の逆光回避計画の生成を試行し、条件を満たす第1の逆光回避計画を生成できない場合に、第2の逆光回避行動計画を生成するように構成されてもよい。
【0071】
図7は、自動運転制御装置100において行動計画生成部140が第1の逆光回避計画または第2の逆光回避計画を生成して逆光を回避する処理(以下「第1の逆光回避処理」という。)の流れの一例を示すフローチャートである。まず、行動計画生成部140は、自車両の位置情報を取得する(ステップS101)。続いて、行動計画生成部140は、現在の走行計画に基づいて、規定時間後における自車両の位置を推定する(ステップS102)。続いて、行動計画生成部140は、規定時間後までの各時点における自車両と太陽の位置関係を推定する(ステップS103)。例えば、太陽の位置は、日付および時刻を変数とする既知の推定モデルによって算出することができる。
【0072】
続いて、行動計画生成部140は、推定した自車両と太陽との位置関係と、自車両周辺の三次元地図情報とに基づいて、現時点から規定時間後までに走行する経路上においてカメラ10が逆光状態となる地点を予測する(ステップS104)。なお、雨天時など、雲によって日光が遮られる場合にはカメラ10が逆光状態になることはないので、行動計画生成部140は、自車両と太陽の位置関係および三次元地図情報に加えて天候情報を取得し、その時の天候を加味して逆光の有無を推定するように構成されてもよい。
【0073】
続いて、行動計画生成部140は、逆光予測地点(位置および時刻)の走行を回避することができる第1の逆光回避計画を生成可能であるか否かを判定する(ステップS105)。ここで、第1の逆光回避計画を生成可能であると判定した場合、行動計画生成部140は、逆光予測地点を回避する第1の逆光回避計画を生成して第1の逆光回避処理を終了する(ステップS106)。一方、ステップS105において、第1の逆光回避計画を生成することができないと判定した場合、行動計画生成部140は、第2の逆光回避計画を生成して第1の逆光回避処理を終了する(ステップS107)。なお、ここで、行動計画生成部140は、第2の逆光回避計画が生成できなかった場合、その旨を利用者に通知する処理を行うように構成されてもよい。
【0074】
なお、
図7では、行動計画生成部140が、第1の逆光回避計画を生成できないときに第2の逆光回避計画を生成する場合について説明したが、この場合、走行計画(走行経路や走行タイミング)が変更される可能性が高まる。そのため、走行計画が変更される可能性を低くしたい場合には、行動計画生成部140は、第2の逆光回避計画を生成できないときに第1の逆光回避計画を生成するように構成されてもよい。
【0075】
[逆光回避経路の決定機能]
以上では、自動運転制御装置100が、自車両が目的地に向けて走行しているときに逆光を回避する場合について説明した。これに対して、以下では、ナビゲーション装置50が、カメラ10が逆光状態とならないようにしながら目的地までの到達することができる走行経路(逆光回避経路)を決定する場合について説明する。なお、逆光回避経路を決定する方法は、基本的には逆光回避計画の生成と同様である。すなわち、自車両の位置および時刻に基づいて自車両と太陽の位置関係を予測し、その予測結果と三次元位置情報に基づいて逆光予測地点を予測し、逆光予測地点(位置および時間)を走行しない経路を逆光回避経路として選択すればよい。
【0076】
図8は、ナビゲーション装置50において経路決定部53が逆光回避経路を決定する処理(以下「第2の逆光回避処理」という。)の流れの一例を示すフローチャートである。まず、経路決定部53は、出発地点と目的地の情報を取得する(ステップS201)。例えば、経路決定部53は、ナビHMI52を介して出発地点と目的地の入力を受け付けてもよい。続いて、経路決定部53は、取得した出発地点および目的地の情報をもとに、出発地点から目的地までの走行経路を作成する(ステップS202)。ここでは、走行経路は、到着時刻や走行距離、中継地点などに関して利用者が指定する各種の移動条件を加味するなどして任意に決定されてよい。ナビHMI52は「入力部」の一例である。
【0077】
続いて、経路決定部53は、自車両がステップS202で作成した走行経路を走行しているときの自車両と太陽との位置関係を予測するとともに(ステップS203)、その予測結果と三次元地図情報をもとに当該走行経路上の逆光地点を予測する(ステップS204)。経路決定部53は、逆光地点が予測されたか否かを判定する(ステップS205)。ここで、作成した走行経路において逆光地点が予測されたと判定した場合、経路決定部53は、予測された逆光予測地点を走行しないように当該走行計画を一部変更して(ステップS206)、ステップS203に処理を戻す。一方、ステップS205において、作成した走行経路において逆光地点が予測されなかったと判定した場合、経路決定部53は、その時点の走行経路を確定して(ステップS207)第2の逆光回避処理を終了する。
【0078】
このように構成された実施形態の自動運転制御装置100は、カメラ10を含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する認識部130と、認識部130による自車両周辺の認識結果に基づいて自車両の行動計画を生成する行動計画生成部140と、を備え、行動計画生成部140が、自車両の走行中にカメラ10が逆光状態となることが予測された場合に、カメラ10が逆光状態になると予測された逆光予測地点(予測地点および予測タイミング)において、カメラ10が実際に逆光状態となることを回避するための行動計画を生成する。これにより、カメラ10の検出精度が低下することを抑制することができるため、運転支援機能のロバスト性を向上させることが可能となる。
【0079】
また、このように構成された実施形態のナビゲーション装置50は、出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて出発地点から目的地までの走行経路を決定する経路決定部53を備え、経路決定部53が、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、その位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラ10が逆光状態とならないような走行経路を決定する。これにより、自車両が、カメラ10の検出精度が低下するような走行経路を走行することを抑制することができるため、運転支援機能のロバスト性を向上させることが可能となる。
【0080】
上記説明した実施形態は、以下のように表現することができる。
プログラムを記憶した記憶装置と、
ハードウェアプロセッサと、を備え、
前記ハードウェアプロセッサが前記プログラムを実行することにより、
カメラを含む物体検出装置の検出結果に基づいて自車両周辺の状況を認識する外界認識処理と、
前記自車両周辺の状況の認識結果に基づいて自車両の行動計画を生成する行動計画生成処理と、
を実行し、
前記行動計画生成処理において、自車両の走行中に前記カメラが逆光状態となることが予測された場合に、前記カメラが逆光状態になると予測された予測地点および予測タイミングにおいて前記カメラが実際に逆光状態となることを回避するための行動計画を生成する、
ように構成されている、車両制御装置。
【0081】
また、上記説明した実施形態は、以下のように表現することができる。
プログラムを記憶した記憶装置と、
ハードウェアプロセッサと、を備え、
前記ハードウェアプロセッサが前記プログラムを実行することにより、
出発地点および目的地の情報を入力し、
入力した前記出発地点および目的地の情報と、道路形状を含む地図情報とに基づいて前記出発地点から目的地までの走行経路を決定する経路決定処理を実行し、
前記経路決定処理において、自車両の位置および時刻に基づいて自車両と太陽との位置関係を予測し、前記位置関係の予測結果と、自車両の位置周辺の三次元地図情報とに基づいて、自車両に搭載され自車両前方を撮像するカメラが逆光状態とならないような走行経路を決定する、
ように構成されている、経路生成装置。
【0082】
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
【符号の説明】
【0083】
1…車両システム、10…カメラ、12…レーダ装置、14…LIDAR、16…物体認識装置、20…通信装置、30…HMI、40…車両センサ、50…ナビゲーション装置、51…GNSS受信機、52…ナビHMI、53…経路決定部、54…第1地図情報、60…MPU、61…推奨車線決定部、62…第2地図情報、70…ドライバモニタカメラ、80…運転操作子、82…ステアリングホイール、84…ステアリング把持センサ、100…自動運転制御装置、120…第1制御部、130…認識部、140…行動計画生成部、150…モード決定部、152…運転者状態判定部、154…モード変更処理部、160…第2制御部、162…取得部、164…速度制御部、166…操舵制御部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置