(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022156798
(43)【公開日】2022-10-14
(54)【発明の名称】リニアソレノイドバルブの制御装置
(51)【国際特許分類】
F16K 31/06 20060101AFI20221006BHJP
F16H 61/00 20060101ALI20221006BHJP
G05D 7/06 20060101ALI20221006BHJP
【FI】
F16K31/06 310C
F16H61/00
G05D7/06 Z
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021060670
(22)【出願日】2021-03-31
(71)【出願人】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(74)【代理人】
【識別番号】110000017
【氏名又は名称】特許業務法人アイテック国際特許事務所
(72)【発明者】
【氏名】土田 建一
(72)【発明者】
【氏名】星野 諭視
【テーマコード(参考)】
3H106
3J552
5H307
【Fターム(参考)】
3H106DA04
3H106DA23
3H106DB02
3H106DB12
3H106DB23
3H106DB32
3H106DC09
3H106DC18
3H106DD09
3H106EE07
3H106EE24
3H106FA04
3H106FB25
3H106KK03
3J552MA01
3J552NA01
3J552NB01
3J552PA58
3J552QA26B
3J552QA26C
3J552QB02
5H307AA11
5H307BB07
5H307DD03
5H307EE02
5H307FF04
5H307GG03
5H307HH04
5H307JJ01
5H307KK02
(57)【要約】
【課題】リニアソレノイドバルブの出力油圧が大きく変動するのを抑制する。
【解決手段】リニアソレノイドバルブの油圧指令値を設定する。続いて、油圧指令値が大きいほど大きくなるようにソレノイド部の電流指令値を設定する。そして、電流指令値の単位時間当たりの増加量である電流指令値増加率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、第1条件が成立しているときには、値0以上でありかつ第1振幅よりも小さい第2振幅のディザ指令値を設定する。さらに、電流指令値とディザ指令値とに基づく電流をソレノイド部に供給する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
入力ポートおよび出力ポートを有するスリーブと、前記スリーブ内に摺動自在に配置されるスプールと、供給される電流が大きいほど前記入力ポートと前記出力ポートとの連通量が大きくなる側に前記スリーブ内で前記スプールを移動させるソレノイド部とを備え、前記連通量が所定量以上であるときには前記連通量が前記所定量未満であるときに比して前記スプールの単位移動量当たりの前記連通量の変化量が大きくなるリニアソレノイドバルブの制御装置であって、
前記リニアソレノイドバルブの油圧指令値を設定する油圧指令値設定部と、
前記油圧指令値が大きいほど大きくなるように前記ソレノイド部の電流指令値を設定する電流指令値設定部と、
前記電流指令値の単位時間当たりの増加量である電流指令値増加率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、前記第1条件が成立しているときには、値0以上でありかつ前記第1振幅よりも小さい第2振幅の前記ディザ指令値を設定するディザ指令値設定部と、
前記電流指令値と前記ディザ指令値とに基づく電流を前記ソレノイド部に供給する電流供給部と、
を備えるリニアソレノイドバルブの制御装置。
【請求項2】
請求項1記載のリニアソレノイドバルブの制御装置であって、
前記ディザ指令値設定部は、前記第1条件および前記電流指令値増加率が前記第1閾値よりも大きい第2閾値以上である第2条件が何れも成立したときには、その後に前記第1条件の成立が解消すると共に所定時間が経過するまで前記第2振幅の前記ディザ指令値を設定する、
リニアソレノイドバルブの制御装置。
【請求項3】
入力ポートおよび出力ポートを有するスリーブと、前記スリーブ内に摺動自在に配置されるスプールと、供給される電流が大きいほど前記入力ポートと前記出力ポートとの連通量が小さくなる側に前記スリーブ内で前記スプールを移動させるソレノイド部とを備え、前記連通量が所定量以上であるときには前記連通量が前記所定量未満であるときに比して前記スプールの単位移動量当たりの前記連通量の変化量が大きくなるリニアソレノイドバルブの制御装置であって、
前記リニアソレノイドバルブの油圧指令値を設定する油圧指令値設定部と、
前記油圧指令値が大きいほど小さくなるように前記ソレノイド部の電流指令値を設定する電流指令値設定部と、
前記電流指令値の単位時間当たりの減少量である電流指令値減少率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、前記第1条件が成立しているときには、値0以上でありかつ前記第1振幅よりも小さい第2振幅の前記ディザ指令値を設定するディザ指令値設定部と、
前記電流指令値と前記ディザ指令値とに基づく電流を前記ソレノイド部に供給する電流供給部と、
を備えるリニアソレノイドバルブの制御装置。
【請求項4】
請求項3記載のリニアソレノイドバルブの制御装置であって、
前記ディザ指令値設定部は、前記第1条件および前記電流指令値減少率が前記第1閾値よりも大きい第2閾値以上である第2条件が何れも成立したときには、その後に前記第1条件の成立が解消すると共に所定時間が経過するまで前記第2振幅の前記ディザ指令値を設定する、
リニアソレノイドバルブの制御装置。
【請求項5】
請求項2または4記載のリニアソレノイドバルブの制御装置であって、
前記リニアソレノイドバルブは、変速機の油圧係合要素に油圧を供給するバルブであり、
前記スリーブは、油路を介して前記出力ポートに連通するフィードバックポートを更に有し、
前記油圧指令値設定部は、前記油圧係合要素を係合する際に、前記油圧係合要素の係合油室に作動油が急速充填されるように前記油圧指令値を変化させる充填用処理、前記油圧指令値を待機圧で保持する待機用処理、前記油圧係合要素が係合されるように前記油圧指令値を徐々に増加させる増圧用処理をこの順に実行し、
前記第1閾値および前記第2閾値は、前記増圧用処理のときに前記第1条件が成立すると共に前記第2条件が成立せずに、かつ、前記充填用処理における前記油圧指令値の立ち上がり時にだけ前記第2条件が成立するように設定される、
リニアソレノイドバルブの制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、リニアソレノイドバルブの制御装置に関する。
【背景技術】
【0002】
従来、この種の技術としては、リニアソレノイドバルブの駆動指令値をリニアソレノイドバルブの電流指令値に変換し、ディザ電流の振幅指令を含むディザ指令値を設定し、リニアソレノイドバルブに流れる電流と電流指令値とディザ指令値とに基づいてPWM信号を生成してリニアソレノイドバルブに供給するリニアソレノイドバルブの駆動装置が提案されている(例えば、特許文献1参照)。この装置では、リニアソレノイドバルブに流れる電流と電流指令値とを比較し、比較結果によりディザ指令値を設定する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
入力ポートおよび出力ポートを有するスリーブと、スリーブ内に摺動自在に配置されるスプールと、供給される電流に基づいスリーブ内でスプールを移動させるソレノイド部とを備えるリニアソレノイドバルブにおいて、スプールの単位移動量当たりの入力ポートと出力ポートとの連通量の変化量が大きいときに、ディザ指令値の振幅が大きいと、この連通量が大きく変動し、リニアソレノイドバルブの出力油圧が大きく変動する可能性がある。
【0005】
本開示のリニアソレノイドバルブの制御装置は、リニアソレノイドバルブの出力油圧が大きく変動するのを抑制することを主目的とする。
【課題を解決するための手段】
【0006】
本開示のリニアソレノイドバルブの制御装置は、上述の主目的を達成するために以下の手段を採った。
【0007】
本開示の第1のリニアソレノイドバルブの制御装置は、入力ポートおよび出力ポートを有するスリーブと、前記スリーブ内に摺動自在に配置されるスプールと、供給される電流が大きいほど前記入力ポートと前記出力ポートとの連通量が大きくなる側に前記スリーブ内で前記スプールを移動させるソレノイド部とを備え、前記連通量が所定量よりも多いときには前記連通量が前記所定量以下であるときに比して前記スプールの単位移動量当たりの前記連通量の変化量が大きくなるリニアソレノイドバルブの制御装置であって、前記リニアソレノイドバルブの油圧指令値を設定する油圧指令値設定部と、前記油圧指令値が大きいほど大きくなるように前記ソレノイド部の電流指令値を設定する電流指令値設定部と、前記電流指令値の単位時間当たりの増加量である電流指令値増加率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、前記第1条件が成立しているときには、値0以上でありかつ前記第1振幅よりも小さい第2振幅の前記ディザ指令値を設定するディザ指令値設定部と、前記電流指令値と前記ディザ指令値とに基づく電流を前記ソレノイド部に供給する電流供給部と、を備えることを要旨とする。
【0008】
本開示の第1のリニアソレノイドバルブの制御装置では、リニアソレノイドバルブの油圧指令値を設定する。続いて、油圧指令値が大きいほど大きくなるようにソレノイド部の電流指令値を設定する。そして、電流指令値の単位時間当たりの増加量である電流指令値増加率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、第1条件が成立しているときには、値0以上でありかつ第1振幅よりも小さい第2振幅のディザ指令値を設定する。さらに、電流指令値とディザ指令値とに基づく電流をソレノイド部に供給する。第1条件が成立しているときには、入力ポートと出力ポートとの連通量が所定量よりも多くなるまたはすでになっている可能性がある。したがって、第1条件が成立しているときには、比較的小さい第2振幅のディザ指令値を用いてソレノイド部に供給する電流を制御することにより、入力ポートと出力ポートとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブの出力油圧が大きく変動するのを抑制することができる。もとより、第1条件が成立していないときには、比較的大きい第1振幅のディザ指令値を用いてソレノイド部に供給する電流を制御することにより、リニアソレノイドバルブのスプールとスリーブとの摺動抵抗を十分に低減することができる。
【0009】
本開示の第2のリニアソレノイドバルブの制御装置は、入力ポートおよび出力ポートを有するスリーブと、前記スリーブ内に摺動自在に配置されるスプールと、供給される電流が大きいほど前記入力ポートと前記出力ポートとの連通量が小さくなる側に前記スリーブ内で前記スプールを移動させるソレノイド部とを備え、前記連通量が所定量よりも多いときには前記連通量が前記所定量以下であるときに比して前記スプールの単位移動量当たりの前記連通量の変化量が大きくなるリニアソレノイドバルブの制御装置であって、前記リニアソレノイドバルブの油圧指令値を設定する油圧指令値設定部と、前記油圧指令値が大きいほど小さくなるように前記ソレノイド部の電流指令値を設定する電流指令値設定部と、前記電流指令値の単位時間当たりの減少量である電流指令値減少率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、前記第1条件が成立しているときには、値0以上でありかつ前記第1振幅よりも小さい第2振幅の前記ディザ指令値を設定するディザ指令値設定部と、前記電流指令値と前記ディザ指令値とに基づく電流を前記ソレノイド部に供給する電流供給部と、を備えることを要旨とする。
【0010】
本開示の第2のリニアソレノイドバルブの制御装置では、リニアソレノイドバルブの油圧指令値を設定する。続いて、油圧指令値が大きいほど小さくなるようにソレノイド部の電流指令値を設定する。そして、電流指令値の単位時間当たりの減少量である電流指令値減少率が第1閾値以上である第1条件が成立していないときには、第1振幅のディザ指令値を設定し、第1条件が成立しているときには、値0以上でありかつ第1振幅よりも小さい第2振幅のディザ指令値を設定する。さらに、電流指令値とディザ指令値とに基づく電流をソレノイド部に供給する。第1条件が成立しているときには、入力ポートと出力ポートとの連通量が所定量よりも多くなるまたはすでになっている可能性がある。したがって、第1条件が成立しているときには、比較的小さい第2振幅のディザ指令値を用いてソレノイド部に供給する電流を制御することにより、入力ポートと出力ポートとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブの出力油圧が大きく変動するのを抑制することができる。もとより、第1条件が成立していないときには、比較的大きい第1振幅のディザ指令値を用いてソレノイド部に供給する電流を制御することにより、リニアソレノイドバルブのスプールとスリーブとの摺動抵抗を十分に低減することができる。
【図面の簡単な説明】
【0011】
【
図1】本開示のECUおよびリニアソレノイドバルブを示す概略構成図である。
【
図2】本開示のECUおよびリニアソレノイドバルブを示す概略構成図である。
【
図3】(a),(b),(c)は、本開示のリニアソレノイドバルブの動作を説明するための断面図である。
【
図4】ディザ指令値設定部により繰り返し実行されるディザ振幅設定処理の一例を示すフローチャートである。
【
図5】本実施形態において油圧係合要素を係合する際の様子の一例を示す説明図である。
【
図6】比較形態において油圧係合要素を係合する際の様子の一例を示す説明図である。
【
図7】ディザ指令値設定部により繰り返し実行されるディザ振幅設定処理の一例を示すフローチャートである。
【
図8】リニアソレノイドバルブが常開型のリニアソレノイドバルブである場合に油圧係合要素を係合する際の様子の一例を示す説明図である。
【
図9】ECUおよびリニアソレノイドバルブを示す概略構成図である。
【発明を実施するための形態】
【0012】
次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
【0013】
図1および
図2は、本開示の制御装置である電子制御装置(以下、「ECU」という)6およびECU6により制御されるリニアソレノイドバルブSLを示す概略構成図である。同図に示すような各リニアソレノイドバルブSLは、プライマリレギュレータバルブや調圧バルブ、切替バルブ、マニュアルバルブ等と共に、車両に搭載される変速機のクラッチやブレーキ等の油圧係合要素の油圧制御を行なう油圧制御装置のバルブボディに組み込まれる。
【0014】
本実施形態において、リニアソレノイドバルブSLは、調圧した作動油を油圧係合要素の係合油室に直接供給する、いわゆるダイレクトリニアソレノイドバルブである。リニアソレノイドバルブSLは、
図1や
図2に示すように、ソレノイド部2と、ソレノイド部2により駆動されて作動油を調圧するバルブ部3とを備える。また、本実施形態のリニアソレノイドバルブSLは、ソレノイド部2に電力が供給された際に油圧を出力する常閉型リニアソレノイドバルブである。
【0015】
ソレノイド部2は、軸方向に並べて配置される筒状の第1および第2コアと、第1および第2コアを包囲するように配置される筒状のコイルと、第2コア内に軸方向に移動自在に配置されるプランジャと、第1コア内でプランジャに連動して軸方向に移動可能なロッド20と、これらの部材を収容するヨーク(ケース)とを有する(
図1には、ロッド20のみを示す)。ソレノイド部2のコイルを電流が流れると、ヨーク、第2コア、プランジャ、第1コアの順に流れる磁束回路が形成される。これにより、プランジャが第1コア側に吸引され、プランジャに連動してロッド20が第1コアから突出する方向(
図1における左側)に移動する。本実施形態において、ソレノイド部2に供給される電流は、油圧指令値に基づいて生成されるPWM信号により制御される。
【0016】
バルブ部3は、
図1に示すように、上述のバルブボディに組み込まれる略円筒状のスリーブ4と、スリーブ4の内部に軸方向に摺動自在(移動自在)に配置されるスプール5とを有する。スリーブ4の一端部(図中右端部)は、ソレノイド部2(ヨーク)に対して固定され、スリーブ4のソレノイド部2側とは反対側の端部(図中左端部)には、端部を閉鎖するキャップCPが固定(螺合)される。また、スリーブ4の内部には、スプール5とキャップCPとの間に位置するようにスプリング(弾性部材)SPが配置される。スプリングSPは、本実施形態においてコイルスプリングであり、スプール5をソレノイド部2側(
図1における右側)に付勢する。
【0017】
スリーブ4は、
図1に示すように、それぞれバルブボディに形成された対応する油路に連通する入力ポート4i、出力ポート4o、ドレンポート(排出ポート)4dおよびフィードバックポート4fを有する。入力ポート4iには、例えばオイルポンプから吐出された後にレギュレータバルブにより調圧された作動油(ライン圧)が供給される。また、リニアソレノイドバルブSLにより調圧された作動油は、出力ポート4oからバルブボディの油圧供給油路に流出する。油圧供給油路は、上述の油圧係合要素の係合油室に連通する。更に、ドレンポート4dは、バルブボディのドレン油路を介して作動油貯留部に連通し、フィードバックポート4fは、バルブボディに形成された油路を介して出力ポート4oに連通する。本実施形態において、入力ポート4i、出力ポート4o、ドレンポート4dおよびフィードバックポート4fは、ソレノイド部2側からスプリングSP(キャップCP)側に向けて、この順番で間隔をおいて軸方向に並ぶようにスリーブ4に形成される。すなわち、入力ポート4iは、出力ポート4oよりもソレノイド部2側に形成され、ドレンポート4dは、出力ポート4oよりもスプリングSP側に形成され、フィードバックポート4fは、ドレンポート4dよりもスプリングSP側に形成される。
【0018】
スリーブ4の内部には、入力ポート4iに連通する入力室40i、出力ポート4oに連通する出力室40o、ドレンポート4dに連通するドレン室40d、およびフィードバックポート4fに連通するフィードバック室40fが軸方向に間隔をおいて画成されている。更に、スリーブ4の内部には、入力室40iおよび出力室40oで開口する第1連通室41と、出力室40oおよびドレン室40dで開口する第2連通室42と、ドレン室40dおよびフィードバック室40fで開口する第3連通室43とが画成されている。入力室40i、出力室40o、ドレン室40dおよびフィードバック室40fは、互いに同一の内径(断面積)を有する断面円形状の空間部である。第1から第3連通室41,42,43は、互いに同一かつ入力室40i等の内径(断面積)よりも小さい内径(断面積)を有する断面円形状の空間部である。入力室40i、出力室40o、ドレン室40d、フィードバック室40f、および第1から第3連通室41,42,43は、スリーブ4の軸心に沿って互いに同軸に延在する。
【0019】
スプール5は、
図1に示すように、4つのランド51,52,53および54と、ランド51および52の間の第1軸部5aと、ランド52および53の間の第2軸部5bと、ランド53および54の間の第3軸部5cとを有する。ランド51,52および53は、互いに同一の外径(断面積)を有する円柱状に形成され、ランド54は、ランド51-53の外径(断面積)よりも小さい外径(断面積)を有する円柱状に形成されている。また、ランド52および53の外径は、スリーブ4の第1から第3連通室41,42,43の内径よりも僅かに小さい値に定められている。更に、本実施形態において、スプール5のランド52は、スリーブ4の出力室40oの軸長よりも長い軸長を有する。第1から第3軸部5a-5cは、少なくともランド52および53の外径(断面積)よりも小さい外径(断面積)を有する円柱状に形成されている。ランド51-54および第1から第3軸部5a-5cは、スプール5の軸心に沿って互いに同軸に延在する。
【0020】
スプール5のランド51は、ソレノイド部2側で入力室40iに連通するようにスリーブ4に形成された孔部(円孔)内に摺動自在に配置される。また、ランド51の先端(
図1における右端)には、ソレノイド部2のロッド20に当接する当接部50とストッパ部5sとが形成されている。更に、スプール5のランド54は、スプリングSP(キャップCP)側でフィードバック室40fに連通するようにスリーブ4に形成された孔部(円孔)内に摺動自在に配置され、ランド54とキャップCPとの間に上述のスプリングSPが配置される。これにより、スプール5は、スリーブ4の内部に摺動自在に配置され、スプリングSPによりソレノイド部2側に付勢されている。そして、スプール5の移動に応じて、スリーブ4の入力ポート4iと出力ポート4oとの連通状態および出力ポート4oとドレンポート4dとの連通状態がスプール5のランド52によって変化させられることになる。
【0021】
上述のように構成されたリニアソレノイドバルブSLにおいて、ソレノイド部2のコイルに電力が供給されていないときには、
図1および
図3(a)に示すように、スプール5(およびロッド20)がスプリングSPの付勢力によりソレノイド部2のプランジャに対して押し付けられる。これにより、
図3(a)に示すように、スプール5のランド52の入力室40i側の端面52iが第1連通室41内に位置すると共に、ランド52のドレン室40d側の端面52dが出力室40o内に位置する。ランド52の入力室40i側の端面52iが第1連通室41内に位置することにより、入力ポート4iと出力ポート4oとが、ランド52の外周面と第1連通室41を画成するスリーブ4の内周面との僅かなクリアランスを介して連通する。更に、ランド52のドレン室40d側の端面52dが出力室40o内に位置することにより、出力室40oとドレン室40dとが第2連通室42を介して十分な連通量で連通する。以下、リニアソレノイドバルブSLのこうした状態を「第1状態」という。
【0022】
ソレノイド部2に電流が供給されてロッド20がプランジャと共にスプリングSP側に移動すると、スプール5は、ロッド20により押圧されてスプリングSPの付勢力に抗してスプリングSP(キャップCP)側に移動する。リニアソレノイドバルブSLでは、スプール5がスプリングSP側に移動していくと、
図3(b)に示すように、ランド52の入力室40i側の端面52iが第1連通室41内に位置しつつ、ランド52のドレン室40d側の端面52dが出力室40oと第2連通室42との境界を越えて第2連通室42内に位置する。ランド52の入力室40i側の端面52iが第1連通室41内に位置することにより、入力ポート4iと出力ポート4oとが、ランド52の外周面と第1連通室41を画成するスリーブ4の内周面との僅かなクリアランスを介して連通する。更に、ランド52のドレン室40d側の端面52dが第2連通室42内に位置することにより、出力ポート4oとドレンポート4dとが、ランド52の外周面と第2連通室42を画成するスリーブ4の内周面との僅かなクリアランスを介して連通する。以下、リニアソレノイドバルブSLのこうした状態を「第2状態」という。
【0023】
ソレノイド部2に供給される電流が更に大きくなって、スプール5が更にロッド20により押圧されてスプリングSP(キャップCP)側に移動していくと、
図3(c)に示すように、ランド52のドレン室40d側の端面52dが第2連通室42内に位置しつつ、ランド52の入力室40i側の端面52iが第1連通室41と出力室40oとの境界を越えて出力室40o内に位置する。ランド52の端面52iが出力室40o内に位置することにより、第1連通室41を介して入力室40iと出力室40oとが十分な連通量で連通する。更に、ランド52のドレン室40d側の端面52dが第2連通室42内に位置することにより、出力ポート4oとドレンポート4dとが、ランド52の外周面と第2連通室42を画成するスリーブ4の内周面との僅かなクリアランスを介して連通する。以下、リニアソレノイドバルブSLのこうした状態を「第3状態」という。
【0024】
以下、リニアソレノイドバルブSLのバルブ部3のスプール5の初期位置(第1状態での位置)からの移動量を「ストローク量S1」という。また、スプール5のランド52の入力室40i(入力ポート4i)側の端面52iが第1連通室41と出力室40o(出力ポート4o)との境界に位置するときのストローク量S1を「所定ストローク量Sref1」という。スリーブ4の入力ポート4iと出力ポート4oとの連通量は、ストローク量S1が所定ストローク量Sref1以下であるとき(第1状態や第2状態であるとき)には、所定量(ランド52の外周面と第1連通室41を画成するスリーブ4の内周面との僅かなクリアランス)となり、ストローク量S1が所定ストローク量Sref1よりも大きいとき(第3状態であるとき)には、ストローク量S1が大きくなるにつれて所定量から徐々に多くなる。このため、ストローク量S1が所定ストローク量Sref1よりも大きいときには、ストローク量S1が所定ストローク量Sref1以下であるときに比して、バルブ部3のスプール5の単位移動量当たりのスリーブ4の入力室40iと出力室40oとの連通量の変化量、ひいては、リニアソレノイドバルブSLの出力ポート4oからの出力油圧の変化量が大きくなる。
【0025】
各リニアソレノイドバルブSLは、
図2に示すように、車両に搭載された電源としての補機バッテリ90からの電力により駆動される。補機バッテリ90は、例えば12Vの定格電圧を有する鉛蓄電池等である。
【0026】
ECU6は、CPUやROM、RAM、入出力インターフェース等を含むマイクロコンピュータや、各種ロジックIC等(何れも図示省略)を有する。このECU6は、図示しないアクセルペダルポジションセンサにより検出される車両のアクセルペダルの踏み込み量を示すアクセル開度Accや、図示しない車速センサにより検出される車両の車速V、図示しない電圧センサにより検出される補機バッテリ90の電圧Vbat、図示しない温度センサにより検出される作動油の温度(油温)Toil等を入力する。なお、ECU6は、車速Vの代わりに、図示しない回転速度センサにより検出される変速機の出力軸の回転速度(出力回転速度)Noutを入力するものであってもよい。
【0027】
ECU6には、
図2に示すように、CPUやROM、RAM、各種ロジックICといったハードウエアと、ROMにインストールされた各種プログラムといったソフトウェアと、のうちの少なくとも何れか一方により、演算処理部60と、それぞれ対応するリニアソレノイドバルブSLに接続される複数のバルブ駆動制御部70と、が機能ブロック(モジュール)として構築される。なお、
図2には、説明の簡単のために、1つのバルブ駆動制御部70のみを示す。
【0028】
演算処理部60は、油圧指令値設定部61と、電流指令値設定部62とを有する。油圧指令値設定部61は、アクセルペダルポジションセンサからのアクセル開度Accや車速センサからの車速Vを入力し、入力したアクセル開度Accおよび車速Vに基づいて、各リニアソレノイドバルブSLの出力ポート4oからの出力油圧の指令値である油圧指令値Ps*を設定する。電流指令値設定部62は、油圧指令値設定部61により設定された各リニアソレノイドバルブの油圧指令値Ps*に基づいて、各リニアソレノイドバルブSLのソレノイド部2に供給する電流の指令値である電流指令値Is*を設定する。具体的には、油圧指令値Ps*が大きいほど大きくなるように電流指令値Is*を設定する。ここで、電流指令値設定部62による電流指令値Is*の更新周期は、後述のディザ指令値Vdizの周期(ディザ周期Tdiz)よりも長く設定される。
【0029】
各バルブ駆動制御部70は、目標電圧設定部71と、ディザ指令値設定部72と、電流供給部73と、電流検出部77と、フィルタ処理部78とを有する。電流供給部73は、電圧重畳部74とPWM信号生成部75と駆動回路76とを有する。
【0030】
目標電圧設定部71は、フィードバック制御部と、フィードフォワード制御部と、加算部とを有し、フィードバック制御により得られるフィードバック電圧とフィードフォワード制御部により得られるフィードフォワード電圧との和をリニアソレノイドバルブSLのソレノイド部2に印加する電圧の目標値である目標電圧Vtagとして出力する。フィードバック制御部は、電流指令値設定部62により設定された電流指令値Is*と、電流検出部77により検出された電流Isに対してフィルタ処理部78によりフィルタ処理された処理後電流Isfと、の差分が打ち消されるようにフィードバック制御(PI制御やPID制御)によりフィードバック電圧を演算して出力する。例えば、フィードバック制御部は、処理後電流Isfと電流指令値Is*との差分に基づく比例項と積分項との和をフィードバック電圧として演算して出力する。フィードフォワード制御部は、電流指令値設定部62により設定された電流指令値Is*に基づいてフィードフォワード制御によりフィードフォワード電圧を演算して出力する。例えば、フィードフォワード制御部は、電流指令値Is*と、油温Toilを考慮して目標電圧Vtagの前回値と電流指令値Is*とから算出されるソレノイド部2の抵抗値(推定値)と、の積をフィードフォワード電圧として出力する。なお、目標電圧設定部71は、フィードフォワード制御部および加算部を有さない、すなわち、フィードバック電圧を目標電圧Vtagとして出力するものとしてもよい。
【0031】
ディザ指令値設定部72は、電流指令値設定部62により設定された電流指令値Is*に基づいてディザ振幅Adizを設定し、後述の電圧指令値Vs*を目標電圧Vtagに対してディザ周期Tdizかつディザ振幅Adizの例えば正弦波状に変動させるためのディザ指令値Vdizを生成する。ここで、ディザ周期Tdizは、電流指令値設定部62による電流指令値Is*の更新周期よりも短く、かつ、PWM信号生成部75により生成されるPWM信号の周期(PWM周期)よりも長く設定される。ディザ振幅Adizの設定方法については後述する。
【0032】
電圧重畳部74は、目標電圧設定部71により設定された目標電圧Vtagに、ディザ指令値設定部72により設定されたディザ指令値Vdizを重畳させて電圧指令値Vs*を生成する。即ち、電圧重畳部74は、目標電圧Vtagをディザ振幅Adizおよびディザ周期Tdizで変動させた電圧指令値Vs*を生成する。
【0033】
PWM信号生成部75は、PWM周期ごとに、電圧重畳部74により生成された電圧指令値Vs*と補機バッテリ90の電圧Vbatとに基づいてパルス幅を変調したPWM信号を生成して駆動回路76に出力する。本実施形態において、PWM信号生成部75は、補機バッテリ90の電圧Vbatが高いほど、かつ、油圧Toilが高いほどすなわちソレノイド部2の抵抗値が低いほどPWM信号のデューティ比を小さくする。PWM信号の周期は、ディザ周期Tdizよりも短く設定されている。
【0034】
駆動回路76は、それぞれMOSFETである第1および第2スイッチング素子SW1,SW2を有する。第1スイッチング素子SW1のドレインは、補機バッテリ90の正極に接続され、第1スイッチング素子SW1のソースと第2スイッチング素子SW2のドレインとは、互いに接続され、第2スイッチング素子SW2のソースは、電流検出部77の図示しないシャント抵抗を介して接地される。また、互いに接続された第1スイッチング素子SW1のソースおよび第2スイッチング素子SW2のドレインと、第2スイッチング素子SW2のソースとは、リニアソレノイドバルブSLのソレノイド部2に接続される。更に、第1および第2スイッチング素子SW1,SW2のゲートは、PWM信号生成部75に接続される。なお、第1および第2スイッチング素子SW1,SW2は、MOSFETに代えて、バイポーラトランジスタやIGBTであってもよい。
【0035】
この駆動回路76では、PWM信号生成部75からのPWM信号により第1スイッチング素子SW1がオンされると共に第2スイッチング素子SW2がオフされると、補機バッテリ90の電圧VbatがリニアソレノイドバルブSLのソレノイド部2(コイル)に印加され、ソレノイド部2に起電流が流れる。これに対して、PWM信号生成部75からのPWM信号により第1スイッチング素子SW1がオフされると共に第2スイッチング素子SW2がオンされると、リニアソレノイドバルブSLのソレノイド部2(コイル)が接地され、ソレノイド部2に逆起電流が流れる。
【0036】
電流検出部77は、第2スイッチング素子SW2のソースに一端が接続されると共に他端が接地されたシャント抵抗と、シャント抵抗の第2スイッチング素子SW2側と接地側との電圧を検出するオペアンプと、オペアンプの出力(電圧のアナログ信号)をリニアソレノイドバルブSLに流れる電流値のアナログ信号に変換して更にデジタル信号(電流値Is)に変換するA/D変換器とを有する(何れも図示省略)。
【0037】
フィルタ処理部78は、電流検出部77により検出された電流値Isに対してフィルタ処理により上述のディザ周期Tdizの周波数成分を除去した処理後電流Isfを目標電圧設定部71に出力する。フィルタ処理部78は、フィルタ処理としてディザ周期Tdizの周波数成分を除去できるものであればよく、例えば、バンドストップフィルタ(ノッチフィルタ)やハイパスフィルタ、バンドパスフィルタなどが用いられる。
【0038】
こうしたECU6の機能ブロックによって、各リニアソレノイドバルブSLのソレノイド部2に供給する電流をディザ周期Tdizで変動させて各リニアソレノイドバルブSLのプランジャやロッド20、スプール5を振動させることにより、スプール5とスリーブ4との摺動抵抗の低減を図り、リニアソレノイドバルブSLの応答性の低下や応答バラツキの低下を図ることができる。
【0039】
次に、ECU6のディザ指令値設定部72によるディザ振幅Adizの設定処理について説明する。
図4は、ディザ指令値設定部72により繰り返し実行されるディザ振幅設定処理の一例を示すフローチャートである。
【0040】
図4のディザ振幅設定処理では、ディザ指令値設定部72は、最初に、電流指令値設定部62により設定された電流指令値Is*を入力し(ステップS100)、入力した電流指令値Is*に基づいて、電流指令値Is*の単位時間当たりの増加量である電流指令値増加率Iupを演算する(ステップS110)。ここで、電流指令値増加率Iupは、例えば、今回の電流指令値Is*から前回の電流指令値(前回Is*)を減じた値を電流指令値Is*の入力周期Δtsで除して演算される。
【0041】
続いて、電流指令値増加率Iupが閾値Iupref1以上である(第1条件が成立した)か否かを判定し(ステップS120)、電流指令値増加率Iupが閾値Iupref1以上である(第1条件が成立した)と判定したときには、電流指令値増加率Iupが閾値Iupref1よりも大きい閾値Iupref2以上である(第2条件が成立した)か否かを判定する(ステップS130)。
【0042】
ここで、閾値Iupref1は、リニアソレノイドバルブSLのストローク量S1が所定ストローク量Sref1付近よりも小さい側から所定ストローク量Sref1付近やそれよりも大きい側に至るまたはすでに所定ストローク量Sref1付近やそれよりも大きい側である可能性(以下、「第1可能性」という)の有無を判定するのに用いられる閾値であり、実験や解析により予め定められる。閾値Iupref2は、リニアソレノイドバルブSLのストローク量S1が所定ストローク量Sref1付近よりも小さい側から所定ストローク量Sref1付近やそれよりも大きい側に極短時間で至ると共に電流指令値増加率Iupが極短時間だけ閾値Iupref1以上である(第1条件が極短時間だけ成立する)可能性(以下、「第2可能性」という)の有無を判定するのに用いられる閾値であり、実験や解析により予め定められる。リニアソレノイドバルブSLが常開型リニアソレノイドバルブである場合、ソレノイド部2に供給される電流の増加に伴ってストローク量S1が増加し、ストローク量S1が所定ストローク量Sref1よりも大きいときに、ストローク量S1が所定ストローク量Sref1以下であるときに比して、バルブ部3のスプール5の単位移動量当たりのスリーブ4の入力室40iと出力室40oとの連通量の変化量、ひいては、リニアソレノイドバルブSLの出力ポート4oからの出力油圧の変化量が大きくなる。ステップS120,S130の処理は、これを考慮して行なわれる処理である。
【0043】
ステップS120で電流指令値増加率Iupが閾値Iupref1未満である(第1条件が成立していない)と判定したときには、第1可能性がないと判断し、ディザ振幅Adizに比較的大きい第1振幅Adiz1を設定する振幅通常処理を実行して(ステップS240)、本処理を終了する。振幅通常処理を実行することにより、電圧重畳部74により生成される電圧指令値Vs*が比較的大きい振幅で変動し、駆動回路76によってリニアソレノイドバルブSLのソレノイド部2に供給される電流が比較的大きい振幅で変動し、バルブ部3のスプール5が比較的大きい振幅で振動する。この結果、リニアソレノイドバルブSLのバルブ部3のスプール5とスリーブ4との摺動抵抗を十分に低減し、リニアソレノイドバルブSLの応答性の低下や応答バラツキの低下を十分に抑制することができる。
【0044】
ステップS120で電流指令値増加率Iupが閾値Iupref1以上である(第1条件が成立した)と判定し、かつ、ステップS130で電流指令値増加率Iupが閾値Iupref2未満である(第2条件が成立していない)と判定したときには、第1可能性がありかつ第2可能性がないと判断し、ディザ振幅Adizに値0以上でかつ第1振幅Adiz1よりも小さい第2振幅Adiz2を設定する振動低減処理を実行する、すなわち、振動通常処理から振動低減処理に移行する(ステップS140)。振幅低減処理を実行することにより、振幅通常処理を実行する場合に比して、電圧重畳部74により生成される電圧指令値Vs*の変動の振幅が小さくなり、駆動回路76によってリニアソレノイドバルブSLのソレノイド部2に供給される電流の変動の振幅が小さくなり、バルブ部3のスプール5の振動の振幅が小さくなる。この結果、ストローク量S1が所定ストローク量Sref1付近やそれよりも大きい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0045】
続いて、ステップS100,S110の処理と同様に、電流指令値Is*を入力して電流指令値増加率Iupを演算する(ステップS150,S160)。そして、演算した電流指令値増加率Iupが上述の閾値Iupref1未満である(第1条件の成立が解消した)か否かを判定し(ステップS170)、電流指令値増加率Iupが閾値Iupref1以上である(第1条件の成立が解消していない)と判定したときには、ステップS150に戻る。このようにして、電流指令値増加率Iupが閾値Iupref1未満に至る(第1条件の成立が解消する)のを待つ。そして、ステップS170で電流指令値増加率Iupが閾値Iupref1未満である(第1条件の成立が解消した)と判定すると、ディザ振幅Adizに第1振幅Adiz1を設定して、すなわち、振幅低減処理から振幅通常処理に移行して(ステップS240)、本処理を終了する。
【0046】
ステップS120で電流指令値増加率Iupが閾値Iupref1以上である(第1条件が成立した)と判定し、かつ、ステップS130で電流指令値増加率Iupが閾値Iupref2以上である(第2条件が成立した)と判定したときには、第1可能性および第2可能性があると判断し、ステップS140の処理と同様に、ディザ振幅Adizに第2振幅Adiz2を設定する、すなわち、振幅通常処理から振幅低減処理に移行すると共に(ステップS180)、振幅低減処理の継続時間Tdの計時を開始する(ステップS190)。振幅低減処理を実行することにより、上述したように、ストローク量S1が所定ストローク量Sref1付近やそれよりも大きい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0047】
続いて、ステップS100,S110の処理と同様に、電流指令値Is*を入力して電流指令値増加率Iupを演算する(ステップS200,S210)。そして、演算した電流指令値増加率Iupが上述の閾値Iupref1未満である(第1条件の成立が解消した)か否かを判定すると共に(ステップS220)、振幅低減処理の継続時間Tdが所定時間Tdref1以上であるか否かを判定し(ステップS230)、電流指令値増加率Iupが閾値Iupref1以上である(第1条件の成立が解消していない)と判定したときや、振幅低減処理の継続時間Tdが所定時間Tdref1未満であると判定したときには、ステップS200に戻る。このようにして、電流指令値増加率Iupが閾値Iupref1未満に至る(第1条件の成立が解消する)と共に振幅低減処理の継続時間Tdが所定時間Tdref1以上に至るのを待つ。そして、ステップS220で電流指令値増加率Iupが閾値Iupref1未満である(第1条件の成立が解消した)と判定すると共にステップS230で振幅低減処理の継続時間Tdが所定時間Tdref1以上であると判定すると、ディザ振幅Adizに第1振幅Adiz1を設定して、すなわち、振幅低減処理から振幅通常処理に移行して(ステップS240)、本処理を終了する。
【0048】
ここで、所定時間Tdref1は、リニアソレノイドバルブSLの制御性を考慮して設定される。電流指令値増加率Iupが閾値Iupref2以上であるときには、電流指令値増加率Iupが極短時間だけ閾値Iupref1以上である(第1条件が極短時間だけ成立する)可能性がある。このため、電流指令値増加率Iupが閾値Iupref1未満になった(第1条件の成立が解消した)ときに振幅低減処理の継続時間Tdに拘わらずに直ちに振幅低減処理から振幅通常処理に移行する場合、振幅通常処理、極短時間の振幅低減処理、振幅通常処理となり、リニアソレノイドバルブSLのバルブ部3のスプール5に対する制御性が悪化する可能性がある。これに対して、本実施形態では、電流指令値増加率Iupが閾値Iupref2以上に至って(第1条件および第2条件が共に成立して)振幅通常処理から振幅低減処理に移行したときには、電流指令値増加率Iupが閾値Iupref1未満に至る(第1条件の成立が解消する)と共に振幅低減処理の継続時間Tdが所定時間Tdref1以上に至るまで、振幅低減処理を継続する。これにより、リニアソレノイドバルブSLのバルブ部3のスプール5に対する制御性が悪化するのを抑制することができる。
【0049】
次に、リニアソレノイドバルブSLに対応する油圧係合要素を係合する際の動作について説明する。
図5および
図6は、それぞれ、本実施形態および比較形態において、油圧係合要素を係合する際の電流指令値Is*、電流指令値増加率Iup、ディザ振幅Adiz、ストローク量S1およびストローク量平均値S1av、油圧指令値Ps*、出力油圧Ps、出力油圧平均値Psavの様子の一例を示す説明図である。ストローク量平均値S1avおよび出力油圧平均値Psavは、それぞれ、ストローク量S1および出力油圧Psの単位時間当たりの平均値である。比較形態では、電流指令値増加率Iupに拘わらずにディザ振幅Adizに第1振幅Adiz1を設定する(振幅通常処理を実行する)ものとした。
【0050】
図5および
図6に示すように、油圧係合要素を係合する際には、充填用処理(時刻t11~t12)、待機用処理(時刻t12~t13)、増圧用処理(時刻t13~t14)、保持用処理(時刻t14~)をこの順に実行する。本実施形態において、油圧係合要素を係合する際の上述の閾値Iupref1は、充填用処理および増圧用処理のときには、電流指令値増加率Iupが閾値Iupref1以上となり、待機用処理および保持用処理のときには、電流指令値増加率Iupが閾値Iupref1未満となるように設定される。また、油圧係合要素を係合する際の閾値Iupref2は、充填用処理のときには、電流指令値増加率Iupが閾値Iupref2以上となり、待機用処理、増圧用処理、保持用処理のときには、電流指令値増加率Iupが閾値Iupref2未満となるように設定される。更に、所定時間Tdref1は、充填用処理の時間として設定される。
【0051】
充填用処理は、油圧係合要素の係合油室に作動油が急速充填されるように油圧指令値Ps*を変化させる処理であり、具体的には、油圧指令値Ps*をゼロから急峻に比較的高い値まで増加させて保持する。このとき、電流指令値Is*は、油圧指令値Ps*と同様に、ゼロから急峻に比較的高い値まで増加して保持され、電流指令値増加率Iupは、電流指令値Is*が急峻に増加するときにゼロから極短時間だけ閾値Iupref2以上となってその後に略ゼロに戻る。また、電流指令値Is*がゼロから急峻に比較的高い値まで増加して保持されるのに伴って、ストローク量平均値S1avがゼロから所定ストローク量Sref1付近まで急峻に増加して保持され、出力油圧平均値Psavがゼロから徐々に増加する。
【0052】
ここで、ストローク量S1は、ソレノイド部2に供給される電流により発生する推力(
図3における左向きの力)と、スプリングSPの付勢力およびフィードバック室40fに供給された油圧によりスプール5に作用する推力(何れも
図3における右向きの力)との関係に基づく。充填用処理のときには、出力油圧平均値Psavが低く、バルブボディに形成された油路を介して出力ポート4oに連通するフィードバックポート4f(フィードバック室40f)の油圧も低いため、電流指令値増加率Iupが閾値Iupref2以上に至った後に閾値Iupref1未満に至ってかつ電流指令値Is*が比較的高い値で保持されているときに、ストローク量平均値S1avが所定ストローク量Sref1付近で保持されている。
【0053】
待機用処理は、油圧指令値Ps*を充填用処理の比較的高い値から比較的低い待機圧に急峻に減少させて保持する処理である。このとき、電流指令値Is*は、油圧指令値Ps*と同様に、充填用処理の比較的高い値から急峻に比較的低い値に減少して保持され、電流指令値増加率Iupは、電流指令値Is*が急峻に減少するときに略ゼロから極短時間だけ負の範囲内で絶対値が比較的大きくなってその後に略ゼロに戻る。また、電流指令値Is*が充填用処理の比較的高い値から比較的低い値に減少して保持されるのに伴って、ストローク量平均値S1avが所定ストローク量Sref1付近から減少して保持され、出力油圧平均値Psavが緩やかに増加しながら油圧指令値Ps*に近づく。
【0054】
増圧用処理は、油圧係合要素が係合されるように油圧指令値Ps*を徐々に増加させる処理であり、具体的には、油圧指令値Ps*を略一定の増加率で増加させる。このとき、電流指令値Is*は、油圧指令値Ps*と同様に、略一定の増加率で増加し、電流指令値増加率Iupは、閾値Iupref1以上でかつ閾値Iupref2未満の値となる。また、電流指令値Is*が徐々に増加するのに伴って、ストローク量平均値S1avが待機用処理のときの比較的小さい値から所定ストローク量Sref1付近まで増加して保持され、出力油圧平均値Psavが待機用処理のときの比較的小さい値から徐々に増加する。なお、出力ポート4oからの出力油圧Psが高くなると、フィードバックポート4f(フィードバック室40f)の油圧も高くなる。
【0055】
保持用処理は、油圧指令値Ps*を保持する処理である。このとき、電流指令値Is*は、油圧指令値Ps*と同様に保持され、電流指令値増加率Iupは略ゼロとなる。また、電流指令値Is*が保持されかつフィードバック室40fの油圧が高くなっていることにより、ストローク量平均値S1avが所定ストローク量Sref1付近からある程度減少して保持されている。
【0056】
比較形態では、
図6に示すように、電流指令値増加率Iupに拘わらずにディザ振幅Adizに第1振幅Adiz1を設定する(振幅通常処理を実行する)。このため、充填用処理や増圧用処理で、ストローク量S1が所定ストローク量Sref1付近やそれよりも大きい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動している。
【0057】
これに対して、本実施形態では、
図5に示すように、時刻t11に充填用処理で電流指令値増加率Iupが閾値Iupref2以上に至ると(第1条件および第2条件が成立すると)、振幅低減処理を実行する。これにより、充填用処理で、ストローク量S1が所定ストローク量Sref1付近で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。また、充填用処理で電流指令値増加率Iupが閾値Iupref2以上に至って(第1条件および第2条件が成立して)振幅低減処理を開始したときには、電流指令値増加率Iupが閾値Iupref1未満に至る(第1条件の成立が解消する)と共に振幅低減処理の継続時間Tdが所定時間Tdref1以上に至るまで、振幅低減処理を継続することにより(時刻t11~t12)、リニアソレノイドバルブSLのバルブ部3のスプール5に対する制御性が悪化するのを抑制することができる。なお、充填用処理のときには、上述したように、電流指令値増加率Iupが閾値Iupref2以上になった後に閾値Iupref1未満に至ってかつ電流指令値Is*が比較的高い値で保持されているときに、出力油圧平均値Psavが低くフィードバックポート4fの油圧が低いため、ストローク量平均値S1avが所定ストローク量Sref1付近で保持される。この観点からも、振幅低減処理の継続時間Tdが所定時間Tdref1以上に至るまで振幅低減処理を継続することの意義がある。
【0058】
また、時刻t13に増圧用処理で電流指令値増加率Iupが閾値Iupref1以上に至ると、振幅低減処理を実行する。これにより、増圧用処理で、ストローク量S1が所定ストローク量Sref1付近で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0059】
以上説明したように、リニアソレノイドバルブSLが常閉型のリニアソレノイドバルブである場合において、ECU6は、電流指令値増加率Iupが閾値Iupref1未満である(第1条件が成立していない)ときには、ディザ振幅Adizに第1振幅Adiz1を設定する振幅通常処理を実行し、電流指令値増加率Iupが閾値Iupref1以上である(第1条件が成立している)ときには、ディザ振幅Adizに値0以上でかつ第1振幅Adiz1よりも小さい第2振幅Adiz2を設定する振幅低減処理を実行する。そして、油圧指令値Ps*に基づく電流指令値Is*に基づく目標電圧Vtagと、ディザ振幅Adizのディザ指令値Vdizと、に基づく電流をソレノイド部2に供給する。こうした処理により、ストローク量S1が所定ストローク量Sref1付近やそれよりも大きい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0060】
上述した実施形態では、電流指令値増加率Iupが閾値Iupref1以上でかつ閾値Iupref2未満になって(第1条件が成立すると共に第2条件が成立せずに)振幅低減処理を開始した場合、電流指令値増加率Iupが閾値Iupref1未満に至ったときに(第1条件の成立が解消したときに)、振動低減処理を終了するものとした。しかし、この場合、電流指令値増加率Iupが閾値Iupref1未満に至ってから所定時間が経過したときに、振動低減処理を終了するものとしてもよい。所定時間は、上述の所定時間Tdref1よりも短い時間、例えば、ディザ周期Tdizの1倍~3倍程度の時間が用いられる。
【0061】
上述した実施形態では、リニアソレノイドバルブSLは、常閉型リニアソレノイドバルブであるものとした。しかし、リニアソレノイドバルブSLは、常開型リニアソレノイドバルブであるものとしてもよい。リニアソレノイドバルブSLが常開型リニアソレノイドバルブである場合のハード構成として、
図1のリニアソレノイドバルブSLと同様のスリーブ4およびスプール5を有し、且つ、スプリングSPによりスプール5を
図1の左側に付勢すると共にソレノイド部2に電流が供給されたときにスプリングSPの付勢力に抗してスプール5を
図1の右側に移動させる構成を一例として説明する。また、説明の容易のために、
図1のリニアソレノイドバルブSLと同一の符号を用いて説明する。
【0062】
以下、リニアソレノイドバルブSLのバルブ部3のスプール5の初期位置からの移動量を「ストローク量S2」という。また、スプール5のランド52の入力室40i側の端面52iが第1連通室41と出力室40oとの境界に位置するときのストローク量S2を「所定ストローク量Sref2」という。スリーブ4の入力ポート4iと出力ポート4oとの連通量は、ストローク量S2が所定ストローク量Sref2よりも小さいときには、ストローク量S2が大きくなるにつれて所定量(ランド52の外周面と第1連通室41を画成するスリーブ4の内周面との僅かなクリアランス)よりも多い第2所定量から所定量に向かって徐々に少なくなり、ストローク量S2が所定ストローク量Sref2以上であるときには、所定量となる。このため、ストローク量S2が所定ストローク量Sref2よりも小さいときには、ストローク量S2が所定ストローク量Sref2以上であるときに比して、バルブ部3のスプール5の単位移動量当たりのスリーブ4の入力室40iと出力室40oとの連通量の変化量、ひいては、リニアソレノイドバルブSLの出力ポート4oからの出力油圧の変化量が大きくなる。
【0063】
リニアソレノイドバルブSLが常開型リニアソレノイドバルブである場合、リニアソレノイドバルブSLが常閉型リニアソレノイドバルブである場合と同様に、ECU6に
図2のような機能ブロックが形成される。ただし、電流指令値設定部62は、油圧指令値設定部61により設定された各リニアソレノイドバルブの油圧指令値Ps*大きいほど小さくなるように、各リニアソレノイドバルブSLのソレノイド部2の電流指令値Is*を設定する。
【0064】
また、ECU6のディザ指令値設定部72は、
図4のディザ振幅設定処理に代えて、
図7のディザ振幅設定処理を実行する。
図7のディザ振幅設定処理は、ステップS110,S120,S130,S160,S170,S210,S220の処理がステップS112,S122,132,162,172,S212,S222の処理に置き換えられた点を除いて、
図4のディザ振幅設定処理と同一である。したがって、
図7のディザ振幅設定処理のうち
図4のディザ振幅設定処理と同一の処理つについては、同一のステップ番号を付し、詳細な説明を省略する。
【0065】
図7のディザ振幅設定処理では、ディザ指令値設定部72は、ステップS100で電流指令値Is*を入力すると、入力した電流指令値Is*に基づいて、電流指令値Is*の単位時間当たりの減少量である電流指令値減少率Idnを演算する(ステップS112)。ここで、電流指令値減少率Idnは、例えば、前回の電流指令値(前回Is*)から今回の電流指令値Is*を減じた値を電流指令値Is*の入力周期Δtsで除して演算される。
【0066】
続いて、電流指令値減少率Idnが閾値Idnref1以上である(第1条件が成立した)か否かを判定し(ステップS122)、電流指令値減少率Idnが閾値Idnref1以上である(第1条件が成立した)と判定したときには、電流指令値減少率Idnが閾値Idnref1よりも大きい閾値Idnref2以上である(第2条件が成立した)か否かを判定する(ステップS132)。
【0067】
ここで、閾値Idnref1は、リニアソレノイドバルブSLのストローク量S2が所定ストローク量Sref2付近よりも大きい側から所定ストローク量Sref2付近やそれよりも小さい側に至るまたはすでに所定ストローク量Sref2付近やそれよりも小さい側である可能性(以下、「第3可能性」という)の有無を判定するのに用いられる閾値であり、実験や解析により予め定められる。閾値Idnref2は、リニアソレノイドバルブSLのストローク量S2が所定ストローク量Sref2付近よりも大きい側から所定ストローク量Sref2付近やそれよりも小さい側に極短時間で至ると共に電流指令値減少率Idnが極短時間だけ閾値Idnref1以上である(第1条件が極短時間だけ成立する)可能性(以下、「第4可能性」という)の有無を判定するのに用いられる閾値であり、実験や解析により予め定められる。リニアソレノイドバルブSLが常開型リニアソレノイドバルブである場合、ソレノイド部2に供給される電流の減少に伴ってストローク量S2が減少し、ストローク量S2が所定ストローク量Sref2よりも小さいときに、ストローク量S2が所定ストローク量Sref2以上であるときに比して、バルブ部3のスプール5の単位移動量当たりのスリーブ4の入力室40iと出力室40oとの連通量の変化量、ひいては、リニアソレノイドバルブSLの出力ポート4oからの出力油圧の変化量が大きくなる。ステップS122,S132の処理は、これを考慮して行なわれる処理である。
【0068】
ステップS122で電流指令値減少率Idnが閾値Idnref1未満である(第1条件が成立していない)と判定したときには、第3可能性がないと判断し、ディザ振幅Adizに比較的大きい第1振幅Adiz1を設定する振動通常処理を実行して(ステップS240)、本処理を終了する。振幅通常処理を実行することにより、リニアソレノイドバルブSLのバルブ部3のスプール5とスリーブ4との摺動抵抗を十分に低減し、リニアソレノイドバルブSLの応答性の低下や応答バラツキの低下を十分に抑制することができる。
【0069】
ステップS122で電流指令値減少率Idnが閾値Idnref1以上である(第1条件が成立した)と判定し、かつ、ステップS132で電流指令値減少率Idnが閾値Idnref2未満である(第2条件が成立していない)と判定したときには、第3可能性がありかつ第4可能性がないと判断し、ディザ振幅Adizに第2振幅Adiz2を設定する振動低減処理を実行する、すなわち、振動通常処理から振動低減処理に移行する(ステップS140)。振幅低減処理を実行することにより、振幅通常処理を実行する場合に比して、ストローク量S2が所定ストローク量Sref2付近やそれよりも小さい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0070】
続いて、ステップS100,S112の処理と同様に、電流指令値Is*を入力して電流指令値減少率Idnを演算する(ステップS150,S162)。そして、演算した電流指令値減少率Idnが閾値Idnref1未満である(第1条件の成立が解消した)か否かを判定し(ステップS172)、電流指令値減少率Idnが閾値Idnref1以上である(第1条件の成立が解消していない)と判定したときには、ステップS150に戻る。このようにして、電流指令値減少率Idnが閾値Idnref1未満に至る(第1条件の成立が解消する)のを待つ。そして、ステップS172で電流指令値減少率Idnが閾値Idnref1未満である(第1条件の成立が解消した)と判定すると、ディザ振幅Adizに第1振幅Adiz1を設定して、すなわち、振幅低減処理から振幅通常処理に移行して(ステップS240)、本処理を終了する。
【0071】
ステップS122で電流指令値減少率Idnが閾値Idnref1以上である(第1条件が成立した)と判定し、かつ、ステップS132で電流指令値減少率Idnが閾値Idnref2以上である(第2条件が成立した)と判定したときには、第3可能性および第4可能性があると判断し、ステップS140の処理と同様に、ディザ振幅Adizに第2振幅Adiz2を設定する、すなわち、振幅通常処理から振幅低減処理に移行すると共に(ステップS180)、振幅低減処理の継続時間Tdの計時を開始する(ステップS190)。振幅低減処理を実行することにより、上述したように、ストローク量S2が所定ストローク量Sref2付近やそれよりも小さい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0072】
続いて、ステップS100,S112の処理と同様に、電流指令値Is*を入力して電流指令値減少率Idnを演算する(ステップS200,S212)。そして、演算した電流指令値減少率Idnが閾値Idnref1未満である(第1条件の成立が解消した)か否かを判定すると共に(ステップS222)、振幅低減処理の継続時間Tdが所定時間Tdref2以上であるか否かを判定し(ステップS230)、電流指令値減少率Idnが閾値Idnref1以上である(第1条件の成立が解消していない)と判定したときや、振幅低減処理の継続時間Tdが所定時間Tdref2未満であると判定したときには、ステップS200に戻る。このようにして、電流指令値減少率Idnが閾値Idnref1未満に至る(第1条件の成立が解消する)と共に振幅低減処理の継続時間Tdが所定時間Tdref2以上に至るのを待つ。そして、ステップS222で電流指令値減少率Idnが閾値Idnref1未満である(第1条件の成立が解消した)と判定すると共にステップS230で振幅低減処理の継続時間Tdが所定時間Tdref2以上であると判定すると、ディザ振幅Adizに第1振幅Adiz1を設定して、すなわち、振幅低減処理から振幅通常処理に移行して(ステップS240)、本処理を終了する。
【0073】
ここで、所定時間Tdref2は、リニアソレノイドバルブSLの制御性を考慮して設定される。電流指令値減少率Idnが閾値Idnref2以上であるときには、電流指令値減少率Idnが極短時間だけ閾値Idnref1以上である(第1条件が極短時間だけ成立する)可能性がある。このため、電流指令値減少率Idnが閾値Idnref1未満になった(第1条件の成立が解消した)ときに振幅低減処理の継続時間Tdに拘わらずに直ちに振幅低減処理から振幅通常処理に移行する場合、振幅通常処理、極短時間の振幅低減処理、振幅通常処理となり、リニアソレノイドバルブSLのバルブ部3のスプール5に対する制御性が悪化する可能性がある。これに対して、電流指令値減少率Idnが閾値Idnref2以上に至って(第1条件および第2条件が共に成立して)振幅通常処理から振幅低減処理に移行したときには、電流指令値減少率Idnが閾値Idnref1未満に至る(第1条件の成立が解消する)と共に振幅低減処理の継続時間Tdが所定時間Tdref2以上に至るまで、振幅低減処理を継続する。これにより、リニアソレノイドバルブSLのバルブ部3のスプール5に対する制御性が悪化するのを抑制することができる。
【0074】
次に、リニアソレノイドバルブSLに対応する油圧係合要素を係合する際の動作について説明する。
図8は、リニアソレノイドバルブSLが常開型のリニアソレノイドバルブである場合に油圧係合要素を係合する際の電流指令値Is*、電流指令値減少率Idn、ディザ振幅Adiz、ストローク量S2およびストローク量平均値S2av、油圧指令値Ps*、出力油圧Ps、出力油圧平均値Psavの様子の一例を示す説明図である。
【0075】
図8に示すように、油圧係合要素を係合する際には、充填用処理(時刻t21~t22)、待機用処理(時刻t22~t23)、増圧用処理(時刻t23~t24)、保持用処理(時刻t24~)をこの順に実行する。油圧係合要素を係合する際の上述の閾値Idnref1は、充填用処理および増圧用処理のときには、電流指令値減少率Idnが閾値Idnref1以上となり、待機用処理および保持用処理のときには、電流指令値減少率Idnが閾値Idnref1未満となるように設定される。また、油圧係合要素を係合する際の閾値Idnref2は、充填用処理のときには、電流指令値減少率Idnが閾値Idnref2以上となり、待機用処理、増圧用処理、保持用処理のときには、電流指令値減少率Idnが閾値Idnref2未満となるように設定される。更に、所定時間Tdref2は、充填用処理の時間として設定される。
【0076】
充填用処理は、油圧係合要素の係合油室に作動油が急速充填されるように油圧指令値Ps*を変化させる処理であり、具体的には、油圧指令値Ps*をゼロから急峻に比較的高い値まで増加させて保持する。このとき、電流指令値Is*は、比較的高いから急峻に比較的低い値に減少して保持され、電流指令値減少率Idnは、電流指令値Is*が急峻に減少するときにゼロから極短時間だけ閾値Idnref2以上となってその後に略ゼロに戻る。また、電流指令値Is*が比較的高いから急峻に比較的低い値に減少して保持されるのに伴って、ストローク量平均値S1avが比較的大きい値から所定ストローク量Sref2付近まで急峻に減少して保持され、出力油圧平均値Psavがゼロから徐々に増加する。
【0077】
充填用処理のときには、出力油圧平均値Psavが低く、フィードバックポート4f(フィードバック室40f)の油圧も低いため、電流指令値減少率Idnが閾値Idnref2以上に至った後に閾値Idnref1未満に至ってかつ電流指令値Is*が比較的低い値で保持されているときに、ストローク量平均値S2avが所定ストローク量Sref2付近で保持されている。
【0078】
待機用処理は、油圧指令値Ps*を充填用処理の比較的高い値から比較的低い待機圧に急峻に減少させて保持する処理である。このとき、電流指令値Is*は、充填用処理の比較的低い値から急峻に比較的高い値に増加して保持され、電流指令値減少率Idnは、電流指令値Is*が急峻に増加するときに略ゼロから極短時間だけ負の範囲内で絶対値が比較的大きくなってその後に略ゼロに戻る。また、電流指令値Is*が充填用処理の比較的低い値から比較的高い値に増加して保持されるのに伴って、ストローク量平均値S2avが所定ストローク量Sref2付近から増加して保持され、出力油圧平均値Psavが緩やかに増加しながら油圧指令値Ps*に近づく。
【0079】
増圧用処理は、油圧係合要素が係合されるように油圧指令値Ps*を徐々に増加させる処理であり、具体的には、油圧指令値Ps*を略一定の増加率で増加させる。このとき、電流指令値Is*は、略一定の減少率で減少し、電流指令値減少率Idnは、閾値Idnref1以上でかつ閾値Idnref2未満の値となる。また、電流指令値Is*が徐々に減少するのに伴って、ストローク量平均値S2avが待機用処理のときの比較的大きい値から所定ストローク量Sref2付近まで減少して保持され、出力油圧平均値Psavが待機用処理のときの比較的小さい値から徐々に増加する。なお、出力ポート4oからの出力油圧Psが高くなると、フィードバックポート4f(フィードバック室40f)の油圧も高くなる。
【0080】
保持用処理は、油圧指令値Ps*を保持する処理である。このとき、電流指令値Is*は、油圧指令値Ps*と同様に保持され、電流指令値減少率Idnは略ゼロとなる。また、電流指令値Is*が保持されかつフィードバック室40fの油圧が高くなっていることにより、ストローク量平均値S2avが所定ストローク量Sref2付近からある程度増加して保持されている。
【0081】
図8に示すように、時刻t21に充填用処理で電流指令値減少率Idnが閾値Idnref2以上に至ると(第1条件および第2条件が成立すると)、振幅低減処理を実行する。これにより、充填用処理で、ストローク量S2が所定ストローク量Sref2付近で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。また、充填用処理で電流指令値減少率Idnが閾値Idnref2以上に至って(第1条件および第2条件が成立して)振幅低減処理を開始したときには、電流指令値減少率Idnが閾値Idnref1未満に至る(第1条件の成立が解消する)と共に振幅低減処理の継続時間Tdが所定時間Tdref2以上に至るまで、振幅低減処理を継続することにより(時刻t21~t22)、リニアソレノイドバルブSLのバルブ部3のスプール5に対する制御性が悪化するのを抑制することができる。なお、充填用処理のときには、上述したように、電流指令値減少率Idnが閾値Idnref2以上に至った後に閾値Idnref1未満に至ってかつ電流指令値Is*が比較的低い値で保持されているときに、出力油圧平均値Psavが低くフィードバックポート4fの油圧が低いため、ストローク量平均値S2avが所定ストローク量Sref2付近で保持される。この観点からも、振幅低減処理の継続時間Tdが所定時間Tdref2以上に至るまで振幅低減処理を継続することの意義がある。
【0082】
また、時刻t23に増圧用処理で電流指令値減少率Idnが閾値Idnref1以上に至ると、振幅低減処理を実行する。これにより、増圧用処理で、ストローク量S2が所定ストローク量Sref2付近で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0083】
以上説明したように、リニアソレノイドバルブSLが常開型のリニアソレノイドバルブである場合において、ECU6は、電流指令値減少率Idnが閾値Idnref1未満である(第1条件が成立していない)ときには、ディザ振幅Adizに第1振幅Adiz1を設定する振幅通常処理を実行し、電流指令値減少率Idnが閾値Idnref1以上である(第1条件が成立している)ときには、ディザ振幅Adizに値0以上でかつ第1振幅Adiz1よりも小さい第2振幅Adiz2を設定する振幅低減処理を実行する。そして、油圧指令値Ps*に基づく電流指令値Is*に基づく目標電圧Vtagと、ディザ振幅Adizのディザ指令値Vdizと、に基づく電流をソレノイド部2に供給する。こうした処理により、ストローク量S2が所定ストローク量Sref2付近やそれよりも小さい側で変動するときに、バルブ部3のスリーブ4の入力室40iと出力室40oとの連通量が大きく変動するのを抑制し、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制することができる。
【0084】
電流指令値減少率Idnが閾値Idnref1以上でかつ閾値Idnref2未満になって(第1条件が成立すると共に第2条件が成立せずに)振幅低減処理を開始した場合、電流指令値減少率Idnが閾値Idnref1未満に至ったときに(第1条件の成立が解消したときに)、振動低減処理を終了するものとした。しかし、この場合、電流指令値減少率Idnが閾値Idnref1未満に至ってから所定時間が経過したときに、振動低減処理を終了するものとしてもよい。所定時間は、上述の所定時間Tdref2よりも短い時間、例えば、ディザ周期Tdizの1倍~3倍程度の時間が用いられる。
【0085】
上述した実施形態では、ECU6に、演算処理部60(油圧指令値設定部61、電流指令値設定部62)と、複数のバルブ駆動制御部70(目標電圧設定部71、ディザ指令値設定部72、電流供給部73(電圧重畳部74、PWM信号生成部75、駆動回路76)、電流検出部77、フィルタ処理部78)と、が機能ブロックとして構築されるものとした。しかし、
図9に示すように、
図1のECU6がECU6Bに置き換えられるものとしてもよい。
図9のECU6Bは、
図1のECU6の目標電圧設定部71、ディザ指令値設定部72、電圧重畳部74、PWM信号生成部75が、目標電流設定部71B、ディザ指令値設定部72B、電流重畳部74B、PWM信号生成部75Bに置き換えられた点を除いて、
図1のECU6と同一である。したがって、
図9のECU6Bのうち
図1のECU6と同一部分については、同一の符号を付し、詳細な説明を省略する。
【0086】
目標電流設定部71Bは、電流指令値Is*と電流Isにフィルタ処理を施した処理後電流Isfとに基づくフィードバック制御により目標電流Istagを設定する。ディザ指令値設定部72Bは、
図4や
図7のディザ振幅設定処理と同様の処理によりディザ振幅Adizを設定し、後述の重畳電流指令値Is2*を目標電流Itagに対してディザ周期Tdiz2かつディザ振幅Adiz2の例えば正弦波状に変動させるためのディザ指令値Idizを生成する。電流重畳部74Bは、目標電流Istagにディザ指令値Idizを重畳させて重畳電流指令値Is2*を生成する。PWM信号生成部は、重畳電流指令値Is2*、または、重畳電流指令値Is2*とソレノイド部2の抵抗値とに基づく電圧をPWM信号に変換して駆動回路76に出力する。この場合でも、
図4や
図7のディザ振幅設定処理と同様の処理によりディザ振幅Adiz2を設定することにより、振動通常処理を実行して、リニアソレノイドバルブSLの応答性の低下や応答バラツキの低下を十分に抑制したり、振動低減処理を実行して、リニアソレノイドバルブSLの出力ポート4oからの出力油圧が大きく変動するのを抑制したりすることができる。
【0087】
以上、本開示を実施するための形態について説明したが、本開示はこうした実施形態に何等限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【産業上の利用可能性】
【0088】
本開示は、リニアソレノイドバルブの制御装置の製造産業などに利用可能である。
【符号の説明】
【0089】
2 ソレノイド部、4 スリーブ、4i 入力ポート、4o 出力ポート、5 スプール、6 ECU(制御装置)、61 油圧指令値設定部、62 電流指令値設定部、ディザ指令値設定部72、73 電流供給部、SL リニアソレノイドバルブ。