IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 本田技研工業株式会社の特許一覧

特開2022-157734劣化状態推定システム、劣化状態推定方法、及びプログラム
<>
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図1
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図2
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図3
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図4
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図5
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図6
  • 特開-劣化状態推定システム、劣化状態推定方法、及びプログラム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022157734
(43)【公開日】2022-10-14
(54)【発明の名称】劣化状態推定システム、劣化状態推定方法、及びプログラム
(51)【国際特許分類】
   G01R 31/392 20190101AFI20221006BHJP
   G06N 3/02 20060101ALI20221006BHJP
   H01M 10/48 20060101ALI20221006BHJP
   H01M 10/42 20060101ALI20221006BHJP
   G01R 31/367 20190101ALI20221006BHJP
   G01R 31/3842 20190101ALI20221006BHJP
   G01R 31/3828 20190101ALI20221006BHJP
【FI】
G01R31/392
G06N3/02
H01M10/48 P
H01M10/42 P
G01R31/367
G01R31/3842
G01R31/3828
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2021062133
(22)【出願日】2021-03-31
(71)【出願人】
【識別番号】000005326
【氏名又は名称】本田技研工業株式会社
(74)【代理人】
【識別番号】100165179
【弁理士】
【氏名又は名称】田▲崎▼ 聡
(74)【代理人】
【識別番号】100126664
【弁理士】
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100154852
【弁理士】
【氏名又は名称】酒井 太一
(74)【代理人】
【識別番号】100194087
【弁理士】
【氏名又は名称】渡辺 伸一
(72)【発明者】
【氏名】並木 滋
【テーマコード(参考)】
2G216
5H030
【Fターム(参考)】
2G216BA02
2G216BA03
2G216BA25
2G216BA41
2G216CB11
5H030AA01
5H030AS08
5H030FF42
5H030FF43
5H030FF44
(57)【要約】
【課題】学習済みモデルによる二次電池の劣化についての推定の精度の向上を図る。
【解決手段】稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定のタイミングごとに測定する状態変数測定部と、測定された状態変数に基づいて算出した入力データを出力する前処理部と、前記入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定する劣化状態推定部とを備え、前記前処理部は、単位充放電量と、前記入力データの算出に用いる前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力する状態変数処理部を備えて二次電池の劣化状態推定システムを構成する。
【選択図】図1
【特許請求の範囲】
【請求項1】
稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定のタイミングごとに測定する状態変数測定部と、
前記状態変数測定部が測定した状態変数に基づいて算出した入力データを出力する前処理部と、
前記前処理部が出力した入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定する劣化状態推定部とを備え、
前記前処理部は、単位充放電量と、前記入力データの算出に用いる前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力する状態変数処理部を備える
二次電池の劣化状態推定システム。
【請求項2】
稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定のタイミングごとに測定する状態変数測定部と、
前記状態変数測定部が測定した状態変数に基づいて算出した入力データを出力する前処理部と、
前記前処理部が出力した入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定する劣化状態推定部とを備え、
前記前処理部は、単位充放電量としての大量充放電量と、前記大量充放電量よりも少量の単位充放電量としての少量充放電量と、前記入力データの算出に用いる前記大量充放電量と前記少量充放電量とに基づいた所望の区間として、現時刻に最も近い直近大量区間および直近少量区間と、前記直近大量区間、及び前記直近少量区間よりも前の1以上の過去大量区間、及び過去少量区間とを設定し、設定した前記大量区間および前記少量区間ごとに、前記状態変数に基づく電圧変化量とを大量区間データ、及び少量区間データとして算出し、算出された大量区間データ、及び少量区間データを前記入力データに含めて出力する状態変数処理部を備える
二次電池の劣化状態推定システム。
【請求項3】
前記状態変数処理部は、前記状態変数測定部が測定した出力電流を積算した電流積算値が所定値となる期間を前記所望の区間として設定する
請求項1または2に記載の劣化状態推定システム。
【請求項4】
前記算出された所望の区間ごとの充放電量と、前記算出された所望の区間ごとの電圧変化量との少なくともいずれか一方は、最小二乗法を用いて算出される勾配変化率である
請求項1から3のいずれか一項に記載の劣化状態推定システム。
【請求項5】
前記劣化状態モデルは、RNN(リカレント・ニューラルネットワーク)として構成される
請求項1から4のいずれか一項に記載の劣化状態推定システム。
【請求項6】
前記RNNの中間層は、LSTM(ロング・ショート・ターム・メモリ)またはGRU(ゲート付き回帰型ユニット)として構成される
請求項5に記載の劣化状態推定システム。
【請求項7】
前記劣化状態モデルは、CNN(コンボリューショナル・ニューラルネットワーク)として構成される
請求項1から4のいずれか一項に記載の劣化状態推定システム。
【請求項8】
劣化状態推定システムにおけるコンピュータが、
稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定タイミングごとに測定し、
測定された状態変数に基づいて算出した入力データを出力し、
出力された入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定し、
前記入力データの算出に用いる単位充放電量と、前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力する
二次電池の劣化状態推定方法。
【請求項9】
劣化状態推定システムにおけるコンピュータに、
稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定タイミングごとに測定させ、
測定された状態変数に基づいて算出した入力データを出力させ、
出力された前記入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定させ、
前記入力データの算出に用いる単位充放電量と、前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力させる
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、劣化状態推定システム、劣化状態推定方法、及びプログラムに関する。
【背景技術】
【0002】
第1時点から当該第1時点より第2時点までの間の蓄電池のSOC(State Of Charge)に係る時系列データと第1時点での蓄電池のSOHを入力データとし、第2時点でのSOHを出力データとする学習データに基づいて学習済みモデルを学習させる技術が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-168453号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のようにして学習が行われた学習済みモデルにより二次電池のSOHを推定するにあたってはSOCが入力データに含められる。入力データに含まれるSOCは推定値であることから、学習済みモデルにより出力されるSOHの精度が低下する場合がある。
【0005】
本発明は、このような事情を考慮してなされたものであり、学習済みモデルによる二次電池の劣化についての推定の精度の向上を図ることを目的の一つとする。
【課題を解決するための手段】
【0006】
この発明に係る劣化状態推定システム、劣化状態推定方法、及び劣化状態推定プログラムは、以下の構成を採用した。
(1):この発明の一態様に係る劣化状態推定システムは、稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定タイミングごとに測定する状態変数測定部と、前記状態変数測定部が測定した状態変数に基づいて算出した入力データを出力する前処理部と、前記前処理部が出力した入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定する劣化状態推定部とを備え、前記前処理部は、単位充放電量と、前記入力データの算出に用いる前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力する状態変数処理部を備える。
【0007】
(2):この発明の一態様に係る劣化状態推定システムは、稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定のタイミングごとに測定する状態変数測定部と、前記状態変数測定部が測定した状態変数に基づいて算出した入力データを出力する前処理部と、前記前処理部が出力した入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定する劣化状態推定部とを備え、前記前処理部は、単位充放電量としての大量充放電量と、前記大量充放電量よりも少量の単位充放電量としての少量充放電量と、前記入力データの算出に用いる前記大量充放電量と前記少量充放電量とに基づいた所望の区間として、現時刻に最も近い直近大量区間および直近少量区間と、前記直近大量区間、及び前記直近少量区間よりも前の1以上の過去大量区間、及び過去少量区間とを設定し、設定した前記大量区間および前記少量区間ごとに、前記状態変数に基づく電圧変化量とを大量区間データ、及び少量区間データとして算出し、算出された大量区間データ、及び少量区間データを前記入力データに含めて出力する状態変数処理部を備える。
【0008】
(3):上記(1)または(2)の態様に係る劣化状態推定システムにおいて、前記状態変数処理部は、前記状態変数測定部が測定した出力電流を積算した電流積算値が所定値となる期間を前記所望の区間として設定する。
【0009】
(4):上記(1)から(3)のいずれか1つの態様に係る劣化状態推定システムにおいて、前記算出された所望の区間ごとの充放電量と、前記算出された所望の区間ごとの電圧変化量との少なくともいずれか一方は、最小二乗法を用いて算出される勾配変化率である。
【0010】
(5):上記(1)から(4)のいずれか1つの態様に係る劣化状態推定システムにおいて、前記劣化状態モデルは、RNN(リカレント・ニューラルネットワーク)として構成される。
【0011】
(6):上記(5)に係る劣化状態推定システムにおいて、前記RNNの中間層は、LSTM(ロング・ショート・ターム・メモリ)またはGRU(ゲート付き回帰型ユニット)として構成される。
【0012】
(7):上記(1)から(4)のいずれか1つの態様に係る劣化状態推定システムにおいて、前記劣化状態モデルは、CNN(コンボリューショナル・ニューラルネットワーク)として構成される。
【0013】
(8):この発明の一態様に係る劣化状態推定方法は、劣化状態推定システムにおけるコンピュータが、稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定タイミングごとに測定し、測定された状態変数に基づいて算出した入力データを出力し、出力された入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定し、前記入力データの算出に用いる単位充放電量と、前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力する。
【0014】
(9):この発明の一態様に係るプログラムは、劣化状態推定システムにおけるコンピュータに、稼働中の二次電池の出力電流および出力電圧を含む状態変数を所定タイミングごとに測定させ、測定された状態変数に基づいて算出した入力データを出力させ、出力された入力データを用いて、学習済みの劣化状態モデルにより前記稼働中の二次電池の劣化状態を推定させ、前記入力データの算出に用いる単位充放電量と、前記単位充放電量に基づいた所望の区間として、現時刻に最も近い直近区間と、前記直近区間よりも前の1以上の過去区間とを設定し、設定した前記区間ごとに、前記状態変数に基づく電圧変化量とを区間データとして算出し、算出された区間データを前記入力データに含めて出力させるものである。
【発明の効果】
【0015】
(1)、(8)、(9)によれば、学習済みの劣化状態モデルによる二次電池の劣化状態の推定にあたって、複数の所望の区間に対応して算出した充放電量と電圧変化量とによる区間データが用いられる。これにより、学習済みの劣化状態モデルにより出力される二次電池の劣化推定精度の向上が図られる。
【0016】
(2)によれば、学習済みの劣化状態モデルによる二次電池の劣化状態の推定にあたって、複数の大量区間及び少量区間に対応して算出した充放電量と電圧変化量とによる大量区間データと少量区間データが用いられる。これにより、学習済みの劣化状態モデルにより出力される二次電池の劣化推定精度の向上が図られる。
【0017】
(3)によれば、電流積算値に基づいて大量区間を設定することが可能となる。
【0018】
(4)によれば、大量区間データとしての充放電量と電圧変化量について、ノイズの低減された精度の高いものとすることができる。
【0019】
(5)によれば、劣化状態モデルについてRNNを用いることで高い精度での推定結果を期待できる。
【0020】
(6)によれば、劣化状態モデルのRNNにおける中間層をLSTMとすることで高い精度での推定結果を期待できる。
【0021】
(7)によれば、劣化状態モデルについてCNNを用いることで高い精度での推定結果を期待できる。
【図面の簡単な説明】
【0022】
図1】本実施形態に係る劣化状態推定装置の構成例を示す図である。
図2】本実施形態に係る大量区間データの取得の態様例を説明する図である。
図3】本実施形態に係るSOC-OCV特性について説明する図である。
図4】本実施形態に係る充放電量と電圧変化量との関係に応じたSOHの識別に関して説明する図である。
図5】本実施形態に係る充放電量と電圧変化量との関係に応じたSOHの識別に関して説明する図である。
図6】本実施形態に係る充放電量と電圧変化量との関係に応じたSOHの識別に関して説明する図である。
図7】本実施形態に係る劣化状態推定装置がSOHの推定に関連して実行する処理手順例を示すフローチャートである。
【発明を実施するための形態】
【0023】
以下、図面を参照し、本発明の劣化状態推定システム、劣化状態推定方法、及び劣化状態推定プログラムの実施形態について説明する。
【0024】
図1は、本実施形態に係る劣化状態推定装置100の全体的な構成例を示している。劣化状態推定装置100は、二次電池200の劣化状態として、二次電池200のSOHを推定する。同図の劣化状態推定装置100は、状態変数測定部101、前処理部102、第2学習済みモデル103(劣化状態モデルの一例)、及び劣化状態推定部104を備える。
【0025】
状態変数測定部101は、稼働中の二次電池200の状態変数として、出力電流と出力電圧を測定し、測定した出力電流Ioutと出力電圧Voutとを出力する。出力電圧Voutは、二次電池200にてセンサが検出するCCV(Closed Circuit Voltage:閉路電圧)を基に算出されるものであってもよい。なお、出力電圧Voutは、OCV(Open Circuit Voltage:開放電圧)を基に算出されるものであってもよい。
【0026】
前処理部102は、前処理として、状態変数測定部101から入力された出力電流Ioutと出力電圧Voutとを利用して、現時刻tに対応する状態変数処理データを算出する。状態変数データは、特性識別部123がSOC-OCV特性の推定に用いる。また、状態変数処理データのうちで電力データP(t)を除くデータは、現時刻tに対応する入力データDin(t)として出力される、劣化状態推定部104は、入力データDin(t)をSOHの推定に用いる。
前処理部102は、状態変数処理部121、第1学習済みモデル122(特性識別モデルの一例)、及び特性識別部123を備える。
【0027】
状態変数処理部121は、状態変数測定部101から出力電流Ioutと出力電圧Voutとが入力される。状態変数処理部121は、所定の推定タイミングごとに、入力された出力電流Ioutと出力電圧Voutとに基づいて、現時刻tに対応する大量区間データ(充放電量LCA(t)~LCA(t-2)、電圧変化量LEV(t)~LEV(t-2))と、少量区間データ(充放電量SCA(t)、電圧変化量LEV(t))と、電圧データV(t)と、電力データP(t)とを算出する。
電圧データV(t)は、CCVであってよい。あるいは、電圧データV(t)は、OCVであってもよい。
また、電力データP(t)は、放電電力(消費電力)や充電電力であってよい。電力データP(t)に代えて、例えば電流量を示す情報、使用補機類や車両の使われ方の情報など、消費電力や充電電力等の度合いを把握可能な情報であってもよい。このような電力データP(t)あるいは電力データP(t)の代替となるデータは、例えばクラウド上で推定されたデータを取得するようにされてもよいし、特性が変化しないような場合には一意の情報であってもよい。
【0028】
区間データは、大量区間データと少量区間データとを含む。大量区間データは、単位大量充放電量と、一定の単位大量充放電量になるような複数の充放電量大量区間ごとに対応して状態変数処理部121が算出する電圧変化量である。少量区間データは、単位少量充放電量と、一定の単位少量充放電量になるような充放電量少量区間に対応して状態変数処理部121が算出する電圧変化量である。
なお、以降において、「充放電量大量区間については単に「大量区間」とも記載し、「充放電量少量区間」については単に「少量区間」とも記載する。
【0029】
図2を参照して、大量区間データの算出手法例について説明する。同図は、現時刻tから現時刻tより過去の時刻t-3までの期間に対応して得られた二次電池200の単位充放電量Aprdを示している。同図において示される単位充放電量Aprdは、出力電流Ioutを積算することにより得られる。
【0030】
状態変数処理部121は、現時刻tから遡って所定の単位電流積算値(出力電流Ioutの積算値)が得られる時刻t-1までの期間を、現時刻tに最も近い大量区間(直近大量区間T1)として設定する。また、状態変数処理部121は、時刻t1から遡って所定の単位電流積算値が得られる時刻t-1までの期間を、直近大量区間T1よりも過去における1つ目の大量区間(過去大量区間T2-1)として設定する。また、状態変数処理部121は、時刻t-1から遡って所定の単位電流積算値が得られる時刻t-2までの期間を、過去大量区間T2-1よりさらに過去の過去大量区間T2-2として設定する。
【0031】
以降の説明において、過去大量区間T2-1、T2-2について特に区別しない場合には、過去大量区間T2と記載する。また、直近大量区間T1と過去大量区間T2について特に区別しない場合には大量区間Tと記載する。
【0032】
上記のように、大量区間Tは、それぞれの所定の電流積算値による所定の大量充放電量が得られる区間として設定される。このため、大量区間Tごとの長さは異なっていてもよい。なお、大量区間Tは、それぞれが所定の単位時間により設定されてもよい。
大量区間Tは、例えば数十秒~数百秒程度の時間長であってよい。
なお、状態変数処理部121が設定する過去大量区間T2の数は、2つに限定されるものではなく、1以上であればよい。
なお、同図の例では、3つの大量区間Tが時間経過において連続するように設定されている。時間的に前後する2つの大量区間Tの間において間隙となる期間が設けられることで不連続となるようにされてよい。また、3以上の大量区間Tが設定される場合において、或る時間的に前後する2つの大量区間Tの間は連続し、他の時間的に前後する2つの大量区間Tの間は不連続となるように設定されてもよい。
【0033】
状態変数処理部121は、上記のように設定した一定の単位大量充放電量LCAが得られるように対応させた大量区間Tを算出する。つまり、図2に示されるように、状態変数処理部121は、単位大量充放電量LCA=充放電量LCA(t)になるように対応させて直近大量区間T1の実際の時間を算出し、充放電量LCA(t-1)=充放電量LCA(t)になるように対応させて過去大量区間T2-1の実際の時間を算出し、充放電量LCA(t-2)=充放電量LCA(t-1)になるように対応させて過去大量区間T2-2の実際の時間を算出する。換言すると、状態変数処理部121は、単位大量充放電量LCA=LCA(t)=LCA(t-1)=LCA(t-2)となるような過去時刻(t-1)、(t-2)、(t-3)を求めて、実際の時間T1、T2-1、T2-2を算出する。なお、直近大量区間をT1と固定して、つまりT1=T2-1=T2-2として、直近大量区間T1に対応して充放電量LCA(t)算出し、過去大量区間T2-1に対応して充放電量LCA(t-1)を算出し、過去大量区間T2-2に対応して充放電量LCA(t-2)を算出してもよい。しかしながら、単位大量充放電量LCAを設定した方が、後述のSOHの推定精度を向上させることができた。
【0034】
状態変数処理部121は、充放電量LCA(t)、LCA(t-1)、LCA(t-2)の少なくともいずれか1つについて、最小二乗法を用いて勾配変化率として算出してよい。このように勾配変化率として算出される充放電量LCAは、ノイズが低減されることで精度が向上される。この結果、充放電量LCAを利用して後述の第1学習済みモデル122が推定するSOC-OCV特性と、後述の第2学習済みモデル103が推定するSOHの精度を向上させることができる。
【0035】
また、状態変数処理部121は、図2に示されたように算出された大量区間Tごとに、図3に示すように、対応する電圧(出力電圧Vout)の変化量(電圧変化量)を算出する。つまり、状態変数処理部121は、直近大量区間T1に対応して電圧変化量LEV(t)を算出し、過去大量区間T2-1に対応して電圧変化量LEV(t-1)を算出し、過去大量区間T2-2に対応して電圧変化量LEV(t-2)を算出する。
状態変数処理部121は、電圧変化量LEV(t)、LEV(t-1)、LEV(t-2)の少なくともいずれか1つについても、最小二乗法を用いて勾配変化率として算出してよい。この場合にも、電圧変化量LEVを利用して後述の第1学習済みモデル122が推定するSOC-OCV特性と、後述の第2学習済みモデル103が推定するSOHの精度を向上させることができる。
【0036】
状態変数処理部121は、電圧変化量LEV(t)、LEV(t-1)、LEV(t-2)の少なくともいずれか1つについて、所定の単位大量充放電量LCAに対して、または所定の時間長さの大量区間に対応する充放電量LCA(t)に対して、最小二乗法を用いて勾配変化率として算出してよい。このように勾配変化率として算出される電圧変化量LEV(t)は、ノイズが低減されることで精度が向上される。この結果、勾配変化率として算出された電圧変化量LEV(t)を利用して後述の第1学習済みモデル122が推定するSOC-OCV特性と、第2学習済みモデル103が推定するSOHの精度を向上させることができる。
【0037】
以降の説明において、充放電量LCA(t)、LCA(t-1)、LCA(t-2)について特に区別しない場合には、充放電量LCAと記載する。
また、以降の説明において、電圧変化量LEV(t)、LEV(t-1)、LEV(t-2)について特に区別しない場合には、電圧変化量LEVと記載する。
また、充放電量LCAと電圧変化量LEVとについて特に区別しない場合には「大量区間データ」とも記載する。
なお、状態変数処理部121は、大量区間データとして、例えば直近大量区間に対応して単位大量充放電量あたりの電圧変化量とのデータを算出するようにしてもよい。
【0038】
説明を図1に戻す。状態変数処理部121は、単位大量充放電量LCAになるような対応した大量区間Tごとの電圧変化量LEVに加えて、充放電量SCA(t)になるような対応した少量区間の実際の時間と、電圧変化量SEV(t)とを算出する。なお、状態変数処理部121は、充放電量SCA、電圧変化量SEV等についても、例えば時刻t-1、t-2に対応するような過去の値が用いられてもよい。
状態変数処理部121は、少量区間として、例えば現時刻tから遡って大量区間に対応する場合よりも小さい所定の電流積算が得られるまでの時刻による期間を設定してよい。あるいは、状態変数処理部121は、大量区間Tよりも少量の所定の単位電流積算(充放電量)が行われる期間を少量区間として設定してよい。少量区間は、例えば数秒~数十秒程度であってよい。
充放電量SCA(t)と電圧変化量SEV(t)とについて特に区別しない場合には「少量区間データ」と記載する。
【0039】
上記のように少量区間は、それぞれの電流積算値が所定となる単位少量充放電量SCAが得られる期間として設定される。このため、少量区間ごとの時間の長さは異なっていてもよい。
なお、状態変数処理部121が設定する過去少量区間の数は、1つに限定されるものではなく、1以上であればよい。
なお、同図の例では、1つの少量区間の電力変化量SEV(t)が入力されている。上述の大量区間Tと同様に、2つの少量区間が設定されてよく、時間的に前後する2つの少量区間が設定され、設定された少量区間ごとの電力変化量SEV(t)が入力されるようにしてもよい。少量区間の間において間隙となる期間が設けられることで不連続となるようにされてよい。また、3以上の少量区間が設定される場合において、或る時間的に前後する2つの少量区間の間は連続し、他の時間的に前後する2つの少量区間の間は不連続となるように設定されてもよい。なお、少量区間は、それぞれが所定の単位時間により設定されてもよい。
【0040】
また、状態変数処理部121は、現時刻tに対応する電圧データV(t)と電力データP(t)とを算出する。状態変数処理部121は、現時刻tの出力電圧Voutを電圧データV(t)としてよい。状態変数処理部121は、現時刻tの出力電流Ioutと出力電圧Voutとにより電力データP(t)を算出してよい。
【0041】
以降の説明において、状態変数処理部121が算出した、大量区間データ、少量区間データ、及び電圧データV(t)、及び電力データP(t)について特に区別しない場合には、状態変数処理データと記載する。
【0042】
状態変数処理部121は、所定時間が経過する都度に更新される現時刻tごとに状態変数処理データを出力する。従って、状態変数処理データは所定時間ごとに得られる時系列データとなる。
【0043】
第1学習済みモデル122は、状態変数処理データに対応するサンプルデータと、SOC-OCV特性とを教師データとする機械学習により、状態変数処理データを入力してSOC-OCV特性の推定結果を出力するように生成された学習済みモデルである。第1学習済みモデル122は、SOC-OCV特性の推定結果として、推定したSOC-OCV特性を識別する特性識別情報を出力するようにされてよい。
【0044】
第1学習済みモデル122は、RNN(リカレント・ニューラルネットワーク)として構成される。そのうえで、RNNとしての第1学習済みモデル122の中間層は、LSTM(ロング・ショート・ターム・メモリ)またはGRU(ゲート付き回帰型ユニット)として構成されてよい。あるいは、第1学習済みモデル122は、CNN(コンボリューショナル・ニューラルネットワーク)として構成されてよい。また、第1学習済みモデル122は、SOC-OCV特性の推定を回帰問題として扱ってもよいし、分類問題として扱ってもよい。
以降の説明において、第1学習済みモデル122は、中間層にLSTMを備えるRNNとして構成され、SOC-OCV特性の推定を回帰問題として扱う場合を例に挙げる。この場合、状態変数処理部121が出力する状態変数処理データのそれぞれがLSTMブロックとして第1学習済みモデル122に入力される。
【0045】
SOC-OCV特性は、二次電池の状態として、二次電池のSOCとOCVとの相関関係を示す。
図4は、SOC-OCV特性の具体例を示している。同図において横軸がSOCであり、縦軸がOCVである。同図においては、異なる5つのSOC-OCVに対応する曲線C1~C5が示されている。例えば、このような複数のSOC-OCV特性が第1学習済みモデル122に対応する推定候補として設けられ、推定候補とされたSOC-OCV特性のそれぞれに特性識別情報が付与されてよい。
同図の例では、同じSOCに対するOCVの値は、曲線C1が最も高く、次いで、曲線C2、C3、C4、C5の順で低くなっていく。相対的な関係として、例えば曲線C1とC2に対応する2つのSOC-OCV特性を比較した場合には、曲線C1に対応するSOC-OCV特性が高特性で、曲線C2に対応するSOC-OCV特性が低特性となる。
【0046】
特性識別部123は、現時刻tに対応する状態変数処理データを第1学習済みモデル122に入力させる。特性識別部123は、状態変数処理データの入力に応じて第1学習済みモデル122が出力した特性識別情報を取得する。特性識別部123は、取得した特性識別情報を、現時刻tに対応する特性識別情報CID(t)として出力する。
【0047】
第2学習済みモデル103は、入力データDin(t)と特性識別情報CID(t))に対応するサンプルデータと、SOHとを教師データとする機械学習により学習済みモデルである。第2学習済みモデル103は、劣化状態推定部104により入力された入力データDin(t)に応じてSOHを出力する。
【0048】
入力データDin(t)は、大量区間データ(充放電量LCA(t)、LCA(t-1)、LCA(t-2)、電圧変化量LEV(t)、LEV(t-1)、LEV(t-2))、少量区間データ(充放電量SAC(t)、電圧変化量SEV(t))、電圧データV(t)と、特性識別情報CID(t)を含む。
なお、入力データDin(t)は、さらに電力データP(t)を含んでもよい。
【0049】
第2学習済みモデル103は、RNN(リカレント・ニューラルネットワーク)として構成される。そのうえで、RNNとしての第2学習済みモデル103の中間層は、LSTM(ロング・ショート・ターム・メモリ)またはGRU(ゲート付き回帰型ユニット)として構成されてよい。あるいは、第2学習済みモデル103は、CNN(コンボリューショナル・ニューラルネットワーク)として構成されてよい。また、第2学習済みモデル1103は、SOHの推定を回帰問題として扱ってもよいし、分類問題として扱ってもよい。
以降の説明において、第2学習済みモデル103は、中間層にLSTMを備えるRNNとして構成され、SOHの推定を分類問題として扱う場合を例に挙げる。この場合、状態変数処理部121が出力する状態変数処理データのそれぞれが、第2学習済みモデル103にLSTMブロックとして入力される。
【0050】
劣化状態推定部104は、現時刻tに対応する入力データDin(t)を第2学習済みモデル103に入力させる。劣化状態推定部104は、入力データDin(t)の入力に応じて第2学習済みモデル103が出力したSOHの値を取得する。劣化状態推定部104は、取得したSOHの値を、SOH推定値Doutとして出力する。
【0051】
図5は、充放電量と電圧変化量との関係例を示したものである。同図では、それぞれが異なるSOH推定値に対応する4つの曲線C11、C12、C21、C22が示されている。曲線C11と曲線C21は、二次電池の容量が同じα(Ah)であり、曲線C12と曲線C22は、二次電池の容量がα(Ah)よりも少ない、同じβ(Ah)である場合の例を示している。
SOH推定値は、例えば或る特定のSOC-OCV特性にも対応することから、これら4つの曲線C11、C12、C21、C22は、それぞれ特定のSOC-OCV特性にも対応している。相対的な関係として、曲線C11、C12に対応するSOC-OCV特性のほうが高特性で、曲線C21、C22に対応するSOC-OCV特性のほうが低特性であるとして区分することができる。
同図の例では、交点ISとして示すように、高特性のSOC-OCV特性に対応する曲線と低特性のSOC-OCV特性に対応する曲線とが交差している箇所がある。
【0052】
また、図6においては、充放電量と電圧変化量との関係を示す3つの曲線C31、C32、C31-1が示されている。同図において、曲線C31、C32は、それぞれが異なるSOHに対応するものであり、100%のSOCの状態から対応の二次電池の稼働開始させた場合に得られる曲線となる。一方、曲線C31-1は、曲線C31に対応するのと同じSOHに対応するのであるが、二次電池を50%のSOCの状態から稼働開始させた場合の曲線となる。同図の例では、曲線C31と曲線C32とは重複していないが、曲線C31と同じSOC-OCV特性に対応するが稼働開始時のSOCが異なる曲線C31-1の場合には、曲線C32と重複することになる。つまり、稼働開始時のSOCに起因して複数の曲線の間で重複する区間が生じる場合がある。
また、状態変数測定部101により測定される状態変数のばらつき等によっても、異なるSOHに対応する曲線が重複、交差する場合がある。
【0053】
本実施形態の劣化状態推定部104が第2学習済みモデル103に入力する入力データDin(t)には、それぞれ異なる複数(3つ)の大量区間(T1、T2-1、T2-2)ごとに対応する、複数の充放電量LCA(t)、LCA(t-1)、LCA(t-2)と、3つの電圧変化量LEV(t)、LEV(t-1)、LEV(t-2)が入力される。つまり、第2学習済みモデル103には、充放電量と電圧変化量とのそれぞれについて、少量区間データとしての短期的な履歴(Lookback)に加えて大量区間データとしての長期的な履歴が入力特徴量として入力される。
このため、上記のように推定候補となるSOH推定値の間で曲線が重複、交差する場合であっても、第2学習済みモデル103は時間的に異なる複数の大量区間に対応する充放電量と電圧変化量とを用いて推定を行うことになるため、重複、交差する複数の曲線を区別してSOHを識別することが可能になる。また、この場合には、第2学習済みモデル103は、1つのLSTMブロック内の履歴間で入力パラメータを増加させ、履歴に対する入力パラメータ数を増やすことで過去の情報に対する学習幅の拡大が期待できる。この結果、第2学習済みモデル103が出力するSOH推定値Dout(t)の精度の向上が図られる。
【0054】
また、特性識別部123が第1学習済みモデル122に入力する状態変数処理データにも、入力データDin(t)に含まれるのと同じく、充放電量に対応する複数の大量区間データと、電圧変化量に対応する複数の大量区間データが含まれる。
このような大量区間データが入力されることで、第1学習済みモデル122も、時間的に異なる複数の大量区間に対応する充放電量と電圧変化量とを用いて推定を行うことが可能となる。これにより、例えば図5に例示したように高特性と低特性のSOC-OCV特性に対応する曲線が交差するような場合であっても、瞬時的ではなく長期的に曲線の区間を参照することができるので、高特性と低特性とでSOC-OCV特性を適切に弁別し、誤判定を避けることができる。これにより、第1学習済みモデル122が推定するSOC-OCV特性の精度を向上させることができる。
【0055】
また、劣化状態推定部104が第2学習済みモデル103に入力する入力データDin(t)には、上記のように第1学習済みモデル122により推定されたSOC-OCV特性の特性識別情報CIDが含まれる。つまり、入力データDin(t)にはSOC-OCV特性の情報が含まれる。
このようなSOC-OCV特性の情報を含む入力データDin(t)が用いられることで、第2学習済みモデル103が推定を行うにあたっては、SOC推定値や内部抵抗推定値を用いる必要がなくなる。SOC推定値や内部抵抗推定値を用いないことで、本実施形態では、第2学習済みモデル103はSOC推定値の誤差の影響を受けることなく、SOHを推定することができるので、精度の向上が図られる。
【0056】
また、SOHの推定のための入力データDin(t)に含められる特性識別情報CIDは、対象の二次電池200に対応して固定的に設定されたものではない。つまり、特性識別情報CIDは、対象の二次電池200について測定された状態変数に基づく状態変数処理データを利用して、第1学習済みモデル122が推定した結果が対応する。このため、本実施形態においては、二次電池200の仕様等の変更に関わらず、一定以上の精度で対応の二次電池200に対応する特性識別情報CIDを推定できる。従って、本実施形態の劣化状態推定装置100としては、多様な二次電池200に対応して適切にSOHを推定することができる。
【0057】
なお、本実施形態の第2学習済みモデル103は、例えば一定の精度等の条件を満たすことができるような場合には、特性識別情報CIDを含まない入力データDin(t)を用いてSOHの推定を行ってよい。
【0058】
図7のフローチャートを参照して、劣化状態推定装置100がSOHの推定に関連して実行する処理手順例について説明する。同図の処理は、所定時間が経過するごとに開始される。
状態変数測定部101は、二次電池200の状態変数を測定する(ステップS100)。二次電池200の状態変数は、現時刻tに対応する出力電流Ioutと出力電圧Voutである。
【0059】
前処理部102において、状態変数処理部121は、ステップS100により測定された出力電流Ioutと出力電圧Voutとを利用して、現時刻tに対応する状態変数処理データを算出する(ステップS102)。
状態変数処理データは、大量区間データと少量区間データと電圧データV(t)と電力データP(t)を含む。大量区間データは、充放電量LCA(t)、LCA(t-1)、LCA(t-2)、電圧変化量LEV(t)、LEV(t-1)、LEV(t-2)である。少量区間データは、充放電量SCA(t)、電圧変化量SEV(t)である。
【0060】
特性識別部123は、ステップS102により算出された状態変数データを、第1学習済みモデル122に入力させる(ステップS104)。
第1学習済みモデル122は、ステップS104により入力された状態変数データに応じて、SOC-OCV特性の推定結果として特性識別情報を出力する。特性識別部123は、第1学習済みモデル122が出力した特性識別情報を取得し、取得した特性識別情報を、現時刻tに対応する特性識別情報CID(t)として出力する(ステップS106)。
【0061】
劣化状態推定部104は、入力データDin(t)を第2学習済みモデル103に入力させる(ステップS108)。
第2学習済みモデル103は、ステップS108により入力された入力データDin(t)に応じてSOHを推定する。劣化状態推定部104は、第2学習済みモデル103が推定したSOHを、現時刻tに対応するSOH推定値Dout(t)として出力する(ステップS110)。
【0062】
なお、本実施形態の二次電池200の用途は特に限定されない。二次電池200は、例えば車両を駆動するために当該車両に備えられるものであってよい。また、二次電池200は、住宅、社屋等に設けられるものであってもよい。また、二次電池200は、例えばスマートグリッドなどの送電網において備えられるものであってよい。
【0063】
なお、本実施形態の劣化状態推定装置100としての機能が複数の装置に分散された劣化状態推定システムとして構成されてよい。一例として、このような劣化状態推定システムは、劣化推定対象の二次電池を備える端末装置と、当該端末装置と通信可能に接続されるクラウドサーバとを含んでよい。端末装置は、状態変数測定部101としての機能により測定した二次電池の状態変数をクラウドサーバに送信し、クラウドサーバは、受信した状態変数を用いて、前処理部102、第2学習済みモデル103、及び劣化状態推定部104としての機能によりSOH推定値を出力するようにされてよい。
【0064】
なお、上述の劣化状態推定装置100の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述の劣化状態推定装置100としての処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部または外部に設けられた記録媒体も含まれる。配信サーバの記録媒体に記憶されるプログラムのコードは、端末装置で実行可能な形式のプログラムのコードと異なるものでもよい。すなわち、配信サーバからダウンロードされて端末装置で実行可能な形でインストールができるものであれば、配信サーバで記憶される形式は問わない。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に端末装置で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【0065】
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。
【符号の説明】
【0066】
100…劣化状態推定装置
101…状態変数測定部
102…前処理部
103…第2学習済みモデル
104…劣化状態推定部
121…状態変数処理部
122…第1学習済みモデル
123…特性識別部
200…二次電池
図1
図2
図3
図4
図5
図6
図7