(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022159515
(43)【公開日】2022-10-17
(54)【発明の名称】受動的パージシステムを備えた心臓ポンプ
(51)【国際特許分類】
A61M 60/829 20210101AFI20221006BHJP
A61M 60/174 20210101ALI20221006BHJP
A61M 60/237 20210101ALI20221006BHJP
A61M 60/416 20210101ALI20221006BHJP
A61M 60/806 20210101ALI20221006BHJP
【FI】
A61M60/829
A61M60/174
A61M60/237
A61M60/416
A61M60/806
【審査請求】有
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2022130848
(22)【出願日】2022-08-19
(62)【分割の表示】P 2019533042の分割
【原出願日】2017-12-18
(31)【優先権主張番号】62/436,016
(32)【優先日】2016-12-19
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】510121444
【氏名又は名称】アビオメド インコーポレイテッド
(74)【代理人】
【識別番号】100102978
【弁理士】
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100102118
【弁理士】
【氏名又は名称】春名 雅夫
(74)【代理人】
【識別番号】100160923
【弁理士】
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【弁理士】
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【弁理士】
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【弁理士】
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100128048
【弁理士】
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【弁理士】
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100205707
【弁理士】
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100114340
【弁理士】
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100121072
【弁理士】
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】バリー ヴィンセント
(57)【要約】
【課題】ローターポンプアセンブリの提供。
【解決手段】心臓ポンプアセンブリは、近位部分と遠位部分とを備えた細長いカテーテルと、該細長いカテーテルの遠位部分におけるローターと、ドライブシャフトと、ベアリングとを含む。ローターは、第一の軸方向における流体フローを引き起こすよう形状決定されたインペラーブレードを含んでいてもよい。ドライブシャフトは、ローターの近位端に連結されるかまたはこれと一体的に形成されてもよく、かつ、ドライブシャフトの表面に形成されたポンプ要素を含んでいてもよい。ベアリングは、ドライブシャフトがその中に延在しているボアを含んでいてもよい。ポンプ要素は、第一の軸方向と同じであってもまたは反対であってもよい第二の軸方向における、ボアを通る流体フローを引き起こすよう、形状決定されている。
【選択図】
図1
【特許請求の範囲】
【請求項1】
近位部分(101)と遠位部分(103)とを有する細長いカテーテル(105, 205)と;
該細長いカテーテル(105, 205)の該遠位部分(103)に配置されたポンプローター(104, 204)であって、該ポンプローターが第1の回転方向に回転された時に、第一の軸方向(108)における流体フローを引き起こすよう構成されたインペラーブレード(106, 206)を有する、ポンプローター(104, 204)と;
該ポンプローター(104, 204)に連結されたドライブシャフト(110, 210, 410)と;
該細長いカテーテルの該遠位部分に配置され、かつ該ドライブシャフト(110, 210, 410)がその中に延在しているボア(120, 220)を有するベアリング(118, 218)と;
該細長いカテーテルの該遠位部分で該ドライブシャフトに形成された、ポンプ要素(112, 212, 312, 412)であって、該ポンプ要素(112, 212, 412)が、該細長いカテーテルの該遠位部分が、患者に挿入され、該ポンプローターが該第一の回転方向に回転されるとき、第二の軸方向(122)における、該ボア(120)を通る、該患者への流体フロー(109)を引き起こすように構成されている、ポンプ要素と
を備える、心臓ポンプアセンブリ(100, 200, 400, 700)。
【請求項2】
第二の軸方向(122)が第一の軸方向(108)と反対である、請求項1記載の心臓ポンプアセンブリ(100)。
【請求項3】
第二の軸方向(122)が第一の軸方向(108)と実質的に同じである、請求項1記載の心臓ポンプアセンブリ(100)。
【請求項4】
流体供給ライン(226)が前記ボア(220)と流体連絡しており、かつ前記ポンプ要素(212)が、該流体供給ライン(226)から該ボア(220)を通して流体を引き出すように構成されている、請求項1~3のいずれか一項記載の心臓ポンプアセンブリ(200)。
【請求項5】
ベアリングがスリーブベアリングであり、ポンプ要素(212)が、ドライブシャフト(210)と該ベアリング(218)との間のベアリングギャップ(215)内に配置されるように、該ドライブシャフトに沿って位置している、請求項1~4のいずれか一項記載の心臓ポンプアセンブリ(200)。
【請求項6】
ドライブシャフト(210)とベアリング(218)との間のベアリングギャップ(215)が、約5~15ミクロンの範囲内である、請求項5記載の心臓ポンプアセンブリ(200)。
【請求項7】
ポンプ要素(412)が、ドライブシャフト(410)の表面(414)上の溝(448)として形状決定されている、請求項1~6のいずれか一項記載の心臓ポンプアセンブリ(400)。
【請求項8】
ドライブシャフト(410)の表面(414)上の溝(448)が、該ドライブシャフト(410)の縦軸(416)に対して角度の付いた状態である、請求項7記載の心臓ポンプアセンブリ(400)。
【請求項9】
ポンプ要素(412)が、ドライブシャフト(410)の表面上の突起として形状決定されている、請求項1~8のいずれか一項記載の心臓ポンプアセンブリ(400)。
【請求項10】
第一の軸方向(108)における流体フロー(109)の流量に対する、第二の軸方向(122)における流体フローの流量の比率が、0%より高く、約0.002%未満であるように構成されている、請求項1~9のいずれか一項記載の心臓ポンプアセンブリ(100)。
【請求項11】
第一の軸方向(108)における流体フローの流量が、約2~5リットル/分(lpm)であるように構成されている、請求項1~10のいずれか一項記載の心臓ポンプアセンブリ(100)。
【請求項12】
第二の軸方向(122)における流体フローの流量が、約2~30 cc/hrであるように構成されている、請求項1~11のいずれか一項記載の心臓ポンプアセンブリ(100)。
【請求項13】
ドライブシャフト(110)がモーターに連結されている、請求項1~12のいずれか一項記載の心臓ポンプアセンブリ(100)。
【請求項14】
ポンプローター(304)とベアリングとが入ったポンプハウジング(202,734)をさらに備える、請求項1~13のいずれか一項記載の心臓ポンプアセンブリ(200)。
【請求項15】
経皮的挿入用にサイズ決定されている、請求項14記載の心臓ポンプアセンブリ(100)。
【請求項16】
ポンプハウジング(734)の近位端に近接して位置決めされた血液出口(770)と;
心臓ポンプアセンブリ(700)のカニューレ(773)の遠位端部分(771)に位置決めされた血液入口(772)と
をさらに備える、請求項15記載の心臓ポンプアセンブリ(700)。
【請求項17】
心臓ポンプアセンブリ(700)のカニューレ(773)の遠位端部分(771)に位置決めされた血液出口(770)と;
ポンプハウジング(734)の近位端に近接して位置決めされた血液入口(772)と
をさらに備える、請求項15記載の心臓ポンプアセンブリ(700)。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、参照によりその内容全体が本明細書に組み入れられる、2016年12月19日に提出された米国特許仮出願第62/436,016号に対する優先権を主張する。
【背景技術】
【0002】
背景
経皮式心臓内心臓ポンプアセンブリなどの心臓ポンプは、心臓から動脈内に血液を送達するため、心臓内に導入されることがある。心臓ポンプアセンブリは、心臓内に配設されたとき、左心室から血液を引いて大動脈内に駆出するか、または、右心室から血液を引いて肺動脈内に駆出することができる。心臓ポンプアセンブリは、心臓手技の際に、外科的または経皮的に導入されうる。1つの一般的なアプローチにおいて、ポンプアセンブリは、大腿動脈を通るカテーテル手技によって挿入されうる。
【0003】
心臓ポンプは、ポンプを通して血液を引くため、ローターシャフト上で回転するローターを含む場合がある。ローターシャフトは、心臓ポンプ内に含まれるベアリングのボアの中で回転する場合がある。ローターシャフトとベアリングのボアとの間の空間は、ローター‐ベアリング間キャビティを規定しうる。(ポンプが患者の左心側または右心側のいずれにおいて使用されるよう設計されているかに応じて)ローターの回転によって血液がポンプに向かってまたはポンプから遠ざかるよう引かれる際に、血液がローター‐ベアリング間キャビティを通ってポンプに入る可能性があり、これはポンプを停止させる可能性がある。
【0004】
ポンプ内への血液の進入を防ぐため、パージ用流体が外部供給源からパージラインを通ってポンプ内に流されてもよい。ローター‐ベアリング間キャビティにおいて血液がポンプに入ることを防ぐため、血液適合性流体の連続フローが、ポンプを通りそしてローター‐ベアリング間キャビティを通ってポンピングされてもよい。市販のパージシステムは、血液適合性流体を加圧しそしてローター‐ベアリング間キャビティに送達するため、専用の外部ポンプを必要とする。パージ用流体フローを制御する外部ポンプは、空間が限られている医療状況(例えば手術室またはカテーテル室)に対して、大きく扱いにくい可能性がある。さらに、心臓ポンプ用のコントローラーに加えて外部パージポンプも操作することは、医療従事者にとって不便であるかまたは直観的でない可能性がある。外部パージポンプは、歩行/携行の用途に対して、大きくかつ不便である。
【発明の概要】
【0005】
概要
単一のローターアセンブリによって第一の流体および第二の流体の同時フローを引き起こす、ローターアセンブリを有する心臓ポンプについて、システム、方法、およびデバイスを本明細書に説明する。そのようなシステムは、第一の流体(例えば血液)を第一の方向に(例えば、左心室から大動脈内に、または下大静脈から肺動脈に)ポンピングするための第一の圧力勾配と、第二の流体(例えば、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体)を第二の方向に(例えば、ローターシャフトに沿って左心室内に)ポンピングするための第二の圧力勾配とを、提供してもよい。パージ用流体のフローが血液のフローと同じ機構によって引き起こされうるので、本発明のローターアセンブリは「受動的パージシステム(passive purge system)」であると言われる。血液をポンピングするのと同じローターによってパージ用流体がポンピングされうるので、受動的パージシステムは、外部加圧ポンプの必要性をなくすかまたは低減できる。パージシステムの外部ポンプがなくなるかまたは縮小されると、医療環境においても、そして、歩行および在宅ケアに対しても、ポンプシステム全体のためにコントローラーが占める空間が小さくなる。外来患者ケアの文脈においては、パージシステム用の追加的ポンプがなくなると、ポンプの完全な埋め込みが可能になる可能性もあるので、患者の移動能が増大する可能性がある。さらに、第二の流体のフローは、ポンプの繊細な領域(例えば、ローターシャフトがその中で回転するボアなど)内への血液の進入に対して、バリアを提供する可能性がある。これらの効果により、追加的な機材を伴わずに、ポンプを長期的に使用できる可能性がある。
【0006】
第二の圧力勾配は、ローターアセンブリのドライブシャフト上に形成されたポンプ要素によって引き起こされてもよい。ポンプ要素は、ポンプ稼働中のドライブシャフトの回転が第二の圧力勾配を生成するように、ロータードライブシャフトの表面上に形成されてもよい。例えば、ポンプ要素は、ロータードライブシャフト表面上のブレード、溝、スクラッチ、および/またはエッチングとして形成されてもよい。いくつかの実施形態において、ロータードライブシャフトは、ボアの中に、またはボアを通って延在している。ロータードライブシャフトがボアの中で回転したとき、第二の流体が、外部リザーバからボアを通って引き出されてもよい。特定の実施形態において、ポンプ要素は、ロータードライブシャフトの外面上に形成されることに加えて、またはその代わりに、ボアの外面上に形成される。
【0007】
いくつかの実施形態において、ローターアセンブリは、モーターローターとモーターステーターとを有する埋め込み可能なモーターによって駆動される。ローターによって引き起こされる第二の圧力勾配は、第二の流体(例えば、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体)を、モーターローターとモーターステーターとの間のギャップを通りそしてドライブシャフトに沿って流してもよい。第二の流体のフローは、モーターローターとモーターステーターとの間のギャップ内への血液の進入に対して、バリアを提供してもよい;そうしなければ、この血液の進入は、血液の損傷(例えば溶血)またはモーターの損傷(例えば、摩擦の増大、過熱、および/もしくは焼き付き)を生じさせる可能性がある。
【0008】
1つの局面において、心臓ポンプアセンブリは、近位部分と遠位部分とを備えた細長いカテーテルと、該細長いカテーテルの遠位部分におけるローターと、ドライブシャフトと、ベアリングとを含む。ローターは、第一の軸方向における流体フローを引き起こすよう形状決定されたインペラーブレードをさらに含む。ドライブシャフトは、ローターの近位端に連結されてもよく、かつ、ドライブシャフトの表面上に形成されたポンプ要素を含む。ベアリングは、ドライブシャフトがその中に延在しているボアを含む。ポンプ要素は、第二の軸方向における、ボアを通る流体フローを引き起こすよう、形状決定される。
【0009】
いくつかの実施形態において、第二の軸方向は第一の軸方向と反対である。他の実施形態において、第二の軸方向は第一の軸方向と実質的に同じである。いくつかの実施形態において、心臓ポンプアセンブリは、ベアリングのボアと流体連絡している流体供給ラインを含み、かつ、ポンプ要素は、流体供給ラインからボアを通して流体を引き出すことができる。いくつかの実施形態において、ポンプ要素は、ドライブシャフトとスリーブベアリングとの間のベアリングギャップ内に位置する。いくつかの実施形態において、ドライブシャフトとスリーブベアリングとの間のベアリングギャップは約5~10ミクロンの範囲内である。いくつかの実施形態において、ポンプ要素は、ドライブシャフトの表面上の溝として形状決定される。いくつかの実施形態において、ドライブシャフトの表面上の溝は、ドライブシャフトの縦軸に対して角度が付いている。いくつかの実施形態において、ポンプ要素は、ドライブシャフトの表面上の突起として形状決定される。
【0010】
いくつかの実施形態において、第一の軸方向における流体フローの流量に対する、第二の軸方向における流体フローの流量の比率は、約0.001~0.03%である。いくつかの実施形態において、第一の軸方向における流体フローの流量は約2~5リットル/分(lpm)である。いくつかの実施形態において、第二の軸方向における流体フローの流量は約2~30 cc/hrである。
【0011】
いくつかの実施形態において、ドライブシャフトはモーターに連結される。いくつかの実施形態において、心臓ポンプは、ローターとベアリングとが入ったポンプハウジングをさらに含む。いくつかの実施形態において、ポンプハウジングは、経皮的挿入用にサイズ決定される。心臓ポンプアセンブリはまた、ポンプハウジングの近位端に近接して位置決めされた血液出口と、ポンプアセンブリのカニューレの遠位端部分に位置決めされた血液入口とを含んでいてもよい。他の実施形態において、心臓ポンプアセンブリはまた、ポンプアセンブリのカニューレの遠位端部分に位置決めされた血液出口と、ポンプハウジングの近位端に近接して位置決めされた血液入口とを含んでいてもよい。
【0012】
別の局面において、心臓ポンプアセンブリは、近位部分と遠位部分とを有する細長いカテーテルと、ローターと、ドライブシャフトと、ベアリングとを含む。ローターは、細長いカテーテルの遠位部分に配置され、かつ、第一の軸方向における流体フローを引き起こすよう形状決定されたインペラーブレードを含む。ドライブシャフトはローターの近位端に連結される。ベアリングは、ドライブシャフトがその中に延在しているボアを含み、かつ、ボアの表面に形成されたポンプ要素を含む。ポンプ要素は、第二の軸方向における、ボアを通る流体フローを引き起こすよう、形状決定される。いくつかの実施形態において、第一の軸方向は第二の軸方向と反対である。他の実施形態において、第一の軸方向と第二の軸方向とは実質的に同じである。
【0013】
いくつかの実施形態において、ポンプ要素は、ボアの表面上の溝として形状決定される。いくつかの実施形態において、ボアの表面上の溝は、ドライブシャフトの縦軸に対して角度が付いている。他の実施形態において、ポンプ要素は、ボアの表面上の突起として形状決定される。いくつかの実施形態において、第一の軸方向における流体の流量に対する、第二の軸方向における流体フローの流量の比率は、約0.001~0.03%である。いくつかの実施形態において、第一の軸方向における流体フローの流量は約2~5 lpmである。いくつかの実施形態において、第二の軸方向における流体フローの流量は約2~30 cc/hrである。
【0014】
別の局面において、心臓補助を提供するための方法は、一緒に回転する第一のポンプ要素と第二のポンプ要素とを有するローターアセンブリを備える心臓ポンプを、患者の脈管構造内に位置決めする段階を含む。同方法は、第一の軸方向における血液フローを第一のポンプ要素で引き起こしながら、同時に、第二の軸方向における流体フローを第二のポンプ要素で引き起こすために、ローターアセンブリを回転させる段階をさらに含む。第二のポンプ要素によって引き起こされる流体フローの流量は、血液フローの流量の1%未満である。
【0015】
いくつかの実施形態において、第二の軸方向は第一の軸方向と反対である。いくつかの実施形態において、第二の軸方向は第一の軸方向と実質的に同じである。いくつかの実施形態において、第二のポンプ要素によって引き起こされる流体フローは流体供給ラインを通って引き出される。いくつかの実施形態において、第二のポンプ要素によって引き起こされる流体フローはベアリングギャップを通る。いくつかの実施形態において、ベアリングギャップは約5ミクロンまたはそれ未満である。いくつかの実施形態において、第一の軸方向における血液フローは、第二の軸方向における流体フローを取り囲む。いくつかの実施形態において、第一の軸方向における流体フローの流量に対する、第二の方向における流体フローの流量の比率は、約0.001~0.03%である。いくつかの実施形態において、第一の軸方向における流体フローの流量は約2~5 lpmである。いくつかの実施形態において、第二の軸方向における流体フローの流量は約2~30 cc/hrである。
【0016】
いくつかの実施形態において、第二のポンプ要素は、ローターアセンブリの表面上の溝として形状決定される。他の実施形態において、第二のポンプ要素は、ローターアセンブリの表面上の突起として形状決定される。いくつかの実施形態において、心臓ポンプを患者の脈管構造内に位置決めする段階は、同ポンプを心臓内へと経皮的に埋め込むことを含む。
[本発明1001]
近位部分と遠位部分とを有する細長いカテーテルと;
該細長いカテーテルの該遠位部分に配置されたローターであって、第一の軸方向における流体フローを引き起こすよう形状決定されたインペラーブレードを有する、ローターと;
該ローターの近位端に連結されたドライブシャフトであって、該ドライブシャフトの表面上に形成されたポンプ要素を含む、ドライブシャフトと;
該ドライブシャフトがその中に延在しているボアを有するベアリングと
を備え、
該ポンプ要素が、第二の軸方向における、該ボアを通る流体フローを引き起こすよう形状決定されている、
心臓ポンプアセンブリ。
[本発明1002]
第二の軸方向が第一の軸方向と反対である、本発明1001の心臓ポンプアセンブリ。
[本発明1003]
第二の軸方向が第一の軸方向と実質的に同じである、本発明1001の心臓ポンプアセンブリ。
[本発明1004]
流体供給ラインが前記ボアと流体連絡しており、かつ前記ポンプ要素が、該流体供給ラインから該ボアを通して流体を引き出す、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1005]
ポンプ要素が、ドライブシャフトとスリーブベアリングとの間のベアリングギャップ内に配置されている、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1006]
ドライブシャフトとスリーブベアリングとの間のベアリングギャップが、約5~15ミクロンの範囲内である、本発明1005の心臓ポンプアセンブリ。
[本発明1007]
ポンプ要素が、ドライブシャフトの表面上の溝として形状決定されている、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1008]
ドライブシャフトの表面上の溝が、該ドライブシャフトの縦軸に対して角度の付いた状態である、本発明1007の心臓ポンプアセンブリ。
[本発明1009]
ポンプ要素が、ドライブシャフトの表面上の突起として形状決定されている、本発明1001~1006のいずれかの心臓ポンプアセンブリ。
[本発明1010]
第一の軸方向における流体フローの流量に対する、第二の軸方向における流体フローの流量の比率が、約0.002%またはそれ未満である、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1011]
第一の軸方向における流体フローの流量が、約2~5リットル/分(lpm)である、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1012]
第二の軸方向における流体フローの流量が、約2~30 cc/hrである、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1013]
ドライブシャフトがモーターに連結されている、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1014]
ローターとベアリングとが入ったポンプハウジングをさらに備える、前記本発明のいずれかの心臓ポンプアセンブリ。
[本発明1015]
経皮的挿入用にサイズ決定されている、本発明1014の心臓ポンプアセンブリ。
[本発明1016]
ポンプハウジングの近位端に近接して位置決めされた血液出口と;
ポンプアセンブリのカニューレの遠位端部分に位置決めされた血液入口と
をさらに備える、本発明1015の心臓ポンプアセンブリ。
[本発明1017]
ポンプアセンブリのカニューレの遠位端部分に位置決めされた血液出口と;
ポンプハウジングの近位端に近接して位置決めされた血液入口と
をさらに備える、本発明1015の心臓ポンプアセンブリ。
[本発明1018]
近位部分と遠位部分とを有する細長いカテーテルと;
該細長いカテーテルの該遠位部分に配置されたローターであって、第一の軸方向における流体フローを引き起こすよう形状決定されたインペラーブレードを有する、ローターと;
該ローターの近位端に連結されたドライブシャフトと;
該ドライブシャフトがその中に延在しているボアを有するベアリングであって、該ボアの表面に形成されたポンプ要素を含む、ベアリングと
を備え、
該ポンプ要素が、第二の軸方向における、該ボアを通る流体フローを引き起こすよう形状決定されている、
心臓ポンプアセンブリ。
[本発明1019]
第二の軸方向が第一の軸方向と反対である、本発明1018の心臓ポンプアセンブリ。
[本発明1020]
第二の軸方向が第一の軸方向と実質的に同じである、本発明1018の心臓ポンプアセンブリ。
[本発明1021]
ポンプ要素が、ボアの表面上の溝として形状決定されている、本発明1018~1020のいずれかの心臓ポンプアセンブリ。
[本発明1022]
ボアの表面上の溝が、ドライブシャフトの縦軸に対して角度の付いた状態である、本発明1021の心臓ポンプアセンブリ。
[本発明1023]
ポンプ要素が、ボアの表面上の突起として形状決定されている、本発明1018~1020のいずれかの心臓ポンプアセンブリ。
[本発明1024]
第一の軸方向における流体フローの流量に対する、第二の軸方向における流体フローの流量の比率が、約0.001~0.03%である、本発明1018~1023のいずれかの心臓ポンプアセンブリ。
[本発明1025]
第一の軸方向における流体フローの流量が、約2~5 lpmである、本発明1018~1024のいずれかの心臓ポンプアセンブリ。
[本発明1026]
第二の軸方向における流体フローの流量が、約2~30 cc/hrである、本発明1018~1025のいずれかの心臓ポンプアセンブリ。
[本発明1027]
一緒に回転する第一のポンプ要素と第二のポンプ要素とを有するローターアセンブリを備える心臓ポンプを、患者の脈管構造内に位置決めする段階;および
第一の軸方向における血液フローを該第一のポンプ要素で引き起こしながら、同時に、第二の軸方向における流体フローを該第二のポンプ要素で引き起こすために、該ローターアセンブリを回転させる段階
を含み、
該第二のポンプ要素によって引き起こされる流体フローの流量が、血液フローの流量の1%未満である、
心臓補助を提供するための方法。
[本発明1028]
第二の軸方向が第一の軸方向と反対である、本発明1027の方法。
[本発明1029]
第二の軸方向が第一の軸方向と実質的に同じである、本発明1027の方法。
[本発明1030]
第二のポンプ要素によって引き起こされる流体フローが、流体供給ラインを通って引き出される、本発明1027~1029のいずれかの方法。
[本発明1031]
第二のポンプ要素によって引き起こされる流体フローが、ベアリングギャップを通る、本発明1030の方法。
[本発明1032]
ベアリングギャップが約5ミクロンまたはそれ未満である、本発明1031の方法。
[本発明1033]
第一の軸方向における流体フローが、第二の軸方向における流体フローを取り囲む、本発明1027~1032のいずれかの方法。
[本発明1034]
第一の軸方向における流体フローの流量に対する、第二の軸方向における流体フローの流量の比率が、約0.001~0.03%である、本発明1027~1033のいずれかの方法。
[本発明1035]
第一の軸方向における流体フローの流量が、約2~5 lpmである、本発明1027~1034のいずれかの方法。
[本発明1036]
第二の軸方向における流体フローの流量が、約2~30 cc/hrである、本発明1027~1035のいずれかの方法。
[本発明1037]
第二のポンプ要素が、ローターアセンブリの表面上の溝として形状決定されている、本発明1027~1036のいずれかの方法。
[本発明1038]
第二のポンプ要素が、ローターアセンブリの表面上の突起として形状決定されている、本発明1027~1036のいずれかの方法。
[本発明1039]
心臓ポンプを患者の脈管構造内に位置決めする段階が、該ポンプを心臓内へと経皮的に埋め込むことを含む、本発明1027~1038のいずれかの方法。
【図面の簡単な説明】
【0017】
以上および他の目的および利点は、以下の詳細な説明を添付の図面と併せて検討することによって明らかになるであろう;添付の図面全体を通して、同様の参照符号は同様の部品を参照する。
【0018】
【
図1】パージ用流体をポンピングするためロータードライブシャフト上にポンプ要素を有する心臓ポンプの、例示的なドライブシャフトの側方断面図である。
【
図2】ロータードライブシャフト上にポンプ要素を有する左心ポンプの例示的な側方断面図である。
【
図3】ロータードライブシャフト上にポンプ要素を有する右心ポンプの例示的な側方断面図である。
【
図4】ロータードライブシャフト上の溝として形成されたポンプ要素の詳細断面図である。
【
図5】ロータードライブシャフト上の突起として形成されたポンプ要素の詳細断面図である。
【
図6】ベアリング壁上のポンプ要素の詳細断面図である。
【
図7】患者の血管内に挿入された経皮式左心ポンプを示した図である。
【
図8】患者の血管内に挿入された経皮式右心ポンプを示した図である。
【
図9】心臓補助を提供するための例示的なプロセスを示した図である。
【発明を実施するための形態】
【0019】
詳細な説明
本明細書に説明するシステム、方法、およびデバイスを全体的に理解できるよう、特定の例示的態様を以下に説明する。本明細書に説明する態様および特徴は、経皮式心臓ポンプシステムと関連した使用について具体的に説明されるが、理解されるであろう点として、以下に概説するすべての構成要素および他の特徴は、任意の好適な様式で互いに組み合わせられてもよく、かつ、外科的切開を用いて埋め込まれる心臓補助デバイスなどを含む、他のタイプの心臓治療および心臓補助デバイスに適合および適用されてもよい。加えて、本明細書において、ポンプ要素の適用を心臓ポンプに関して説明しているが、理解されるべき点として、本発明のポンプ要素は、パージ用、潤滑用、および/または冷却用の流体の流体フローが必要とされる他のポンプに適用されてもよい。例えば、酸性またはその他腐食性の環境中で使用されるポンプは、ポンプ構成要素に損傷を与えうる酸の進入を防ぐため、パージフローを必要とする可能性がある。
【0020】
同時的な流体フローを引き起こすローターアセンブリを有する心臓ポンプについて、システム、方法、およびデバイスを本明細書に説明する。そのようなシステムは、第一の流体(例えば血液)を第一の方向に(例えば、左心室から大動脈内に)ポンピングするための第一の圧力勾配と、第二の流体(例えば、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体)を、第一の方向と同じでもよくまたは異なっていてもよい第二の方向に(例えば、ローターシャフトに沿って左心室内に)ポンピングするための第二の圧力勾配とを、提供してもよい。2つの圧力勾配はいずれも同じローターアセンブリの回転によって生成されるので、第二の圧力勾配は、第一の圧力勾配に対して依存的または寄生的であるとみなされうる。ゆえに、第二の圧力勾配がパージ用流体のポンピングに用いられる時、そのパージシステムは「受動的パージ機構(passive purge mechanism)」であると言われうる。血液をポンピングするのと同じローターによってパージ用流体をポンピングできるので、受動的パージ機構は、外部加圧ポンプの必要性をなくすかまたは低減できる。パージシステムの外部ポンプがなくなるかまたは縮小されると、医療環境において、ポンプシステム全体のためにコントローラーが占める空間が小さくなる。加えて、パージシステム専用のポンプがなくなると、システムオペレーターのワークフローを単純化できる可能性がある。長期の埋め込み用に構成された、完全に埋め込み可能なポンプとして、外来患者に使用される場合は、パージシステム用の追加的ポンプがなくなると、患者の移動能が増大する可能性がある。さらに、第二の流体のフローは、ポンプの繊細な領域(例えば、ローターシャフトがその中で回転するボアなど)内への血液の進入に対して、バリアを提供できる可能性がある。これらの効果により、追加的な機材を伴わずに、ポンプを長期的に使用できる可能性がある。
【0021】
第二の圧力勾配は、ローターアセンブリのドライブシャフト上に形成されたポンプ要素によって引き起こされてもよい。ポンプ要素は、ポンプ稼働中のドライブシャフトの回転が第二の圧力勾配を生成するように、ロータードライブシャフトの表面上に形成されてもよい。例えば、ポンプ要素は、ロータードライブシャフト表面上のブレード、溝、スクラッチ、および/またはエッチングとして形成されてもよい。いくつかの実施形態において、ロータードライブシャフトは、ボアの中に、またはボアを通って延在している。ロータードライブシャフトがボアの中で回転したとき、血液適合性流体が、外部リザーバからボアを通って引き出されてもよい。特定の実施形態において、ポンプ要素は、ロータードライブシャフトの外面上に形成されることに加えて、またはその代わりに、ボアの外面上に形成される。
【0022】
いくつかの実施形態において、ローターアセンブリは、ローターとモーターステーターとによって駆動される。ローターによって引き起こされる第二の勾配は、第二の流体(例えば、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体)を、ローターとベアリングとの間のギャップを通るよう流してもよい。第二の流体のフローは、ローター‐ベアリング間ギャップ内への血液の進入に対して、バリアを提供してもよい;そうしなければ、この血液の進入は、(例えば、モーターへの流体の流入、摩擦の増大、過熱、および/または焼き付きによって)モーターを損傷させる可能性がある。
【0023】
図1に、いくつかの実施形態に基づく、ロータードライブシャフト110上にポンプ要素112を有する心臓ポンプ100の、例示的なドライブシャフトの側方断面図を示す。心臓ポンプ100は、近位部分101と遠位部分103とを有する細長いカテーテル105と、ローター104と、インペラーブレード106と、ドライブシャフト110と、ドライブシャフト表面114と、ポンプ要素112と、遠位側ベアリング118と、ボア120とを含む。ローター104は細長いカテーテル105の遠位部分103に位置する。ローター104は、ボア120を通って延在しているドライブシャフト110によって、方向124に回転される。ローター104は、第一の軸方向108における流体フロー109を引き起こすよう形状決定されたインペラーブレード106を含む。ポンプ要素112は、ドライブシャフト110の表面114上に形成され、かつ、ドライブシャフト110の回転中に、第二の方向122における、ボア120を通る第二の流体123のフローを引き起こすよう形状決定される。
図1に示すように、第二の方向122は第一の軸方向108と反対である。いくつかの実施形態において、第一の軸方向108と第二の方向122とは、異なる相対的配向を有していてもよい。例えば、第二の方向122は、第一の軸方向108に対して、斜め、垂直、または平行であってもよい。いくつかの実施形態において、第一の軸方向108と第二の方向122とが同じであってもよい。他の態様において、モーターは、患者の体内に埋め込み可能でなくてもよい。例えば、モーターが患者の体外に位置決めされてもよく、そして、ロータードライブシャフトがモーターから延在しておりかつポンプを駆動してもよい。
【0024】
ポンプ要素112は、溝、スクラッチ、マイクロベイン(microvein)、突起、または他の任意の好適な特徴としてドライブシャフト110上に形成されてもよい。製造中にドライブシャフト110に溝またはスクラッチを追加するために必要となるのは、材料の除去のみであり、製造プロセスに容易に追加することができる。ドライブシャフト110の表面上の溝は、シャフトの回転が偏心を含む場合に、シャフトがその中で回転するボア120を損傷する可能性がより低い。ポンプ要素112は、ドライブシャフト110の縦軸に対して角度が付くように、ドライブシャフト110の表面114上に形成されてもよい。ポンプ要素112は、ドライブシャフト110の縦軸に対して、5°、10°、15°、20°、25°、30°、または他の任意の好適な角度で形成されてもよい。いくつかの実施形態において、ポンプ要素112は、ドライブシャフト110の表面114の周りに巻いた、連続的な溝、スクラッチ、またはドライブシャフト110の表面114からの突起として形成されてもよい。特定の実施形態において、ポンプ要素112は、ドライブシャフト110の表面114の周りに円周状に配置された、一連の別個の要素として形成されてもよい。いくつかの実施形態において、ポンプ要素112は、ドライブシャフト110の、遠位側ベアリング118のボア120を通って延在している部分においてのみ、ドライブシャフト110の表面114上に形成される。いくつかの実施形態において、ポンプ要素112は、ドライブシャフト110の、遠位側ベアリング118のボア120を通って延在している区画に近接した部分まで延在している。
【0025】
心臓ポンプ100の稼働中、ドライブシャフト110はインペラーブレード106を方向124に回転させる。インペラーブレード106の回転は第一の圧力勾配を引き起こし、これにより、第一の軸方向108における第一の流体フロー109(例えば血液のフロー)を生じさせる。図に示すように、流体フロー109の第一の軸方向108は、細長いカテーテル105の遠位部分103から細長いカテーテル105の近位部分101に向かう。血液は、心拍出量を増大させるため患者の左心室から患者の大動脈内にポンピングされるとき、第一の軸方向108に流れてもよい。インペラーブレード106の回転中に、ポンプ要素112もまた方向124に回転する。ポンプ要素112の回転は、第一の軸方向108と反対である第二の方向122に第二の流体123のフローを引く、第二の圧力勾配をもたらす。
図1に示すように、第二の方向122は、細長いカテーテル105の近位端101から細長いカテーテル105の遠位端103に向かう。いくつかの実施形態において、心臓ポンプ100は患者の右心内で用いられてもよく、その場合、血液は、患者の下大静脈または右心房から、右心室を通って肺動脈内にポンピングされる(例えば
図3および
図8)。そのような実施形態において、第一の流体109は、第二の方向122と実質的に同じであってもよい、第一の軸方向108に流れる(図には示していない)。いずれの実施形態においても、第二の方向122における第二の流体123のフローは、第一の流体109がボア120に流入することを防いでもよい。第二の流体123のフローはまた、血液の凝固、血球の損傷、心臓ポンプの焼き付き、および、その結果として患者に対して危険を生じさせうる過熱を防ぐため、ドライブシャフト110を潤滑または冷却してもよい。つまり、ドライブシャフト110とローター104との回転は、第一の軸方向108における第一の流体フロー109と、第二の方向122における第二の流体123のフローとを引き起こす。インペラーブレード106とポンプ要素112との組み合わせは、第一および第二のフローを同じ回転によって引き起こすことを可能にするので、ローター104は、第二の流体フローを引き起こすための別な専用ポンプの必要性をなくすことができる。
【0026】
図2に、ロータードライブシャフト210上にポンプ要素212を有する、左心内で使用するための心臓ポンプ200の例示的な側方断面図を示す。心臓ポンプ200は、細長いカテーテル205と、近位端207と遠位端211とを有するモーターハウジング202と、ドライブシャフト210と、ポンプ要素212と、モーターローター217と、モーターステーター219と、ポンプローター204と、近位側ベアリング228と、遠位側ベアリング218と、流体供給ライン226とを含む。ポンプローター204はインペラーブレード206を含み、かつ、ドライブシャフト210に連結されるかまたはこれと一体的に形成される。ドライブシャフト210は縦軸216を有し、それを中心として方向224に回転する。ドライブシャフト210は、その上にポンプ要素212が形成される外面214を含む。ドライブシャフト210は、モーターローター217に連結され、かつ、近位側および遠位側のベアリング228および218に回転可能式に連結される。図に示すように、遠位側ベアリング218は、ドライブシャフト210がその中を通って延在しているボア220を有する、スリーブベアリングである。ドライブシャフト210は、ベアリングギャップ215によって、遠位側ベアリング218のボア220から放射方向に間隔が空けられる。ドライブシャフト210と遠位側ベアリング218との間のベアリングギャップ215は、5ミクロンまたはそれ未満であってもよい。いくつかの実施形態において、ベアリングギャップ215は、2 μm、2.5 μm、3 μm、3.5 μm、4 μm、4.5 μm、5 μm、6 μm、または任意の好適なサイズであってもよい。好ましい態様において、近位側ベアリング228はボールベアリングであり、かつ遠位側ベアリング218はスリーブベアリングであるが、任意の好適なベアリングが近位側および/または遠位側のベアリングに用いられてもよく、それには、ボールベアリング、スリーブベアリング、ジャーナルベアリング、静水圧ベアリング、ローラーベアリング、および磁気ベアリングが非限定的に含まれる。
【0027】
モーターステーター219とモーターローター217との間の磁気相互作用が、ドライブシャフト210を、縦軸216を中心として方向224に回転させる。モーターステーター219は電磁コイルであってもよく、これは、抵抗加熱による、ポンプ200内の主な熱源となりうる。いくつかの実施形態において、ポンプ200は、外部モーターに取り付けられた駆動ケーブルによって駆動されてもよい。ドライブシャフト210の回転はインペラーブレード206の回転を生じさせ、それは、モーターハウジング202の遠位端211からモーターハウジング202の近位端207に向かう第一の方向208における、第一の流体209(例えば血液)のフローを引き起こす。ドライブシャフト210の回転はまた、モーターハウジング202の近位端207からモーターハウジング202の遠位端211に向かう第二の方向222における、外部供給源(図には示していない)からの第二の流体223のフローも引き起こす。第二の流体223のフローは、外部供給源(図には示していない)から、細長いカテーテル205を通り、そして近位側ベアリング228においてポンプ200に入るよう流れてもよい。第二の流体223は、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体であってもよい。例えば、第二の流体223は、生理食塩水、リンゲル液、グルコース溶液、ヘパリン、または他の任意の好適な流体であってもよい。いくつかの実施形態において、近位側ベアリング228を潤滑するため、グルコース溶液など高粘性のパージ用流体が用いられる。特定の実施形態において、ポンプから血液をパージするため、または医学的な目的を果たすため、薬理学的作用物質がパージ用流体として用いられる。例えば、パージ用流体は、血液凝固を防ぐためのヘパリンとして選択されてもよい。第一の軸方向208における第一の流体209のフローは、概して、第二の方向222における第二の流体223のフローと反対である。第二の流体223のフローは、ドライブシャフト210の回転と結びつけられており、かつ、これに依存する。
【0028】
第二の流体223は、外部供給源から流体供給ライン226を通って細長いカテーテル205の遠位端まで流れる。第二の流体223は、流体供給ライン226を通り、近位側ベアリング228を通り過ぎ、そしてモーターハウジング202内まで移動する。第二の流体223は、近位側ベアリング228を通り過ぎて流れる際に、同ベアリングを冷却または潤滑するよう機能してもよい。ドライブシャフト210の表面214上のポンプ要素212の回転は、ベアリングギャップ215において第二の流体223中に圧力勾配を生成し、これによって第二の流体223は、遠位側ベアリング218のボア220を通って第二の方向222に流れる。第二の流体223はさらに、ポンプを通ってベアリングギャップ215まで流れる際に、モーターステーター219を冷却してもよい。第二の流体223は、次に、流体出口236においてモーターハウジング202を出る。第二の流体223は患者の血流に入り、ベアリングまたはモーターステーターに由来する熱はそこで安全に放散されてもよい。流体出口236からの第二の流体223の流出は、第一の流体209(例えば血液)が流体出口236に入ることを防いでもよい。第一の流体が血液である場合、このことは、血液がボア220に入りそしてポンプ200を詰まらせることを防ぐ。血液がボア220に入ることを防ぐことはまた、心臓ポンプ200の寿命も保つ可能性がある。ゆえに、心臓ポンプ200は、患者体内の長期的な埋め込みに用いられてもよい(例えば、> 1時間、> 3時間、> 6時間、> 12時間、> 24時間、> 2日間、> 10日間、> 20日間、> 45日間、> 60日間、または任意の好適な期間)。いくつかの実施形態において、流体フローが正面から合流した場合に生じうる停滞および凝固形成を回避するため、第二の流体223のフローは、ポンプを出て、第一の流体209のフローと浅い角度で合流する。
【0029】
ローター204とインペラーブレード206とは、第一のまたは主要なポンプ要素とみなされてもよく、そして、血液適合性流体の第二の流体フロー223を引き起こす、ドライブシャフト210上のポンプ要素212は、二次的なポンプ要素とみなされてもよい。第二の流体223と血液とを同じモーターによってポンピングすることにより、単一のコンソール(図には示していない)およびポンプのみが必要となるので、医療従事者がポンプ200を容易に操作することができる。加えて、パージシステムの専用ポンプがなくなることにより、医療環境においてポンプシステムのためにコントローラーが占める空間が小さくなり、このことは、手術室、カテーテル室、または緊急搬送中など、より小さな空間内でポンプを使用することを可能にする。第二の流体と血液とのポンピングの制御に単一のモーターおよびコンソールを用いることによって、パージポンプの機能不全を生じさせるユーザーエラーの発生もまた、さらに制限できる可能性がある。さらに、長期的な使用のための完全に埋め込み可能なポンプとしてポンプが構成されるのであれば、第二の流体と血液とを同じモーターでポンピングすると、稼働のために必要な外部機械類またはハードウェアが少なくなり、これにより、患者の移動能をさらに高めることができる。
【0030】
いくつかの実施形態において、第二の方向222における第二の流体223の流量は約2~30 cc/hrである。いくつかの実施形態において、第二の方向222における第二の流体223の流量は、1.5 cc/hr、1.75 cc/hr、2 cc/hr、2.25 cc/hr、2.5 cc/hr、5 cc/hr、10 cc/hr、15 cc/hr、20 cc/hr、25 cc/hr、30 cc/hr、35 cc/hr、または他の任意の好適な流量である。いくつかの実施形態において、第一の方向208における第一の流体の流量は約2~5リットル/分である。いくつかの実施形態において、第一の軸方向208における血液の流量は、約1 lpm、1.5 lpm、2 lpm、2.5 lpm、3 lpm、3.5 lpm、4 lpm、4.5 lpm、5 lpm、5.5 lpm、6 lpm、6.5 lpm、7 lpm、または他の任意の好適な流量である。いくつかの実施形態において、第一の方向208における第一の流体109の流量に対する、第二の方向222における第二の流体223の流量の比率は、約0.001~0.03%である。第二の流体223が血液適合性流体である実施形態において、患者体内に排出されうる血液適合性流体の最大量が存在してもよい。患者体内に排出される血液適合性流体の量は、第二の流体の流量を限定することによって制御されてもよい。第一の流体が血液である実施形態において、その流量は、心臓の疾患がある患者に循環支持を提供して正常レベルの血流を実現できるだけ、充分に高くなければならない。そのような場合、患者に提供されるべき必要な血液フロー量は、約5~6 lpmでありうる。加えて、第二の流体223の流量も、第一の流体の流量において第一の流体がポンプ内に進入することを防げるだけの、充分な流量でなければならない。いくつかの実施形態において、第一の方向208における第一の流体の流量に対する、第二の方向222における第二の流体223の流量の比率は、約0.0008%、0.001%、0.002%、0.005%、0.007%、0.01%、0.02%、0.03%、0.04%、または他の任意の好適な比率である。
【0031】
いくつかの実施形態において、心臓ポンプ200は、流体供給ライン226に気体(例えば空気)が入ることを防ぐ安全性特徴をコントローラー(図には示していない)内に含む。流体供給ライン226における断路または破損は、ラインへの空気の導入をもたらす可能性がある。コントローラーは、ライン内の空気を示すモーター電流の降下についてモニタリングすることによって、空気が流体供給ライン226を通って動く前に、患者または医療従事者に警告してもよい。
【0032】
図3に、ロータードライブシャフト310上にポンプ要素312を有する、右心内で使用するための心臓ポンプ300の例示的な側方断面図を示す。心臓ポンプ300は、細長いカテーテル305と、近位端307と遠位端311とを有するモーターハウジング302と、ドライブシャフト310と、ポンプ要素312と、モーターローター317と、モーターステーター319と、ポンプローター304と、近位側ベアリング328と、遠位側ベアリング318と、流体供給ライン326とを含む。ポンプローター304はインペラーブレード306を含み、かつ、ドライブシャフト310に連結されるかまたはこれと一体的に形成される。ドライブシャフト310は縦軸316を有し、それを中心として方向324に回転する。ドライブシャフト310は、その上にポンプ要素312が形成される外面314を含む。ドライブシャフト310は、モーターローター317に連結され、かつ、近位側および遠位側のベアリング328および318に回転可能式に連結される。図に示すように、遠位側ベアリング318は、ドライブシャフト310がその中を通って延在しているボア320を有する、スリーブベアリングである。ドライブシャフト310は、ベアリングギャップ315によって、遠位側ベアリング318のボア320から放射方向に間隔が空けられる。
【0033】
心臓ポンプ300は、左心内で使用するための心臓ポンプ(例えば心臓ポンプ200)と類似していてもよいが、ポンプローター304の配向が逆である。ポンプローター304は、モーターハウジング302の近位端307からモーターハウジング302の遠位端311に向かう第一の方向308における、第一の流体309(例えば血液)のフローを引き起こす。二次的なポンプ要素(ポンプ要素312)がドライブシャフト310上に置かれていることによって、ドライブシャフト310の回転はまた、モーターハウジング302の近位端307からモーターハウジング302の遠位端311に向かう第二の方向322における、外部供給源(図には示していない)からの第二の流体323のフローも同時に引き起こす。右心内で使用するための血液ポンプにおいて、第一の方向308と第二の方向322とは実質的に同じ方向である。第二の流体323のフローは、外部供給源(図には示していない)から、カテーテル305を通り、そして近位側ベアリング328においてポンプ300に入るよう流れてもよい。第二の流体323のフローは、ドライブシャフト310の回転と結びつけられており、かつ、これに依存する。
【0034】
図4に、
図2または
図3の血液ポンプ内に使用されうるポンプ要素412の詳細断面図を示す。ポンプ要素412はドライブシャフト410の表面414上の溝448として形成される。ポンプ要素412を形成する溝448は、ドライブシャフト410の縦軸416に対して角度が付くように形成される。ポンプ要素412は、ドライブシャフト410の縦軸に対して、約5°、10°、15°、20°、25°、30°、または他の任意の好適な角度で形成されてもよい。溝448は、回旋448a、448b、448c、448d、および448eを有する連続的な螺旋として形成されてもよい。螺旋状の溝448は、ドライブシャフト410の周りの、3回、5回、7回、10回、12回の回旋、または他の任意の好適な数の回旋を含んでいてもよい。連続的な螺旋は、約5°、10°、15°、20°、25°、30°、または他の任意の好適なピッチ角であるピッチ角450を有していてもよい。螺旋448のピッチ角450は、圧力勾配を発生させるため、ドライブシャフト410の回転中にポンプ要素412のねじ運動を引き起こすよう選択されてもよい。いくつかの実施形態において、ポンプ要素412は、ステーターのボア420を通りそしてベアリングギャップ415から出るようにパージ用流体を輸送するための圧力勾配の発生において、インペラーとして作用する。特定の実施形態において、ポンプ要素412は、ドライブシャフト410上のポンプ要素412の回転によってパージ用流体がベアリングギャップ415を通って運ばれる際にパージ用流体を隔離することによって、容積式ポンプとして作用する。いずれの実施形態においても、第二の流体423は方向422に流れるようにしてもよく、かつ、第二の流体423のフローは、ベアリングギャップ415を通りそしてポンプから出てもよい。溝448の部分におけるドライブシャフト410は、溝448のピーク457における最大直径452が、約0.1 mm、0.25 mm、0.5 mm、0.75 mm、1 mm、1.5 mm、2 mm、または他の任意の好適な直径であってもよい。溝448の部分におけるドライブシャフト410は、溝448のトラフ459における最小直径454が、約0.1 mm、0.25 mm、0.5 mm、0.75 mm、1 mm、1.5 mm、または他の任意の好適な直径であってもよい。トラフ459からピーク457までの溝448の深さは、約0.5 μm、0.75 μm、1 μm、1.5 μm、2 μm、2.5 μm、3 μm、または他の任意の好適な深さであってもよい。
【0035】
溝448は、ベアリングギャップ415の長さ460に沿って、ドライブシャフト410の表面414上に延在していてもよい。ベアリングギャップ415の長さ460は、約0.25 mm、0.5 mm、0.75 mm、1 mm、1.5 mm、2 mm、2.5 mm、3 mm、5 mm、または他の任意の好適な長さであってもよい。代替的に、溝448は、ドライブシャフト410の表面414の一部分のみにわたって延在していてもよい。溝448は、約50 μm、75 μm、100 μm、250 μm、500 μm、1000 μm、2000 μm、または他の任意の好適な長さである長さ456にわたっていてもよい。ベアリングギャップ415は、2 μm、2.5 μm、3 μm、3.5 μm、4 μm、4.5 μm、5 μm、6 μm、または他の任意の好適な幅である幅458を有していてもよい。いくつかの実施形態において、溝のトラフ459は、クラックの形成を開始させうる応力集中を回避するため、滑らかである。いくつかの実施形態において、溝448のピッチ角450および/またはトラフ459からピーク457までの溝448の深さは、ベアリングギャップ415の特有の幅458にフィットするよう製造される。ベアリングギャップ415の幅458が狭いことは、そうでなければポンプ要素412によって引き起こされたフローを打ち消す可能性がある、逆行性のフローを低減させる。
【0036】
いくつかの実施形態において、ポンプ要素412は、エッチング、芯なし研削、旋盤加工、精密フライス削り、またはスパッタコーティングによって形成される。ポンプ要素412は、溝448の細部についてポンプが厳しい公差を有するよう、これらまたは他のプロセスによってドライブシャフト410上に機械加工されてもよい。いくつかの実施形態において、ポンプ要素412は、ドライブシャフト410の周りの連続的な螺旋状の溝448ではなく、一連の別個の要素または非連続的な溝として形成される。材料除去のプロセスによってポンプ要素412を形成すると、ドライブシャフト410上の突起としてポンプ要素412を形成した場合より、公差が厳しいポンプ要素が得られる可能性がある。さらに、突起としてではなく溝としてポンプ要素412を形成すると、ドライブシャフト410が回転中に偏心をきたしてポンプ要素412とベアリング418との接触を生じさせた場合に、ポンプ要素412またはベアリング418が損傷または摩耗するリスクが低減する。
【0037】
図5に、
図2の血液ポンプ200または
図3の血液ポンプ300などの血液ポンプのロータードライブシャフト410上の突起として形成されたポンプ要素412の詳細断面図を示す。ポンプ要素412は、ドライブシャフト410の表面414からベアリングギャップ415内に突出する。ドライブシャフト410の回転は、ポンプ要素412をベアリングギャップ415内で回転させ、これにより、ベアリングギャップ415を通る第二の液体423のフローを引き起こす。いくつかの実施形態において、ポンプ要素412の回転がインペラーとして作用し、これにより、ベアリングギャップ415を通してパージ用流体を輸送するための圧力勾配を作り出す。他の実施形態において、突出しているポンプ要素412が、パージ用流体がベアリングギャップ415を通って運ばれる際にパージ用流体を隔離することによって、容積式ポンプとして作用する。ポンプ要素412は、ドライブシャフト410の表面414から突出した連続的な螺旋449として形成される。螺旋状のポンプ要素412は、関連するピッチ角450と、ドライブシャフト410の周りの、ある数の回旋449a~cとを有していてもよい。ポンプ要素412は、ベアリングギャップ415の長さ460に沿って、または、ベアリングギャップ415の長さ460の一部分にわたって、ドライブシャフト410の表面414上に形成されてもよい。螺旋状の突起449は、ドライブシャフト410の表面414からの高さ462を有する。螺旋状の突起449は、約100ミクロン、200ミクロン、300ミクロン、400ミクロン、または他の任意の好適な高さ462である高さ462を有していてもよい。ポンプ要素412がベアリング418の内部に接触することを防ぐため、螺旋状の突起449の高さ462は、ベアリングギャップ415の幅458より小さい。ポンプ要素412は、ドライブシャフト410の縦軸416に対して角度が付くように形成されてもよい。いくつかの実施形態において、ポンプ要素412は、連続的な螺旋状の突起としてではなく、ドライブシャフト410上の、複数の別個の接続していない突起として形成されてもよい。ポンプ要素412は、左心内での使用を意図したポンプ(例えば
図2のポンプ200)または右心内での使用を意図したポンプ(例えば
図3のポンプ300)において用いられてもよい。
【0038】
図6に、
図2の血液ポンプ200または
図3の血液ポンプ300などの血液ポンプのベアリング壁542上のポンプ要素544の詳細断面図を示す。ドライブシャフト510はボア520において遠位側ベアリング518を通って延在している。ドライブシャフト510と遠位側ベアリング518との間に、流体がそれを通って流れてもよいベアリングギャップ515が形成される。遠位側ベアリング518は、遠位側ベアリング518のボア520内において内部ベアリング壁542内に形成されたポンプ要素544を含む。ドライブシャフト510が縦軸516を中心として回転した際、ポンプ要素544がベアリング壁542に対して回転された時に、ベアリング壁542上のポンプ要素544が流体中に圧力勾配をもたらす。このことは、
図5などにあるようにポンプ要素412がドライブシャフト410上に形成されている実施形態における流体の加圧と類似した様式で、ベアリングギャップ515を通る第二の流体のフロー523を引き起こす。ベアリング壁542内のポンプ要素544は、ベアリング壁542内の連続的な螺旋として形成される。螺旋状のポンプ要素544は、内部ベアリング壁542の周りに、ある数の回旋548a~dを有する。螺旋状のポンプ要素は、3回旋、5回旋、10回旋、15回旋、25回旋、50回旋、または任意の好適な数の回旋を有していてもよい。ポンプ要素544は、例えば、遠位側ベアリング518のボア520内に浅いねじ山をタッピングすることによって形成されてもよい。いくつかの実施形態において、ポンプ要素544は、ベアリング壁542内の一連の不連続な溝として形成される。ポンプ要素544をベアリング壁542内に形成すると、ドライブシャフト510を機械加工する必要がない;かつ、ボア520はドライブシャフト510と比較して受けるストレスが少ない可能性があるので、疲労破壊のリスクがさらに低減する可能性がある。
【0039】
図7に、患者の血管内に挿入された経皮式左心ポンプ600を示す。ポンプ600は、細長いカテーテルボディ605と、モーターハウジング602と、ポンプ要素がその中に形成されるドライブシャフトとを含む。ポンプ600はポンプハウジング634とモーターハウジング602とを含み、モーターハウジング602はその遠位端611においてカニューレ673に連結される。サクションヘッド674においてカニューレ673に入る血液のフローを引き起こすため、ドライブシャフト(例えば
図2の210)上のインペラーブレード(例えば
図2の206)がポンプハウジング634の中で回転されてもよい。サクションヘッド674は、カニューレ673の遠位端部分671において血液入口672を提供する。血液のフロー609は、カニューレ673を第一の方向608に通過し、そして、カニューレ673の近位端部分668にある1つまたは複数の出口開口部670においてカニューレ673から出る。
【0040】
ポンプハウジング634の中でのドライブシャフトの回転はまた、ベアリングギャップ(例えば
図2の215)の中でポンプ要素(例えば
図2の212)も回転させてもよい。血液適合性流体が、細長いカテーテル605を通り、モーターハウジング602を通って、カニューレ673の近位端部分668まで送達されてもよく、そこで流体はポンプ要素の回転によって加圧される。血液適合性流体のフローは、ポンプのベアリングギャップを通る第二の方向622を有する。心臓ポンプ600が持続的に稼働できるよう、加圧された流体は、血液がモーターハウジング602に入ることを防いでもよい。ドライブシャフトの回転は、インペラーブレードを回転させて第一の方向608における血液のフローを引き起こし、かつ、ベアリングギャップの中でポンプ要素も回転させて、第一の方向と概ね反対である第二の方向622における血液適合性流体のフローをもたらす。ドライブシャフトの回転は、流体の両方のフローを引き起こす;そして、血液適合性流体のフローが血液のフローと同じ機構によってもたらされるという点において、ポンプ600の血液適合性流体フローは「受動的パージシステム」であると言われる。いくつかの実施形態において、第一の方向における血液のフローは、第二の方向における血液適合性流体のフローを取り囲む。血液適合性流体は、ベアリングギャップから出る時に、血液のフローと浅い角度で合流して、それにより、2つのフローが正面から合流した場合に生じうる停滞および凝固形成を防いでもよい。血液適合性流体は血液がベアリングギャップ内に進入することを防ぐ。血液適合性流体は、ベアリングギャップから出た後、フロー方向623に従ってもよく、そして、血液のフロー中に引き込まれて血液とともに大動脈内に流入してもよい。
【0041】
心臓ポンプ600は、シース675を通って患者の脈管内に挿入される。いくつかの実施形態においてシースは用いられない。他の実施形態において、ポンプはガイドワイヤを用いて挿入される。細長いカテーテル605は流体供給ライン626を収容し、そして駆動ケーブルもまた収容してもよい。流体供給ライン626は、流体リザーバ682からポンプに血液適合性流体を供給する。流体リザーバ682は制御ユニット680内に含有されてもよい;制御ユニット680はまた、例えばモーターにパワー供給するかまたはモーター速度を制御するための制御器などを含む、ポンプ600用の制御器683も含む。制御ユニット680はまた、流体供給用の制御器685も含んでいてもよい。いくつかの実施形態において、制御ユニット680は、流体供給ライン626に空気が入ることを防ぐための安全性特徴を含む。制御ユニット680は、ライン内の空気を示す電流降下についてモーター電流をモニタリングするための回路を含んでいてもよい。制御ユニット680は、ラインへの空気の導入につながりうる流体供給ライン626の断路または破損についてオペレーターに警告するため、警報用の音、光、またはインジケーターを含んでいてもよい。
【0042】
血液適合性流体は、ベアリングギャップにおいて血球がポンプ内に進入することを防ぐために、ポンプを通して流されてもよい。代替的または追加的に、血液適合性流体は、ポンプの近位側もしくは遠位側ベアリング(図には示していない)用の潤滑剤として機能してもよく、または、モーターステーター(例えば
図2の217)を形成する電磁モーターコイルによってもたらされる熱を放散させるための冷却剤として機能してもよい。血液適合性流体は、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体であってもよい。例えば、血液適合性流体は、生理食塩水、リンゲル液、グルコース溶液、ヘパリン、または他の任意の好適な流体であってもよい。いくつかの実施形態において、ポンプ600内部のベアリングを潤滑するため、グルコース溶液など高粘性のパージ用流体が用いられる。他の実施形態において、ポンプから血液をパージするため、および、医学的な目的を果たすため、薬理学的作用物質がパージ用流体として用いられる。例えば、パージ用流体は、血液凝固を防ぐためのヘパリンとして選択されてもよい。パージ用流体は、流体供給ライン626を通って流れ、ベアリングギャップを通り、そして、カニューレ673の近位端部分668の近くの出口開口部670においてポンプ600から流出する。パージ用流体は患者の血流中に安全に分散される。
【0043】
ポンプハウジング634にはポンプローター(例えば
図2の204)と内部ベアリングとが入っていてもよい。ポンプハウジング634は、患者の脈管内に経皮的に挿入できるようサイズ決定されてもよい。ポンプハウジング634は約4 mmの外径を有してもよく、かつ、長さが約15 mmであってもよい。ポンプは、鼠径部の近くで大腿動脈内に経皮的に挿入されてもよく、そして、脈管構造を通って心臓まで進められてもよい。心拍出量を増大させるため、血液が患者の左心室から患者の大動脈内までポンピングされるとき、血液は第一の軸方向608に流れてもよい。いくつかの実施形態において、ポンプは、脈管構造を通りそして大動脈弓664を超えて進められてもよい。ポンプは左心室内にある状態で図示されているが、代替的に、血液が患者の下大静脈または右心房から右心室を通りそして肺動脈内までポンピングされるよう、ポンプが右心内に置かれてもよい。
【0044】
心臓ポンプ600を脈管内または心臓の部屋内に最適に位置決めするため、サクションヘッド674より遠位の、カニューレ673の遠位端部分671に、可撓性突出部676もまた含まれていてもよい。サクションヘッド674はサクションによって脈管の壁にはまり込む可能性があるが、可撓性突出部676はサクションヘッド674が脈管の壁に近づくことを防いでもよい。可撓性突出部676はポンプ600を機械的に延長させてもよいが、可撓性突出部676は非吸引性であるので、水力学的には延長させない。いくつかの実施形態において、可撓性突出部はピッグテールとして形成されてもよい。他の実施形態において、可撓性突出部676はまっすぐであるかまたは湾曲していてもよい。いくつかの実施形態において、可撓性突出部676は、丸みを帯びているかまたはボールとして形成されてもよい。可撓性突出部676は、心臓ポンプ600の効率を確保するため、脈管壁からサクションヘッド674までの距離を維持する。いくつかの態様において、ポンプは可撓性突出部を含んでいなくてもよい。
【0045】
図8に、患者の血管内に挿入された経皮式右心ポンプ700を示す。ポンプ700は、
図7のポンプ600のものと類似した要素を備える。ポンプ700はポンプハウジング734とモーターハウジング702とを含み、モーターハウジング702はその遠位端711においてカニューレ773に連結される。カニューレ773の近位端部分768にある血液入口772においてカニューレ773に入る血液のフローを引き起こすため、ドライブシャフト(例えば
図3の310)上に配置されたインペラーブレード(例えば
図3の306)がポンプハウジング734の中で回転されてもよい。カニューレ773の遠位端部分771に血液出口770が提供される。血液のフロー709は、カニューレ773の近位端部分768にある血液入口772内に、第一の方向708に入ってもよく、かつ、血液のフロー709は、カニューレ773の遠位端部分771にある1つまたは複数の出口開口部770においてカニューレ773から出てもよい。
【0046】
ポンプハウジング734の中でのドライブシャフトの回転はまた、ベアリングギャップ(例えば
図3の315)の中でポンプ要素(例えば
図3の312)も回転させてもよい。血液適合性流体が、細長いカテーテル705を通り、モーターハウジング702を通って、カニューレ773の近位端部分768まで送達されてもよく、そこで流体はポンプ要素の回転によって加圧される。血液適合性流体のフローは、ポンプのベアリングギャップを通る第二の方向722を有する。心臓ポンプ700が持続的に稼働できるよう、加圧された流体は、血液がモーターハウジング702に入ることを防いでもよい。ドライブシャフトの回転は、インペラーブレードを回転させて第一の方向708における血液のフローを引き起こし、かつ、ベアリングギャップの中でポンプ要素も回転させて、第一の方向708と同じである第二の方向722における血液適合性流体のフローをもたらす。ドライブシャフトの回転は、流体の両方のフローを引き起こす;そして、血液適合性流体のフローが血液のフローと同じ機構によってもたらされるという点において、ポンプ700の血液適合性流体フローは「受動的パージシステム」であると言われる。血液適合性流体は血液がベアリングギャップ内に進入することを防ぐ。血液適合性流体は、ベアリングギャップから出た後、フロー方向723に従う;そして、肺動脈787に入る血液のフロー中に引き込まれてもよい。
【0047】
心臓ポンプ700は、
図7の心臓ポンプ600と類似の様式で、シース775を通って患者の脈管内に挿入される。いくつかの実施形態においてシースは用いられない。他の実施形態において、ポンプはガイドワイヤを用いて挿入される。ポンプ700は、血液が下大静脈781内でポンプに入り、そしてポンプから出て肺動脈787に入るように、位置決めされてもよい。細長いカテーテル705は流体供給ライン726を収容し、そして駆動ケーブルもまた収容してもよい。流体供給ライン726は、流体リザーバ782からポンプに血液適合性流体を供給する。流体リザーバ782は制御ユニット780内に含有されてもよい;制御ユニット780はまた、例えばモーターにパワー供給するかまたはモーター速度を制御するための制御器などを含む、ポンプ700用の制御器783も含む。制御ユニット780はまた、流体供給用の制御器785も含んでいてもよい。いくつかの実施形態において、制御ユニット780は、流体供給ライン726に空気が入ることを防ぐための安全性特徴を含む。制御ユニット780は、ライン内の空気を示す電流降下についてモーター電流をモニタリングするための回路を含んでいてもよい。制御ユニット780は、ラインへの空気の導入につながりうる流体供給ライン726の断路または破損についてオペレーターに警告するため、警報用の音、光、またはインジケーターを含んでいてもよい。
【0048】
血液適合性流体は、ベアリングギャップにおいて血球がポンプ内に進入することを防ぐために、ポンプを通して流されてもよい。代替的または追加的に、血液適合性流体は、ポンプの近位側もしくは遠位側ベアリング(図には示していない)用の潤滑剤として機能してもよく、または、モーターステーター(例えば
図3の317)を形成する電磁モーターコイルによってもたらされる熱を放散させるための冷却剤として機能してもよい。血液適合性流体は、パージ用流体、潤滑剤、冷却剤、薬剤、または任意の好適な血液適合性流体であってもよい。パージ用流体は、流体供給ライン726を通って流れ、ベアリングギャップを通り、そして、カニューレ773の遠位端部分771の近くの出口開口部770においてポンプ700から流出する。パージ用流体は患者の血流中に安全に分散される。
【0049】
ポンプハウジング734にはポンプローター(例えば
図3の304)と内部ベアリングとが入っていてもよい。ポンプ700、そして特にポンプハウジング734は、患者の脈管内に経皮的に挿入できるようサイズ決定されてもよい。ポンプハウジング734は約4 mmの外径を有してもよく、かつ、長さが約15 mmであってもよい。ポンプは、鼠径部の近くで大腿動脈内に経皮的に挿入されてもよく、そして、脈管構造を通って心臓まで進められてもよい。血液が患者の下大静脈781から患者の肺動脈787内までポンピングされるとき、血液は第一の軸方向708に流れてもよい。心臓ポンプ700を脈管内または心臓の部屋内に最適に位置決めするため、カニューレ773の遠位端部分771に、可撓性突出部776もまた含まれていてもよい。いくつかの態様において、ポンプは可撓性突出部を含んでいなくてもよい。
【0050】
図9に、心臓補助を提供するための例示的なプロセス900を示す。段階902において、心臓ポンプ(例えば、
図1の心臓ポンプ100、
図2の心臓ポンプ200、
図7の心臓ポンプ600、
図8の心臓ポンプ700、または他の任意の好適な心臓ポンプ)が患者の脈管構造内に位置決めされる。本発明の心臓ポンプは、緊急手技中の使用または撮像手技に関連した使用など、短期的な使用のために構成されてもよい。いくつかの実施形態において、心臓ポンプは、完全に埋め込み可能なポンプとして、長期的な使用のために構成されてもよい。心臓ポンプは、患者体内に長期的に埋め込むために用いられてもよい(例えば、> 1時間、> 3時間、> 6時間、> 12時間、> 24時間、> 2日間、> 10日間、> 20日間、> 45日間、> 60日間、または任意の好適な期間)。心臓ポンプは外科的または経皮的に患者の脈管構造内に挿入されてもよい。いくつかの実施形態において、心臓ポンプは、ガイドワイヤ上で、かつ/またはシースを通って、所定の位置まで進められる。心臓ポンプは、患者の左心室から患者の大動脈内まで血液をポンピングして心拍出量を増大させるために、左心内で使用されてもよい。いくつかの実施形態において、心臓ポンプは大動脈弓を超えて進められる。他の実施形態において、心臓ポンプは、患者の下大静脈または右心房から、右心室を通り、肺動脈内まで血液をポンピングするため、右心内に位置決めされる。
【0051】
ポンプが位置決めされたら、段階904において、第一の軸方向における第一の流体フローと、第一の流体フローと概ね反対である第二の方向における第二の流体フローとを引き起こすため、ポンプローターアセンブリが回転される。ポンプローター(例えば、
図1のローター103、
図2のローター204、
図3のローター304、または他の任意の好適なローター)は、ポンプ要素(例えば、ポンプ要素112、ポンプ要素212、ポンプ要素312、ポンプ要素412、ポンプ要素544、または他の任意の好適なポンプ要素)を有するドライブシャフト(例えば、ドライブシャフト110、ドライブシャフト210、ドライブシャフト310、ドライブシャフト410、ドライブシャフト510、または他の任意の好適なドライブシャフト)上で回転されてもよい。ベアリングギャップ(例えば、ベアリングギャップ215、ベアリングギャップ315、ベアリングギャップ415、ベアリングギャップ515、または他の任意の好適なベアリングギャップ)内でのドライブシャフトの回転が、ベアリングギャップを通る第二の流体フローを引く圧力勾配をもたらすよう、ポンプ要素は、回転可能なドライブシャフトの表面上の溝、エッチング、または突起として形成されてもよい。いくつかの実施形態において、ポンプ要素は、遠位側ベアリングの内壁上の溝、エッチング、または突起として形成されてもよい(例えば
図6のポンプ要素544)。いくつかの実施形態において、第一の流体フローと第二の流体フローとが合流するポイントにおいて、第一の流体フローと第二の流体フローとは互いに反対向きである。いくつかの実施形態において、第一の方向における第一の流体フローは、第二の方向における第二の流体フローを取り囲む。いくつかの実施形態において、第一の液体フローと第二の液体フローとは、浅い角度で合流する。いくつかの実施形態において、第一の流体フローと第二の流体フローとは、互いに概ね反対の軸方向にある。いくつかの実施形態において、第一の流体フローと第二の流体フローとは互いに垂直である。いくつかの実施形態において、第一の流体フローと第二の流体フローとは互いに斜めである。
【0052】
第一の流体は、インペラーによって、第一の軸方向に流れるようにしてもよい。第二の流体は、ドライブシャフト上に形成されたポンプ要素によってもたらされてもよい。いくつかの実施形態において、第二の方向における第二の流体の流量は約2~30 cc/hrである。いくつかの実施形態において、第二の方向における第二の流体の流量は、1.5 cc/hr、1.75 cc/hr、2 cc/hr、2.25 cc/hr、2.5 cc/hr、5 cc/hr、10 cc/hr、15 cc/hr、20 cc/hr、25 cc/hr、30 cc/hr、35 cc/hr、または他の任意の好適な流量である。いくつかの実施形態において、第一の方向における第一の流体の流量は約2~5リットル/分である。いくつかの実施形態において、第一の軸方向における血液の流量は、約1 lpm、1.5 lpm、2 lpm、2.5 lpm、3 lpm、3.5 lpm、4 lpm、4.5 lpm、5 lpm、5.5 lpm、6 lpm、6.5 lpm、7 lpm、または他の任意の好適な流量である。いくつかの実施形態において、第一の方向における第一の流体の流量に対する、第二の方向における第二の流体の流量の比率は、約0.001~0.03%である。第二の流体が血液適合性流体である実施形態において、患者体内に排出されうる血液適合性流体の最大量が存在してもよい。患者体内に排出される血液適合性流体の量は、第二の流体の流量を限定することによって制御されてもよい。第一の流体が血液である実施形態において、その流量は、心臓の疾患がある患者に循環支持を提供して正常レベルの血流を実現できるだけ、充分に高くなければならない。そのような場合、患者に提供されるべき必要な血液フロー量は、約5~6 lpmでありうる。加えて、第二の流体の流量も、第一の流体の流量において第一の流体がポンプ内に進入することを防げるだけの、充分な流量でなければならない。いくつかの実施形態において、第一の方向における第一の流体の流量に対する、第二の方向における第二の流体の流量の比率は、約0.0008%、0.001%、0.002%、0.005%、0.007%、0.01%、0.02%、0.03%、0.04%、または他の任意の好適な比率である。血液フローの方向と逆である流体のフローは、ポンプの中でベアリングを潤滑してもよく、余分な熱および/または流入した血液をポンプからパージしてもよく、かつ、心臓ポンプ内への血球の進入を防いでもよい。
【0053】
心臓ポンプのドライブシャフトまたはベアリング壁の中にポンプ要素が統合されていると、異なる方向における流体フローをポンプが同時に引き起こすことが可能となる。血液と血液適合性流体とを同じ機構によって同時にポンピングすることによって、パージ用流体をポンピングするための外部加圧ポンプの必要性がなくなるかまたは低減される。パージ用流体の外部ポンプがなくなると、医療環境においてポンプの外部コントローラーのサイズが小さくなり、かつ、外部コントローラーを設定および/または使用するためのオペレーターのワークフローが単純化される。長期的な埋め込み用の、完全に埋め込み可能なポンプとしての使用において、追加的ポンプがなくなると、患者の移動能が増大する可能性がある。さらに、第二の流体のフローは、ポンプの繊細な領域(例えば、ローターシャフトがその中で回転するボアなど)内への血液の進入に対してバリアを提供し、かつ/または、ポンプの中のベアリングを潤滑する可能性がある。これらの効果により、パージ用流体のための追加的な機材を必要とすることなく、ポンプを長期的に使用できる可能性がある。
【0054】
以上は本開示の原理を例示したものにすぎない;そして、本明細書に説明する諸態様は、限定ではなく例示の目的で提示されているのであり、本発明の装置はこれら以外の態様によっても実現されうる。理解されるべき点として、本明細書に開示する装置は、心臓ポンプの経皮的挿入における使用について示したが、止血を必要とする他の用途における装置に適用されてもよい。
【0055】
当業者には、本開示の検討後、バリエーションおよび改変が考えられるであろう。本開示の特徴は、本明細書に説明する1つまたは複数の他の特徴との、任意の組み合わせおよび下位組み合わせ(複数の従属的な組み合わせおよび下位組み合わせを含む)において実施されてもよい。以上に説明または例証した様々な特徴は、それらの任意の構成要素も含めて、他のシステムと組み合わせられるかまたは他のシステムに統合されてもよい。さらに、特定の特徴が省略されるかまたは実施されなくてもよい。
【0056】
変更、置換、および代替の例は当業者によって確認可能であり、かつ、本明細書に開示する情報の範囲から逸脱することなく行われうる。本明細書において言及するすべての参照物は、その全内容が参照により組み入れられ、かつ、本出願の一部をなす。
【手続補正書】
【提出日】2022-09-13
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
近位部分と遠位部分とを有する細長いカテーテルと;
該細長いカテーテルの該遠位部分に配置されたポンプローターであって、インペラーブレードを有する、ポンプローターと;
該ポンプローターに連結されたドライブシャフトと;
該細長いカテーテルの該遠位部分に配置され、かつ該ドライブシャフトがその中に延在しているボアを有するベアリングと;
該ドライブシャフトに形成され、かつ該細長いカテーテルの該遠位部分に配置された、ポンプ要素と
を含む、心臓ポンプを提供する段階:および
該ドライブシャフトを回転させる段階
を含む、心臓ポンプを操作するための方法であって、
該心臓ポンプが、該ドライブシャフトを回転させると、第一の軸方向における血液フローを該インペラーブレードで引き起こしながら、同時に、第二の軸方向における、該ボアを通る、該患者の脈管構造への流体フローを該ポンプ要素で引き起こすように構成されている、
前記方法。
【請求項2】
心臓ポンプが、ポンプ要素によって第二の軸方向に引き起こされる流体フローの流量がインペラーブレードによって第一の軸方向に引き起こされる血液フローの流量の1%未満になるように構成されている、請求項1記載の方法。
【請求項3】
心臓ポンプが、ポンプ要素によって第二の軸方向に引き起こされる流体フローの流量がインペラーブレードによって第一の軸方向に引き起こされる血液フローの流量の約0.001~0.03%になるように構成されている、請求項1記載の方法。
【請求項4】
心臓ポンプが、インペラーブレードによって第一の軸方向に引き起こされる血液フローの流量が約2~5リットル/分になるように構成されている、請求項1記載の方法。
【請求項5】
心臓ポンプが、ポンプ要素によって第二の軸方向に引き起こされる流体フローの流量が約2~30立方センチメートル/時になるように構成されている、請求項1記載の方法。
【請求項6】
心臓ポンプが、第二の軸方向が第一の軸方向と反対になるように構成されている、請求項1記載の方法。
【請求項7】
心臓ポンプが、第二の軸方向が第一の軸方向と実質的に同一になるように構成されている、請求項1記載の方法。
【請求項8】
心臓ポンプが、ポンプ要素によって引き起こされる流体フローが、細長いカテーテル内の流体供給ラインを通って引き出される流体になるように構成されている、請求項1記載の方法。
【請求項9】
心臓ポンプが、流体フローを引き起こすと、生理食塩水のフローを引き起こすように構成されている、請求項1記載の方法。
【請求項10】
心臓ポンプが、流体フローを引き起こすと、リンゲル液のフローを引き起こすように構成されている、請求項1記載の方法。
【請求項11】
心臓ポンプが、流体フローを引き起こすと、グルコース溶液のフローを引き起こすように構成されている、請求項1記載の方法。
【請求項12】
心臓ポンプが、流体フローを引き起こすと、ヘパリンのフローを引き起こすように構成されている、請求項1記載の方法。
【請求項13】
心臓ポンプが、ボアの内側表面とドライブシャフトとの間にベアリングギャップをさらに含み、該ベアリングギャップが、約5ミクロンまたはそれ未満である、請求項1記載の方法。
【請求項14】
心臓ポンプが、ボアの内側表面とドライブシャフトとの間にベアリングギャップをさらに含み、該ベアリングギャップが、約5~15ミクロンの範囲内である、請求項1記載の方法。
【請求項15】
心臓ポンプが、第一の軸方向における血液フローが第二の軸方向における流体フローを取り囲むように構成されている、請求項1記載の方法。
【請求項16】
ポンプ要素が、ドライブシャフトの表面上の溝として形状決定されている、請求項1記載の方法。
【請求項17】
ドライブシャフトの表面上の溝が、該ドライブシャフトの縦軸に対して角度の付いた状態である、請求項16記載の方法。
【請求項18】
ポンプ要素が、ドライブシャフトの表面上の突起として形状決定されている、請求項1記載の方法。
【請求項19】
ドライブシャフトがモーターに連結されている、請求項1記載の方法。
【請求項20】
心臓ポンプが、患者の心臓内へと経皮的に埋め込まれてもよいように構成されている、請求項1記載の方法。