(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022159945
(43)【公開日】2022-10-18
(54)【発明の名称】ドライアイ分類に関する方法及びそれを用いた眼科装置、並びに学習器
(51)【国際特許分類】
A61B 3/107 20060101AFI20221011BHJP
【FI】
A61B3/107
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021064437
(22)【出願日】2021-04-05
(71)【出願人】
【識別番号】509349141
【氏名又は名称】京都府公立大学法人
(71)【出願人】
【識別番号】390000594
【氏名又は名称】株式会社レクザム
(74)【代理人】
【識別番号】100115749
【弁理士】
【氏名又は名称】谷川 英和
(74)【代理人】
【識別番号】100121223
【弁理士】
【氏名又は名称】森本 悟道
(72)【発明者】
【氏名】横井 則彦
(72)【発明者】
【氏名】川井 淳
(72)【発明者】
【氏名】吉岡 玲二
(72)【発明者】
【氏名】吉田 健一
(72)【発明者】
【氏名】山本 大地
【テーマコード(参考)】
4C316
【Fターム(参考)】
4C316AA02
4C316AA03
4C316AA24
4C316AB16
4C316FB21
4C316FY02
(57)【要約】
【課題】非侵襲的、かつ、客観的にドライアイを分類できる眼科装置等を提供する。
【解決手段】被検眼の角膜表面の涙液層の状態に関する測定を行い、測定結果を用いてドライアイを分類する眼科装置1は、角膜表面に所定のパターンを投光する投光手段13と、角膜表面で反射したパターンの反射像を繰り返し撮影する撮影手段14と、撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得する取得手段15と、時系列に沿った複数のぼやけ情報である訓練用入力情報と、その訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得する分類手段17と、分類結果を出力する出力手段19とを備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
被検眼の角膜表面の涙液層の状態に関する測定を行い、当該測定の結果を用いてドライアイを分類する眼科装置であって、
角膜表面に所定のパターンを投光する投光手段と、
角膜表面で反射したパターンの反射像を繰り返し撮影する撮影手段と、
撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得する取得手段と、
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、前記取得手段によって取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得する分類手段と、
前記分類手段によって取得された分類結果を出力する出力手段と、を備えた眼科装置。
【請求項2】
繰り返し撮影された反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和に応じた値である重症度情報を算出する算出手段をさらに備え、
前記出力手段は、前記重症度情報も出力する、請求項1記載の眼科装置。
【請求項3】
前記分類結果は、涙液減少型、水濡れ性低下型、蒸発亢進型、及び、蒸発亢進型と水濡れ性低下型の複合型から選ばれるいずれかである、請求項1または請求項2記載の眼科装置。
【請求項4】
被検眼の角膜表面の涙液層の状態に関する測定を行い、当該測定の結果を用いてドライアイを分類するドライアイ分類に関する方法であって、
角膜表面に所定のパターンを投光するステップと、
角膜表面で反射したパターンの反射像を繰り返し撮影するステップと、
撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得するステップと、
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、前記ぼやけ情報を取得するステップで取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得するステップと、
前記ドライアイの分類結果を取得するステップで取得された分類結果を出力するステップと、を備えたドライアイ分類に関する方法。
【請求項5】
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器であって、
前記ぼやけ情報は、被検眼の角膜表面で反射した所定のパターンの反射像の輝度値の極大部分のぼやけの程度を示す値に応じた情報であり、
分類対象の被検眼の時系列に沿った複数のぼやけ情報が適用されると、当該分類対象の被検眼に関するドライアイの分類結果を取得することができる、学習器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検眼の角膜表面の涙液層の状態に関する測定を行い、ドライアイを分類する眼科装置等に関する。
【背景技術】
【0002】
従来、ドライアイを原因別に分類することによって治療方針を決定することが行われている。そのようなドライアイの分類方法として、蛍光物質であるフルオレセインで被検眼を染色し、スリットランプにて涙液層の破壊パターンを観察することにより、医師が定性的に分類する方法が提唱されている(例えば、非特許文献1参照)。
【0003】
また、涙液層の破壊パターンの分類に関する信頼性を向上させるための装置も提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【非特許文献1】横井則彦、「TFOD and TFOT Expert Lecture ドライアイ診療のパラダイムシフト」、株式会社メディカルレビュー社、2020年3月
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、スリットランプによる涙液層の観察には、フルオレセインによる染色が必要であり、侵襲的な検査となる。また、染色の仕方を統一することが難しく、所見の解釈も検査者によって異なる可能性がある。そのようなことから、非侵襲的、かつ、より客観的な検査方法が求められている。
【0007】
なお、上記特許文献1には、非侵襲的な手法によって信頼性の向上を図るための装置についても記載されているが、その装置でも破壊領域を特定する必要があり、その破壊領域の特定に破壊領域か否かを判別するための閾値を用いている。したがって、閾値より小さい箇所の情報は分類に用いられず、分類の精度が低下する可能性があるという問題があった。
【0008】
本発明は、上記課題を解決するためになされたものであり、非侵襲的、かつ客観的な手法によって、より高精度なドライアイの分類を行うことができる眼科装置等を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本発明の一態様による眼科装置は、被検眼の角膜表面の涙液層の状態に関する測定を行い、測定の結果を用いてドライアイを分類する眼科装置であって、角膜表面に所定のパターンを投光する投光手段と、角膜表面で反射したパターンの反射像を繰り返し撮影する撮影手段と、撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得する取得手段と、時系列に沿った複数のぼやけ情報である訓練用入力情報と、訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、取得手段によって取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得する分類手段と、分類手段によって取得された分類結果を出力する出力手段と、を備えたものである。
【0010】
このような構成により、角膜表面で反射した所定のパターンの反射像を用いて測定を行うため、非侵襲的な測定を実現できることになる。また、その測定結果を学習器に適用することによってドライアイを分類するため、より客観的な分類を実現することもできる。また、ぼやけ情報を学習器に適用することによって、より精度の高い分類を実現することができるようになる。
【0011】
また、本発明の一態様による眼科装置では、繰り返し撮影された反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和に応じた値である重症度情報を算出する算出手段をさらに備え、出力手段は、重症度情報も出力してもよい。
【0012】
このような構成により、分類結果におけるドライアイの重症度についても知ることができるようになる。
【0013】
また、本発明の一態様による眼科装置では、分類結果は、涙液減少型、水濡れ性低下型、蒸発亢進型、及び、蒸発亢進型と水濡れ性低下型の複合型から選ばれるいずれかであってもよい。
【0014】
また、本発明の一態様による学習器は、時系列に沿った複数のぼやけ情報である訓練用入力情報と、訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器であって、ぼやけ情報は、被検眼の角膜表面で反射した所定のパターンの反射像の輝度値の極大部分のぼやけの程度を示す値に応じた情報であり、分類対象の被検眼の時系列に沿った複数のぼやけ情報が適用されると、分類対象の被検眼に関するドライアイの分類結果を取得することができる、ものである。
【0015】
このような構成により、この学習器を用いることによって、非侵襲的、かつ客観的にドライアイを分類することができるようになる。また、ぼやけ情報を学習器に適用することによって、より精度の高い分類を実現することができるようになる。
【0016】
また、本発明の一態様によるドライアイ分類に関する方法は、被検眼の角膜表面の涙液層の状態に関する測定を行い、測定の結果を用いてドライアイを分類するドライアイ分類に関する方法であって、角膜表面に所定のパターンを投光するステップと、角膜表面で反射したパターンの反射像を繰り返し撮影するステップと、撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得するステップと、時系列に沿った複数のぼやけ情報である訓練用入力情報と、訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、ぼやけ情報を取得するステップで取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得するステップと、ドライアイの分類結果を取得するステップで取得された分類結果を出力するステップと、を備えたものである。
【発明の効果】
【0017】
本発明の一態様による眼科装置等によれば、非侵襲的、かつ客観的にドライアイを分類することができるようになる。また、ぼやけ情報を学習器に適用することによって、より精度の高い分類を実現することができるようになる。
【図面の簡単な説明】
【0018】
【
図1】本発明の実施の形態による眼科装置の構成を示す模式図
【
図2】同実施の形態による眼科装置の動作を示すフローチャート
【
図3】同実施の形態におけるパターンの投光された被検眼等の一例を示す図
【
図4】同実施の形態におけるパターンの投光された被検眼等の一例を示す図
【
図5】同実施の形態における被検眼の半径方向の輝度値の変化の一例を示す図
【
図6】同実施の形態におけるリングパターンに直交する方向における輝度の一例を示す図
【
図7】同実施の形態における学習器の各層の一例について説明するための図
【
図8】同実施の形態の実験における分類結果の正答率について説明するための図
【発明を実施するための形態】
【0019】
以下、本発明によるドライアイ分類に関する方法及びそれを用いた眼科装置について、実施の形態を用いて説明する。なお、以下の実施の形態において、同じ符号を付した構成要素及びステップは同一または相当するものであり、再度の説明を省略することがある。本実施の形態による眼科装置は、角膜表面に投光されたパターンの反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を算出し、その算出した時系列に沿った複数のぼやけ情報を学習器に適用することによってドライアイを分類するものである。
【0020】
図1は、本実施の形態による眼科装置1の構成を示す模式図である。本実施の形態による眼科装置1は、被検眼2の角膜表面の涙液層の状態に関する測定を行い、その測定結果を用いてドライアイを分類するものであり、接眼レンズ3、フィールドレンズ4、絞り(ピンホール)5、及び結像レンズ6を有する光学系の構成と、照明用光源7と、投光手段13と、撮影手段14と、取得手段15と、記憶手段16と、分類手段17と、算出手段18と、出力手段19と、制御手段20とを備える。なお、眼科装置1は、例えば、涙液層の状態に関する測定を行ってドライアイを分類するものであってもよく、または、ケラトメータ等の機能を有するものであってもよい。
【0021】
投光手段13は、被検眼2の角膜表面に所定のパターンを投光する。所定のパターンは、例えば、線状のパターンであってもよく、点状のパターンであってもよく、それらの組み合わせであってもよい。線状のパターンは、例えば、複数のラインを有するパターンであってもよい。そのラインは、例えば、曲線であってもよく、直線であってもよい。曲線のパターンは、例えば、複数のリングを同心円状に有する多重のリングパターンであってもよい。点状のパターンは、例えば、複数の点(ポイント)を有するパターンであってもよい。複数のポイントを有するパターンは、例えば、規則的に配置されている複数のポイントのパターンであってもよく、ランダムに配置されている複数のポイントのパターンであってもよい。前者の場合には、複数のポイントのパターンは、例えば、正方格子や矩形格子、三角格子などの格子点に配置された複数のポイントの集合であってもよい。なお、所定のパターンに含まれる複数のラインの幅は同じであり、複数のポイントの直径は同じであることが好適である。また、パターンは、被検眼2の角膜の全体にわたって投光されることが好適である。本実施の形態では、投光手段13が、プラチドドーム11と、測定用光源12とを有しており、所定のパターンが、プラチドドーム11による複数の同心円状のパターン、すなわち多重のリングパターン(プラチドリング)である場合について主に説明する。プラチドドーム11は、同心の複数のリング状の開口を有するドーム状の光学マスクであり、測定用光源12から発せられた測定光によって、被検眼2の前眼部に、複数の同心円状のパターンであるリングパターンを投光する。測定用光源12から発せられる測定光の波長は問わない。測定光は、例えば、可視光であってもよく、近赤外光などであってもよい。測定光が可視光である場合に、その波長は、例えば、650nmや750nm等であってもよい。なお、被検眼2にリングパターンを投光する方法は問わない。また、被検眼2へのリングパターンの投光はすでに公知であり、その詳細な説明を省略する。
【0022】
照明用光源7は、被検眼2の照明用の光源であり、被検者の瞼の状態等を検者が確認するなどのために被検眼2に照射されるものである。照明用光源7から発せられる照明光は、例えば、近赤外の光であってもよい。なお、照明用光源7及び測定用光源12はそれぞれ、光学系の光軸を中心として環状に配列されていてもよい。
【0023】
被検眼2の角膜表面に投光されたリングパターンは、角膜表面で反射する。そして、反射したパターンは、接眼レンズ3、フィールドレンズ4、絞り5、結像レンズ6を介して結像する。撮影手段14は、そのパターンの反射像を撮影する。撮影手段14は、例えば、CCDイメージセンサやCMOSイメージセンサ等であってもよい。撮影手段14は、パターンの反射像を繰り返し撮影する。この繰り返しての撮影は、所定の時間間隔ごとに行われてもよい。このように撮影が繰り返されることによって、被検眼2について時系列に沿った情報を取得することができる。
【0024】
取得手段15は、撮影手段14によって撮影された反射像における輝度値の極大部分のぼやけの程度を示す値を算出する。所定のパターンがラインを有する場合に、取得手段15は、撮影された反射像のラインに直交する方向における輝度値の極大部分のぼやけの程度を示す値を算出してもよい。また、所定のパターンがポイントを有する場合に、取得手段15は、撮影された反射像のポイントを通過する任意の方向における輝度値の極大部分のぼやけの程度を示す値を算出してもよい。なお、ポイントに関するぼやけの程度を示す値は、反射像のポイントの中心を通過する直線におけるぼやけの程度を示す値であることが好適である。リングパターンの反射像が撮影される場合には、反射像のラインはリングとなる。したがって、リングパターンの反射像が撮影される場合には、取得手段15は、そのリングパターンの反射像において、中心位置を特定してもよい。その中心位置の特定は、例えば、多重のリングパターンに含まれる最も直径の小さいリングの中心を特定することによって行われてもよい。そして、取得手段15は、その特定した中心位置から、所定の角度ごとに半径方向に延びる直線と、リングパターンとの交点におけるぼやけの程度を示す値をそれぞれ算出してもよい。
【0025】
ここで、取得手段15が特定した中心位置からの半径方向に延びる直線方向におけるデータを取得する方法について説明する。取得手段15は、特定した中心位置から、半径方向に延びる角度θの直線上の輝度値をサンプリングする際に、中心位置からの距離が同じである近傍の輝度値を用いてもよい。近傍の輝度値とは、例えば、中心位置から半径方向に延びる、角度θ-n×δから角度θ+n×δまでのδごとの輝度値であってもよい。なお、nは1以上の整数であり、δは正の実数である。また、取得手段15が、特定した中心位置から半径方向に延びる直線方向におけるデータの取得を、角度間隔Δθで行う場合には、n×δ<Δθ/2となることが好適である。Δθは特に限定されるものではないが、例えば、5度、10度、15度等であってもよい。Δθが10度である場合には、中心位置から放射状に延びる36個の直線上の輝度値がサンプリングされることになる。上記のように角度θの輝度値の取得を行う場合には、取得手段15は、角度θ-n×δ、θ-(n-1)×δ、…、θ、…、θ+(n-1)×δ、θ+n×δの2n+1個の輝度値の代表値を、角度θの輝度値として取得してもよい。代表値は、例えば、平均値や中央値、最大値等であってもよい。具体的には、取得手段15は、角度θの直線上の輝度値を取得する際に、角度θ+δの直線上の輝度値、角度θ+2δの直線上の輝度値、角度θ-δの直線上の輝度値、角度θ-2δの直線上の輝度値をも用いてもよい。同様に、取得手段15は、角度θに対応する直線上の輝度値を、中心側から順番に、それぞれ複数の輝度値の代表値として取得してもよい。このようなデータの取得を行うことによって、例えば、リングパターンの反射像が途切れている角度であっても、近傍の角度から反射像のデータを取得することができ、半径方向に延びる直線とリングとの交点の位置を特定することができるようになる。なお、ここでは、取得手段15が、ある角度θの直線について、近傍の輝度値を含めた複数の輝度値の代表値として輝度値を取得する場合について説明したが、そうでなくてもよい。例えば、取得手段15は、角度θの直線上の輝度値データを、中心側から順番にサンプリングしてもよい。また、取得手段15は、半径方向に延びる直線上の輝度値の取得を、特定した中心位置から半径方向に延びるΔθごとの直線について行ってもよい。
【0026】
図3は、角膜表面の涙液層に破壊が生じていない被検眼2の撮影画像の一例を示す図であり、
図4は、角膜表面の涙液層に破壊が生じている被検眼2の撮影画像の一例を示す図である。より詳細には、
図3(a)、
図4(a)は、角膜表面で反射したリングパターンの反射像の撮影画像であり、
図3(b)、
図4(b)は、中心位置から所定の角度ごとに半径方向に延びる直線を撮影画像に重ねて示した図であり、
図3(c)、
図4(c)は、算出されたぼやけの程度を示す値に応じた色を重ねて表示した撮影画像である。
【0027】
図3(a)、
図4(a)を比較すれば明らかなように、涙液層に破壊が生じていない場合には、反射像における多重のリングパターンの各リングが崩れていないが、涙液層に破壊が生じている場合には、反射像における多重のリングパターンの各リングが崩れている。また、所定の角度方向について、リングパターンの反射像の中心からの距離と、輝度値との関係を示すと、
図5で示されるようになる。
図5で示される輝度値は、例えば、被検眼の撮影画像から上記のようにしてサンプリングされたものである。
図5において、リングが崩れていない画像、すなわち涙液層に破壊が生じていない被検眼の画像に関する輝度値の変化を破線で示しており、リングが崩れている画像、すなわち涙液層に破壊が生じている被検眼の画像に関する輝度値の変化を実線で示している。
図5では、反射像のリングの位置において、輝度値がピークとなっている。
図5から明らかなように、涙液層に破壊が生じている被検眼に関する輝度値のピークの形状が、涙液層に破壊が生じていない被検眼に関する輝度値のピークの形状よりも鈍っており、ぼやけていることが分かる。逆に言えば、涙液層に破壊が生じていない被検眼に関する輝度値のピークの形状の方が、涙液層に破壊が生じている被検眼に関する輝度値のピークの形状よりも鋭く尖った形状になっている。したがって、輝度値のピーク形状のぼやけの程度を示す値を算出することによって、涙液層に破壊が生じている程度を知ることができるようになるため、そのぼやけの程度を示す値を取得手段15によって算出する。そのぼやけの程度を示す値が、例えば、被検眼2の角膜表面の涙液層の状態に関する測定結果であってもよい。なお、取得手段15によって算出されるぼやけの程度を示す値は、結果として、パターンの反射像の輝度値の極大部分(ピーク)のぼやけの程度を知ることができるものであれば、どのようなものであってもよい。ぼやけの程度を示す値は、例えば、ぼやけの程度が大きくなるほど大きい値となるぼやけ度であってもよく、ぼやけの程度が大きくなるほど小さい値となる尖り度であってもよい。本実施の形態では、ぼやけの程度を示す値がぼやけ度である場合について主に説明する。
【0028】
取得手段15は、ある撮影画像を用いて算出したぼやけの程度を示す値に応じたぼやけ情報を取得する。なお、取得手段15は、通常、撮影画像からぼやけの程度を示す複数の値を算出するため、ぼやけ情報は、パターンの反射像の複数の位置における輝度値の極大部分のぼやけの程度をそれぞれ示す複数の値に応じた情報になる。その複数の位置は、被検眼2の角膜の全域における複数の測定点であることが好適である。被検眼2の角膜の全域の情報を用いて分類を行うことができるようになるからである。このぼやけ情報は、例えば、ぼやけの程度を示す複数の値を含む情報であってもよく、
図3(c)、
図4(c)のように、ぼやけの程度を示す複数の値を表示する画像であってもよく、ぼやけの程度を示す複数の値に応じたその他の情報であってもよい。ぼやけの程度を示す値を表示する画像は、例えば、ぼやけの程度を示す値をグレースケールやカラーで表示してもよい。通常、1個の撮影画像から1個のぼやけ情報が取得されることになる。したがって、パターンの反射像が繰り返し撮影されることに応じて、撮影された複数の反射像ごとにぼやけ情報が取得される。このようにして取得された複数のぼやけ情報は、時系列に沿ったものである。本実施の形態では、取得手段15が、ぼやけの程度を示す値を表示する画像であるぼやけ情報を取得する場合について主に説明する。
【0029】
次に、取得手段15がぼやけ度を算出する方法について説明する。
図6は、角度θの直線方向について取得された、一つのピークに関する輝度値と、中心からの距離との関係を示す図である。
図6において、円状の各図形が、サンプリング点に関する輝度値と、中心からの距離との関係を示している。なお、サンプリング点M
pが極大値に対応するようにしており、サンプリング点M
pから離れるにつれて、添え字が大きく、または小さくなるようにしている。取得手段15は、あるピークに関するぼやけ度Bを、次式によって算出してもよい。
【数1】
【0030】
ここで、サンプリング点M
p+dの輝度値をI
p+dとしている。dは任意の整数である。したがって、例えばI
pは極大値である輝度値である。また、a,bはそれぞれ正の実数の定数であり、kは1以上の整数である。なお、aの値を変更することによって、輝度値のピークの形状がぼやけ度に与える影響(感度)を変更することができる。上式の総和の部分は、輝度値のピークの形状が尖っているほど大きな値となるため、aを大きい値にすることによって、感度を上げることができ、また、aを小さい値にすることによって、感度を下げることができる。また、定数bは、例えば、ぼやけ度Bが正の値となるように適宜、決定されることが好適である。また、kは、角度θの直線における輝度値のサンプリング点の間隔に応じて、輝度値のピークの形状が適切に含まれる値に設定されることが好適である。例えば、
図6で示される場合には、k=2に設定されてもよい。
【0031】
なお、ぼやけ度Bの算出方法は一例であって、他の方法によってぼやけ度を算出してもよい。例えば、ピークから中心側の複数の輝度値の傾きと、ピークから外側の複数の輝度値の傾きとを用いて、ぼやけ度を算出するようにしてもよい。
【0032】
また、ぼやけ度Bは、輝度値の一つのピークに関する値であるが、
図5で示されるように、多重のリングパターンの反射像の中心位置から半径方向に延びるある角度の直線上には複数のピークが存在し、さらにそのような直線が、Δθの角度ごとに存在することになる。したがって、取得手段15は、多重のリングパターンの反射像の中心位置から所定の角度ごとに半径方向に延びる各直線上において、輝度値のピークごとのぼやけ度を算出してもよい。このようにして、被検眼2の角膜の全域における各測定点について、ぼやけ度を算出することができるようになる。各測定点の位置は、反射像の中心位置から放射状に等間隔で延びる直線と、多重のリングパターンの各リングとの交点の位置となる。なお、取得手段15は、例えば、被検眼2の角膜のあらかじめ決められた範囲や領域についてぼやけ度を算出してもよい。また、パターンの反射像の撮影が繰り返された場合には、取得手段15は、繰り返し撮影された撮影画像の各反射像について、角膜の各測定点における複数のぼやけ度の算出を行ってもよい。なお、ぼやけ度の取得についてはすでに公知であり、詳細な説明を省略する。ぼやけ度の取得については、例えば、特開2020-18475号公報を参照されたい。なお、本実施の形態のぼやけ度は、特開2020-18475号公報における鈍り度に相当している。取得手段15は、被検眼2の開瞼を検出した時点から、撮影画像を用いたぼやけ情報の取得を開始してもよい。例えば、撮影画像にパターンの反射像が含まれるようになった時点が、開瞼の検出時点であってもよい。
【0033】
記憶手段16では、学習器が記憶される。この学習器は、時系列に沿った複数のぼやけ情報である訓練用入力情報と、その訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習されたものである。この学習器については後述する。記憶手段16に学習器が記憶される過程は問わない。例えば、記録媒体を介して学習器が記憶手段16で記憶されるようになってもよく、通信回線等を介して送信された学習器が記憶手段16で記憶されるようになってもよい。記憶手段16は、不揮発性の記録媒体によって実現されることが好適であるが、揮発性の記録媒体によって実現されてもよい。記録媒体は、例えば、半導体メモリや磁気ディスク、光ディスクなどであってもよい。
【0034】
分類手段17は、記憶手段16で記憶されている学習器に、取得手段15によって算出された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得する。この分類結果は、例えば、涙液減少型、水濡れ性低下型、蒸発亢進型、及び、蒸発亢進型と水濡れ性低下型の複合型から選ばれるいずれかであってもよい。また、分類結果に正常、すなわちドライアイでない旨が含まれてもよい。この場合には、分類結果は、例えば、涙液減少型、水濡れ性低下型、蒸発亢進型、蒸発亢進型と水濡れ性低下型の複合型、及び正常から選ばれるいずれかであってもよい。なお、これらのドライアイの分類についてはすでに公知であり、詳細な説明を省略する。また、ドライアイの分類がこれらに限定されないことは言うまでもない。
【0035】
算出手段18は、繰り返し撮影された反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和に応じた値である重症度情報を算出する。重症度情報は、このように反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和を用いて算出される値であり、例えば、その総和が大きくなるほど、大きくなる値であってもよい。重症度情報は、例えば、ぼやけの程度を示す値の時間方向の総和、すなわちぼやけの程度を示す値の測定期間における合計値であってもよく、単位時間当たりのぼやけの程度を示す値、すなわちぼやけの程度を示す値の時間方向の総和を測定時間で割った値であってもよく、ぼやけの程度を示す値の平均値、すなわちぼやけの程度を示す値の時間方向の総和をぼやけ情報の個数で除算した値であってもよい。測定期間は、例えば、ぼやけ情報の取得の開始時点から、あらかじめ決められた測定時間(例えば、10秒間など)が経過するまでの期間であってもよい。ここで、総和の対象になるぼやけの程度を示す値は、通常、1個のぼやけ情報に対応する値である。このぼやけの程度を示す値は、例えば、取得手段15によって撮影画像を用いて算出された値であってもよく、ぼやけ情報から取得された値であってもよい。また、このぼやけの程度を示す値としては、例えば、1個の撮影画像や1個のぼやけ情報に対応するぼやけの程度を示す複数の値(例えば、ぼやけ度など)の代表値が用いられてもよい。代表値は、例えば、平均値や中央値、最大値等であってもよい。例えば、撮影画像ごとに、その撮影画像から取得されるぼやけの程度を示す値の個数が異なることがあり得るため、このように代表値が用いられることが好適である。上記したように、涙液層に破壊が生じているドライアイの場合には、パターンの反射像のぼやけの程度が大きくなる。そして、そのぼやけの程度が大きいほど、ドライアイがより重症であることになる。したがって、ぼやけの程度を示す値の時間方向の総和に応じた重症度情報を算出することによって、ドライアイの重症度を示す値を得ることができることになる。また、重症度情報は、結果として重症度がわかる指標であればよい。したがって、重症度情報は、例えば、値が大きくなるほど重症度が重くなる情報であってもよく、値が大きくなるほど重症度が軽くなる情報であってもよい。例えば、総和の対象がぼやけ度である場合には前者となり、総和の対象が尖り度である場合には後者となる。
【0036】
出力手段19は、分類手段17によって取得された分類結果、及び算出手段18によって算出された重症度情報を出力する。この出力によって、被検眼2のドライアイの分類結果と、その重症度とを知ることができるようになる。ここで、この出力は、例えば、表示デバイス(例えば、液晶ディスプレイや有機ELディスプレイなど)への表示でもよく、所定の機器への通信回線を介した送信でもよく、プリンタによる印刷でもよく、スピーカによる音声出力でもよく、記録媒体への蓄積でもよく、他の構成要素への引き渡しでもよい。なお、出力手段19は、出力を行うデバイス(例えば、表示デバイスやプリンタなど)を含んでもよく、または含まなくてもよい。また、出力手段19は、ハードウェアによって実現されてもよく、または、それらのデバイスを駆動するドライバ等のソフトウェアによって実現されてもよい。
【0037】
制御手段20は、測定用光源12のオン/オフや、撮影手段14による撮影、取得手段15によるぼやけ情報の取得、分類手段17によるドライアイの分類、算出手段18による重症度情報の算出、出力手段19による出力等に関する処理タイミングの制御等を行う。
【0038】
次に、ドライアイの分類に用いる学習器について説明する。学習器は、上記のように、訓練用入力情報と訓練用出力情報との複数の組を用いて学習されたものである。訓練用入力情報と訓練用出力情報との組を訓練情報と呼ぶこともある。学習器は、例えば、ニューラルネットワーク(NN:Neural Network)の学習結果であってもよく、その他の機械学習の学習結果であってもよい。ニューラルネットワークは、例えば、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)であってもよく、それ以外のニューラルネットワーク(例えば、全結合層から構成されるニューラルネットワーク等)であってもよい。畳み込みニューラルネットワークとは、1以上の畳み込み層を有するニューラルネットワークのことである。また、ニューラルネットワークが少なくとも1個の中間層(隠れ層)を有する場合には、そのニューラルネットワークの学習は、深層学習(ディープラーニング、Deep Learning)であると考えてもよい。また、機械学習にニューラルネットワークを用いる場合において、そのニューラルネットワークの層数、各層におけるノード数、各層の種類(例えば、畳み込み層、全結合層など)等については、適宜、選択したものを用いてもよい。なお、入力層と出力層のノード数は、通常、訓練情報に含まれる訓練用入力情報と訓練用出力情報とによって決まることになる。本実施の形態では、学習器に入力される情報は、時系列に沿った複数のぼやけ情報である。上記のように、ぼやけ情報は、例えば、2次元の画像であってもよく、ぼやけの程度を示す複数の値をあらかじめ決められた順番で並べた数値列であってもよい。学習器への入力は、そのようなぼやけ情報が時系列に沿って並んだものになる。ぼやけ情報が2次元の画像である場合には、学習器への入力は、空間方向が2次元、時間方向が1次元である3次元の情報になる。ぼやけ情報が数値列である場合には、学習器への入力は、そのような数値列が時系列に並んだ情報になる。本実施の形態では、学習器への入力が、2次元の画像が時系列に並んだ3次元の情報である場合について主に説明する。
【0039】
なお、学習器が記憶手段16で記憶されているとは、例えば、学習器そのもの(例えば、入力に対して値を出力する関数や学習結果のモデル等)が記憶されていることであってもよく、学習器を構成するために必要なパラメータ等の情報が記憶されていることであってもよい。後者の場合であっても、そのパラメータ等の情報を用いて学習器を構成できるため、実質的に学習器が記憶手段16で記憶されていると考えることができるからである。本実施の形態では、学習器そのものが記憶手段16で記憶されている場合について主に説明する。
【0040】
ここで、学習器の生成について説明する。学習器は、上記のように、複数の訓練情報を学習することによって生成される。訓練用入力情報は、例えば、被検眼に関する測定結果、すなわち取得手段15によって取得された、時系列に沿った複数のぼやけ情報であってもよい。また、訓練用出力情報は、例えば、その訓練用出力情報と組となる訓練用入力情報の取得された被検眼について、医師等の専門家が分類したドライアイの分類結果であってもよい。訓練用出力情報は、分類手段17による分類結果と同様のものとなる。したがって、訓練用出力情報は、例えば、涙液減少型、水濡れ性低下型、蒸発亢進型、及び、蒸発亢進型と水濡れ性低下型の複合型から選ばれるいずれかであってもよく、涙液減少型、水濡れ性低下型、蒸発亢進型、蒸発亢進型と水濡れ性低下型の複合型、及び正常から選ばれるいずれかであってもよい。また、分類手段17によって、他の分類が行われる場合には、訓練用出力情報は、それに応じたものとなってもよい。
【0041】
このような訓練用入力情報と訓練用出力情報との複数の組を学習することによって、学習器が生成される。この学習器は、時系列に沿った複数のぼやけ情報である訓練用入力情報と、その訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との複数の組の機械学習の結果である。したがって、この学習器に、分類対象の被検眼2の時系列に沿った複数のぼやけ情報が適用されると、その分類対象の被検眼2に関するドライアイの分類結果を取得することができる。なお、訓練用入力情報と、分類対象の被検眼2の時系列に沿った複数のぼやけ情報とは、同様の情報であることが好適である。すなわち、両情報のぼやけ情報の時間間隔やぼやけ情報の個数、1個のぼやけ情報の画素数や情報数などは同じであることが好適である。
【0042】
学習器のニューラルネットワークは、例えば、時系列に沿った複数の画像(すなわち、3次元の情報)を分類するためのニューラルネットワークであってもよく、時系列に沿った複数の数値列を分類するためのニューラルネットワークであってもよい。前者のように、時間方向を含む3次元の情報を分類するために用いられるニューラルネットワークとして、例えば、3D-CNNが知られている。後者のように、時系列に沿った複数の数値列を分類するためのニューラルネットワークとして、例えば、全結合層を有するニューラルネットワークが用いられてもよい。本実施の形態では、学習器が3D-CNNの学習結果である場合について主に説明する。
【0043】
3D-CNNの各層の構成は特に限定されるものではないが、例えば、
図7で示されるものを用いてもよい。なお、インプットサイズ、アウトプットサイズは、それぞれ(時間方向の情報数,X軸方向の画素数,Y軸方向の画素数,チャネル数)を示している。すなわち、150×150の画像であるぼやけ情報が、時間方向に100個並んだ情報が学習器への入力となる。このぼやけ情報は、例えば、
図3(c)や
図4(c)と同様に、ぼやけ度を8ビット(256段階)のグレースケールで示す画像であってもよい。そのようなぼやけ情報の画像が0.1秒ごとに10秒間取得されることによって、時系列に沿った100個のぼやけ情報が取得され、それが学習器への入力となってもよい。また、サイズ、ストライドは、(時間方向の情報数,X軸方向の画素数,Y軸方向の画素数)となっている。サイズ、ストライドの時間方向の情報数は「1」であるため、畳み込みやプーリングは、2次元画像の方向、すなわち空間方向についてのみ行われることになる。
図7で示されるニューラルネットワークは、畳み込み層とプーリング層との組を3つ連続して有している。それらの層では、時間方向については処理が行われないため、通常の画像に関するCNNと同様の処理になる。
図7のニューラルネットワークは、それらの層の後段にグローバルマックスプーリングを行うためのプーリング層4と出力層とを有している。このプーリング層4において、時間方向についても処理が行われ、64チャネル分の情報が出力される。また、出力層では、全結合層での処理を行った後に、ソフトマックス関数によって正規化を行っている。したがって、最終的な4個の出力の合計は1になる。そして、4個の出力のうち、最大値の出力に対応するドライアイの分類が、被検眼2の分類結果として取得されることになる。例えば、4個の出力は、それぞれ涙液減少型、水濡れ性低下型、蒸発亢進型、蒸発亢進型と水濡れ性低下型の複合型に対応していてもよい。そして、例えば、最大値の出力に対応する分類が涙液減少型である場合には、被検眼2に対応するドライアイの分類結果として「涙液減少型」が分類手段17によって取得されることになる。
【0044】
なお、
図7で示されるニューラルネットワークの各層では、適宜、パティングを行っている。このパディングは、例えば、ゼロパディングであってもよく、画像の最外周の画素値を外挿するパディングであってもよく、画像の各辺で折り返した画素値とするパディングであってもよい。
図7では、パディングを行っている例について示しているが、パディングは行われなくてもよい。
【0045】
また、フィルタやプーリングのサイズ、ストライドの値は、
図7で示されるものに限定されないことは言うまでもない。
図7のニューラルネットワークでは、まず、空間方向の処理を行い、その後に時間方向の処理を行っている。そのような順序で処理を行うCNNとして、(2+1)D-CNNが知られている。したがって、本実施の形態による学習器は、(2+1)D-CNNの学習結果であってもよい。なお、
図7のニューラルネットワークでは、空間方向についてそれぞれ畳み込みを行い、時間方向についてはプーリングを行っているが、時間方向についても畳み込みを行ってもよい。また、本実施の形態の学習器として、例えば、その他の3D-CNNの学習結果を用いてもよく、それら以外のニューラルネットワークの学習結果を用いてもよい。また、
図7で示されるニューラルネットワークは、例えば、プーリング層の後段に、バッチ正則化層や活性化層を有していてもよい。このように、学習器のニューラルネットワークとしては、時系列に沿った複数のぼやけ情報を分類できるのであれば、種々のものを用いることができる。
【0046】
また、学習器のニューラルネットワークの各層において、バイアスを用いてもよく、または、用いなくてもよい。バイアスを用いるかどうかは、層ごとに独立して決められてもよい。そのバイアスは、例えば、層ごとのバイアスであってもよく、または、フィルタごとのバイアスであってもよい。前者の場合には、各層において1個のバイアスが用いられることになり、後者の場合には、各層において1個以上(フィルタと同数)のバイアスが用いられることになる。畳み込み層でバイアスを用いる場合には、各画素値にフィルタのパラメータを掛けて足し合わせた結果にバイアスを加算したものが、活性化関数に入力されることになる。
【0047】
ニューラルネットワークにおける各設定は、次のようであってもよい。活性化関数は、例えば、ReLU(正規化線形関数)であってもよく、シグモイド関数であってもよく、その他の活性化関数であってもよい。また、学習では、例えば、誤差逆伝搬法を用いてもよく、ミニバッチ法を用いてもよい。また、損失関数(誤差関数)は、平均二乗誤差であってもよい。また、epoch数(パラメータの更新回数)は特に問わないが、過剰適合とならないepoch数が選択されることが好適である。また、過剰適合を予防するため、所定の層間においてドロップアウトを行ってもよい。なお、機械学習における学習方法としては、公知の方法を用いることができ、その詳細な説明を省略する。
【0048】
本実施の形態の眼科装置1において、学習器を用いて被検眼2のドライアイを分類する実験を行った。本実験では、
図7のニューラルネットワークと同様のニューラルネットワークを用いて、ドライアイを涙液減少型、水濡れ性低下型、蒸発亢進型、蒸発亢進型と水濡れ性低下型の複合型の4つに分類した。なお、本実験で用いた学習器の機械学習に用いた訓練情報(教師データ)の個数は次のとおりである。訓練情報に含まれる訓練用出力情報としては、専門家の分類結果を用いた。
涙液減少型:522
水濡れ性低下型:630
蒸発亢進型:270
蒸発亢進型と水濡れ性低下型の複合型:54
【0049】
上記のようにして機械学習を行った学習器を用いて、機械学習に用いていない56組の時系列に沿った複数のぼやけ情報を分類した。それらの56組の情報に対応する被検眼についても、それぞれ専門家によるドライアイの分類を行い、本実験の学習器を用いた分類結果の正誤を評価した。
図8は、本実験における分類結果と、その正誤とを示す図である。例えば、
図8で示されるように、専門家によって涙液減少型と判断された被検眼のうち、18個については正しい分類が行われ、1個については誤った分類が行われた。なお、
図8では、正しい分類の行われた箇所を網掛けにしている。本実験では56個の分類対象のうち、47個が正しく分類されているため、全体としては約84%の正答率であることが分かる。この正答率は、訓練情報の個数を増やすことなどによって、さらに向上させることができると考えられる。
【0050】
次に、眼科装置1の動作について
図2のフローチャートを用いて説明する。なお、照明用光源7は、ぼやけ情報に関する測定期間中は点灯していてもよい。また、このフローチャートにおいて、取得手段15は、1個の撮影画像から1個のぼやけ情報を取得するものとする。
【0051】
(ステップS101)被検眼2と眼科装置1の光学系とを適切な位置関係に合わせるアライメントが行われる。このアライメントの処理は、手動で行われてもよく、または、自動で行われてもよい。
【0052】
(ステップS102)制御手段20は、アライメントが完了したかどうか判断する。そして、アライメントが完了した場合には、ステップS103に進み、そうでない場合には、ステップS101に戻る。その判断は、例えば、撮影手段14によって取得された撮影画像を用いて行われてもよい。
【0053】
(ステップS103)制御手段20は、測定用光源12を点灯させる。その結果、リングパターンが被検眼2の角膜表面に投光されることになる。また、制御手段20は、あらかじめ決められた期間(例えば、10秒や15秒など)にわたって、所定の時間間隔でリングパターンの反射像の撮影を行うように撮影手段14を制御する。その結果、撮影手段14によって、反射像の撮影画像が繰り返し取得されることになる。なお、1秒間の撮影回数は、例えば、5回や10回等であってもよい。取得された複数の撮影画像は、図示しない記録媒体で記憶されてもよい。
【0054】
(ステップS104)制御手段20は、複数の撮影画像について、ぼやけ度を算出し、ぼやけ情報を取得するように取得手段15に指示する。その指示に応じて、取得手段15は、撮影画像ごとに、複数のぼやけ度を算出する。そのぼやけ度の算出において、取得手段15は、例えば、撮影画像ごとに、リングパターンの反射像の中心位置を特定してもよく、または、そうでなくてもよい。後者の場合には、1個目の撮影画像において特定した中心位置を、他の撮影画像においても、中心位置として用いてもよい。また、取得手段15は、撮影画像ごとに、複数のぼやけ度に応じたぼやけ情報を取得する。このようにして、時系列に沿った複数のぼやけ情報が取得される。なお、取得手段15は、例えば、撮影画像において被検眼2の開瞼が検出された時点からぼやけ度の算出やぼやけ情報の取得を開始してもよい。
【0055】
(ステップS105)制御手段20は、ドライアイの分類を行うように分類手段17に指示する。その指示に応じて、分類手段17は、時系列に沿った複数のぼやけ情報を、記憶手段16で記憶されている学習器に適用することによって分類結果を取得する。複数のぼやけ情報を学習器に適用するとは、複数のぼやけ情報を学習器に入力することであってもよい。そして、分類結果の取得は、学習器からの出力を用いて行われてもよい。
【0056】
(ステップS106)制御手段20は、重症度情報を算出するように算出手段18に指示する。その指示に応じて、算出手段18は、ぼやけの程度を示す値の時間方向の総和に応じた重症度情報を算出する。
【0057】
(ステップS107)制御手段20は、分類結果、及び重症度情報を出力するように出力手段19に指示する。その指示に応じて、出力手段19は、分類手段17によって取得されたドライアイの分類結果、及び算出手段18によって算出された重症度情報を出力する。そして、被検眼2のドライアイに関する分類や重症度情報の取得、及びそれらの出力などの一連の処理は終了となる。
【0058】
なお、
図2のフローチャートにおける処理の順序は一例であり、同様の結果を得られるのであれば、各ステップの順序を変更してもよい。
【0059】
以上のように、本実施の形態によるドライアイ分類に関する方法及びそれを用いた眼科装置1によれば、被検眼2の角膜表面の涙液層の状態に関する測定を行い、その測定結果を用いて被検眼2のドライアイを分類することができる。本実施の形態では、その測定を被検眼2の角膜表面で反射した所定のパターンの反射像を用いて行うため、被検眼2を染色しなくてもよく、非侵襲的な測定を実現することができる。また、その分類において、時系列に沿った複数のぼやけ情報を学習器に適用することにより、客観的な分類も実現することができる。また、ぼやけ情報を学習器に適用することによって、破壊領域以外の領域の情報をも用いて分類を行うことができることになり、より精度の高い分類を実現することができるようになる。さらに、重症度情報も算出することによって、各分類結果におけるドライアイの重症度についても知ることができるようになる。
【0060】
なお、本実施の形態では、重症度情報の算出を行う場合について説明したが、そうでなくてもよい。重症度情報を算出しない場合には、眼科装置1は、算出手段18を有していなくてもよく、また、出力手段19は、重症度情報を出力しなくてもよい。
【0061】
また、本実施の形態では、学習器を用いた分類が眼科装置1で行われる場合について主に説明したが、そうでなくてもよい。眼科装置において取得された時系列に沿った複数のぼやけ情報を用いて、眼科装置以外の装置において分類の処理を行ってもよい。この場合には、他の装置において、分類対象の被検眼の時系列に沿った複数のぼやけ情報が学習器に適用されることによって、その被検眼のドライアイの分類結果が取得されてもよい。
【0062】
また、本実施の形態では、眼科装置1において、被検眼の角膜表面の涙液層の状態に関する測定を行ってぼやけ情報を取得したり、重症度情報を取得したりする場合について説明したが、本実施の形態による眼科装置1を用いて、被検眼に装着されたソフトコンタクトレンズなどのコンタクトレンズの表面の涙液層について、ぼやけ情報を取得したり、繰り返し撮影された反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和に応じた値(すなわち、重症度情報と同様の情報)を算出したりしてもよい。そして、コンタクトレンズについて取得されたぼやけ情報などを用いることによって、被検眼に装着されているコンタクトレンズが適切なものであるかどうかなどを確認してもよい。
【0063】
また、上記実施の形態において、各処理または各機能は、単一の装置または単一のシステムによって集中処理されることによって実現されてもよく、または、複数の装置または複数のシステムによって分散処理されることによって実現されてもよい。
【0064】
また、上記実施の形態において、各構成要素間で行われる情報の受け渡しは、例えば、その情報の受け渡しを行う2個の構成要素が物理的に異なるものである場合には、一方の構成要素による情報の出力と、他方の構成要素による情報の受け付けとによって行われてもよく、または、その情報の受け渡しを行う2個の構成要素が物理的に同じものである場合には、一方の構成要素に対応する処理のフェーズから、他方の構成要素に対応する処理のフェーズに移ることによって行われてもよい。
【0065】
また、上記実施の形態において、各構成要素が実行する処理に関係する情報、例えば、各構成要素が受け付けたり、取得したり、選択したり、生成したり、送信したり、受信したりした情報や、各構成要素が処理で用いる閾値や数式、アドレス等の情報等は、上記説明で明記していなくても、図示しない記録媒体において、一時的に、または長期にわたって保持されていてもよい。また、その図示しない記録媒体への情報の蓄積を、各構成要素、または、図示しない蓄積部が行ってもよい。また、その図示しない記録媒体からの情報の読み出しを、各構成要素、または、図示しない読み出し部が行ってもよい。
【0066】
また、上記実施の形態において、各構成要素等で用いられる情報、例えば、各構成要素が処理で用いる閾値やアドレス、各種の設定値等の情報がユーザによって変更されてもよい場合には、上記説明で明記していなくても、ユーザが適宜、それらの情報を変更できるようにしてもよく、または、そうでなくてもよい。それらの情報をユーザが変更可能な場合には、その変更は、例えば、ユーザからの変更指示を受け付ける図示しない受付部と、その変更指示に応じて情報を変更する図示しない変更部とによって実現されてもよい。その図示しない受付部による変更指示の受け付けは、例えば、入力デバイスからの受け付けでもよく、通信回線を介して送信された情報の受信でもよく、所定の記録媒体から読み出された情報の受け付けでもよい。
【0067】
また、上記実施の形態において、各構成要素は専用のハードウェアにより構成されてもよく、または、ソフトウェアにより実現可能な構成要素については、プログラムを実行することによって実現されてもよい。例えば、ハードディスクや半導体メモリ等の記録媒体に記録されたソフトウェア・プログラムをCPU等のプログラム実行部が読み出して実行することによって、各構成要素が実現され得る。その実行時に、プログラム実行部は、記憶部や記録媒体にアクセスしながらプログラムを実行してもよい。このプログラムは、サーバなどからダウンロードされることによって実行されてもよく、所定の記録媒体(例えば、CD-ROMなどの光ディスクや磁気ディスク、半導体メモリなど)に記録されたプログラムが読み出されることによって実行されてもよい。また、このプログラムは、プログラムプロダクトを構成するプログラムとして用いられてもよい。また、このプログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、または分散処理を行ってもよい。
【0068】
また、本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
【産業上の利用可能性】
【0069】
以上より、本発明の一態様による眼科装置等によれば、非侵襲的かつ客観的にドライアイを分類できるという効果が得られ、ドライアイの分類を行う眼科装置等として有用である。
【符号の説明】
【0070】
1 眼科装置
13 投光手段
14 撮影手段
15 取得手段
16 記憶手段
17 分類手段
18 算出手段
19 出力手段
【手続補正書】
【提出日】2022-03-02
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
被検眼の角膜表面の涙液層の状態に関する測定を行い、当該測定の結果を用いてドライアイを分類する眼科装置であって、
角膜表面に所定のパターンを投光する投光手段と、
角膜表面で反射したパターンの反射像を繰り返し撮影する撮影手段と、
撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得する取得手段と、
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、前記取得手段によって取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得する分類手段と、
前記分類手段によって取得された分類結果を出力する出力手段と、を備え、
ぼやけ情報は、前記被検眼の角膜表面における複数の測定点に対応するぼやけの程度を示す複数の値を表示する画像、または、当該複数の測定点に対応するぼやけの程度を示す複数の値をあらかじめ決められた順番で並べた数値列である、眼科装置。
【請求項2】
繰り返し撮影された反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和に応じた値である重症度情報を算出する算出手段をさらに備え、
前記出力手段は、前記重症度情報も出力する、請求項1記載の眼科装置。
【請求項3】
前記分類結果は、涙液減少型、水濡れ性低下型、蒸発亢進型、及び、蒸発亢進型と水濡れ性低下型の複合型から選ばれるいずれかである、請求項1または請求項2記載の眼科装置。
【請求項4】
投光手段、撮影手段、取得手段、分類手段、及び出力手段を用いて、被検眼の角膜表面の涙液層の状態に関する測定を行い、当該測定の結果を用いてドライアイを分類するドライアイ分類に関する方法であって、
前記投光手段が、角膜表面に所定のパターンを投光するステップと、
前記撮影手段が、角膜表面で反射したパターンの反射像を繰り返し撮影するステップと、
前記取得手段が、撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得するステップと、
前記分類手段が、時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、前記ぼやけ情報を取得するステップで取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得するステップと、
前記出力手段が、前記ドライアイの分類結果を取得するステップで取得された分類結果を出力するステップと、を備え、
ぼやけ情報は、前記被検眼の角膜表面における複数の測定点に対応するぼやけの程度を示す複数の値を表示する画像、または、当該複数の測定点に対応するぼやけの程度を示す複数の値をあらかじめ決められた順番で並べた数値列である、ドライアイ分類に関する方法。
【請求項5】
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器であって、
前記ぼやけ情報は、被検眼の角膜表面で反射した所定のパターンの反射像の輝度値の極大部分のぼやけの程度を示す値に応じた情報であり、前記被検眼の角膜表面における複数の測定点に対応するぼやけの程度を示す複数の値を表示する画像、または、当該複数の測定点に対応するぼやけの程度を示す複数の値をあらかじめ決められた順番で並べた数値列であり、
分類対象の被検眼の時系列に沿った複数のぼやけ情報が適用されると、当該分類対象の被検眼に関するドライアイの分類結果を取得することができる、学習器。
【手続補正書】
【提出日】2022-08-01
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
被検眼の角膜表面の涙液層の状態に関する測定を行い、当該測定の結果を用いてドライアイを分類する眼科装置であって、
角膜表面に所定のパターンを投光する投光手段と、
角膜表面で反射したパターンの反射像を繰り返し撮影する撮影手段と、
撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得する取得手段と、
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、前記取得手段によって取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得する分類手段と、
前記分類手段によって取得された分類結果を出力する出力手段と、を備え、
ぼやけ情報は、前記被検眼の角膜表面における複数の測定点に対応するぼやけの程度を示す複数の値を表示する画像であり、
前記学習器は、3D-CNN(畳み込みニューラルネットワーク)、または、(2+1)D-CNNの学習結果である、眼科装置。
【請求項2】
繰り返し撮影された反射像の輝度値の極大部分のぼやけの程度を示す値の時間方向の総和に応じた値である重症度情報を算出する算出手段をさらに備え、
前記出力手段は、前記重症度情報も出力する、請求項1記載の眼科装置。
【請求項3】
前記分類結果は、涙液減少型、水濡れ性低下型、蒸発亢進型、及び、蒸発亢進型と水濡れ性低下型の複合型から選ばれるいずれかである、請求項1または請求項2記載の眼科装置。
【請求項4】
投光手段、撮影手段、取得手段、分類手段、及び出力手段を用いて、被検眼の角膜表面の涙液層の状態に関する測定を行い、当該測定の結果を用いてドライアイを分類するドライアイ分類に関する方法であって、
前記投光手段が、角膜表面に所定のパターンを投光するステップと、
前記撮影手段が、角膜表面で反射したパターンの反射像を繰り返し撮影するステップと、
前記取得手段が、撮影された複数の反射像ごとに、反射像の輝度値の極大部分のぼやけの程度を示す値に応じたぼやけ情報を取得するステップと、
前記分類手段が、時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器に、前記ぼやけ情報を取得するステップで取得された時系列に沿った複数のぼやけ情報を適用することによってドライアイの分類結果を取得するステップと、
前記出力手段が、前記ドライアイの分類結果を取得するステップで取得された分類結果を出力するステップと、を備え、
ぼやけ情報は、前記被検眼の角膜表面における複数の測定点に対応するぼやけの程度を示す複数の値を表示する画像であり、
前記学習器は、3D-CNN(畳み込みニューラルネットワーク)、または、(2+1)D-CNNの学習結果である、ドライアイ分類に関する方法。
【請求項5】
時系列に沿った複数のぼやけ情報である訓練用入力情報と、当該訓練用入力情報に対応するドライアイの分類結果である訓練用出力情報との組を複数用いて学習された学習器であって、
前記ぼやけ情報は、被検眼の角膜表面で反射した所定のパターンの反射像の輝度値の極大部分のぼやけの程度を示す値に応じた情報であり、前記被検眼の角膜表面における複数の測定点に対応するぼやけの程度を示す複数の値を表示する画像であり、
分類対象の被検眼の時系列に沿った複数のぼやけ情報が適用されると、当該分類対象の被検眼に関するドライアイの分類結果を取得することができる、3D-CNN(畳み込みニューラルネットワーク)、または、(2+1)D-CNNの学習結果である学習器。