(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022160684
(43)【公開日】2022-10-19
(54)【発明の名称】高度な無停電電源モジュールコントローラ及びその動作方法
(51)【国際特許分類】
H02J 3/46 20060101AFI20221012BHJP
H02J 3/38 20060101ALI20221012BHJP
【FI】
H02J3/46
H02J3/38 170
H02J3/38 110
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2022128571
(22)【出願日】2022-08-12
(62)【分割の表示】P 2020553644の分割
【原出願日】2019-01-11
(31)【優先権主張番号】15/945,159
(32)【優先日】2018-04-04
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】514116578
【氏名又は名称】ブルーム エネルギー コーポレイション
(74)【代理人】
【識別番号】110002354
【氏名又は名称】弁理士法人平和国際特許事務所
(72)【発明者】
【氏名】グルナタン,ランガナサン
(72)【発明者】
【氏名】バランタイン,アルネ
(72)【発明者】
【氏名】ピムスヴィースヴィ,プラサド
(72)【発明者】
【氏名】ゴパラクリシュナン,ヴィシャル アナンド
(72)【発明者】
【氏名】ナラヤナサミ,サラバナクマール
(72)【発明者】
【氏名】ティルベンガダスワミ,バドリナラヤナン
(57)【要約】 (修正有)
【課題】1つの燃料電池電源を含む複数の電源の並列動作方法及び装置を提供する。
【解決手段】装置は、複数の電源に通信可能に接続され、かつ、複数の電源用の負荷需要を測定するドループマスタコントローラと、ドループマスタコントローラ及び第1の燃料電池電源に通信可能に接続され、かつ、第1の燃料電池電源用の第1のドループプロファイルを計算する第1のドループスレーブコントローラと、ドループマスタコントローラ及び第2の電源に通信可能に接続された第2のドループスレーブコントローラと、第1の燃料電池電源に電気的に接続され、かつ、第1のドループスレーブコントローラに通信可能に接続され、かつ、第1のドループプロファイルに従って電力を出力する第1のインバータを含むUPMと、を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
複数の電源の並列動作方法であって、
ドループマスタコントローラによって、複数の電源用の負荷需要を測定するステップと、
第1のドループスレーブコントローラによって、前記ドループマスタコントローラから前記複数の電源用の前記負荷需要を受信するステップと、
前記第1のドループスレーブコントローラによって、前記複数の電源の第1の燃料電池電源の電力容量を決定するステップと、
前記第1のドループスレーブコントローラによって、前記複数の電源用の前記負荷需要と前記第1の燃料電池電源の前記電力容量とを用いて、前記第1の燃料電池電源用の第1のドループプロファイルのための第1の勾配及び第1の無負荷設定点のうちの少なくとも1つを計算するステップと、ここで、前記第1のドループプロファイルと、少なくとも第2の電源用の第2のドループプロファイルとが前記複数の電源用のすべての負荷需要のために提供され、さらに、
前記第1の燃料電池電源用の第1のインバータを、前記第1のドループプロファイルに従って電力を出力するように構成するステップと、を含む、方法。
【請求項2】
前記第2の電源は、第2の燃料電池電源を含む、請求項1記載の方法。
【請求項3】
前記方法は、さらに、
第2のドループスレーブコントローラによって、前記ドループマスタコントローラから前記複数の電源用の前記負荷需要を受信するステップと、
前記第2のドループスレーブコントローラによって、前記複数の電源の前記第2の燃料電池電源の電力容量を決定するステップと、
前記第2のドループスレーブコントローラによって、前記複数の電源用の前記負荷需要と前記第2の燃料電池電源の前記電力容量とを用いて、前記第2の燃料電池電源用の前記第2のドループプロファイルのための第2の勾配及び第2の無負荷設定点のうちの少なくとも1つを計算するステップと、さらに、
第2の燃料電池システム用の第2のインバータを、前記第2のドループプロファイルに従って電力を出力するように構成するステップと、を含む、請求項2記載の方法。
【請求項4】
前記第2の勾配及び前記第2の無負荷設定点のうちの少なくとも1つは、それぞれ前記第1の勾配及び前記第1の無負荷設定点とは異なり、
前記第1のドループプロファイル及び前記第2のドループプロファイルは、それぞれ前記第1のインバータ及び前記第2のインバータによって出力される電力に対するAC周波数の関数である、請求項3記載の方法。
【請求項5】
前記方法は、さらに、前記第1の燃料電池電源が始動から定常状態動作温度まで加熱されるにつれて、前記第1のドループプロファイルの前記第1の勾配を減少させるステップを含む、請求項4記載の方法。
【請求項6】
前記第1の燃料電池電源は、前記第1のインバータを含んだ第1の無停電電源モジュールと、少なくとも1つの第1の燃料電池セグメントを含んだ少なくとも1つの第1の燃料電池システムとを含み、
前記第2の燃料電池電源は、前記第2のインバータを含んだ第2の無停電電源モジュールと、少なくとも1つの第2の燃料電池セグメントを含んだ少なくとも1つの第2の燃料電池システムとを含む、請求項4記載の方法。
【請求項7】
前記第2の電源は、分散型発電機を含む、請求項1記載の方法。
【請求項8】
前記方法は、さらに、
マイクログリッドコントローラによって、マイクログリッド用の負荷需要を測定するステップと、
前記ドループマスタコントローラによって、前記マイクログリッドコントローラから前記マイクログリッド用の前記負荷需要を受信するステップと、を含み、ここで、前記複数の電源用の前記負荷需要を測定する前記ステップは、前記マイクログリッド用の前記負荷需要の第1の部分として前記複数の電源用の前記負荷需要を測定するステップを含む、請求項7記載の方法。
【請求項9】
前記方法は、さらに、
コントローラによって、前記マイクログリッドコントローラから前記マイクログリッド用の前記負荷需要を受信するステップと、
前記コントローラによって、前記分散型発電機の電力容量を決定するステップと、
前記コントローラによって、前記マイクログリッド用の前記負荷需要の第2の部分として前記分散型発電機の前記負荷需要と前記分散型発電機の前記電力容量とを用いて、前記分散型発電機用の第2のドループプロファイルのための第2の勾配及び第2の無負荷設定点のうちの少なくとも1つを計算するステップと、を含み、ここで、前記第1のドループプロファイルと、少なくとも前記分散型発電機用の前記第2のドループプロファイルとが前記マイクログリッドのすべての負荷需要のために提供される、請求項8記載の方法。
【請求項10】
前記分散型発電機は、燃料電池システム、ディーゼル発電機、グリッド接続部、マイクロタービン、太陽光発電機、及び風力発電機のうちの少なくとも1つを含む、請求項8記載の方法。
【請求項11】
複数の電源の並列動作のための装置であって、
前記装置は、
前記複数の電源に通信可能に接続され、かつ前記複数の電源用の負荷需要を測定するように構成されたドループマスタコントローラと、
前記ドループマスタコントローラ及び前記複数の電源の第1の燃料電池電源に通信可能に接続され、かつ前記第1の燃料電池電源用の第1のドループプロファイルを計算するように構成された第1のドループスレーブコントローラと、
前記ドループマスタコントローラ及び第2の電源に通信可能に接続された第2のドループスレーブコントローラと、
前記第1の燃料電池電源に電気的に接続され、かつ前記第1のドループスレーブコントローラに通信可能に接続され、かつ前記第1のドループプロファイルに従って電力を出力するように構成された第1のインバータと、を含む、装置。
【請求項12】
前記第1のドループスレーブコントローラは、
前記ドループマスタコントローラから前記複数の電源用の前記負荷需要を受信し、
前記複数の電源の第1の燃料電池電源の電力容量を決定し、さらに
前記複数の電源用の前記負荷需要と前記第1の燃料電池電源の前記電力容量とを用いて、前記第1の燃料電池電源用の第1のドループプロファイルのための第1の勾配及び第1の無負荷設定点のうちの少なくとも1つを計算するように構成されており、ここで、前記第1のドループプロファイルと、少なくとも前記第2の電源用の第2のドループプロファイルとが前記複数の電源用のすべての負荷需要のために提供される、請求項11記載の装置。
【請求項13】
前記第2の電源は、第2の燃料電池電源を含み、
前記第2のドループスレーブコントローラは、
前記ドループマスタコントローラから前記複数の電源用の前記負荷需要を受信し、
前記複数の電源の前記第2の燃料電池電源の電力容量を決定し、
前記複数の電源用の前記負荷需要と前記第2の燃料電池電源の前記電力容量とを用いて、前記第2の燃料電池電源用の前記第2のドループプロファイルのための第2の勾配及び第2の無負荷設定点のうちの少なくとも1つを計算するように構成されており、さらに、
第2の燃料電池システム用の第2のインバータは、前記第2のドループプロファイルに従って電力を出力するように構成されている、請求項12記載の装置。
【請求項14】
前記第2の勾配及び前記第2の無負荷設定点のうちの少なくとも1つは、それぞれ前記第1の勾配及び前記第1の無負荷設定点とは異なり、前記第1のドループプロファイル及び前記第2のドループプロファイルは、それぞれ前記第1のインバータ及び前記第2のインバータによって出力される電力に対するAC周波数の関数である、請求項13記載の装置。
【請求項15】
前記第1のドループスレーブコントローラは、さらに、前記第1の燃料電池電源が始動から定常状態動作温度まで加熱されるにつれて、前記第1のドループプロファイルの前記第1の勾配を減少させるように構成されている、請求項14記載の装置。
【請求項16】
前記第1の燃料電池電源は、前記第1のインバータを含んだ第1の無停電電源モジュールと、少なくとも1つの第1の燃料電池セグメントを含んだ少なくとも1つの第1の燃料電池システムとを含み、
前記第2の燃料電池電源は、前記第2のインバータを含んだ第2の無停電電源モジュールと、少なくとも1つの第2の燃料電池セグメントを含んだ少なくとも1つの第2の燃料電池システムとを含む、請求項14記載の装置。
【請求項17】
前記第2の電源は、分散型発電機を含む、請求項11記載の装置。
【請求項18】
前記分散型発電機は、燃料電池システム、ディーゼル発電機、グリッド接続部、マイクロタービン、太陽光発電機、及び風力発電機のうちの少なくとも1つを含む、請求項17記載の装置。
【請求項19】
複数の電源の並列動作のための装置であって、前記装置は、
複数の電源用の負荷需要を測定するための第1の手段と、
前記第1の手段から前記複数の電源用の前記負荷需要を受信し、
前記複数の電源の第1の燃料電池電源の電力容量を決定し、
前記複数の電源用の前記負荷需要と前記第1の燃料電池電源の前記電力容量とを用いて、前記第1の燃料電池電源用の第1のドループプロファイルのための第1の勾配及び第1の無負荷設定点のうちの少なくとも1つを計算し、ここで、前記第1のドループプロファイルと、少なくとも第2の電源用の第2のドループプロファイルとを前記複数の電源用のすべての負荷需要のために提供する
ための第2の手段と、
前記第1の燃料電池電源から前記第1のドループプロファイルに従ってAC電力を出力するための第3の手段と、
を含む、装置。
【請求項20】
前記第2の電源は、第2の燃料電池電源又は分散型発電機を含む、請求項19記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
燃料電池は、多くの場合「スタック」と称されるユニットに組み合わされており、このユニット内では燃料電池セルは電気的に直列に接続され、相互接続部として機能するガス分離プレートなどの導電性相互接続部によって分離されている。燃料電池セルスタックは、その端部に導電性端部プレートを含むことができる。燃料電池セルスタックを統合したものが、いわゆる燃料電池セグメント又はカラムであり、これらは直列に接続された(例えば、あるスタックの端部プレートが次のスタックの端部プレートに電気的に接続された)1つ以上の燃料電池スタックを含むことができる。燃料電池セグメント又はカラムは、セグメント又はカラムから電力調整システムに直流電流を出力する電気リードを含むことができる。燃料電池システムは、1つ以上の燃料電池カラムを含むことができ、各カラムは、固体酸化物燃料電池セルスタックなどの1つ以上の燃料電池セルスタックを含むことができる。燃料電池システムを構成する個々の燃料電池セルの数は、燃料電池システムが生成することを意図している電力量に基づくことができる。例示的な燃料システムは、“Ripple Cancellation”と題する特許文献1に記載されており、その開示内容の全体は参照に基づき本明細書に援用される。
【背景技術】
【0002】
燃料電池は、電力調整システムとしても知られる燃料電池電力変換システムで変換される電力を生成する。電力変換システムは、電源によって生成される電力の特性を何らかの方法で変更するシステムである。DC(直流)電力を生成する燃料電池の場合、これは、異なる(例えばより高い)電圧及び/又は電流レベルへのDC電力の変換、特定のRMS(二乗平均平方根)電圧でのAC(交流)電力への変換、三相AC電力の生成、又は上記のすべてを意味し得る。典型的には、DC電源の電圧レベルの変更は、DC/DC(直流/直流)コンバータを用いて実施できるのに対して、DCからACへの変更は、DC/AC(直流/交流)コンバータ又はインバータを用いて実施される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第7,705,490号明細書
【発明の概要】
【0004】
一実施形態によれば、本発明は、複数の電源の並列動作方法であって、この方法は、ドループマスタコントローラによって、複数の電源用の負荷需要を測定するステップと、第1のドループスレーブコントローラによって、ドループマスタコントローラから複数の電源用の負荷需要を受信するステップと、第1のドループスレーブコントローラによって、複数の電源の第1の燃料電池電源の電力容量を決定するステップと、第1のドループスレーブコントローラによって、複数の電源用の負荷需要と第1の燃料電池電源の電力容量とを用いて、第1の燃料電池電源用の第1のドループプロファイルのための第1の勾配及び第1の無負荷設定点のうちの少なくとも1つを計算するステップと、ここで、第1のドループプロファイルと、少なくとも第2の電源用の第2のドループプロファイルとが複数の電源用のすべての負荷需要のために提供され、さらに、第1の燃料電池電源用の第1のインバータを、第1のドループプロファイルに従って電力を出力するように構成するステップと、を含む。
【0005】
別の実施形態によれば、本発明は、複数の電源の並列動作のための装置であって、この装置は、複数の電源に通信可能に接続され、かつ複数の電源用の負荷需要を測定するように構成されたドループマスタコントローラと、ドループマスタコントローラ及び複数の電源の第1の燃料電池電源に通信可能に接続され、かつ第1の燃料電池電源用の第1のドループプロファイルを計算するように構成された第1のドループスレーブコントローラと、ドループマスタコントローラ及び第2の電源に通信可能に接続された第2のドループスレーブコントローラと、第1の燃料電池電源に電気的に接続され、かつ第1のドループスレーブコントローラに通信可能に接続され、かつ第1のドループプロファイルに従って電力を出力するように構成された第1のインバータと、を含む。
【図面の簡単な説明】
【0006】
【
図1】一実施形態による、燃料電池発電システムのための並列入力側及び並列出力側を有するコントローラのネットワークを示すブロック図
【
図2】一実施形態による、並列入力側及び並列出力側を有する燃料電池電源の無停電電源モジュールとネットワーク化されたコントローラとを示すブロック図
【
図3】一実施形態による、コントローラのネットワークによって管理される複数の電源に接続された負荷のためのマイクログリッドを示すブロック図
【
図4A】様々な実施形態による、複数の燃料電池電源のバランス調整のための例示的な周波数ドループプロファイルを示すグラフ図
【
図4B】様々な実施形態による、燃料電池電源及び他の電源のバランス調整のための例示的な周波数ドループプロファイルを示すグラフ図
【
図5A】様々な実施形態による、複数の燃料電池電源のバランス調整のための例示的な電圧ドループプロファイルを示すグラフ図
【
図5B】様々な実施形態による、燃料電池電源及び他の電源のバランス調整のための例示的な電圧ドループプロファイルを示すグラフ図
【
図6】様々な実施形態による、周波数ドループプロファイルにおける変化の例を示すグラフ図
【
図7】様々な実施形態による、制御された燃料電池電源の複数の無停電電源モジュールの並列動作を実施するための例示的な方法を示すプロセスフローチャート
【発明を実施するための形態】
【0007】
無停電電源モジュール(UPM)及び/又は複数の電源が使用される大規模システムでは、システム全体の電力のバランスは、電源用途の特定の目的を達成し、並列化された入力側と出力側とを有する無停電電源モジュール間の負荷のバランスを調整し、さらに機器状態の変化、負荷要件、及びその他の要因に応じてバランスを変更するために、無停電電源モジュール及び/又は複数の電源を制御することによって管理することができる。例示的な無停電電源モジュールは、2011年11月14日に出願された“Fuel Cell System with Grid Independent Operation and DC Microgrid Capability”と題する米国特許第9,106,098号明細書に記載されており、その全体は参照に基づき本明細書に援用される。
【0008】
本開示の一部の実施形態では、複数の電源の各電源のために、付加的なドループスレーブコントローラを追加することができる。ドループマスタコントローラは、ドループスレーブコントローラを調整し制御する。一部の他の実施形態では、同じ負荷に電力を供給し、同じドループマスタコントローラを使用している異なる電源のためのドループプロファイル(例えばドループプロファイル勾配及び/又は無負荷設定点)が、複数の電源の各電源の状態に応じて異なる可能性がある。
【0009】
図1を参照すると、コントローラのネットワークは、一実施形態によれば、燃料電池発電システムのための並列化された入力側と並列化された出力側とを有し得る。コントローラのネットワークは、マイクログリッドコントローラ100、任意の数のドループマスタコントローラ102、任意の数のドループスレーブコントローラ104a,104b、及び任意の数の無停電電源モジュールコントローラ106a,106bを含み得る。コントローラ100,102,104a,104b,106a,106bの各々は、並列化された入力側と並列化された出力側とを含み、高速又は低速通信用に構成可能な任意の数の有線又は無線通信接続(本明細書では「通信バス」又は「バス」と称する)110a,110b,110c,110d,110eを介して通信可能に接続されてもよい。
【0010】
様々な実施形態では、マイクログリッドコントローラ100は、第1の通信バス110aを介してドループマスタコントローラ102に通信可能に接続されてもよい。マイクログリッドコントローラ100は、負荷電力要件(負荷需要とも称される)及びマイクログリッド(
図3に関連して本明細書でさらに説明するマイクログリッドなど)の電源応答を監視及び制御するように構成することができる。電源応答の監視及び制御には、マイクログリッドの任意の数の負荷の集合ユニットとして、複数の分散型電源の電源応答の監視及び制御を含めることができる。これらの分散型電源には、任意の数の燃料電池システム、ディーゼル発電機、グリッド接続、マイクロタービン、太陽光発電機、風力発電機などの任意の組み合わせを含めることができる。負荷需要を満たすための監視、受信、計算された基準、及び/又は予め定められた基準に基づいて、マイクログリッドコントローラ100は、負荷需要に対する電源応答のための電力、電圧、周波数、及び/又は位相角要件に対する設定点を決定することができる。マイクログリッドコントローラ100は、電力コマンド、電圧コマンド(電圧コマンド1)、周波数コマンド(周波数コマンド1)、及び/又は位相角コマンド(位相角コマンド1)を含む、負荷需要に対する電源応答のための電力、電圧、周波数、及び/又は位相角に対する設定点を示すコマンド信号を生成することができる。マイクログリッドコントローラ100は、第1の通信バス110aを介してドループマスタコントローラ102にコマンド信号を送信することができる。様々な実施形態では、マイクログリッドコントローラ100は、少なくとも1つの他のコマンド信号と並行して、コマンド信号をドループマスタコントローラ102に送信することができる。
【0011】
様々な実施形態では、ドループマスタコントローラ102は、第2の通信バス110bを介して第1のドループスレーブコントローラ(ドループスレーブコントローラ1)104aに通信可能に接続されてもよく、さらに第3の通信バス110cを介して第2のドループスレーブコントローラ(ドループスレーブコントローラN)104bに通信可能に接続されてもよい。ドループマスタコントローラ102は、マイクログリッドの各電源の電源応答を監視及び制御するように構成されてもよい。電源応答の監視と制御には、複数の分散型電源間での電源応答のバランス調整を含ませることができる。ドループマスタコントローラ102は、通信バス110aを介してマイクログリッドコントローラ100からコマンド信号を受信することができる。様々な実施形態では、ドループマスタコントローラ102は、少なくとも1つの他のコマンド信号と並行して、マイクログリッドコントローラ100からコマンド信号を受信することができる。
【0012】
ドループマスタコントローラ102は、マイクログリッドの分散型電源から供給される有効電力、無効電力、及び/又は高調波電力を測定するように構成されてもよい。ドループマスタコントローラ102は、測定された有効電力、無効電力、及び/又は高調波電力を使用して、マイクログリッドコントローラ100及び負荷需要のコマンド信号を満たすために、様々な電源の電圧、周波数、及び/又は位相角に対する設定点を計算するように構成されてもよい。様々な実施形態では、ドループマスタコントローラ102は、第2又は第3の通信バス110b,110cを介して、ドループスレーブコントローラ104a,104bから有効電力、無効電力、及び/又は高調波電力測定値を受信し、受信した測定値を内部に組み込むことができ、及び/又は、受信した測定値を、マイクログリッドの分散型電源から供給されるドループマスタコントローラの測定された有効電力、無効電力、及び/又は高調波電力として使用することができる。
【0013】
ドループマスタコントローラの測定された有効電力、無効電力、及び/又は高調波電力を使用して、ドループマスタコントローラ102は、本明細書でさらに説明されるように、電圧コマンド、周波数コマンド、及び/又は位相角コマンドを含む、負荷需要に対する電源応答のための電圧、周波数、及び/又は位相角に対する設定点を示すコマンド信号を生成することができる。ドループマスタコントローラ102は、第2及び/又は第3の通信バス110b,110cを介して、燃料電池電源の複数の無停電電源モジュールのために、コマンド信号を、様々な分散型電源用のコントローラに、及び/又は、直接様々な分散型電源に、及び/又は、ドループスレーブコントローラ104a,104bに送信することができる。例えば、ドループマスタコントローラ102は、電圧コマンド(電圧コマンド2)、周波数コマンド(周波数コマンド2)、及び/又は位相角コマンド(位相角コマンド2)を生成し、第1のドループスレーブコントローラ104aに送信することができ、さらに電圧コマンド(電圧コマンド3)、周波数コマンド(周波数コマンド3)、及び/又は位相角コマンド(位相角コマンド3)を生成し、第2のドループスレーブコントローラ104bに送信することができる。様々な実施形態では、ドループマスタコントローラ102は、少なくとも1つの他のコマンド信号と並行して、コマンド信号を、様々な分散型電源用のコントローラに、及び/又は、直接様々な分散型電源に、及び/又は、ドループスレーブコントローラ104a,104bに送信することができる。様々な実施形態では、ドループマスタコントローラ102は、マイクログリッドの分散型電源から供給される測定された有効電力、無効電力、及び/又は高調波電力を、送信及び/又は受信した少なくとも1つのコマンド信号と並行して、第1の通信バス110aを介してマイクログリッドコントローラ100に送信することができる。
【0014】
様々な実施形態では、ドループスレーブコントローラ104a,104bは、通信バス110d,110eを介して、無停電電源モジュールコントローラ106a,106bに通信可能に接続されてもよい。例えば、第1のドループスレーブコントローラ104aは、第4の通信バス110dを介して第1の無停電電源モジュールコントローラ(UPMコントローラ1)106aに通信可能に接続されてもよく、第2のドループスレーブコントローラ104bは、第5の通信バス110eを介して第2の無停電電源モジュールコントローラ(UPMコントローラN)106bに通信可能に接続されてもよい。これらのドループスレーブコントローラ104a,104bは、1つ以上の燃料電池システムを含む任意の数の燃料電池電源など、マイクログリッドの各電源に対する電源応答を監視及び制御するように構成されてもよい。電源応答の監視と制御には、複数の各電源間での電源応答のバランス調整を含ませることができる。ドループスレーブコントローラ104a,104bは、第2及び/又は第3の通信バス110b,110cを介してドループマスタコントローラ102からコマンド信号を受信することができる。様々な実施形態では、ドループスレーブコントローラ104a,104bは、少なくとも1つの他のコマンド信号と並行して、ドループマスタコントローラ102からコマンド信号を受信することができる。
【0015】
ドループスレーブコントローラ104a,104bは、マイクログリッドの各電源から供給される有効電力、無効電力、及び/又は高調波電力を測定するように構成されてもよい。ドループスレーブコントローラ104a,104bは、測定された有効電力、無効電力、及び/又は高調波電力を使用して、ドループマスタコントローラ102及び負荷需要のコマンド信号を満たすために、それらの各電源の電圧、周波数、及び/又は位相角に対する設定点を計算するように構成されてもよい。様々な実施形態では、ドループスレーブコントローラ104a,104bは、第4又は第5の通信バス110d,110eを介して、無停電電源モジュールコントローラ106a,106bから有効電力、無効電力、及び/又は高調波電力の測定値を受信し、受信した測定値を内部に組み込むことができ、及び/又は、受信した測定値を、マイクログリッドの分散型電源から供給されるドループスレーブコントローラの測定された有効電力、無効電力、及び/又は高調波電力として使用することができる。
【0016】
ドループスレーブコントローラの測定された有効電力、無効電力、及び/又は高調波電力を使用して、ドループスレーブコントローラ104a,104bは、本明細書でさらに説明するように、負荷需要に対するそれらの各電源応答の電圧、周波数、及び/又は位相角に対する設定点を示すコマンド信号を生成することができる。例えば、第1のドループスレーブコントローラ104aは、電圧コマンド(電圧コマンド4)、周波数コマンド(周波数コマンド4)、及び/又は位相角コマンド(位相角コマンド4)を含む、第1の無停電電源モジュールコントローラ106a用のコマンド信号を生成し、送信することができ、第2のドループスレーブコントローラ104bは、電圧コマンド(電圧コマンドN)、周波数コマンド(周波数コマンドN)、及び/又は位相角コマンド(位相角コマンドN)を含む、第2の無停電電源モジュールコントローラ106b用のコマンド信号を生成し、送信することができる。これらのドループスレーブコントローラ104a,104bは、第4及び/又は第5の通信バス110d,110eを介して、燃料電池電源の複数の無停電電源モジュール108a,108bのために、コマンド信号を各無停電電源モジュールコントローラ106a,106bに送信することができる。様々な実施形態では、ドループマスタコントローラ102は、少なくとも1つの他のコマンド信号と並行して、コマンド信号を、様々な分散型電源用のコントローラに、及び/又は、直接分散型電源に、及び/又は、ドループスレーブコントローラ104a,104bに送信することができる。様々な実施形態では、ドループスレーブコントローラ104a,104bは、燃料電池電源から供給される測定された有効電力、無効電力、及び/又は高調波電力を、送信及び/又は受信した少なくとも1つのコマンド信号と並行して、第2及び/又は第3の通信バス110b,110cを介してドループマスタコントローラ102に送信することができる。
【0017】
ドループマスタコントローラ102及びドループスレーブコントローラ104a,104bは、本明細書で論じられるように、それらに関連する電源の有効電力、無効電力、及び/又は高調波電力を測定し、それらに関連する電源用の電圧、周波数及び/又は位相角に対する設定点を計算し、負荷需要に対する関連する各電源からの電源応答をバランス調整するように構成されてもよい。ドループマスタコントローラ102及びドループスレーブコントローラ104a,104bの各々は、それらに関連する電源用の設定点を計算するための関数を実装することができる。周波数設定点は、f(t)=F(F0,Pref,Pmeas)の関数として計算されてもよく、ここで、tは時間、F0は基準周波数値、Prefは基準有効電力値、Pmeasは測定された有効電力である。電圧設定点は、v(t)=F(V0,Qref,Qmeas)の関数として計算されてもよく、ここで、tは時間、V0は基準電圧値、Qrefは基準無効電力値、Qmeasは測定された無効電力である。位相角設定点は、a(t)=F(A0,Pref,Pmeas)の関数として計算されてもよく、ここで、tは時間、A0は基準位相角値、Prefは基準電力値、Pmeasは測定された有効電力である。様々な実施形態において、様々な設定点の計算は、無負荷設定点用であってもよい。様々な実施形態では、有効電力及び/又は無効電力の基準は、計算コントローラ102,104a,104bによって測定される総負荷であってもよいし、あるいは、ドループマスタコントローラ102及び/又はドループスレーブコントローラ104a,104bに対するマイクログリッドコントローラ100など又はドループスレーブコントローラ104a,104bに対するドループマスタコントローラ102などのようなより高いレベルのコントローラによって提供される総負荷であってもよい。
【0018】
様々な実施形態において、無停電電源モジュールコントローラ106a,106bは、通信バス110f,110gを介して、任意の数の無停電電源モジュール108a,108bに通信可能に接続されてもよい。例えば、第1の無停電電源モジュールコントローラ106aは、第6の通信バス110fを介して第1の無停電電源モジュール(UPM1)108aに通信可能に接続されてもよく、第2の無停電電源モジュールコントローラ106bは、第7の通信バス110gを介して第2の無停電電源モジュール(UPM2)108bに通信可能に接続されてもよい。これらの無停電電源モジュールコントローラ106a,106bは、電源状態を監視し、各燃料電池システム又は燃料電池電源のために、ドループスレーブコントローラ104a,104bから受信したコマンド信号命令を実施するように構成されてもよい。燃料電池電源の監視条件には、関連する燃料電池電源のための有効電力、無効電力、及び/又は高調波電力の測定及び/又は計算を含ませることができる。様々な実施形態では、無停電電源モジュールコントローラ106a,106bは、第4及び/又は第5の通信バス110d,110eを介して、関連する燃料電池電源のための有効電力、無効電力、及び/又は高調波電力をドループスレーブコントローラ104a,104bに送信することができる。燃料電池電源のためのコマンド信号命令を実施することには、無停電電源モジュール108a,108bにコマンド信号に従って命令を実行させるような、関連する無停電電源モジュール108a,108bのコンポーネントの操作構成を含ませることができる。様々な実施形態では、無停電電源モジュールコントローラ106a,106bは、第6及び/又は第7の通信バス110f,100gを介して、関連する無停電電源モジュール108a,108bに、本明細書でさらに論じられるようなコマンド信号及び周波数及び/又は電圧ドループプロファイルに従って命令を実行するように構成を変更する命令と共に、無停電電源モジュール制御信号を送信することができる。様々な実施形態では、無停電電源モジュールコントローラ106a,106bは、有効電力、無効電力、及び/又は高調波電力をドループスレーブコントローラ104a,104bに送信する、及び/又は、少なくとも1つの制御信号を無停電電源モジュール108a,108bに送信する少なくとも1つの他のコマンド信号と並行して、ドループスレーブコントローラ104a,104bからコマンド信号を受信することができる。
【0019】
図1に示し、本明細書において説明している例は、コントローラのネットワークのコンポーネントの数又は配置に関して限定されない。コントローラのネットワークのコンポーネントのいずれかは、別個のコンポーネントであってもよいし、及び/又は、複数の機能用に構成された組み合わせ型のコンポーネントであってもよい。様々な実施形態では、コントローラ100,102,104a,104b,106a,106b,108a,108bは、汎用又は特定のコンピュータ又は専用の制御デバイス又は回路であってもよい。様々な実施形態では、通信バス110a~110gは、有線及び/又は無線通信手段であってもよい。本明細書において示し、説明している例は、説明及び理解を容易にするためにそのように開示されている。
【0020】
図2を参照すると、無停電電源モジュールコントローラ106aは、一実施形態によれば、並列化された入力側と並列化された出力側とを有する燃料電池電源200の無停電電源モジュール108a,108cとネットワーク化することができる。各燃料電池電源200は、上記のように少なくとも1つの燃料電池セグメントを含む。例えば、第1の無停電電源モジュールコントローラ106aは、任意の数の通信バス110fを介して、第1の無停電電源モジュール108a及び第3の無停電電源モジュール(UPM M)108cなどの任意の数の無停電電源モジュールに通信可能に接続することができる。これらの無停電電源モジュール108a,108cは、それぞれ、DC側で受信されたDC電力を任意の数の燃料電池セグメント206a,206b,206c,206d,206e,206f,206g,206h,206i,206j,206k,206lからAC側のAC電力出力に変換するように構成された、任意の数の直流(DC)/交流(AC)インバータ204a,204bを含むことができる。
【0021】
例えば、各燃料電池電源200は、1つ以上の無停電電源モジュール108a,108c及び/又は1つ以上の燃料電池システム205a,205bを含むことができる(燃料電池システムがUPM108a,108c内に配置されていない場合)。各無停電電源モジュール108a,108cは、1つ以上の燃料電池システム205a,205bと、1つ以上のDC/ACインバータ204a,204bとを含むことができる。各燃料電池システム205a,205bは、一つ以上の燃料電池セグメント206a~f及び206g~l、並びにブロワー、ポンプ、バルブ、熱交換器、蒸発器、燃料改質器などの関連するプラントコンポーネントのバランス調整部を含むことができる。例えば、燃料電池システム205a,205bは、1個から20個の燃料電池セグメント、例えば4個から6個の燃料電池セグメントを含むホットボックスを含むことができる。例えば、燃料電池セグメント206a~fは、第1の燃料電池システム205aの第1のホットボックスに配置されてもよく、燃料電池セグメント206g~lは、第2の燃料電池システム205bの第2のホットボックスに配置されてもよい。無停電電源モジュールコントローラ106aは、単一のDC/ACインバータアセンブリとしてネットワーク化されたDC/ACインバータ204a,204bのセットを制御するように構成されてもよい。無停電電源モジュールコントローラ106aは、無停電電源モジュール制御信号を無停電電源モジュール108a,108cに送信することによって、各DC/ACインバータ204a,204bへのローディングを確立するように構成することができる。無停電電源モジュール108a,108cは、無停電電源モジュールコントローラ106aによって受信されたコマンド信号に従って命令を実行するように無停電電源モジュール制御信号によって特定されるDC/ACインバータ204a,204bの構成を実施するように構成されてもよい。例示的な無停電電源モジュールコントローラ106aは、2011年10月24日に出願された“Input-parallel/Output-parallel Inverter Assembry Control Device and Method”と題する米国特許第9,362,815号明細書におけるインバータマスタコントローラに関連して記載されており、その全体は参照に基づき本明細書に援用される。さらに、例示的な無停電電源モジュール108a,108c及びDC/ACインバータ204a,204bも、米国特許第9,362,815号明細書におけるインバータに関連して記載されている。
【0022】
図3を参照すると、マイクログリッド300は、一実施形態によれば、コントローラ100,102,104a,104b,106a,106bのネットワークによって管理される、任意の数の燃料電池電源200及び/又は任意の数の分散型電源304などの複数の電源に負荷306を接続することができる。マイクログリッドコントローラ100は、マイクログリッドコントローラをドループマスタコントローラ102に接続する通信バス110aを介して少なくとも1つの燃料電池電源200に通信可能に接続されてもよい。ドループマスタコントローラ102、任意の数のドループスレーブコントローラ104a,104b、任意の数の無停電電源モジュールコントローラ106a、任意の数の無停電電源モジュール108a,108b、及び任意の数の燃料電池セグメント206a~206lは、
図1及び
図2に関連して本明細書に記載されるように通信可能に接続されてもよい。
【0023】
マイクログリッドコントローラ100は、通信バスを介して任意の数の分散型電源コントローラ302に通信可能に接続されてもよく、さらに各分散型電源コントローラ302は、任意の数の分散型電源304に通信可能に接続されてもよい。分散型電源304は、任意の数の燃料電池システム、ディーゼル発電機、グリッド接続部、マイクロタービン、太陽光発電機、風力発電機などの任意の組み合わせを含むことができる。様々な実施形態では、分散型電源コントローラ302は、1つ以上の各分散型電源304のためのドループマスタコントローラ又はドループスレーブコントローラであってもよい。
【0024】
さらに、燃料電池電源200、特に、燃料電池電源200の無停電電源モジュール108a,108bのDC/ACインバータ204a,204bのAC側は、導電路308を介して負荷306に電気的に接続されてもよい。分散型電源304も、導電路308を介して負荷306に電気的に接続されてもよい。
【0025】
本明細書で論じられるように、様々なコントローラ100,102,104a,104b,106a,106b,302は、これらのコントローラ100,102,104a,104b,106a,106b,302が監視するように構成されている様々な電源200,304及び負荷306のためのマイクログリッドのセクションなど、マイクログリッド300の様々なセクションについての有効電力、無効電力、及び/又は高調波電力を測定するように構成されてもよい。コントローラ100,102,104a,104b,106a,106b,302は、これらのコントローラ100,102,104a,104b,106a,106b,302及び負荷306の各電源200,304間の導電路308上の電力流を監視することができる。
【0026】
図4A,
図4B,
図5A及び
図5Bを参照すると、周波数ドループプロファイル400,410及び電圧ドループプロファイル500,510は、様々な実施形態によれば、複数の燃料電池電源200のバランス調整のために、そして燃料電池電源200と他の分散型電源304とのバランス調整のために提供されてもよい。周波数ドループプロファイル400,410は、周波数ドループプロファイル400,410の各電源200,304についての周波数と、有効電力又は高調波電力などの電力との間の関係に基づいて提供されてもよい。電圧ドループプロファイル500,510は、電圧ドループプロファイル500,510の各電源200,304についての電圧と、無効電力又は高調波電力などの電力との間の関係に基づいて提供されてもよい。例示的な周波数ドループプロファイル400,410及び電圧ドループプロファイル500,510は、様々な電源200,304からのバランス調整されていない電力流を提供するポテンシャルを示す。周波数ドループプロファイル400及び電圧ドループプロファイル500は、各燃料電池システム自体が無停電電源モジュール108a,108b,108cを備えた燃料電池電源の複数の燃料電池システムからのバランス調整されていない電力流についての例を提示する。周波数ドループプロファイル410及び電圧ドループプロファイル510は、燃料電池電源200と別の分散型電源304との組み合わせを含めた複数の電源からのバランス調整されていない電力流についての例を提示する。様々な実施形態では、複数の電源200,304についての周波数ドループプロファイル400,410及び電圧ドループプロファイル500,510は、マイクログリッドコントローラ100、ドループマスタコントローラ102、及び/又はドループスレーブコントローラ104a,104bなどの複数の電源と通信するコントローラによって決定されてもよい。
【0027】
電源200,304は、一次電源及び二次電源として指定されてもよい。一次電源は、バランス調整された電源200,304のうち、負荷に電力の大半を提供する電源200,304であってもよい。換言すれば、一次電源は、負荷306に電力を提供するマイクログリッド300のすべての電源200,304のうち、必ずしも負荷に電力の大半を供給する必要はないが、電源200,304のうち、周波数ドループプロファイル400,410及び電圧ドループプロファイル500,510について、電力の大半を提供する電源200,304であってもよい。例えば、燃料電池電源1は、一次電源であってもよく、燃料電池電源2は、周波数ドループプロファイル400及び電圧ドループプロファイル500についての二次電源であってもよい。この場合、周波数ドループプロファイル410及び電圧ドループプロファイル510について、燃料電池電源1及び燃料電池電源2の両方を含む燃料電池電源は、一次電源であってよく、燃料電池電源2自体が周波数ドループプロファイル400及び電圧ドループプロファイル500の二次電源であっても、発電機などの分散型電源304が二次電源であってよい。様々な実施形態では、どの電源200,304が一次電源及び二次電源であるかを決定するために、電力ポテンシャル、優先度、効率、経年状態、動作時間、環境、状態、距離などの様々な基準、又はこれらの基準の組み合わせが使用されてもよい。
【0028】
例示的な周波数ドループプロファイル400,410及び例示的な電圧ドループプロファイル500,510のように、複数の電源200,304間の電力の不均等なバランスを決定するために、二次電源用にドループマスタコントローラ又はドループスレーブコントローラ102,104a,104bに提供される基準電力は、二次電源からの使用可能なエネルギに基づいて変更することができる。
【0029】
図4Aを参照すると、例示の周波数ドループプロファイル400は、一方(又は一方のセット)が、他方(又は他方のセット)よりも大きな電力ポテンシャルを有する複数の燃料電池電源200又は燃料電池システム(例えば205a,205b)用であってもよい。例えば、燃料電池電源1は、機器上及び/又は環境上の理由(例えば燃料電池電源1は、燃料電池電源2よりも新しい燃料電池システムを有し得るなど)を含んだ様々な理由のために、燃料電池電源2よりも大きな電力ポテンシャルを有し得る。燃料電池電源2は、燃料電池電源1よりも低い電力ポテンシャルを有しているため、燃料電池電源1の無負荷設定点402aは、燃料電池電源2の無負荷設定点402bよりも高い周波数に設定されている。結果として、ドループ制御負荷分割のバランス調整では、燃料電池電源1に過半の負荷をかけることができ(例えば60%)、燃料電池電源2にはより少ない負荷をかけることができる(例えば40%)。負荷需要が増加するにつれて、燃料電池電源1及び燃料電池電源2の両方の周波数は、互いに比例して、複数の周波数ドループプロファイル、詳細には燃料電池電源1用の周波数ドループプロファイル404a及び燃料電池2用の周波数ドループプロファイル404bに沿って減少させることができ、ポイント406a,406bなどの様々なポイントで、燃料電池電源1及び燃料電池電源2は、最初に設定されたのと同じ比率でより多くの電力量を出力することができる。したがって、この実施形態では、周波数ドループプロファイル404a及び404bの両方は、同じ勾配を有するが、異なる無負荷設定点402a,402bを有する線を含む。しかしながら、複数の燃料電池電源200又は燃料電池システムが並列していることにより、1つの燃料電池電源200又は燃料電池システムが故障すると、ドループ制御は、残りの燃料電池電源200又は燃料電池システムへの負荷のシフトを自動的にもたらす可能性がある。これは、燃料電池電源200又は燃料電池システムについての所望の周波数よりも低い結果となる可能性がある。この場合、ドループマスタコントローラ又はドループスレーブコントローラ102,104a,104bは、意図された周波数の回復のために、燃料電池電源200又は燃料電池システムの無負荷設定点をより長い時間スケールで調整することができる。
【0030】
図4Bを参照すると、例示的な周波数ドループプロファイル410は、任意の数の燃料電池電源200又は燃料電池システム並びに任意の数の発電機などの分散型電源304用であってもよい。様々な実施形態では、周波数ドループプロファイルは、2つの単一の電源200,304、単一の電源200,304と、それらが単一の電源200,304を含むかのように一緒にグループ化された複数の電源200,304、又は、単一の電源200,304と、それらが2つの単一の電源200,304を含むかのようにそれぞれ一緒にグループ化された複数の電源200,304の2つのグループの任意の組み合わせ用であってもよい。電源200,304のグループには、1つのタイプの電源200,304しか含められないわけではない。
【0031】
燃料電池電源200及び他の分散型電源304用の周波数ドループプロファイルを提供する例では、ドループマスタコントローラ102は、燃料電池電源200用の無負荷設定点を決定することができ、マイクログリッドコントローラ100は、分散型電源304用の負荷設定点を決定することができる。無負荷設定点の決定では、マイクログリッドコントローラ100及びドループマスタコントローラ102は、電源200,304の使用可能な電力を共有するため、並びに、電圧コマンド、周波数コマンド、及び/又は位相角コマンドを含めた無負荷設定点のコマンドを共有するために通信することができる。したがって、各燃料電池電源200は、特定の電源200の制御を担う別個のドループスレーブコントローラを有し、それに対して、ドループマスタコントローラは、様々なドループスレーブコントローラを制御する。
【0032】
一例では、周波数ドループプロファイル410は、単一の燃料電池電源200と単一の発電機、燃料電池電源200のグループと単一の発電機、単一の燃料電池電源200と発電機のグループ、又は、燃料電池電源200のグループと発電機のグループとを含むことができる。単一及び/又は複数の電源200,304の任意の組み合わせについて、一方の単一又はグループの電源200,304は、他方よりも大きな電力ポテンシャルを有し得る。例えば、燃料電池電源は、機器上及び/又は環境上の理由を含んだ様々な理由のために、周波数ドループプロファイル410の発電機よりも大きな電力ポテンシャルを有し得る。発電機は、燃料電池電源よりも低い電力ポテンシャルを有しているため、燃料電池電源の無負荷設定点412は、発電機の無負荷設定点418よりも高い周波数に設定されている。結果として、ドループ制御負荷分割のバランス調整では、燃料電池電源に負荷の大半をかけることができ(例えば80%)、発電機にはより少ない負荷をかけることができる(例えば20%)。負荷需要が増加するにつれて、燃料電池電源と発電機の両方の周波数は、互いに比例して、複数の周波数ドループプロファイル、詳細には燃料電池電源用の周波数ドループプロファイル414及び発電機用の周波数ドループプロファイル420に沿って減少させることができ、ポイント416,422などの様々なポイントで、燃料電池電源及び発電機は、最初に設定されたのと同じ比率でより多くの電力量を出力することができる。しかしながら、複数の電源200,304が並列していることにより、電源は、低減された容量を通知する可能性がある。例えば、燃料電池電源200が故障する可能性があり、別の燃料電池電源200は故障した燃料電池電源200の負荷を引き受ける可能性があると、結果的に、燃料電池周波数設定点は、ドループマスタコントローラ102によってより低く調整される必要がある。その結果、ドループ制御は、発電機に対し負荷のシフトを自動的にもたらす可能性がある。マイクログリッドコントローラ100とドループマスタコントローラ102との間の通信に基づいて、負荷へのシフトを維持するか又はシフトさせることができる。例えば、燃料電池電源に、故障した燃料電池電源なしで指定された負荷量をサポートする能力があり、燃料レベルが発電機にとって低い場合、燃料電池電源の無負荷設定点は、燃料電池電源に負荷を戻すためにより高くシフトさせることができる。あるいは、燃料電池電源に、故障した燃料電池電源なしで指定された負荷量をサポートする能力がなく、発電機が十分な燃料を有している場合、燃料電池電源の負荷設定点は維持するかより低くすることができる。
【0033】
図5Aを参照すると、例示的な電圧ドループプロファイル500は、一方が他方よりも大きな電力ポテンシャルを有する複数の燃料電池電源200又は燃料電池システム用であってもよい。例えば、燃料電池電源1は、機器上及び/又は環境上の理由を含んだ様々な理由のために、燃料電池電源2よりも大きな電力ポテンシャルを有し得る。燃料電池電源2は、燃料電池電源1よりも低い電力ポテンシャルを有しているため、燃料電池電源1の無負荷設定点502aは、燃料電池電源2の無負荷設定点502bよりも高い電圧に設定されている。結果として、ドループ制御負荷分割のバランス調整では、燃料電池電源1に過半の負荷をかけることができ(例えば60%)、燃料電池電源2にはより少ない負荷をかけることができる(例えば40%)。負荷需要が増加するにつれて、燃料電池電源1及び燃料電池電源2の両方の電圧は、互いに比例して、複数の電圧ドループプロファイル、詳細には燃料電池電源1用の電圧ドループプロファイル504a及び燃料電池電源2用の電圧ドループプロファイル504bに沿って減少させることができ、ポイント506a,506bなどの様々なポイントで、燃料電池電源1及び燃料電池電源2は、最初に設定されたのと同じ比率でより多くの電力量を出力することができる。しかしながら、複数の燃料電池電源200又は燃料電池システムが並列していることにより、1つの燃料電池電源200又は燃料電池システムが故障すると、ドループ制御は、残りの燃料電池電源200又は燃料電池システムへの負荷のシフトを自動的にもたらす可能性がある。これは、燃料電池電源200又は燃料電池システムについての所望の電圧よりも低い結果となる可能性がある。次いで、ドループマスタコントローラ又はドループスレーブコントローラ102,104a,104bは、意図された電圧の回復のために、燃料電池電源200又は燃料電池システムの無負荷設定点をより長い時間スケールで調整することができる。
【0034】
図5Bを参照すると、例示的な電圧ドループプロファイル510は、任意の数の燃料電源200又は燃料電池システム並びに任意の数の発電機などの分散型電源304用であってもよい。様々な実施形態では、電圧ドループプロファイルは、2つの単一の電源200,304、単一の電源200,304と、それらが単一の電源200,304を含むかのように一緒にグループ化された複数の電源200,304、又は、単一の電源200,304と、それらが2つの単一の電源200,304を含むかのようにそれぞれ一緒にグループ化された複数の電源200,304の2つのグループの任意の組み合わせ用であってもよい。電源200,304のグループには、1つのタイプの電源200,304しか含められないわけではない。したがって、この実施形態では、電圧ドループプロファイル504a及び504bの両方は、同じ勾配を有するが、異なる無負荷設定点502a,502bを有する線を含む。
【0035】
燃料電池電源200及び他の分散型電源304用の電圧ドループプロファイルを提供する例では、ドループマスタコントローラ102は、燃料電池電源200用の無負荷設定点を決定することができ、マイクログリッドコントローラ100は、分散型電源304用の負荷設定点を決定することができる。無負荷設定点の決定では、マイクログリッドコントローラ100及びドループマスタコントローラ102は、電源200,304の使用可能な電力を共有するため、並びに、電圧コマンド、周波数コマンド、及び/又は位相角コマンドを含めた無負荷設定点のコマンドを共有するために通信することができる。
【0036】
一例では、電圧ドループプロファイル510は、単一の燃料電池電源200と単一の発電機、燃料電池電源200のグループと単一の発電機、単一の燃料電池電源200と発電機のグループ、又は燃料電池電源200のグループと発電機のグループとを含むことができる。単一及び/又は複数の電源200,304の任意の組み合わせについて、一方の単一又はグループの電源200,304は、他方よりも大きな電力ポテンシャルを有し得る。例えば、燃料電池電源は、機器及び/又は環境上の理由を含んだ様々な理由のために、電圧ドループプロファイル510の発電機よりも大きな電力ポテンシャルを有し得る。発電機は、燃料電池電源よりも低い電力ポテンシャルを有しているため、燃料電池電源の無負荷設定点512は、発電機の無負荷設定点518よりも高い電圧に設定されている。結果として、ドループ制御負荷分割のバランス調整では、燃料電池電源に負荷の大半をかけることができ(例えば80%)、発電機にはより少ない負荷をかけることができる(例えば20%)。負荷需要が増加するにつれて、燃料電池電源と発電機の両方の電圧は、互いに比例して、複数の電圧ドループプロファイル、詳細には燃料電池電源用の電圧ドループプロファイル514及び発電機用の電圧ドループプロファイル520に沿って減少させることができ、ポイント516,522などの様々なポイントで、燃料電池電源及び発電機は、最初に設定されたのと同じ比率でより多くの電力量を出力することができる。しかしながら、複数の電源200,304が並列していることにより、電源は、低減された容量を通知する可能性がある。例えば、燃料電池電源200が故障する可能性があり、別の燃料電池電源200が故障した燃料電池電源200の負荷を引き受ける可能性があると、結果的に、燃料電池電源電圧設定点は、ドループマスタコントローラ102によってより低く調整される必要がある。その結果、ドループ制御は、発電機に対し負荷のシフトを自動的にもたらす可能性がある。マイクログリッドコントローラ100とドループマスタコントローラ102との間の通信に基づいて、負荷へのシフトは維持されるか又はシフトされる可能性がある。例えば、燃料電池電源に、故障した燃料電池電源なしで指定された負荷量をサポートする能力があり、燃料レベルが発電機にとって低い場合、燃料電池電源の無負荷設定点は、燃料電池電源に負荷を戻すためにより高くシフトさせることができる。あるいは、燃料電池電源に、故障した燃料電池電源なしで指定された負荷量をサポートする能力がなく、発電機が十分な燃料を有している場合、燃料電池電源の負荷設定点を維持するかより低くすることができる。
【0037】
図4Aから
図5Bに関連して上記で説明したように、異なる電源に対して異なる無負荷設定点及び同じドループプロファイル勾配を用いるのではなく、別の実施形態では、
図6に示すように、異なる電源に対してドループプロファイル勾配が異なっている。この実施形態では、無負荷設定点は、異なる電源に対して同じであっても異なっていてもよい。
【0038】
周波数プロファイル600は、異なる周波数及び/又は電圧ドループプロファイル勾配を有する例示的な実施形態を示す。例えば、より大きな容量の発電機などの分散型電源304は、緩慢なドループ(例えば100kWあたり0.1Hz)を伴う周波数ドループプロファイル604aによって設定された1MWの容量を有することができ、これに対して、より小さな容量の分散型電源は、より急峻なドループ(例えば100kWあたり0.5Hzなどのより急峻な勾配)を伴う周波数ドループプロファイル404bによって設定された400kWの容量を有することができる。この例では、無負荷設定点602は、両方の発電機で同じである。
【0039】
燃料電池電源200についての例では、より新しい燃料電池電源200は、より高い過負荷容量を有することができ、緩慢なドループ(例えば100kWあたり0.1Hz)を伴う周波数ドループプロファイル604aで設定されてもよい。これに対して、より古くて交換時期に近づいている燃料電池電源200は、より急峻なドループ(例えば100kWあたり0.5Hzなどのより高い勾配)を伴う周波数ドループプロファイル604bで設定される可能性がある。
【0040】
周波数又は電圧のドループプロファイルのドループをより急峻に又はより緩慢にするようにゲイン又はドループ係数を調整することにより、マイクログリッドコントローラ100又はドループマスタコントローラ102が電源200,304間で負荷をシフトさせる能力が影響を受けず、まだ負荷の完全な管理が可能である場合がある。しかしながら、より急峻なゲイン又はドループ係数設定は、急な過渡的劣化が発生した場合に、アンロードがより早まる結果となり得る。
【0041】
したがって、上記のように、第2のドループプロファイル604bの第2の勾配及び第2の電源用第2のドループプロファイル404bの第2の無負荷設定点402bの少なくとも1つは、第1のドループプロファイル604aのそれぞれ第1の傾斜及び第1の燃料電池電源用の第1のドループプロファイル404aの第1の無負荷設定点402aとは異なっている。第1及び第2のドループプロファイルは、それぞれ各電源のそれぞれ第1及び第2のインバータによって出力される電力に対するAC周波数(又は電圧)の関数である。
【0042】
様々な実施形態において、マイクログリッドコントローラ100及びドループマスタコントローラ102は、燃料電池電源200用の周波数及び/又は電圧ドループプロファイルに対してさらに調整を行うように構成されてもよい。周波数及び/又は電圧ドループプロファイルのドループ係数は、電源200,304が定常状態の動作温度まで加熱されている間は低減されてもよい(例えばより低い無負荷設定点及び/又はより急峻な勾配など)。ドループ係数は、燃料電池電源200が定常状態の動作温度(例えば700℃を超える、725℃~950℃など)に達した場合、増大する可能性がある(例えばより高い無負荷設定点及び/又はより緩い勾配など)。したがって、第1のドループプロファイルの勾配は、燃料電池電源200が始動から定常状態の動作温度まで加熱されるにつれて減少する(例えばより水平になる)可能性がある。
【0043】
別の実施形態では、周波数及び/又は電圧のドループプロファイルは非線形であってもよく、それによって、より低い負荷では、ドループ係数をより大きくすることができ、その結果、より高い負荷よりもドループプロファイルの勾配がより急峻になるか又はより緩慢となる。非線形の周波数及び/又は電圧のドループプロファイルは、追加的負荷を担うための電源200,304の能力又は不具合の支援を実施するのに役立つ可能性がある。非線形の周波数及び/又は電圧ドループプロファイルは、異なる動作点での負荷から電源200,304を保護することができる。
【0044】
図7を参照すると、様々な実施形態に従って制御された燃料電池電源の複数の無停電電源モジュールの並列動作を実施するための例示的な方法700が提供されている。様々な実施形態では、方法700は、汎用ハードウェア(中央処理装置(CPU)など)、特定のハードウェア(アプリケーション固有のコントローラなど)、ソフトウェア、ファームウェア、及び/又は、方法700を実施するための命令によって構成された汎用及び/又は特定のハードウェアの任意の1つ又は組み合わせによって実施されてもよい。説明及び理解を容易にするために、「処理装置」という用語は、本明細書では、方法700を実施するための任意の手段と区別なく使用される。
【0045】
ステップ702では、処理装置(例えばマイクログリッドコントローラ100)は、マイクログリッドに接続された電源200,304用の負荷需要を決定することができる。処理装置は、マイクログリッド300の電源200,304上の負荷306の消費電力を測定及び/又は計算するように構成されてもよい。様々な実施形態では、処理装置は、処理装置(例えばドループマスタコントローラ及び/又はドループスレーブコントローラ102,104a,104b)から、電源200,304上の負荷306の消費電力の測定値及び/又は計算値を受信することができ、さらに受信した測定値を、マイクログリッドに接続された電源200,304用の負荷需要を決定するのに使用することができる。
【0046】
ステップ704では、処理装置(例えばマイクログリッドコントローラ100)は、コマンド信号を送信することができ、処理装置(例えばドループマスタコントローラ102)は、コマンド信号を受信することができる。本明細書で論じられるように、これらのコマンド信号は、電力コマンド、電圧コマンド、周波数コマンド、及び/又は位相角コマンドを含み得る。これらのコマンド信号は、マイクログリッドに接続された電源200,304間の負荷需要のバランス調整のために電源200,304を構成するための設定点を決定するために使用されてもよい。
【0047】
ステップ706では、処理装置(例えばドループマスタコントローラ102)は、処理装置に関連する複合電源200用の負荷需要を決定することができる。複合電源200は、各燃料電池システムがさらに処理装置(例えばドループスレーブコントローラ104a,104b、及び/又は無停電電源モジュール108a,108b,108c)に関連付けられていてもよい複数の燃料電池システムを有する燃料電池電源であってもよい。これらの処理装置は、複合電源200での負荷306の消費電力を測定及び/又は計算するように構成されてもよい。
【0048】
ステップ708では、処理装置(例えばドループマスタコントローラ102)は、複合電源200用の電力バランスを計算することができる。様々な実施形態では、電力バランスを計算することは、複合電源200用の周波数及び/又は電圧プロファイルを決定するための複合電源200の電力容量の測定値及び/又は計算値と組み合わせて、処理装置に関連する電源200,304用の負荷需要を表し得る受信したコマンド信号を使用することを含み得る。様々な実施形態では、処理装置は、処理装置(例えばマイクログリッドコントローラ100及び/又はドループスレーブコントローラ104a,104b)からの、マイクログリッド電源200,304での負荷306の消費電力の測定値及び/又は計算値を受信することができ、さらに受信した測定値を、複合電源200用の負荷需要の決定に使用することができる。
【0049】
ステップ710では、処理装置(例えばドループマスタコントローラ102)は、コマンド信号を送信することができ、処理装置(例えばドループスレーブコントローラ104a,104b)は、コマンド信号を受信することができる。本明細書で論じられるように、これらのコマンド信号は、電圧コマンド、周波数コマンド、及び/又は位相角コマンドを含み得る。これらのコマンド信号は、マイクログリッドに接続された電源200,304間の負荷需要のバランス調整のために複合電源200を構成するための設定点を決定するために使用されてもよい。
【0050】
ステップ712では、処理装置(例えばドループスレーブコントローラ104a,104b)は、処理装置に関連する予備複合電源200用の負荷需要を決定することができる。予備複合電源200は、燃料電池システムがさらに処理装置(例えばドループスレーブコントローラ104a,104b、及び/又は無停電電源モジュール108a,108b,108c)に関連付けられていてもよい燃料電池電源などの複合電源200の燃料電池システムであってもよい。これらの処理装置は、複合電源200での負荷306の消費電力を測定及び/又は計算するように構成されてもよい。
【0051】
ステップ714では、処理装置(例えばドループスレーブコントローラ104a,104b)は、予備複合電源200のための電力バランスを計算することができる。様々な実施形態では、電力バランスを計算することは、予備複合電源200用の周波数及び/又は電圧プロファイルを決定するための予備複合電源200の電力容量の測定値及び/又は計算値と組み合わせて、処理装置に関連する電源200,304用の負荷需要を表し得る受信したコマンド信号を使用することを含み得る。様々な実施形態では、処理装置は、処理装置(例えばマイクログリッドコントローラ100及び/又はドループマスタコントローラ102)からの、マイクログリッド電源200,304上の負荷306の消費電力の測定値及び/又は計算値を受信することができ、さらに受信した測定値を、予備複合電源200用の負荷需要の決定に使用することができる。
【0052】
ステップ716では、処理装置(例えばドループスレーブコントローラ104a,104b)は、制御信号を送信することができ、処理装置(例えば無停電電源モジュール108a,108b,108c)は、制御信号を受信することができる。本明細書で論じられるように、これらの制御信号は、コマンド信号並びに周波数及び/又は電圧ドループプロファイルに従って実行するような構成を変更するための命令を含み得る。これらの制御信号は、マイクログリッドに接続された電源200,304間の負荷需要のバランス調整のために、DC/ACインバータ204a,204bを含む無停電電源モジュール108a,108b,108cを構成するための設定点を特定するために使用されてもよい。
【0053】
ステップ718では、処理装置(例えばドループスレーブコントローラ104a,104b)は、受信したコマンド信号、及び/又は、周波数及び/又は電圧ドループプロファイルに従った負荷需要の管理のために、DC/ACインバータ204a,204bを含む無停電電源モジュール108a,108b,108cの構成を変更することができる。
【0054】
様々な実施形態では、ステップ702~718の各々は、任意の他のステップ702~718の実施と共に及び/又は独立して、反復的及び/又は連続的に実施されてもよい。このようにして、方法700は、無停電電源モジュール108a,108b,108cの構成の初期設定及び無停電電源モジュール108a,108b,108cの構成の更新のために、定期的に、継続的に、及び/又はマイクログリッド300の変更に応じて実施されてもよい。
【0055】
多くの実施形態を上記で説明したが、任意の実施形態の各特徴又はステップは、任意の適切な組み合わせにおける1つ以上の他の実施形態の1つ以上の特徴又はステップと組み合わせて使用されてもよい。
【0056】
前述の方法の説明及びプロセスフローチャートは、単なる例示的な例として提供されており、様々な実施形態のステップが提示された順序で実行されなければならないことを要求又は示唆することを意図したものではない。当業者であればわかるように、前述の実施形態におけるステップの順序は、任意の順序で実行可能である。さらに、「その後」、「次いで」、「次へ」などの単語は、ステップの順序の限定を意図したものではなく、これらの単語は、単に方法の説明を通じて読み手をガイドするのに用いられている。
【0057】
例示的な実施形態の説明のために、1つ以上のステップ/フローチャートを使用した。これらのステップ/フローチャートの使用は、実行される動作の順序に関する限定を意味するものではない。例示的な実施形態の前述の説明は、例示及び説明の目的で提示されている。これらは開示された正確な形態に関して網羅的又は限定的であるべきことを意図したものではなく、変更及び変形は、上記の教示に照らして可能であるか、又は開示された実施形態の実践から取得可能である。本発明の範囲は、本明細書に添付された特許請求の範囲及びその均等物によって定義されることが意図されている。本発明の範囲は、本明細書に添付された特許請求の範囲及びその均等物によって定められることが意図されている。
【0058】
制御要素は、特定の機能を実行するための命令でプログラミングされたプロセッサ、メモリ、及び他のコンポーネントを含むコンピューティングデバイス(コンピュータなど)を用いて実施されるか、又は、特定の機能を実行するように設計されたプロセッサで実施されてもよい。プロセッサは、本明細書に記載の様々な実施形態の機能を含めた様々な機能を実行するようにソフトウェア命令(アプリケーション)によって構成されてもよい任意にプログラミング可能なマイクロプロセッサ、マイクロコンピュータ又は複数のプロセッサチップ又は複数のチップであってもよい。一部のコンピューティングデバイスでは、複数のプロセッサが提供されてもよい。典型的には、ソフトウェアアプリケーションは、これらがアクセスされてプロセッサにロードされる前に、内部メモリに記憶されてもよい。一部のコンピューティングデバイスでは、プロセッサは、アプリケーションソフトウェア命令を記憶するのに十分な内部メモリを含み得る。
【0059】
本明細書に開示される実施形態に関連して説明される様々な実例的な論理ブロック、モジュール、回路、及びアルゴリズムステップは、電子的ハードウェア、コンピュータソフトウェア、又は両者の組み合わせとして実施されてもよい。ハードウェアとソフトウェアとのこの互換性を明確に説明するために、様々な実例的なコンポーネント、ブロック、モジュール、回路、及びステップを、上記では一般的にそれらの機能的観点から説明した。そのような機能がハードウェアとして実施されるかソフトウェアとして実施されるかは、システム全体に課せられる特定のアプリケーションと設計上の制約とに依存する。当業者は、特定のアプリケーションごとに様々な方法で説明された機能を実施することができるが、そのような実施の決定は、本発明の範囲からの逸脱を生じさせると解釈されるべきではない。
【0060】
本明細書に開示される態様に関連して説明される様々な実例的なロジック、論理ブロック、モジュール、及び回路の実施のために使用されるハードウェアは、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)又は他のプログラマブルロジックデバイス、ディスクリートゲート又はトランジスタロジック、ディスクリートハードウェアコンポーネント、又は本明細書に記載の機能を実行するように設計されたこれらの任意の組み合わせによって実施又は実行されてもよい。汎用プロセッサはマイクロプロセッサであってもよいが、代替的に、このプロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、又はステートマシンであってもよい。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、DSPとマイクロプロセッサとの組み合わせ、複数のマイクロプロセッサ、DSPコアとつながった1つ以上のマイクロプロセッサ、又は任意の別のそのような構成として実施されてもよい。代替的に、一部のステップ又は方法は、所与の機能に特定した回路によって実行されてもよい。
【0061】
開示された実施形態の前述の説明は、任意の当業者に、説明された実施形態の製作又は使用を可能にさせるために提供されている。これらの実施形態に対する様々な変更は、当業者には容易に明らかであり、本明細書で定義される一般的な原理は、本開示の範囲から逸脱することなく、他の実施形態に適用することもできる。したがって、本発明は、本明細書で示された実施形態への限定を意図するものではないが、以下の特許請求の範囲及び本明細書に開示される原理及び新規の特徴との整合性がとれる最も広い範囲で認められるべきである。
【手続補正書】
【提出日】2022-09-09
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
複数の電源の並列動作方法であって、
ドループマスタコントローラによって、複数の電源用の負荷需要を測定するステップと、
第1のドループスレーブコントローラによって、前記ドループマスタコントローラから前記複数の電源用の前記負荷需要を受信するステップと、
前記第1のドループスレーブコントローラによって、前記複数の電源の第1の燃料電池電源の電力容量を決定するステップと、
前記第1のドループスレーブコントローラによって、前記複数の電源用の前記負荷需要と前記第1の燃料電池電源の前記電力容量とを用いて、前記第1の燃料電池電源用の第1のドループプロファイルのための第1の勾配及び第1の無負荷設定点のうちの少なくとも1つを計算するステップと、ここで、前記第1のドループプロファイルと、少なくとも第2の電源用の第2のドループプロファイルとが前記複数の電源用のすべての負荷需要のために提供され、さらに、
前記第1の燃料電池電源用の第1のインバータを、前記第1のドループプロファイルに従って電力を出力するように構成するステップと、を含む、方法。